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Abstract  29 

Antimicrobial resistance (AMR) is a global health threat, especially in low-/middle-income countries 30 

(LMICs), where there is limited surveillance to inform empiric antibiotic treatment guidelines. 31 

Enterobacterales are amongst the most important causes of drug-resistant bacterial infections. We 32 

developed a novel AMR surveillance approach for Enterobacterales by profiling pooled human faecal 33 

metagenomes from three sites (n=563 individuals; Cambodia, Kenya, UK) to derive a taxonomy-34 

adjusted AMR metric (“resistance potential”) which could be used to predict the aggregate percentage 35 

of resistant invasive Enterobacterales infections within each setting. Samples were sequenced 36 

(Illumina); taxonomic and resistance gene profiling was performed using ResPipe. Data on organisms 37 

causing bacteraemia and meningitis and antibiotic susceptibility test results from 2010-2017 were 38 

collated for each site. Bayesian generalised linear models with a binomial likelihood were fitted to 39 

determine the capacity of the resistance potential to predict AMR in Enterobacterales infections in 40 
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each setting. The most informative model accurately predicted the numbers of resistant infections in 41 

the target populations for 14/14 of antibiotics in the UK, 12/12 in Kenya, and 9/12 in Cambodia. 42 

Intermittent metagenomics of pooled human samples could represent a powerful pragmatic and 43 

economical approach for determining and monitoring AMR in clinical infections, especially in 44 

resource-limited settings.  45 

 46 

Introduction  47 

Antimicrobial resistance (AMR) is a global health emergency1, and imposes a particularly large 48 

socioeconomic burden in resource-limited settings, where bacterial infections and several other 49 

drivers of AMR commonly co-occur and effective antibiotics may be unavailable or unaffordable2. A 50 

key pillar in AMR mitigation is the development of effective and standardised AMR surveillance, to 51 

monitor trends, inform empiric treatment guidelines, identify emerging AMR threats, and monitor the 52 

impact of interventions. There has been significant investment in surveillance capacity, such as by the 53 

UK’s Fleming Fund, and an attempt to promote standardised collection, analysis and sharing of global 54 

AMR data with an emphasis on capturing clinical and microbiological information, encapsulated in 55 

the WHO Global Antimicrobial Resistance Surveillance System (GLASS)3.  However, limitations in 56 

implementing GLASS include the time taken to develop robust infrastructural capacity to support data 57 

collection in regions where AMR is most relevant or prevalent, and the difficulty in obtaining 58 

systematic datasets even from enrolled countries with adequate infrastructure, especially outside 59 

tertiary or University centres. Surveillance strategies which could bridge or complement the 60 

implementation of approaches such as GLASS would be helpful. 61 

 62 

Colonisation with specific species and/or drug-resistant organisms, such as nasal colonisation with 63 

Staphylococcus aureus4, or rectal colonisation with carbapenemase-producing Enterobacterales5, is 64 

associated with risk of infection by these organisms. Metagenomic approaches are less biased than 65 

targeted approaches which capture specific organism/resistance phenotypes of interest, and obviate 66 

the need for culturing individual organisms. Resistance gene abundances and taxonomic distributions 67 

in metagenomes are increasingly mined for a range of applications in the study of AMR, including as 68 
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correlates for national antibiotic exposures6,7 in the case of human gut metagenomes, or as an 69 

approach to monitoring global AMR in the case of sewage8. However, to our knowledge, no study to 70 

date has used taxonomic and resistome profiles of pooled metagenomes to directly estimate the AMR 71 

prevalence in clinical isolates within the same population, across a range of species and antimicrobial 72 

classes.  This approach would enable intermittent, strategic sampling of a subset of individuals in a 73 

population to estimate the burden of AMR in clinical isolates, facilitating evidence-based 74 

development of empiric treatment guidelines without the need for isolate-based microbiological 75 

surveillance. Most samples taken to assay colonisation (e.g. faeces/rectal swabs, nasal/throat swabs) 76 

are relatively non-invasive and acceptable for individuals, and tolerated by particularly vulnerable 77 

groups, such as neonates. 78 

 79 

The concept of a taxonomy-adjusted AMR metric or AMR resistance potential for a metagenome has 80 

been described previously6,9 as the average metagenome fraction encoding resistance genes for a 81 

particular antibiotic or antibiotic group, across all bacteria in a sample that can potentially carry such 82 

resistance genes, based on known taxonomic ranges for the resistance gene families. To model the 83 

benefit of such a metric in predicting resistance in clinical isolates within a population, we took 84 

pooled faecal samples from a sub-population of individuals (>100) in three disparate geographic 85 

settings with varying AMR prevalence, namely Cambodia, Kenya and the United Kingdom (UK), and 86 

validated the model predictions using microbiological data from clinical isolates processed by 87 

laboratories in these locations over a seven-year period (2010-2017). 88 

 89 

Materials and Methods  90 

 91 

Samples and Settings 92 

Faecal material stored in three existing biobanks was chosen for study; ethical approval for the 93 

broader use of these samples was in place. Samples comprised: (i) rectal swabs from children aged 1-94 

59 months with and without malnutrition, taken on admission to Kilifi County Hospital in Kilifi, 95 

Kenya, from 1st April to 30th September 2016, and stored in Amies transport media + 1ml phosphate 96 
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buffered saline at -80°C (“Pharmacokinetics of Antimicrobials and Carriage of Antimicrobial 97 

Resistance amongst Hospitalised Children with Severe Acute Malnutrition (FLACSAM)’ study10 98 

[KEMRI/SERU/CGMR- C/023/3161; OXTREC 47-15]); (ii) faecal samples taken from newborns on 99 

admission to Angkor Hospital for Children in Siem Reap, Cambodia,  from 11th September 2013 to 100 

10th September 2014, and stored in tryptone soya broth + 10% glycerol at -80°C11(OxTREC ref 1047-101 

13; this collection also included longitudinal samples taken from a subset of newborns during their 102 

inpatient stay for another study); and (iii), rectal swabs (Eswab, Copan diagnostics, Murrieta, CA, 103 

USA); 1ml Amies transport media) from individuals aged ≥18 years attending pre-admission clinics 104 

or on admission to Guy’s and St Thomas’ NHS Foundation Trust, London, UK, between February 105 

and May 2015, and stored at -80°C12–14 ( [REC: 14/LO/2085]). Rectal swabs and faecal samples have 106 

both been used as approaches for surveying intestinal microbiota15,16, and are thought to give similar 107 

results17. 108 

 109 

For each study site, metadata associated with microbiology tests performed on blood and 110 

cerebrospinal fluid samples (as most robustly representative of true causative pathogens) collected 111 

within 0-72 hours of admission from 01/Jan/2010-31/May/2017 were collated. Each site has a 112 

microbiology laboratory participating in external quality assurance schemes (e.g. UK National 113 

External Quality Assessment Service, NEQAS) and is additionally accredited to UK ISO15189 114 

(London laboratory) or WHO Good Clinical Laboratory Practice standards (Kilifi laboratory). 115 

Catchment areas served by each laboratory vary: For Cambodia about two-thirds of the patients come 116 

from within Siem Reap province18,19; in Kenya the population served is mostly rural, within the 117 

coastal Kilifi District20; and in London the laboratory largely serves a South London community of 118 

approximately 0.5 million people and also regularly provides services to international patients and 119 

patients from other sites in the UK21. Collated metadata included bacterial species identification 120 

results, available antibiotic susceptibility testing (AST) results, specimen type and basic patient details 121 

to validate aggregate-level stratification by age. Samples were processed using standard operating 122 

procedures in accordance with accredited guidelines. In the UK, the VITEK system (bioMérieux, 123 

Marcy-l'Etoile, France) was used for AST and performed according to the British Society for 124 
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Antimicrobial Chemotherapy standards22 (BSAC). In Cambodia and Kenya, AST was performed 125 

using a standardised disk diffusion method following the Clinical and Laboratory Standards Institute 126 

(CLSI) guidelines23. Where accurate AST results could not be achieved by simple disk diffusion, 127 

minimum inhibitory concentrations (MICs) were determined by Etest in both settings. The infection 128 

metadata was collated for infants < 90 days of age in Cambodia, ≤ 60 months of age in Kenya and ≥ 129 

18 years of age in the UK. 130 

 131 

DNA Extraction 132 

Samples from Cambodia and Kenya were shipped to the Nuffield Department of Medicine 133 

(University of Oxford, UK) for extraction; extractions for London samples took place at the Centre 134 

for Clinical Infection and Diagnostics Research (CIDR-King’s College London). DNA was extracted 135 

from each sample using the MoBio PowerSoil® DNA isolation kit (Qiagen, Hilden, Germany), as per 136 

the manufacturer’s instructions with optimisation steps to achieve sufficient DNA yields for 137 

sequencing (ideally ≥300ng DNA/34ul, with a view to obtaining ≥20Gbp (Giga base pairs) of data per 138 

sample). See Supplementary Methods 1 & 2. Known copy numbers of internal standards consisting of 139 

Thermus thermophilus HB8 genomic DNA24 (not normally present in faecal samples) were added to 140 

each sample prior to the addition of Solution C1 (i.e. 8.75 ul per sample [1ng/ul of Thermus DNA]). 141 

The presence of T. thermophilus was ascertained following sequencing by mapping reads to the 142 

Thermus reference genome. 143 

 144 

Sample Pooling 145 

DNA extracts were stored at -20°C and then pooled and sequenced at the Wellcome Trust Centre for 146 

Human Genetics, Oxford, UK. For each study site, we created a “population pool”, which consisted of 147 

the pooling of equimolar concentrations of all extracts from that setting with ≥1ng DNA/μl. To 148 

validate our pooling approach, we also created one smaller pool in each setting, a so-called “30-149 

sample pool”, which consisted of equimolar concentrations of 30 randomly selected extracts with 150 

≥300ng DNA/34μl. An aliquot from each extract included in 30-sample pools was in turn sequenced 151 

individually for the validation study (i.e. sequenced extracts from 90 individuals in total). An aliquot 152 
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from all extracts sequenced individually and included in the 30-sample pools was also included in 153 

population pools. 154 

 155 

Metagenomic Sequencing 156 

Sequencing of all samples (pools and individual extracts) was performed using the HiSeq 4000 157 

Illumina platform, generating 150bp paired-end reads (i.e. 96 metagenomes [n=90 individual 158 

metagenomes, n=3 30-sample pools, n=3 population pools]). 500ng of DNA from each sample was 159 

used for library preparation. Libraries were constructed using the NEBNext Ultra DNA Sample Prep 160 

Master Mix Kit (NEB) with minor modifications and a custom automated protocol on a Biomek FX 161 

(Beckman)25. At the time of sequencing, the HiSeq 4000 produced on average 72-90 Gbp of data per 162 

lane. We sequenced four individual extracts per lane to obtain on average 18-22.5 Gbp of data per 163 

sample. For the pooled samples, we sequenced one 30-sample-pool plus one population-pool per lane 164 

to obtain on average 36-45 Gbp of data per pool. Metagenomic data was obtained once for each 165 

distinct sample or pool; there were no technical replicates due to the expense of high-throughput 166 

sequencing. 167 

 168 

Sequence Data Processing 169 

We determined the taxonomic abundance of bacterial species and resistance genes at individual and 170 

pooled sample levels using a recently developed bioinformatics pipeline26. This pipeline incorporated 171 

established approaches to taxonomic profiling, and an adapted approach to quantify resistance gene 172 

markers present in a metagenome (for details of the method, see26). Briefly, the sequenced paired-end 173 

reads were quality-filtered based on PHRED scores (≥ Q25 and ≥ 50 bp), and adapters removed using 174 

TrimGalore27. For profiling the abundance of bacterial species, the quality-filtered sequences were 175 

classified with Kraken228 (v.2.0.8-beta) against bacteria, plasmid, viral and human genome sequences 176 

recovered (12 July 2019) from NCBI. With the taxonomic classification from Kraken2 and 177 

information about species specific versus non-specific genetic regions we estimated true abundance at 178 

the species level using Bracken29 (v.2.5.0), which was subsequently used for deriving total aggregate 179 

counts of bacterial taxa. For profiling resistance genes, the quality-filtered sequences were mapped 180 
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against the Comprehensive Antibiotic Resistance Database30,31 (CARD, v.3.0.3) using BBMAP32 181 

(v.37.72) at 100% sequence identity. The number of sequences that mapped to each resistance gene 182 

were subsequently corrected to remove resistance gene length bias. This was done using four metrics, 183 

namely (1) specific read count (number of sequences that map exclusively to the resistance gene); (2) 184 

specific lateral coverage (proportion of the resistance gene covered by sequences mapping exclusively 185 

to the gene); (3) resistance gene length; and (4) and average read length (average length of reads that 186 

mapped to the resistance gene), and by the following formula: corrected gene count (CGC) = (specific 187 

read count x average read length) / (resistance gene length x specific lateral coverage). 188 

 189 

The CARD database attempts to classify each resistance gene variant by its association with AMR. To 190 

be included in CARD, an AMR determinant must be described in a peer-reviewed scientific 191 

publication, have its DNA sequence available in GenBank, and include clear experimental evidence of 192 

elevated MIC over controls31. We used these data to map and aggregate counts of resistance 193 

genes/variants associated with resistance to a specific antibiotic. In the process, we ranked the 194 

resistance genes/variants into two categories, reflecting to some extent the public health risks posed33, 195 

and thereby creating two sets of antibiotic resistance gene metrics. The first (AMRDEF; Supplementary 196 

Data 1), included only AMR determinants with the “Confers_Resistance_to_Antibiotic” relationship 197 

ontology term, whereby the gene associated with demonstrably elevated MIC is known to confer or 198 

contribute to clinically relevant resistance to a specific antibiotic drug31. The second (AMRALL; 199 

Supplementary Data 2), contained corrected counts of all resistance genes with clear experimental 200 

evidence of increasing the MIC, including those associated with clinically relevant resistance (as for 201 

AMRDEF), plus those without the “Confers_Resistance_to_Antibiotic” relationship ontology term. For 202 

the purposes of this study we have used the term “resistance gene” to define any relevant genetic 203 

marker of resistance, including genes that confer resistance by mutation (but can have a susceptible 204 

wild type), and genes that confer resistance through presence/absence.   205 

 206 

Validation of Pooling 207 
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We evaluated to what extent pooled resistome data was a non-biased representation of the individual 208 

resistomes making up the pool. Resistance gene abundances of the 30-sample pools and individually 209 

sequenced samples were converted to relative abundances, such that gene abundances in each sample 210 

summed to one. Then, for each of the three different settings, individual samples were used to 211 

compute the empirical distribution of each gene by repeated random sampling of its relative gene 212 

abundance out of the individual samples (bootstrapping with n=100,000 repeats). We were then able 213 

to compare the pool abundance of each gene with its empirical distribution in the same setting 214 

(within-setting comparison) and in the other two settings (across-setting comparison). We computed 215 

the fraction of resistance genes for which the pool estimate was within 90% central quantile of the 216 

empirical distribution. The resulting metric was restricted between 0 (i.e. 0% of resistance genes in 217 

the pool were as expected given the individual resistomes) and 1 (i.e. 100% of resistance genes in the 218 

pool were as expected). Because bootstrapping of gene abundances relies on having a sufficient 219 

number of samples with non-zero abundance, we limited our analysis to genes present in ≥50% of all 220 

individual samples (n=121 genes). Given the central quantile choice above (i.e. 90%), a value of 221 

~0.90 would imply a non-biased representation of individual resistomes by the pooled resistome. For 222 

visualization, non-metric multidimensional scaling, an ordination-based method, was used to show 223 

pair-wise dissimilarities between resistomes from population pools, 30-sample-pools and individual 224 

sample means within and across settings. Individual sample means for each setting were, for each 225 

AMR gene, the sum of CGCs across all individually sequenced samples. 226 

 227 

Taxonomy Adjusted Resistance Potential Metrics 228 

We developed several candidate metrics of resistant infection risk, based on pool metagenomic data 229 

on resistance gene abundance and bacterial species composition, and evaluated their potential to 230 

accurately predict the likelihood of antibiotic resistant invasive infections in a population. We refer to 231 

these as ‘taxonomy-adjusted resistance potential (RP)’ metrics, which consisted of two parameters. 232 

The first parameter, RCGC, was given through the sum of corrected gene counts (CGC) of variants 233 

associated with resistance to a given antibiotic, j (RCGCj) divided by the total CGC of all resistance 234 

genes in the pool. RCGC,j was calculated based on either variants with experimental evidence of 235 
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increasing the MIC (AMRALL) or only variants known to confer clinically relevant resistance 236 

(AMRDEF). The second parameter, RTax, was given through the estimated abundance of a clinically 237 

relevant bacterial grouping (derived from Bracken estimates) divided by the total estimated 238 

abundance of bacterial taxa in the pool. The bacterial groupings tested were the Enterobacterales 239 

order, Enterobacteriaceae family, and the grouping of the four most common and clinically relevant 240 

bacterial genera/species within the Enterobacteriaceae family across sites (namely Escherichia coli, 241 

Klebsiella pneumoniae, Salmonella spp, Enterobacter spp).  242 

 243 

Bayesian Modelling 244 

With each taxonomy-adjusted RP, we fitted a Bayesian generalized linear model to the data and 245 

applied model comparison. This allowed us to assess the potential of the different metrics to predict 246 

observed antibiotic resistance amongst clinical invasive Enterobacterales isolates. We used de-247 

duplicated counts of isolates (unique bacterial species per antibiogram and patient-ID) for the 248 

analyses. We let i denote the setting (Cambodia, Kenya or UK), and j the antibiotic (see below for a 249 

list). We assumed that counts of resistant samples follow a binomial distribution. Our model then 250 

predicts the count of resistance (ri,j) among tested Enterobacterales isolates (ni,j) using a probability of 251 

resistance (pi,j), which is modelled as 252 

 253 

 254 

(Equation 1) 255 

 256 

The model intercept (𝛼) is specific for each antibiotic (j) but not setting (i), representing a baseline 257 

propensity of resistance for any given antibiotic. Because resistance propensities can vary widely 258 

between different antibiotics. We assume independent baselines (fixed effects). The setting-specific 259 

information is RTax,i, which gives information about pathogen levels in setting i, as well as RCGC,i,j, 260 

which carries information about resistance toward antibiotic j in setting i. For β1,j and β2,j, the 261 

predictive effects of RCGC and RTax, we assumed these to represent the clinical ecology of resistance 262 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.10.941930doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.10.941930
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

genes so that they are specific to each antibiotic, j, but not to each setting, i. We further assumed that 263 

different antibiotics have different but related β-values (variable effects, specified below). We 264 

included only those antibiotics that had existing antibiotic susceptibility test (AST) data in at least two 265 

out of three settings (trimethoprim-sulfamethoxazole, nitrofurantoin, nalidixic acid, meropenem, 266 

imipenem, gentamicin, ciprofloxacin, chloramphenicol, cefuroxime, ceftriaxone, ceftazidime, 267 

cefpodoxime, cefoxitin, cefotaxime, ampicillin, amikacin); missing observations were excluded from 268 

the likelihood evaluation. We fitted the above model with RCGC being either AMRDEF or AMRALL and 269 

with RTax being either of the three bacterial groupings discussed earlier, yielding a total of six separate 270 

model fits. Due to the limited number of infection isolates with AST results (especially in Cambodia), 271 

we chose standard weakly informative priors for the intercept and the effect parameters. In addition, 272 

we restricted the effect of gene abundance to be positive, reflecting our view that only a positive 273 

association of resistance genes and clinical resistance is biologically reasonable. We therefore chose 274 

 275 

 276 

 277 

 278 

 279 

 280 

 281 

 282 

 283 

where N denotes a normal distribution and N+ denotes a half-normal distribution covering only 284 

positive values. Each model was fit using Stan software34 (v2.19.1), with which we sampled 50,000 285 

samples after a burn-in period of 5,000 samples using four independent chains.  286 

 287 

The best taxonomy-adjusted RP metric was selected using Bayesian leave-one-out cross validation35 288 

which estimates a model’s pointwise out of sample prediction accuracy. The prediction accuracies are 289 
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then used to directly compare all models using stacking weights36. In brief, models with smaller cross-290 

validation errors (e.g. smaller prediction errors), get more weight relative to other models in the model 291 

comparison. We also included in the comparison two models with RCGC (either AMRDEF or AMRALL), 292 

following Equation (1), but without RTax. Finally, the overall value of using any taxonomy-adjusted 293 

RP metric for predicting clinical resistance was assessed by including in the model comparison a 294 

baseline model without predictors. The prediction accuracy of taxonomy-adjusted RP was also 295 

assessed visually by comparing the best model’s predictions of sample counts of resistance (and their 296 

95% credible intervals [CI]) against the observed counts (Figure 5). For settings and antibiotics where 297 

zero samples were tested, we imputed the sample size by computing the rounded mean of the sample 298 

sizes of the other two settings. Model comparisons and all further data analyses were performed in R-299 

3.6.1 statistical software37. The dataset used for the Bayesian modelling is given in Supplementary 300 

Data 3. 301 

 302 

Results 303 

The study included 210 admission samples from Kenya, 200 from the UK and 153 from Cambodia 304 

(n=154 – 1 rejected sample), totalling 563 samples for metagenomic analysis (Fig 1). In addition, 76 305 

follow-up samples were taken from 37/154 newborns in Cambodia during their inpatient stay or upon 306 

hospital discharge for a separate project; these were processed alongside the study samples (Fig 1). 307 

We only considered DNA extracts with yields ≥1ng/ul (79-89% of samples; Fig 1), and 19 DNA 308 

extracts from the separate longitudinal study were included in the Cambodia population pool due to 309 

processing error. In total, population pools in Kenya, the UK and Cambodia, comprised 177, 157, and 310 

156 pooled sample extracts. Thirty high DNA-yield samples (≥9ng/ul) from each setting were used 311 

for the validation study, as well as being included in the population pools. To prevent bias, potential 312 

associations between high-yield samples and population traits were ruled out in advance. The total 313 

Gbp of data obtained per population pool were 51.6 (Kenya), 55.1 (UK) and 52.6 (Cambodia). The 314 

median Gbp obtained for individually sequenced samples were 24.2 (Kenya), 22.1 (Cambodia), 22.4 315 

(UK). 316 

317 
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Fig 1. Sample Processing Workflow 318 

 319 

 320 

We identified 863 different antimicrobial resistance genes across any sample or pool (Cambodia: 684; 321 

Kenya = 527; UK = 520), which were proven to increase the MIC for 163 antimicrobials (AMRALL) 322 

and known to confer clinically relevant resistance for 113 antimicrobials (AMRDEF). The number of 323 

resistance genes identified in population pools was largest in Cambodia (n=490), followed by the UK 324 

(n=389) and Kenya (n=386). The median number of resistance gene types identified per individual 325 

sample was also higher in Cambodia (median=162; IQR= 126-187 [Min-Max =33-231]), followed by 326 

in Kenya (median=143; IQR= 127-205 [Min-Max =97-256]) and UK (median=134; IQR= 126-148; 327 

[Min-Max =61-217]).  328 

 329 

A summary of the Enterobacterales taxa identified from population pools and invasive infections in 330 

each setting is given in Fig 2. Enterobacterales were the main bacterial taxa identified from population 331 

pools in the UK (75.7%) and Cambodia (69.7%) but not in Kenya (32.4%) (Fig 2A). Within the 332 

Enterobacterales, >95% of the bacteria were from the Enterobacteriaceae family in all settings (UK: 333 

96.3%; Cambodia: 99.4%; Kenya: 99.1%). The predominant species within the Enterobacterales order 334 

in population pools were E. coli and K. pneumoniae, followed by Enterobacter spp. (Fig 2E).  These 335 

species and genera combined accounted for 92.4% of all Enterobacterales taxa in Kenya, 88.5% in the 336 

UK and 88.1% in Cambodia. The abundance of E. coli, was >20-fold higher than that of K. 337 

pneumoniae in population pools from the UK (E. coli: 63.2%; K. pneumoniae: 2.2%) and Kenya (E. 338 

coli: 28.4%; K. pneumoniae: 1.3%). In contrast both species had similar abundance in the Cambodia 339 

population pool (E. coli: 30%; K. pneumoniae: 26.9%). Enterobacter spp. abundance was also higher 340 

in Cambodia (4.5%) compared to the UK (1.6%) or Kenya (0.2%). The remaining Enterobacterales 341 

comprised other genera, each being <2% of the total bacterial taxa in the three settings (Fig 2G). 342 

Infections by Enterobacterales accounted for approximately a third of all blood and cerebrospinal 343 

fluid infections in the three settings (Kenya: 36.8%; Cambodia: 33.0%; UK: 28.2%) (Fig 2B). Similar 344 

to the findings from population pools, most of these Enterobacterales infections involved the 345 
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Enterobacteriaceae family (UK: 91.2%, Cambodia: 89.2%; Kenya: 91.8%; Fig 2B). Likewise, the 346 

predominant Enterobacterales species in all settings were E. coli and K. pneumoniae, with the 347 

proportion of E. coli infections being at least double that of K. pneumoniae in the UK (E. coli: 16.1%; 348 

K. pneumoniae: 4.8%) and Kenya (E. coli: 13.8%; K. pneumoniae: 5.9%), but not in Cambodia (E. 349 

coli: 13.7%; K. pneumoniae: 11.7%) (Fig 2F). Enterobacter spp. was the next most common 350 

Enterobacterales genus in all settings (Cambodia: 3.1%; Kenya: 2.7%; UK: 2.2%), but the remaining 351 

Enterobacterales species and genera accounted for <2% of the total invasive infections by any 352 

bacterial order each in all three settings (Fig 2H). A notable exception was Salmonella spp., which 353 

accounted for 9.9% of the total infections in Kenya (therefore also included in Fig 2F and the 354 

equivalent plot for population pools [Fig 2E]). Details of all invasive infections by bacteria other than 355 

the Enterobacterales are given in Supplementary Fig 1. 356 

357 
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Fig 2. Bacterial (Enterobacterales) taxa in population pools and in blood and cerebrospinal fluid 358 
infections from Cambodia, Kenya and UK. 359 

Panels for population pools (A, C, E, G) show, for each setting, the abundances of Enterobacterales taxa divided 360 
by the total abundance of bacterial taxa in a pool. Abundances are derived from Bracken estimates. Panels for 361 
invasive infection data (B, D, F, H), show percentages of Enterobacterales infection isolates out of all bacterial 362 
infection isolates with speciation results identified from blood and cerebrospinal fluid samples in target age 363 
groups, in each setting, from 2010-2017 (Cambodia [n=197]; Kenya [n=910]; UK [n=3356]).  364 
 365 

The highest relative abundances of resistance genes observed in each setting were for genes 366 

associated with resistance to aminoglycosides, amphenicols, fluoroquinolones, tetracyclines and 367 

macrolides (48.1%, 45.8% and 43.6% of the total counts in Cambodia, Kenya and the UK 368 

respectively) (Fig 3A, left-hand panel). Relative abundance of resistance genes associated with these 369 

five broad antibiotic classes differed between settings. For example, the relative abundance of 370 

resistance genes for aminoglycosides in Cambodia (18.4%) was almost double that in Kenya (10.8%) 371 

or UK (10.9%). The next highest relative abundance was of genes conferring resistance to penicillins 372 

(Cambodia: 4.1%; Kenya: 4.7%; UK: 5.0%) and cephalosporins (Cambodia: 2.6%; Kenya: 2.3%; UK: 373 

2.2%). Resistance gene counts for other antibiotic classes were <2% of the total gene counts in all 374 

settings, including to carbapenems (Kenya [0.5%], Cambodia and UK [0.4%]). For single antibiotics 375 

or antibiotic sub-classes (e.g. 1st generation cephalosporins), the highest relative abundances were 376 

observed for erythromycin (Cambodia: 3.9%; Kenya: 4.2%; UK: 4.4%) and chloramphenicol 377 

(Cambodia: 3.6%; Kenya: 3.5%; UK: 4.2%) in all settings (Fig 3A, right-hand panel). That for 378 

resistance genes to antibiotics other than those listed was 76% (Cambodia), 76.5% (Kenya) and 76.1% 379 

(UK) (data not shown). The relative abundance of resistance genes for all other single 380 

antibiotics/antibiotic sub-classes was <2% in all settings, except for tigecycline (Cambodia: 2.8%; 381 

Kenya and UK: 2.2%) and clindamycin (Kenya: 2.1%; UK: 2.6%). Resistance prevalence in 382 

Enterobacterales isolates causing blood and cerebrospinal fluid infections is displayed in Fig.3B 383 

(right-hand panel) for the 16 antibiotics with antibiotic susceptibility test data in ≥2 settings. For 384 

comparison, this is shown alongside the relative abundance of resistance genes for the same 385 

antibiotics in population pools (Fig.3B, left-hand panel). 386 

 387 
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Fig 3. Relative abundance of resistance gene counts in population pools and percentage of 388 
resistant Enterobacterales blood and cerebrospinal fluid infections in Cambodia, Kenya and 389 
UK.  390 
 391 
Panels in Fig 3A show, for each setting, corrected resistance gene counts (CGCs) for a given antibiotic, antibiotic 392 
class, or sub-class, divided by the total corrected AMR gene counts identified in the population pool. Relative 393 
abundances were calculated using AMRALL, which considers corrected counts of genes and variants (CGC) 394 
increasing the MIC or conferring clinically relevant resistance for a given antibiotic. Panels in Fig 3B show, for 395 
each setting, the observed percentage of Enterobacterales resistant infections for 16 antibiotics with AST data in 396 
≥ 2 settings (right-hand side), and the relative abundance of CGCs for the same antibiotics in population pools, 397 
based on AMRALL (left-hand side). Percentages are shown with 95% exact binomial confidence intervals in both 398 
panels. 399 
 400 

Pair-wise dissimilarities in resistomes from population pools, 30-sample-pools and individual sample 401 

means (i.e. sum of CGC for the resistance gene types across all individually sequenced samples) were 402 

calculated both within and across settings (Fig 4A and 4B), considering either the absolute CGC 403 

values for each resistance gene type or their relative abundance based on the CGC values. Population 404 

pools, 30-sample pools and individual sample means were less dissimilar and hence more closely 405 

related within settings than across settings. In addition, within each setting, individual sample means 406 

were more often less dissimilar to 30-sample pools than to population pools. In Cambodia 362 AMR 407 

genes were identified in the 30-sample pool compared to 616 across all 30 individual samples. The 408 

30-sample pool in Kenya comprised 339 genes compared to 499 across all individual samples. 409 

Finally, in the UK 318 AMR genes were identified from the 30-sample pool compared to 422 across 410 

all individual samples. However, when comparing individual samples and pools from the same setting 411 

quantitatively, the average fraction of resistance genes for which the 30-sample pool estimate was 412 

within the central interval of the empirical distribution inferred from individually sequenced samples 413 

was 97% (Kenya: 98%; Cambodia: 97%; UK: 95%). In contrast, the average fraction was 86% across 414 

comparisons between different settings (min-max: 80-92%). All 30-sample pool resistomes therefore 415 

had substantially higher similarity to individual resistomes from the same setting relative to the 416 

comparison with other settings. 417 

418 
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Fig 4. Pair-wise dissimilarities in the resistome of population pools, 30-sample-pools and 419 
individual sample means within and across settings 420 
 421 
Using non-metric multidimensional scaling (NMDS) ordination-based method, Fig 4 shows pair-wise 422 
dissimilarities of resistance gene counts from population pools (PP), 30-sample-pools (30S) and 423 
individual sample means (SI) within and between settings, following mapping of sequences from 424 
individual and pool metagenomes against CARD and a correction to remove resistance gene length 425 
bias from counts. Dissimilarities are shown for the absolute corrected resistance gene counts (CGC; 426 
left hand-side) and the relative abundance of resistance genes (right hand-side).  Relative abundances 427 
for genes in pools were calculated by dividing the CGC for each gene by the total CGC of all 428 
resistance genes in the pool. Individual sample means were, for each resistance gene, the sum of CGC 429 
across all individually sequenced samples. This, divided by the total CGC of all resistance genes 430 
across all individually sequenced samples, was the relative abundance of each resistance gene based 431 
on individual sample means. 432 
 433 

The best taxonomy-adjusted RP metric - resulting in the highest point-wise out of sample prediction 434 

accuracy and the greatest relative model weight - used the taxonomic parameter Rtax measuring 435 

Escherichia coli, Klebsiella pneumoniae, Salmonella spp. and Enterobacter spp., and the abundance 436 

of resistance genes increasing the MIC or conferring clinically relevant resistance (AMRALL version 437 

of the RCGC metric). This AMRALL model outperformed the other models, including a baseline model 438 

without any metagenomics information, plus those models without taxonomic (Rtax) information 439 

(Bayesian model averaging weights: Baseline [no RCGC and no Rtax] = 0; RCGC only [No Rtax] = 0; Best 440 

model = 0.47]. Supplementary Data 4). 441 

 442 

Model predictions were made for 16 antibiotics, which were those that had antibiotic susceptibility 443 

test (AST) data for Enterobacterales isolates causing infection in at least two of the three settings 444 

(Supplementary Data 5). Our best model accurately predicted the number of resistant infections in the 445 

target populations for 100% of antibiotics with AST data in Kenya (12/12) and UK (14/14). In 446 

Cambodia, the model accurately predicted the counts of resistant infections for 75% of antibiotics 447 

(9/12). Compared to this, the baseline model did not correctly predict 50% of antibiotics across the 448 

three settings (19/38). We computed the mean-squared errors of the mean model predictions relative 449 

to the observations. The baseline model had an error of 468, whilst the final model (Fig 5) had an 450 

error of 33. 451 

452 
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Fig 5. Bayesian model prediction of numbers of Enterobacterales invasive infections with 453 
resistance to antibiotics with antibiotic susceptibility test (AST) results in ≥2 settings. 454 

 455 
Horizontal bars represent 95% highest density posterior interval and vertical lines represent means of the 456 
predicted resistant sample counts based on the model using metagenomic data from population pools. Coloured 457 
bars (yellow: Cambodia; blue: Kenya; brown: UK) are shown where clinical data on resistance (i.e. AST) was 458 
available and grey bars where it was not. For grey bars the sample size was imputed. Red circles show the 459 
number of blood and cerebrospinal fluid Enterobacterales infections that were found to be resistant to the 460 
antibiotic listed in the y-axis. The number of isolates with AST results are also given in the y-axis. The red circle is 461 
missing where no AST results were available. In cases where there is minimal uncertainty in the model estimate, 462 
the red circle may overshadow the 95% credible interval bars (e.g. meropenem [Cambodia]; cefuroxime [Kenya]). 463 
“Trimethoprim.” is short for trimethoprim-sulfamethoxazole; “Cloramph” is short for chloramphenicol. NT = no 464 
AST data available. 465 
 466 

Bayesian model predictions expressed as percentages are shown in Supplementary Fig 2 for 467 

antibiotics where AST results were available from > 100 invasive infection isolates. Above this 468 

threshold, predicted percentage resistance was accurate for 100% of antibiotics (14/14 with >100 469 

tested isolates). 470 

 471 
Discussion 472 

 473 

In this study we have demonstrated the feasibility of a novel, pragmatic approach to surveillance of 474 

bacterial antimicrobial resistance of relevance to human infection, with a focus on Enterobacterales as 475 

one of the major bacterial resistance threats38,39. Our results show that metagenomic analysis of pooled 476 

faecal material (pooled at equimolar concentrations) is effective at predicting invasive infections 477 

caused by Enterobacterales resistant to in-use antibiotics in a population, across a range of different 478 

age groups and geographic settings. Our approach would enable intermittent, acceptable and relatively 479 

non-invasive sampling of a small number of individuals within a population (e.g. 100-200), with the 480 

advantage that a single centralised infrastructure (either in-country or internationally) could undertake 481 

the metagenomic sequencing and analysis. This can be done independently of development of a 482 

network of classical microbiological laboratories in multiple settings, which can be resource-intensive 483 

in terms of capital and running costs, and is not feasible in the short-term, especially in LMICs, which 484 

frequently have the highest AMR burden.  485 

 486 
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Based solely on pool size and sequencing depth (50-55Gbp/pool), we developed predictive metrics 487 

(RP) without the need for costly and labour-intensive multiplexing of samples (i.e. individually 488 

identifying samples in the pool by means of barcoded sequences) or selective sequencing approaches 489 

based on enrichment for predefined panels of resistance genes. Unlike other AMR gene profiling 490 

approaches our bioinformatics pipeline (ResPipe) incorporates the capacity to identify both specific 491 

AMR gene variants (e.g. such as blaCTX-M-33 versus blaCTX-M-63), as well as being able to aggregate by 492 

gene family. This is especially important for the prediction of phenotypes, as genes that differ by only 493 

single nucleotides/amino acids can have distinct phenotypic spectra. Pooled metagenomes/resistomes 494 

were also found to be an accurate, non-biased representation of the individual sample 495 

metagenomes/resistomes. Population pools comprising rectal swabs with as little as ≥1ng/ul 496 

DNA/sample were found to be sufficient to derive RP metrics with predictive value; this is useful in 497 

terms of optimizing the sample processing workflows. Finally, in producing relatively deeply 498 

sequenced (50-55Gbp/metagenome) and complete (i.e. not restricted to 16S) metagenomes on 90 499 

individuals, we have also made a significant contribution to the human microbiomics data repository, 500 

freely available for other researchers to use for study.  501 

 502 

The limitations of our approach were most obvious for the neonatal group from Cambodia, where 503 

predicted resistance matched the observed resistance in invasive isolates for 75% of antibiotics 504 

compared to 100% of antibiotics in Kenya and the UK. One explanation for this might be that the 505 

population pool for this group was found to have included 19 longitudinal samples (12% of all 506 

samples in the pool) collected from individuals during their hospital inpatient stay, potentially biasing 507 

the metagenomics profile of population pools and infection metadata designed to reflect community 508 

(i.e. non-hospital) profiles. Rapid changes in the neonatal resistome occur following exposure to the 509 

hospital environment40. Analyses of neonatal metagenomes have shown that these are predisposed to 510 

rapid flux, and in hospital typically reflect the environmental hospital “microbiome”41. Cambodia was 511 

also the only setting where the age group considered for metagenomics analysis (i.e. neonates), did 512 

not correspond exactly with the available infection metadata analysed (i.e. infants up to 90 days of 513 
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age), which may also have influenced the accuracy of our predictive approach. Our analysis was also 514 

limited by the scarce antibiotic susceptibility test (AST) results available for invasive infection 515 

isolates, particularly in Cambodia, where the maximum number of isolates with AST results for any 516 

given antibiotic was 65, compared to 324 in Kenya and 912 in UK. The smaller number of isolates 517 

from Cambodia meant that the model fit contained less information to accurately predict resistance in 518 

this setting. Moreover, AST results were only available for a limited number of antibiotics across all 519 

three settings, and ideally AST approaches used for comparison would have been standardised across 520 

the settings. Finally, our analyses are heavily dependent on the robustness of the reference gene 521 

database, and the accuracy of genotypic-phenotypic correlations catalogued therein. In general, 522 

however, we would expect this knowledge base to become increasingly robust, thus strengthening our 523 

predictions. This may explain why in this study, a model that considers all gene variants with 524 

experimental evidence of increasing the minimum inhibitory concentration (MIC), outperformed a 525 

model considering only genes known to confer clinically relevant resistance.  526 

 527 

Further studies to validate our promising proof-of-principle observations in additional settings across 528 

age categories, especially the neonatal group, are warranted. There is potential to extend the approach 529 

to consider other priority bacterial groups and different colonisation samples. For example, pools 530 

could be extended to include samples from nasopharyngeal sites, where other potential pathogens 531 

predominate (e.g. Streptococcus spp., Staphylococcus spp.). To develop the most rapid, convenient, 532 

simple and inexpensive method possible, future studies should also consider further simplifications to 533 

the method such as whether the same accurate predictions can be generated by pooling all samples 534 

prior to DNA extraction and then performing the extraction only once. Further work should also test 535 

the resolution of the approach to characterise and track local/sub-national variation in AMR 536 

prevalence, or in community versus healthcare-associated contexts. A mathematical framework for 537 

minimum-cost implementation of pooled-sample metagenomics-based surveys to quantify the burden 538 

of resistance in new settings without prior microbiology or AST data would also be of benefit, and 539 
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could be greatly informed by the data we have generated, which can contribute to simulation work 540 

addressing pools sizes, pool numbers per region, and sequencing depth.  541 

 542 

We conclude that surveillance based on population colonisation metagenomics and taxonomy-543 

adjusted AMR metrics presented here are in principle a valuable public health opportunity, and may 544 

represent an alternative or bridging measure to the implementation of local and regional laboratory-545 

based infrastructures focussed on culturing isolates from clinical specimens, especially in resource-546 

limited settings. This novel approach could be used to overcome the current paucity of quality AMR 547 

surveillance data and inform setting-tailored rationalization of/or access to antibiotics, context-548 

appropriate treatment guidelines, organized measures to prevent AMR and ultimately public-health 549 

decision in conjunction with relevant stakeholders, especially in LMICs.  550 
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