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Abstract

Ex vivo imaging enables analysis of the human brain at a level of detail that is not possible in
vivo with MRI. In particular, histology can be used to study brain tissue at the microscopic
level, using a wide array of different stains that highlight different microanatomical features.
Complementing MRI with histology has important applications in ex vivo atlas building and
in modeling the link between microstructure and macroscopic MR signal. However, histology
requires sectioning tissue, hence distorting its 3D structure, particularly in larger human samples.
Here, we present an open-source computational pipeline to produce 3D consistent histology
reconstructions of the human brain. The pipeline relies on a volumetric MRI scan that serves as
undistorted reference, and on an intermediate imaging modality (blockface photography) that
bridges the gap between MRI and histology. We present results on 3D histology reconstruction
of a whole human hemisphere.
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1 Introduction 1

1.1 Motivation 2

One of the major challenges in the quest to understand the human brain as a complex system is 3

characterizing its multiscale organization. From a macroscopic anatomical perspective, the brain 4

is subdivided into distinct structures and presents well-defined landmarks, for instance its gyri 5

and sulci. At a much finer scale, neurons are interconnected to form complex circuits. These 6

circuits give rise to features at coarser scales, e.g., the laminar organization of the cortex [1]. 7

Although these distinct levels of organization may seem separate, they are, in fact, deeply 8

linked and mutually influential. One clear example is given by Alzheimer’s disease, which 9

can be described by the interactions between proteinopathy at the microscale and distributed, 10

network-level disruptions at the macroscale [2]. Understanding these multi-scale mechanisms 11

requires a multi-scale map of the brain. However, the current concept of brain mapping is closely 12

linked to the specific tool used to construct cartographic representations, and thus to the spatial 13

scale of the tool. As a result, the different organizational principles can only be observed in a 14

scale-specific fashion with dedicated tools [3]. 15

Multi-scale imaging of the human brain is therefore necessarily multimodal, as different 16

modalities are needed to study different scales. While a macroscopic anatomical picture of 17

the brain is easily acquired non invasively or ex vivo with magnetic resonance imaging (MRI), 18

finer characterization requires histological procedures and microscopy. Histology and MRI are 19

highly complementary modalities: histology produces excellent contrast at the microscopic scale 20

using dedicated stains that target different microanatomical or cytoarchitectural features, but it 21

is a 2D modality that also inevitably introduces distortions in the tissue during blocking and 22

sectioning. MRI does not yield microscopic resolution, but produces undistorted 3D volumes. 23

Therefore, the combination of these two modalities offers a solution to the problem of imaging 24

the human brain at high resolution in 3D. In fact, successful large-scale projects like BigBrain [4] 25

or the Allen Atlas [5] have shown important advancements in terms of creating new whole-brain 26

atlases with cellular-level resolution. Creating such atlases requires spatial alignment of images 27

(“registration”) at the macroscopic (MRI) and microscopic (histology) scales. Such registration 28

produces 3D-consistent histological volumes, and is often called “3D histology reconstruction” [6]. 29

Despite remarkable efforts like BigBrain, 3D histology reconstruction still presents obstacles: 30

it requires manual intervention and tailored equipment, which leads to poor scalability and 31

limited applicability in other experimental and clinical studies. Specifically, three main issues 32

can be identified: 33

1. Cutting and sectioning of tissue for histology introduces distortions (stretching, tearing, 34

folding, cracking, see [6]) that are specific to each section. Therefore, an external volumetric 35

reference (typically an MRI scan) is required to produce an unbiased registration. Without 36

such a reference, näıve pairwise registration leads to accumulation of errors (“z-shift”) and 37

spurious straightening of curved structures (the so-called “banana effect”, [7]). 38

2. Large differences in contrast and resolution between MRI and histology, combined with 39

potential inhomogeneous staining and the aforementioned sectioning artifacts, make the 40

alignment of these two modalities a difficult inter-modality registration problem. 41

3. The large size of the human brain, compared with most animal models, requires cutting 42

the tissue in blocks for whole-brain analyses, with the resulting need to reassemble the 43

blocks [6], which is a part-to-whole registration problem [8, 9]. This problem can be solved 44

with whole brain microtomes, although such microtomes are only available in few selected 45

sites around the world. Moreover, they exacerbate the sectioning artifacts, due to the much 46

larger surface area of the sections. 47

Even when a reference MRI is available, 3D histology reconstruction is an ill-posed problem, 48

as errors in the – typically linear – registration between the MRI and the histological stack 49
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can also be explained by nonlinearly deforming the histological sections. To overcome this 50

problem, a common strategy is to use an intermediate modality for registration purposes. Several 51

works [10–13] have used photographs of the block during sectioning (so-called blockface photos). 52

While these photos do not have nearly as much contrast or resolution as the histology, they 53

have the advantage of being free from sectioning artifacts. Therefore, they can be corrected for 54

illumination and perspective and then stacked into blockface volumes, which constitutes a useful 55

stepping stone between histology and MRI. 56

Other potential ways of obtaining 3D consistent volumes at microscopic scale include optical 57

coherence tomography (OCT, [14]), polarized light imaging (PLI, [15]) and cleared tissue 58

microscopy [16]. Notably, large-scale microtomes are not a feasible solution with these techniques, 59

as they are inherently limited to small tissue blocks. In fact, despite technological advances 60

in terms of both increasingly larger samples [17–19] and novel microscopic acquisitions [20,21], 61

complete multi-scale characterization of the human brain as a whole organ still requires the use 62

of complementary tools able to cover all the biologically relevant scales. This inherent limitation 63

makes the development of inter-modality workflows a necessity, especially as cutting-edge research 64

starts to target the whole human body [22]. 65

1.2 Related work 66

There is a growing literature on the topic of combining histology with other modalities, encom- 67

passing different scopes and subdomains in medical imaging beyond neuroimaging. Here we will 68

provide a brief survey of the approaches proposed so far for this multimodal problem, presenting 69

first the ones focused on specific samples or small organs, and then addressing methods targeting 70

whole organs. 71

Despite not being spatially comprehensive, approaches based on selected regions of interest 72

(ROIs) have a high clinical relevance, mainly because of their potential applications in oncology. 73

It is no surprise, then, that several studies have combined MRI with histopathology for cancer 74

applications: examples include breast cancer [23, 24], pancreatic tumors [25] and gliomas [26]. 75

These examples lay the foundation for future 3D histopathology, especially given the parallel 76

effort in tridimensional reconstruction for confocal microscopy [27]. 77

In human neuroimaging, combined MRI-histology also holds great potential because of the 78

cross-scale nature of neurological diseases. Recent studies have proposed ROI-based approaches 79

to better understand the microscopic substrate of pathologies such as amyotrophic lateral 80

sclerosis [28], epilepsy [13] and Alzheimer’s disease [29]. The main targets mostly include 81

subcortical structures, including thalamus [30, 31], hippocampus [32, 33], nucleus accumbens [34], 82

and pedunculopontine nucleus [35], among others [10]. In addition to the practical advantage of 83

dealing with well-defined structures, the focus on the subcortex is due mainly to its implications 84

in neurological diseases and psychiatric disorders. 85

Related approaches in terms of target size include methods focused on small organs. Several 86

studies have proposed combined MRI-histology approaches for the prostate [36,37], lymphoid 87

structures [38], mammary glands [39], and kidneys [40]. Another comparable application is the 88

study of small animal brains, in particular rodents [41–43] and small monkeys [44,45]. A common 89

element to most of the pipelines mentioned so far is the histological section stacking procedure, 90

with registration of consecutive sections as the central step, usually using a combination of rigid 91

and non-linear transformations, and taking advantages of application-specific landmarks where 92

available. To further facilitate the registration process, an interesting approach recently proposed 93

by several works is based on the use of 3D printing to create personalized molds on the basis of 94

MRI data [37,46–48], introducing shape constraints for the subsequent cutting procedure. 95

In contrast to the large body of existing work in 3D reconstruction of small samples, the 96

literature on whole-brain approaches is rather limited. Apart from the major initiatives already 97

mentioned above [4, 5], to the best of our knowledge there are only two other studies that have 98

targeted either the entire brain [49] or a major portion of the cerebrum [50]. These studies relied 99

on the availability of whole brain microtomes, allowing to build on a section stacking procedure 100
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similar to sample-targeted approaches. As already mentioned, this is a significant limitation 101

for the scalability of tridimensional histology, and also strongly limits attempts to leverage on 102

new microscale technologies: most of the new advancements require small samples and therefore 103

cutting the brain in blocks. 104

1.3 Contribution 105

As explained above, the number of potential approaches to probe microstructure in small 106

samples is increasing, but directly adopting such techniques in whole human brain histology-MRI 107

reconstruction is infeasible. Therefore, the ability to reconstruct a whole brain distribution of a 108

given microscopic biomarker from a set of smaller samples is crucial to build multimodal, multi- 109

scale maps of the human brain. In this article, we present an open-source computational pipeline 110

to reconstruct human brain volumes from histological sections with ex vivo MRI, blockface 111

photographs and a standard microtome. To the best of our knowledge, this is the first approach 112

able to reconstruct whole-brain 3D histology from a block-based cutting protocol. Since a highly 113

specialized whole hemisphere microtome is not required, the proposed pipeline can be used by 114

any research site with access to a standard microtome and an MRI scanner. The pipeline relies 115

on a number of 2D and 3D image registration methods, some standard, and some developed 116

specifically for this pipeline, which have already been introduced at conferences [51, 52]. Here we 117

introduce the pipeline as a whole and present results on the reconstruction of a whole human 118

hemisphere. 119

2 Materials and Methods 120

In this section, we describe the pipeline for 3D histology reconstruction, including the data 121

acquisition protocol and computational processing, as summarized in figure 1. 122

2.1 Data acquisition 123

2.1.1 Specimen preparation and ex vivo MRI scanning 124

In this study, we use tissue donated for research to the Queen Square Brain Bank for Neurological 125

Disorders (QSBB). The brain donation program and protocols have received ethical approval for 126

research by the NRES Committee London - Central and tissue is stored for research under a 127

license issued by the Human Tissue Authority (No. 12198). According to the standard protocol 128

at QSBB, fresh brains are first hemisected. The right hemisphere is frozen, while the left one is 129

fixed in 10% neutral buffered formalin. 130

For ex vivo MRI scanning, it is important to immerse the brain in a fluid, in order to avoid 131

susceptibility artifacts at tissue-air interfaces around the edges of the brain. Using the fixative 132

as a medium for this purpose is problematic due to the high proton density of formalin, which 133

quickly saturates the MR signal, thus greatly reducing the dynamic range of the acquired images. 134

Instead, we use Fluorinert (perfluorocarbon), a proton-free fluid which matches the magnetic 135

susceptibility of brain tissue but has no MR signal, so it is invisible in MR images. Immersion in 136

Fluorinert yields excellent ex vivo contrast, and it is known not to affect subsequent histological 137

analysis of the tissue for a wide array of stains, for up to a week of immersion [53]. 138

MRI data are acquired on a 3T Siemens MAGNETOM Prisma scanner. T1-weighted MR 139

imaging is a common choice in vivo due to its excellent contrast between gray and white matter. 140

However, death and fixation induce a cross linking of proteins that greatly shortens T1 relaxation 141

times of brain tissue, reducing T1 contrast ex vivo. Instead, we use a T2-weighted sequence 142

(optimised long echo train 3D fast spin echo, [54]) with parameters: TR=500 ms, TEeff=69 ms, 143

BW=558 Hz/Px, echo spacing=4.96 ms, echo train length=58, 10 averages, with 400 µm isotropic 144

resolution. The hemisphere is scanned in a container filled with Fluorinert, with the medial 145

surface facing up. We place a 3D printed hollow box between the specimen and the container 146
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lid in order to ensure full immersion in the fluid. Sample slices of the acquisition are shown in 147

figure 2a. 148

Figure 1. Workflow of data acquisition (orange) and computational processing
(green. The ex vivo brain is scanned, dissected, sectioned and stained, providing data for the
pipeline: the MRI volume, the whole and blocked slice photographs (dissection), the blockface
photographs (sectioning), and the stained sections. The flowchart illustrates the main steps
of the pipeline: stacking of blockface photographs; registration of blockface volumes to slice
photographs; blocks initialization; block mosaic-preprocessed MRI alignment; and MRI-histology
registration.

2.1.2 Specimen dissection and slice photography 149

After MRI scanning, the hemisphere is dissected following the procedure illustrated in figure 3. 150

First, the brainstem is detached with a transection perpendicular to its axis below the mammillary 151

body (figure 3c-d), and the cerebellum is separated from the cerebrum. The three structures 152

are then dissected independently. The cerebrum is first cut into 10 mm-thick coronal slices, 153

starting from the mammillary body and proceeding in both anterior and posterior directions 154

(figure 3e-f ). In a similar way, the cerebellum and the brainstem are sliced in sagittal and 155
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Figure 2. Overview of the main MRI preprocessing steps. (a) The raw ex vivo MRI data
as acquired, showed in sagittal (left), axial (middle) and coronal (right) views; (b) brain extraction
and bias field correction given by SAMSEG; (c) segmentation or subcortical structures given by
SAMSEG, combined with cortical segmentation and parcellation provided by FreeSurfer, with
the outline of the reconstructed surfaces in yellow; (d) 3D rendering of the cortical surface from
lateral (left) and medical (right) views. The color coding of the segmentation and parcellation
follows the FreeSurfer convention.
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axial orientation, respectively, with the same thickness. All the slices are then photographed 156

on both sides (posterior and anterior for the cerebrum, rostral and caudal for the brainstem, 157

medial and lateral for the cerebellum) inside a rectangular frame of known dimensions (internal 158

boundary: 120 mm × 90 mm), and thickness equal to the slice thickness (10 mm). The frame 159

enables perspective correction and pixel size calibration in subsequent steps of the pipeline. We 160

will refer to these images as “whole slice photographs”, which will be useful to initialize the 3D 161

histology reconstruction. 162

The cerebrum sections are further cut into blocks that fit into 74×52 mm cassettes, seeking 163

to minimize the number of blocks while trying to preserve the integrity of subcortical structures 164

(figure 3g). In our datasets, cutting the brainstem and the cerebellum in blocks was never 165

necessary, since they always fit directly into the cassettes. Photographs of the blocked slices, 166

where the blocks were slightly pulled apart to clearly expose their boundaries, were taken using 167

the same frame as for the whole slices, both from the anterior and posterior side. We will refer 168

to these images as “blocked slice photographs”. 169

All slice photographs (whole and blocked) are taken with a Nikon D5100 camera mounted 170

over the samples. Consistent image contrast across samples is ensured by manually setting: 171

ISO=100; one-shot auto focus using a single point in the center of the image (which is aligned 172

with the center of the slice); and f/20 aperture for large depth of field. The shutter speed was 173

computed automatically by the camera to compensate for variations in lighting level. Examples 174

of slice photographs are shown in figure 4a-b. 175

2.1.3 Tissue processing, sectioning and blockface photography 176

All blocks are processed for paraffin wax embedding, and subsequently sectioned with a sledge 177

microtome at 25 µm thickness. Before cutting each section, a photograph is taken with a camera 178

mounted above the microtome, set in a fixed position that is approximately perpendicular to 179

the slicing plane (figure 3i). We will refer to these images as “blockface photographs”. Since 180

these photographs will need to be perspective corrected, pixel size calibrated, and co-registered 181

(since keeping the camera absolutely still is not possible), we printed and glued two checkerboard 182

patterns with maximally distinct colors [55] to the microtome, which facilitates subsequent 183

registration. The photographs are taken at 24MPx resolution with a Canon EOS 750D camera. 184

As for the slice photographs, we use manual settings to ensure consistency of image appearance 185

across sections: ISO=200; white balance = fluorescent light source; one-shot auto focus using a 186

single point in the center of the image (which is aligned with the center of the tissue block); and 187

crucially, a narrow aperture (f/13) for large depth of field, thus ensuring sharpness of objects not 188

exactly in focus. An example of blockface photograph is shown in figure 4c. 189

2.1.4 Staining and digitization 190

Tissue blocks are classified into two groups: “interesting” (those including subcortical structures 191

in the cerebrum, the medial blocks in the cerebellum and all the blocks in the brainstem) and 192

“uninteresting” (all other blocks). For interesting blocks, we mount on glass slides and stain two 193

consecutive sections every 10 (i.e., every 250 µm) with two routine histological stains: hematoxylin 194

and eosin (H&E) and Luxol Fast Blue (LFB). For uninteresting blocks, the frequency is one every 195

20 instead (i.e., every 500 µm). The sections are mounted on 75×50 mm glass slides. We also 196

mount 2 additional slides every 10 (interesting blocks) or 200 sections (uninteresting), unstained, 197

for potential future use. 198

Stained sections are digitized with a flatbed scanner (Epson Perfection V850) using its trans- 199

parency mode at 6,400 DPI (i.e., 3.97 µm resolution). This resolution is sufficient for 3D histology 200

reconstruction purposes. Selected sections are also digitized at microscopic resolution (40×) 201

using an Olympus VS120 microscope / slide scanner, and linearly aligned to the corresponding 202

images acquired with the flatbed scanner using NiftyReg [56]. 203
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Figure 3. Overview of the dissection procedure. (a-b) Brain hemisphere from lateral (a)
and medial (b) views; (c) incision; (d) subsequent brainstem transection below the mamillary
body; (e) overview of how the anterior and posterior slices are cut; (f) cerebrum slices and
remaining brainstem and cerebellum portions; (g) example of block cut planning; (h) example of
blocked slice photograph; (i) example of blockface photograph, including the microtome setup.
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2.2 Computational pipeline 204

After completing the acquisition of MRI and histological data, the following pipeline is used to 205

compute the 3D reconstruction. 206

2.2.1 Ex vivo MRI 207

The T2-weighted MRI scan is preprocessed using a Bayesian segmentation algorithm (SAMSEG, 208

[57]) that simultaneously registers, segments and bias field corrects the scan (figure 2b). To reflect 209

the presence of just the left hemisphere in the images, we modified the SAMSEG probabilistic 210

atlas by manually setting to 1 the probability of background (and to 0 for all other classes) for all 211

voxels in the right half of the atlas. Our modified SAMSEG produces a bias field corrected scan, 212

as well as segmentations for 22 brain structures: cerebral white matter, cerebellum white matter, 213

brainstem, ventral diencephalon, optic chiasm, cerebral cortex, cerebellum cortex, caudate, 214

hippocampus, amygdala, accumbens area, lateral ventricle, inferior lateral ventricle, 3rd ventricle, 215

4th ventricle, 5th ventricle, cerebrospinal fluid, vessel, choroid plexus, thalamus, putamen, and 216

pallidum. 217

After SAMSEG, we used FreeSurfer [58] to extract and parcellate the cortical ribbon. Specifi- 218

cally, we used the SAMSEG cerebral white matter segmentation and followed these steps (figure 219

2c-d): (i) extraction of a triangular mesh from the cerebral white matter segmentation with 220

marching cubes [59]; (ii) inflation of the mesh and mapping to spherical coordinates [60]; (iii) 221

topology correction [61]; (iv) reconstruction of white matter and pial surfaces [62]; and (v) 222

cortical parcellation [63]. 223

2.2.2 Blockface photographs 224

In an ideal scenario, the blockface photographs would be perfectly aligned without any need 225

for processing. However, the position of the arm holding the camera can suffer from small 226

perturbations due to vibrations in the furniture and walls, operation of the microtome, and other 227

external factors. Therefore, it is necessary to align the photographs before further processing. 228

For this purpose, we first create a global reference image (“microtome reference”), which is a 229

photograph of the microtome with an empty cassette. On this image, we manually mark the 230

four corners of the cassette, and delineate two masks: one over the checkerboard patterns, and 231

another over a band around the edges of the cassette. 232

We use the microtome reference to perspective correct and calibrate the pixel size of all other 233

blockface photographs, by propagating the location of the four corners of the cassette. For this 234

purpose, we first select the photograph half way through the block, which we will refer to as 235

“block reference”. The microtome reference is registered to the block reference to propagate the 236

location of the cassette corners as follows: (i) we compute salient points and SURF features [64] 237

on both images, and discard those outside the checkerboard in the microtome reference; (ii) 238

we match the salient points; (iii) we use random sample consensus (RANSAC, [65]) to fit an 239

homography (perspective) transform; and (iv) we refine the registration to accurately align the 240

cassettes, by repeating the procedure in steps (i-iii), but with two differences: we use the mask 241

for the cassette edges instead of the checkerboard mask, and we add an Euclidean distance term 242

to the matching, since the cassettes are already in coarse alignment. We use RANSAC to make 243

the registration robust against different positions of the microtome handle and appearance of 244

the tissue block. The final transform is used to propagate to the block reference the location of 245

the manually labeled cassette corners, as well as the mask for the checkerboard patterns. 246

Once we have estimated the checkerboard mask and cassette corners for the blockface reference, 247

we register all photographs in the block to the reference using steps (i-iii) of the procedure 248

described above. Finally, we compute an homography transform between the four cassette 249

corners and coordinates (1, 1), (1, 740), (520, 1), (520, 740), and use it to resample the blockface 250

photographs into 520×740 pixel images with known pixel size equal to 100 µm, where the corners 251

of the image coincide with the corners of the cassette. These images can be safely stacked into a 252
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Figure 4. An example of blocked slice photograph to blockface photograph reg-
istration. (a) A sample whole slice photograph; (b) the related blocked slice photograph;
(c) corresponding blockface photograph of the bottom left block; (d) block of interest in the
blocked slice photograph; (e) aligned blockface photograph; (f) blocked slice photograph with
blockface photograph overlaid in transparency.

single volume, with z resolution equal to 25 µm. We note that the in-plane pixel size is slightly 253

overestimated due to the fact that the actual blockface is slightly closer to the camera than the 254

cassette. Moreover, the z resolution is also corrupted by inaccuracies in the section thickness 255

provided by the microtome. Nevertheless, these voxel size errors do not represent a problem in 256

practice because tissue shrinks during processing, and both the pixel size and section thickness 257

need to be corrected in subsequent steps of the computational pipeline anyway. 258

The blockface photograph module is completed by a supervised segmentation algorithm, which 259

discriminates tissue versus background wax. We use a fully convolutional network (FCN, [66]) 260

trained on manual segmentations made on 50 randomly selected (perspective corrected, pixel 261

size calibrated) images from different blocks. The FCN was built by on top of the VGG16 262

network [67], with preinitialized weights for transfer learning. While the FCN operates in 2D, 263

stacking the automated segmentations yields a 3D mask that is spatially smooth, due to the 3D 264

smoothness of the underlying images. 265

2.2.3 Slice photographs 266

The slice photographs are crucial to initialize the registration of the tissue blocks. Processing of 267

both whole and blocked slice photographs begins by segmenting the corners of the frame, which 268
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are painted in black, using a FCN similar to the one used for blockface photographs. This time 269

we used 20 manually labeled images for training, which is enough, given the simplicity of the 270

problem. The center of gravity of the four largest clusters are identified as the corners. Then, 271

four sets of parallel lines are fit to the gradient magnitude images, to identify the internal and 272

external boundaries of the frame. The internal corners are computed as the intersections of the 273

internal boundaries, and used to fit an homography to correct for perspective and calibrate the 274

pixel size to 100 µm (i.e., 1,200×900 pixels), in a similar way as for the blockface photographs. 275

Next, the blocked slice photographs (perspective and pixel size calibrated) are segmented 276

into foreground and background using a simple Gaussian mixture model (GMM) with two 277

components, optimized with the Expectation Maximization (EM) algorithm [68]. The resulting 278

mask is overlaid onto the corresponding image and displayed on a simple graphical user interface 279

(GUI), where a user assigns block numbers to the different connected components of the binary 280

mask, producing a multilabel segmentation of the different blocks. 281

2.2.4 Digitized histological sections 282

Processing of digitized histological sections has two components: segmentation and intensity 283

standardization. For segmentation, we used two FCNs, one for LFB and one for H&E, trained 284

on 50 randomly selected sections each. Simple intensity standardization was carried out using 285

only the pixels inside the masks, by matching their histogram to the average histogram of the 286

foreground pixels of the training dataset. 287

2.2.5 Linear alignment of blocks 288

The advantage of using blockface photography as intermediate modality is that the registration to 289

the volumetric reference (in our case, the MRI volume) is approximately linear. In our pipeline, 290

we first use the slice and blockface photographs to initialize the registration between blockface 291

volumes and the MRI. Then, we use a dedicated joint registration algorithm to optimize the 292

alignment. 293

To initialize the registration, we start by calculating three different sets of 2D linear transforms. 294

First, we use SURF and RANSAC (see section ”Blockface photographs”) to rigidly register 295

whole slice photographs of the lateral / anterior / inferior face of each block to the medial / 296

posterior / superior face of the neighboring lateral / anterior / inferior block. These images 297

are nearly identical, so registration is easy and accurate. Second, we use SURF/RANSAC to 298

rigidly align each block in the blocked slice photographs (using the available multi-label masks) 299

to the corresponding whole slice photograph. Despite being a whole-to-part registration problem, 300

SURF/RANSAC produces accurate solutions, since the photographs are of the same objects 301

and acquired in the same illumination conditions. And third, we estimate a similarity transform 302

(i.e., translation, rotation and scaling) between each block in the blocked slice photographs 303

and the approximately corresponding image in the blockface photograph volume, using mutual 304

information as cost function [69–71]. The target blockface photograph is the first one where the 305

whole block is completely visible, which we estimate by finding the first section in which the 306

ratio between surface area and its maximum across the block is at least 2/3. The surface areas 307

are estimated with the masks produced by the FCN. An example of the alignment between a 308

blocked slice photograph and the related blockface one is showed in figure 4d-f. 309

Given these sets of 2D transforms, initializing the blocks in the cerebellum, cerebrum and 310

brainstem is straightforward. For the cerebrum, a reference slice is first chosen (the one 311

corresponding to the mammillary bodies, in our case). Then, for each block, one simply 312

concatenates its corresponding blocked-slice-to-whole-slice transform, along with all the whole- 313

slice-to-whole-slice transforms between the slice at hand and the reference. Finally, a shift in 314

the anterior-posterior direction is computed by each block, which is simply equal to the slice 315

thickness (10 mm) multiplied by the (signed) number of slices between the slice at hand and the 316

reference. The cerebellum and brainstem are processed the same way, with two differences: the 317
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blocked-slice-to-whole-slice transform is not needed (since slices are not blocked), and the shifts 318

occur in the medial-lateral (cerebellum) and inferior-superior directions (brainstem). Finally, 319

the three sets of blocks (cerebrum, cerebellum and brainstem) are manually aligned to the 320

preprocessed reference MRI using a rigid transform. 321

Once the transforms for each block have been initialized, they are optimized using a joint 322

hierarchical registration algorithm. The details of the methods can be found in [52], but we 323

summarize them here for completeness. Each blockface volume has an associated spatial transform 324

that has a set of 8 parameters, corresponding to 3D translation (3 parameters), 3D rotation 325

(3), in-plane scaling (1), and scaling along the thickness direction (1). The cost function of the 326

registration combines a data term and two regularizers. The former is simply the correlation of 327

edge maps. The first regularizer is a customized penalty term that encourages the sum of the 328

soft deformed masks to be equal to the binary mask of the MRI. This regularizer penalizes gaps 329

between blocks (the sum is zero, whereas the target is 1) as well as overlapping blocks (sum is 2, 330

target is 1), and also encourages the surface of the whole hemisphere to be the same for the MRI 331

and the mosaic of blockface volumes. The second regularizer penalizes deviations of the global 332

scaling of each block (i.e., the cubic root of the determinant of its linear transformation matrix) 333

from an empirical value, which represents the expected tissue shrinkage, and which we derive 334

from the blocked-slice-to-blockface registrations. 335

The optimization procedure is hierarchical, in order to exploit prior knowledge on the cutting 336

procedure. There are five levels of hierarchy. At the first level, blocks are grouped into three sets 337

(cerebrum, cerebellum, brainstem), each of which undergoes an independent rigid registration. 338

At the second level, the cerebrum blocks are grouped into corresponding slices and can only 339

rotate or translate simultaneously in the slice plane. At the third level, individual translation 340

and rotation are allowed, with the addition of a scaling factor that is common to all blocks. At 341

the fourth level, each block is allowed its own scaling factor. At the fifth and final level, each 342

block has its own transform. We use the L-BFGS [72] algorithm for numerical optimization of 343

the cost function. 344

2.2.6 Registration with histology 345

Once the blockface volumes have been linearly registered to the reference MRI volume, it is 346

straightforward to resample the MRI onto the plane of any of the blockface photographs. Since 347

the correspondence between blockface photographs and digitized stained sections is known and 348

deterministic, the MRI can thus be resampled on the planes corresponding to these sections. 349

Furthermore, the 2D resampled MRI slices can be masked with the automated segmentations 350

of the blockface photographs provided by the FCN. This process yields a stack of resampled, 351

segmented MR images that have direct correspondence to the images in the histology stack. 352

To 3D reconstruct the histology for each of the two stains (LFB and H&E), we used a 353

method that we presented in [51], and which we summarize here for completeness. The goal 354

is to register a stack of histological sections to a corresponding stack of resampled 2D MRI 355

slices. First, the histology stack is put into coarse alignment by linearly registering each section 356

to the corresponding MR image. For this purpose, we used the linear registration module in 357

NiftyReg [56], which relies on a block matching approach and mutual information. Then, we 358

compute a set of nonlinear registrations parameterized by stationary velocity fields (SVF, [73]), 359

as implemented in NiftyReg. Using SVFs has three advantages. First, the corresponding 360

deformations are guaranteed to be diffeomorphic and thus invertible; second, inversion is achieved 361

simply by changing the sign of the SVF; and third, composition of transforms can be approximated 362

by the sum of the corresponding SVFs. The set of registrations includes: (i) inter-modality 363

registrations between each histological section and the corresponding MRI slice, computed with 364

mutual information; (ii) intra-modality registrations, between each histological section and 365

its two nearest neighbors in the stack, computed with local normalized cross-correlation; and 366

(iii) intra-modality registrations, between each MRI slice and its two nearest neighbors in the 367

stack, also computed with local normalized cross-correlation. 368
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While one could use the inter-modality registrations – i.e., subset (i) – directly to obtain a 3D 369

reconstruction, this approach is known to produce volumes that are jagged, due to inconsistencies 370

in the registrations of neighboring image pairs. At the opposite end of the spectrum, an 371

alternative approach is to use only the intra-modality registrations for histology, i.e., subset (ii), 372

but this method leads to accumulation of errors along the stack (“z-shift”) and straightening of 373

curved structures (“banana effect”, see [6]). Instead, our method [51] achieves the best of both 374

approaches by combining all three subsets. The method relies on a spanning tree of unknown, 375

“true” deformations connecting all the images in the two stacks. Then, all the registrations in the 376

three subsets can be seen as noisy measurements of compositions of transforms in the set of true 377

deformations. Within this model, Bayesian inference is used to compute the most likely set of 378

underlying true deformations that gave rise to the observed data. This approach produces 3D 379

reconstructions that are both smooth and robust against z-shift and banana effect. The intuition 380

behind it is that subset (i) aligns the two stacks; subset (ii) ensures the smoothness, and subset 381

(iii) enables us to undo the banana effect incurred by subset (ii). 382

After running all the modules of the computational pipeline, correspondence between spatial 383

locations in the MRI and digitized histological sections can be obtained by concatenating 3D 384

(blockface volume to MRI) and 2D spatial transforms (histology to resampled MRI). 385

3 Results 386

A left human hemisphere was processed with this pipeline. In this section we present intermediate 387

and final results, including 3D tissue blocks, alignment with MRI and 3D histology reconstruction. 388

3.1 Building blockface volumes 389

figure 5 displays results from the first fundamental step of our 3D histology pipeline: assembling 390

blockface photographs into tridimensional volumes. The reconstructed views of a sample cerebral 391

block (axial and sagittal, figure 5a) present a smooth and consistent profile, demonstrating how 392

effective the co-registration strategy we adopted is. 393

figure 5b-c provides a first glimpse of how the blockface volumes are used as a stepping stone 394

in the overall process of fusing MRI and histology. The figure shows the histological sections 395

(LFB and H&E) corresponding to the blockface photograph in figure 5a. For easier visualization, 396

we show the sections after nonrigid registration with the MRI, which indirectly aligns them with 397

the blockface photograph as well. Therefore, the volumes are consistent with each other – but 398

they also shows some differences because of inevitable artifacts that occur during sectioning. 399

3.2 Effective alignment of MRI reference and tissue blocks 400

Once all the blockface volumes have been assembled and initialized, a tridimensional mosaic repre- 401

senting the brain is obtained (figure 6a-b). Notably, the overall shape and the coarse subdivisions 402

(cerebrum, cerebellum, brainstem) are a good first approximation, although misalignment in the 403

gyrification patterns and in the antero-posterior organization are clearly noticeable. When com- 404

pared with the actual MRI reference (whose whole brain mask is surface rendered in transparent 405

green), there is a clear mismatch in their shapes. 406

Our joint registration procedure yields the refined mosaic shown in figure 6c-d : not only the 407

blocks match the MRI reference well, but also yield a more consistent and smoother gyrification 408

pattern. Supplementary video 1 thoroughly illustrates the joint registration procedure, and 409

gives a more detailed overview of both the initialized and the refined mosaics – highlighting how 410

the consistency of brain structures improves as a result of the spatial alignment. 411
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Figure 5. Blockface and histological volumes. Example of reconstructed blockface volumes
(a) from three different views (coronal on the left, axial in the centre, and sagittal on the right).
The same views are also showed for the correspondent histological volumes, stained with LFB
(b) and H&E (c).

3.3 Navigating histological sections in 3D 412

Navigating through different scales of co-registered histology-MRI data, e.g., to localize and 413

examine a section of interest, is one of the most immediate applications of this pipeline. Given the 414

estimated transformations between blockface photographs and histological sections, it is possible 415

to use the refined, MRI-aligned blockface mosaic to jointly explore the histological sections 416

and the MRI in a common three-dimensional space. figure 7 shows the same block as figure 5, 417

this time overlaid on the MRI volume. The figure displays the alignment of the different brain 418

structures across MRI and histology, both in the sectioning (coronal) and reconstructed planes 419

(axial, sagittal). Moreover, it also highlights the smoothness of the reconstructed histology. 420

figure 8a shows a more detailed example of navigation and alignment, displaying an LFB 421

section on the corresponding resampled MRI plane. The red square delineates a 5×5 mm patch 422

magnifying the basal ganglia (figure 8b-d), specifically the boundaries between the putamen 423

and the two segments of the globus pallidus. The alignment is excellent, and the histology 424

reveals details that are effectively invisible in MRI (even at sub-millimeter resolution). Likewise, 425

the green square marks a 30×30 mm patch magnifying hippocampal head and the amygdala 426
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Figure 6. Initialization and refined blockface mosaics. A surface rendering of the whole
brain mask derived from the MRI is overlaid in green. (a) Blockface volume for the whole
hemisphere resulting from the initialization with the slice photographs; the color for rendering is
taken from the blockface photographs. (b) Same volume as (a), where each block is rendered in
a different color. (c,d) Same volumes as (a,b) after joint registration.

(figure 8e-g). Once again, the alignment between the boundaries across the two modalities is 427

qualitatively very high. 428

Navigation is further exemplified in Supplementary video 2 , which combines the multi- 429

modal imaging data with the segmentations from SAMSEG and FreeSurfer. Starting from the 430

brain surface, the perspective slowly focuses on the basal ganglia, highlighting the alignment 431

between blockface photograph, MRI and histology across different scales – from centimeters 432

to microns per pixel. Finally, it is also possible to reconstruct and entire histology volume by 433

mosaicking all the sections in 3D. An example at 0.4 mm resolution (i.e., the voxel size of the 434

MRI) is showed in figure 9. 435

4 Discussion 436

In this paper, we have described a scalable and reproducible method for MRI-informed 3D histol- 437

ogy. This includes both a protocol for tissue cutting and processing, without any requirements 438

apart from a standard microtome, and a computational pipeline that requires minimal manual 439

intervention. We have also presented results for a single hemisphere of a human brain processed 440

with the pipeline. As the reader may have observed, the proposed procedure consists of several 441

steps, each with different design choices. In this section, we want to provide further context for 442

such choices and discuss how they influenced our results. 443
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Figure 7. MRI-histology alignment. Histological sections from a sample block aligned with
the MRI volume as a result of the refinement algorithm, showed from three different views (top:
axial; middle: coronal; bottom: sagittal) and for the two stains (left: LFB; right: H&E).

4.1 MRI as a reference for histology 444

The transition towards 3D histology is becoming necessary for a more complete study of biological 445

specimens at a microscopic level. Such specimens are tridimensional objects and therefore a 446

3D characterization is required. Unfortunately, histology requires by definition the loss of 447

tridimensional shape for the target object, and without prior information on the original shape, 448

it is not possible to reconstruct a 3D volume in a way that is coherent with the original object. 449

As outlined in the introduction, MRI is a powerful tool when imaging entire organs, especially 450

for large human organs such as the brain. There are virtually no comparable alternatives 451

when one considers also how different acquisition sequences can be used to obtain a diverse 452

collection of contrasts. Unfortunately, the wide spatial coverage comes at the expense of a coarser 453

resolution. Although the idea of combining MRI and histology to achieve the best of both worlds 454

is reasonable, the practical implementation is not straightforward. For instance, registration of a 455

single histological section leads to a difficult slice-to-volume problem [8], with the disadvantages 456

of high sensitivity to initialization conditions and challenging multi-modal registration issues [6]. 457

This is why our approach relies on a volume-based approach, by first assembling together 458

histological sections from the same block into volumes. The overall registration problem still 459

requires further steps as discussed in the following paragraphs. 460

4.2 Choice of intermediate modality 461

An important choice in designing a pipeline for tridimensional histology regards the intermediate 462

modality, which will serve as a stepping stone between the stained sections and the MRI data. 463

In this paper, we relied on blockface photographs. Since they keep structural information before 464

the cutting procedure [6], they allow on one hand to assume a linear relationship with the MRI 465
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Figure 8. Registration between MRI and histological sections. (a) Sample MRI slice
with registered LFB section overlaid; (b) magnified view of the 5×5 mm area marked in red;
(c) Corresponding region on LFB section; (d) MRI and LFB overlapped in transparency; (e-g)
magnification of the 30×30 mm area marked with the green square in (a).

Figure 9. Example of whole brain reconstruction. (a) A sample coronal MRI slice;
(b) corresponding slice in reconstructed LFB mosaic; (c) overlay of (a) and (b) in transparency.

reference, and on the other hand to deterministically map histological sections and blockface 466

photographs. However, there are other potential candidates for this role, most notably OCT, 467

PLI and clearing techniques. 468

OCT is an interferometry technique based on near-infrared light [14]. OCT volumes can be 469

acquired during the sectioning procedure of a sample, with the important difference (compared 470

with histology) that the data are acquired before sectioning. Therefore, geometric distortion 471

is avoided and direct stacking of the 2D images yields a 3D consistent volume. While OCT 472

produces images with excellent contrast at high resolution, it is much more costly to acquire 473

than photographs, especially in terms of time [74, 75]: imaging a single 20 mm thick human 474

tissue block at 5x5x50um takes several days of uninterrupted data acquisition. 475

Also based on optical imaging, PLI exploits the transmission of polarized light to give a 476

quantitative estimate of fiber orientation and inclination angles for a given point in a tissue 477

section [15]. This technique has great potential to study white matter at the mesoscopic and 478

microscopic scales [76], but still requires sectioning. 479

Tissue clearing [16] is a powerful solution that avoids sectioning. Clearing methods can make 480

opaque tissue transparent and, combined with fluorescent labeling tools, they offer a new way of 481

probing microscopic structures [77,78]. As a consequence of the transparency, there is no need to 482

slice the sample and it is sufficient to adjust the focus of the microscope on the plane of interest. 483
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The main drawbacks of this technique are the long time needed to process the tissue, the size 484

limits for clearable samples and the limited depth of antibody penetration in the cleared tissue. 485

It is evident then that the choice of an intermediate modality is a trade-off between result 486

quality and costs. Therefore, we chose to use blockface photographic imaging as it is cheap and 487

fast, and as a result ideal for larger scale studies. The poorer contrast of blockface photographs 488

compared to the alternatives is indeed a limit of the approach presented here, but in the context 489

of the whole pipeline, it serves its purpose well as intermediate modality. 490

4.3 Assumptions of registration-based pipelines 491

In our pipeline, we have made the assumption that the deformation between the MRI and the 492

tissue blocks (imaged via photography) is linear. This is an approximation: even with fixed 493

tissue, cutting into slices and blocks introduces small nonlinear deformations, particularly near 494

the cut boundaries. Moreover, tissue processing also introduces nonlinear distortions, even if 495

minimal. 496

Another potential error source for the registration is the imperfection of the automated 497

segmentation of the blockface photographs, particularly when the tissue is concave: since paraffin 498

is not opaque, the apparent surface of the tissue on the blockface is often overestimated. As 499

these automatically generated masks are crucial in the regularization of our linear registration, 500

their oversegmentation may have directly affected the quality of our linear alignment and thus 501

our results. This problem could be mitigated by integrating the linear and nonlinear registration 502

algorithms: given the nonlinear registration of the histological sections, we could take advantage 503

of the superior contrast of the stained sections and their more accurate automated segmentations, 504

in order to improve the linear registration. In a similar fashion, the newly improved linear 505

alignment could be used to refine the non-linear registration, and so on. Future work will explore 506

this direction. 507

4.4 Improving non-linear registration 508

The final step of this pipeline and the last transformation needed for MRI-histology alignment is 509

given by the registration between the resampled MRI slices and the related histological sections. 510

In this case, the non-linearities are considerable, and the cross-modality nature of the problem 511

requires the use of inter-modality metrics, such as mutual information. As it has been previously 512

shown [79], approaches based on mutual information often perform poorly in inter-modality 513

registration, and therefore represent a bottleneck when registering MRI images and stained 514

sections – even when they are already initialized with our joint linear registration method. 515

In order to improve the alignment, an important direction to explore is the use of synthesis, 516

i.e. estimating MRI contrast from the histology (or vice versa) to reduce the registration to 517

an easier intra-modality problem. Recent advances with architectures based on generative 518

adversarial networks have shown great potential for this specific problem [80, 81], even with 519

specific applications to medical imaging [82]. 520

4.5 Future applications 521

In this paper we have presented, as a preliminary practical application of our pipeline, the chance 522

of exploring histological sections through the related MRI volume. This is only the tip of the ice 523

for the potential applications of our approach. In the overarching strategy of our current project, 524

the next step is to acquire a larger set of brains, manually segment the stained sections, and 525

exploit 3D histology to create a probabilistic atlas of the human brain at the subregion level. 526

As opposed to existing techniques, our pipeline will be able to build whole-brain datasets 527

from stained sections, allowing us to build atlases that are much more detailed than current 528

templates. Moreover, since specific staining agents and immunohistochemistry techniques can 529

enhance different microscopic details, the approach described here opens the door to draw 530
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new multimodal maps of the human brain [83], in a scalable and reproducible way. With the 531

advancement of microscopy-oriented techniques (e.g., [77,84–88]), we believe that closing the gap 532

with macroscopic modalities is crucial. 533

Another potential application is the use of histology for development of MRI-based biomarkers 534

and quantitative imaging ( [89]): as ex vivo validation with histology becomes more common, 535

the neuroimaging field will largely benefit from 3D histology. 536

Finally, aligned MRI and histology also have the potential to lead to ultra-large-scale mi- 537

croscopy: so far it is possible to create a large dataset with several images acquired using electron 538

microscopy, by stitching them together to cover the entire histological section [90]. In this 539

perspective, our approach could potentially lead to the ability to navigate a brain volume and 540

then retrieve ultra-high-resolution details from a point of interest. This would be the new frontier 541

of multi-scale imaging and would of course create new challenges, since the associated storage 542

and processing requirements are highly demanding. 543

4.6 Conclusion 544

We have presented a pipeline to effectively obtain high-resolution 3D images of the human brain 545

using histology and MRI. The related code and the acquired data are publicly available 1, and 546

we plan to use the presented methods to build a high-resolution computational atlas of the 547

human brain based on 3D reconstructed histology. As increasingly more advanced macroscale 548

and microscale techniques to study the brain become available, the open-source tools we have 549

presented here will have a key role in bridging together the two ends of the scale. 550

5 Acknowledgments 551

This work was primarily supported by a Starting Grant from the European Research Council 552

(ERC), awarded to JEI (grant agreement 677697, project “BUNGEE-TOOLS”). DLT was 553

supported by the UCL Leonard Wolfson Experimental Neurology Centre (PR/ylr/18575). MM 554

is funded by the Wellcome Trust through a Sir Henry Wellcome Postdoctoral Fellowship. JLH is 555

supported by the Multiple System Atrophy Trust; the Multiple System Atrophy Coalition; Fund 556

Sophia, managed by the King Baudouin Foundation and Karin & Sten Mortstedt CBD Solutions. 557

Queen Square Brain Bank is supported by the Reta Lila Weston Institute for Neurological Studies 558

and the Medical Research Council UK. This research was supported by the National Institute 559

for Health Research University College London Hospitals Biomedical Research Centre. The 560

authors would like to thank Efthymios Maneas for his help with the plexiglass frame, and Danaiil 561

Nikitichev for his help 3D printing the box to help keep the samples immersed in Fluorinert 562

during MRI scanning. 563

References

1. Nicola Palomero-Gallagher and Karl Zilles. Cortical layers: Cyto-, myelo-, receptor-and
synaptic architecture in human cortical areas. Neuroimage, 2017.

2. David T Jones, David S Knopman, Jeffrey L Gunter, Jonathan Graff-Radford, Prashanthi
Vemuri, Bradley F Boeve, Ronald C Petersen, Michael W Weiner, and Clifford R Jack Jr.
Cascading network failure across the alzheimer’s disease spectrum. Brain, 139(2):547–562,
2015.

3. Katrin Amunts and Karl Zilles. Architectonic mapping of the human brain beyond
brodmann. Neuron, 88(6):1086–1107, 2015.

1We will make our code repository public upon publication of this manuscript.

19/26

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.10.941948doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.10.941948
http://creativecommons.org/licenses/by-nc-nd/4.0/


4. Katrin Amunts, Claude Lepage, Louis Borgeat, Hartmut Mohlberg, Timo Dickscheid,
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