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Abstract 21 

For most biological processes, organisms must respond to extrinsic cues, while maintaining 22 

essential gene expression programs. Although studied extensively in single cells, it is still 23 

unclear how variation is controlled in multicellular organisms. Here, we used a machine-24 

learning approach to identify genomic features that are predictive of genes with high versus 25 

low variation in their expression across individuals, using bulk data to remove stochastic cell-26 

to-cell variation. Using embryonic gene expression across 75 Drosophila isogenic lines, we 27 

identify features predictive of expression variation, while controlling for expression level.  28 

Genes with low variation fall into two classes, indicating they employ different mechanisms to 29 

maintain a robust expression. In contrast, genes with high variation seem to lack both types of 30 

stabilizing mechanisms. Applying the framework to human tissues from GTEx revealed similar 31 

predictive features, indicating that promoter architecture is an ancient mechanism to control 32 

expression variation. Remarkably, expression variation features could also predict differential 33 

expression upon stress in both Drosophila and human. Differential gene expression signatures 34 

may therefore be partially explained by genetically encoded gene-specific features, unrelated 35 

to the studied treatment.  36 

37 
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Introduction 38 

Living systems have a remarkable capacity to give rise to robust and highly reproducible 39 

phenotypes. Perhaps the most striking example of this is the process of embryogenesis, where 40 

fertilized eggs give rise to stereotypic body plans despite segregating genetic variants and 41 

moderate differences in environmental conditions (e.g. water temperature for fish, mothers diet 42 

for humans).  This phenomenon led Waddington to propose that developmental reactions are 43 

canalized, which buffers them to withstand such variation without alterations in embryonic 44 

development (Waddington 1942). In agreement with this, variation in gene expression is an 45 

evolvable trait under selection pressure (Lehner 2008; Fraser et al. 2004; Metzger et al. 2015).  46 

Gene expression variation can arise from a multitude of stochastic, environmental and genetic 47 

factors (Eling, Morgan, and Marioni 2019; Raser and O’Shea 2005; Félix and Barkoulas 2015; 48 

S. Huang 2009). For some genes, expression variation is tolerated, without obvious effects on 49 

fitness, or can even be beneficial, for example in stress response or for stochastic cell fate 50 

decisions (Macneil and Walhout 2011; Raj and van Oudenaarden 2008; Blake et al. 2006). In 51 

other cases, variation in gene expression is detrimental and must be tightly regulated, for 52 

example for essential genes (Fraser et al. 2004) and genes that reduce fitness in heterozygous 53 

mutants (Batada and Hurst 2007). This suggests that there are inherent mechanisms that 54 

modulate variation in gene expression, either attenuating or amplifying it (Fig 1a). 55 

Over the last decade, studies on single-celled organisms or cell lines have linked multiple 56 

regulatory mechanisms to gene expression variation, including the presence of a TATA-box at 57 

the gene’s promoter (Ravarani et al. 2015; Blake et al. 2006), CpG islands (Morgan and 58 

Marioni 2018), bi-valent chromatin marks (Faure, Schmiedel, and Lehner 2017), polymerase 59 

pausing (Boettiger and Levine 2009) or miRNA binding (Schmiedel et al. 2015). However, it 60 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.10.942276doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.10.942276
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

remains unclear what mechanisms regulate expression variation in multicellular, developing 61 

organisms in a gene and tissue-specific manner. 62 

To address this, we devised a machine learning approach and performed a systematic analysis 63 

of factors underlying variation of gene expression in Drosophila melanogaster to uncover the 64 

regulatory mechanisms involved. To measure expression variation, we used gene expression 65 

data generated from a pool of embryos (~100) sampled from 75 different isogenic lines during 66 

embryogenesis (Cannavò et al. 2016). This experimental design cancels out most stochastic 67 

noise (since it’s bulk sequencing), tissue-specific expression pattern (since it’s whole embryo) 68 

and slight differences in developmental progression (since it’s 100 embryos per line). To 69 

dissect the regulatory mechanisms that modulate expression variation (Fig 1a), we collated 70 

over a thousand gene-specific and genomically encoded features and applied a random forest 71 

model to identify the properties that best explain expression variation across individuals. As a 72 

comparison, we also predict median expression level across lines using the same features.  73 

Our results show that, overall, increasing regulatory complexity translates into more robust 74 

gene expression. We identified two independent mechanisms associated with low expression 75 

variation across individual: Low variable genes either have (i) a broad transcription initiation 76 

region (broad promoters) with high transcription factor (TF) occupancy, or (ii) narrow 77 

initiation regions (narrow promoters) with Polymerase II (PolII) pausing and high regulatory 78 

complexity outside the promoter region. In contrast, genes with high variability generally have 79 

narrow promoters, and little other regulatory features, suggesting that it may rather be a lack 80 

of ‘stabilizing‘ mechanisms that facilitates their noisy expression. Applying the same 81 

framework to human data derived from tissues across individuals (GTEx Consortium 2013) 82 

identified similar promoter-associated features to be predictive of expression variation, thus 83 

validating our findings in an independent organism. Remarkably, these same features are also 84 

predictive of differentially expressed genes when tested on independent datasets from adult 85 
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Drosophila subjected to different stress conditions, or in a collection of differential expression 86 

data for human. These findings suggest that the differential expression response may be 87 

partially explained by genetically encoded gene-specific features that are unrelated to the 88 

treatment applied. 89 

Taken together, our results suggest that gene expression variation across genetically diverse 90 

multicellular organisms is strongly linked to how the gene is regulated and likely reflects 91 

evolutionary constraints on expression precision.  92 
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Results 93 

Measuring gene expression variation across individuals 94 

To understand the mechanisms by which gene expression variation is controlled during 95 

embryonic development, we obtained RNA-seq data from 75 isogenic lines of Drosophila 96 

melanogaster embryos at three different developmental stages (2-4, 6-8, and 10-12 hours post 97 

fertilization) from (Cannavò et al. 2016). To reduce potential confounding effects of maternally 98 

deposited RNA, we focused on the late embryonic time-point (10-12 hours after fertilization), 99 

and removed genes whose expression decreased between 2-4 h and 10-12h, resulting in 100 

embryonic expression data for 4074 genes (Methods, Supplementary Fig 1). For each gene, we 101 

calculated its median expression level and the coefficient of variation (CV) from the 102 

normalized read counts across individuals (Methods). As variation is highly correlated with the 103 

levels of gene expression (Anders and Huber 2010; Ran and Daye 2017; Eling et al. 2018) we 104 

used the residuals from a locally weighed regression (LOESS) of the CV on median expression 105 

to obtain a measure of expression variation that is relative to the expected variation at a given 106 

expression level (Fig. 1b).  107 

We confirmed that this measure of variation is highly correlated with alternative metrics, such 108 

as variance stabilized standard deviation or residual median absolute deviation (Supplementary 109 

Fig. 2a-b) and robust with respect to the number and identity of samples used (Fig. 1c). 110 

Moreover, using the full dataset from Cannavò (Cannavò et al. 2016), expression variation 111 

values were highly correlated across time, especially for consecutive time-points, further 112 

confirming the approach (Methods, Supplementary Fig.1d). Finally, we observed a strong 113 

correlation in expression variation between pairs of genes in close proximity (Supplementary 114 

Fig. 1e), as previously observed for neighbouring genes in yeast (Becskei, Kaufmann, and van 115 

Oudenaarden 2005; Batada and Hurst 2007). 116 
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As these 75 samples came from strains with different genotypes, we first calculated the 117 

proportion of expression variance that is explained by genetics in cis (taking variants within 50 118 

kb of each gene into account) using variance decomposition (Methods). On average, 6% 119 

(median across all genes) of the total gene expression variation was explained by cis genetics 120 

(Supplementary Fig.1f), indicating that more complex genetic effects and other properties must 121 

account for the majority of expression variation. We reasoned that differences in the extent of 122 

expression variation among genes should reflect inherent differences in their regulation, 123 

including their regulatory complexity and mechanisms of noise buffering or amplification. 124 

Therefore, in the remainder of this study we investigate the regulatory differences between 125 

genes with high versus low expression variation.  126 

 127 

Genomic features predict expression variation independent of expression levels 128 

To understand the drivers of expression variation, we collected 1,888 gene-specific features 129 

(Table 1, Supplementary tables 1-3) and used random forest regression to identify those that 130 

are associated with either expression variation or expression level (Fig 1d). This allowed us to 131 

distinguish between features that are predictive of one or both properties. The features can be 132 

broadly divided into seven categories: transcription start site (TSS; e.g. core promoter motifs, 133 

chromatin accessibility, TF binding), gene body features (e.g. gene length, number of exons), 134 

3’untranslated regions (UTR; e.g. length, miRNA motifs), distal regulatory elements (e.g. TSS-135 

distal chromatin accessibility, TF occupancy), gene type (e.g. housekeeping genes, TFs), gene 136 

context (e.g. gene density, distance to the borders of topologically associated domains (TADs)), 137 

and genetics (e.g. the presence of eQTL and a cis genetic component; full description in 138 

Methods and Table 1).  139 
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To restrict our analysis to the important features, we applied the random forest-based Boruta 140 

algorithm, which iteratively selects all features that predict better than their permuted version 141 

(Kursa and Rudnicki 2010). This resulted in 93 and 106 predictive features for expression 142 

variation and level, respectively (Fig. 1d). Using these feature sets, our models predicted 143 

expression variation and level with an R2 of 0.45 and 0.43 (5-fold cross validation), 144 

respectively, while permuting the labels resulted an R2 of zero (Fig. 1d).  145 

To ensure the robustness of our predictions we have performed a number of analyses: first, we 146 

verified that the predictions for variation are independent of the level of gene expression by 147 

showing that the models performed equally well on genes grouped into quartiles based on their 148 

expression levels (Fig. 1e). Second, we ensured that the predictions are robust to the choice of 149 

measure used for expression variation (Supplementary Fig. 2c). Third, we tested whether 150 

dynamic gene expression changes during developmental stages can contribute to the variation 151 

predictions. We reran the random forest models, predicting expression variation for genes 152 

grouped based on their absolute expression change between 6-8 and 10-12 hours after 153 

fertilization. For genes with minor expression change between the two time-points (below 154 

median of 0.8), the performance was comparable to the full model, while for the genes with a 155 

stronger expression change (above 0.8) the R2 dropped to about 0.3 (Supplementary Fig. 2d). 156 

This indicates that some portion of expression variation comes from dynamic changes in gene 157 

expression during embryogenesis, which is not captured by our features (and thus reduces the 158 

performance of our model for this set of genes). However, since the performance is the best for 159 

genes that vary little between stages, it indicates that variance explained by our model is overall 160 

not majorly confounded by expression dynamics. Finally, the model performance does not 161 

decrease when training and test sets come from different chromosomes (Supplementary Fig. 162 

2e), demonstrating that the results are not confounded by shared regulatory features between 163 

neighboring genes. 164 
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Taken together, these results establish that gene expression variation - as well as gene 165 

expression levels - can be predicted based on genomically encoded features, when measured 166 

across a population of genetically diverse individuals during embryogenesis. The predictions 167 

are independent of the gene’s expression level and are robust to the metric used for measuring 168 

variation. These models can therefore be used as the basis for addressing questions about 169 

buffering mechanisms that regulate gene expression variation during embryogenesis. 170 

Figure 1. Genomic features can predict expression variation independent of expression 171 
levels. (A) Differences of gene regulatory mechanisms related to noise amplification and noise 172 
buffering would result in different observed expression variation given the same variation 173 
sources (left). (B) Dependence between coefficient of variation (CV) and median expression 174 
level of 4074 genes across 75 samples (left). Residuals from LOESS regression of CV on the 175 
median were used as the measure of variation throughout the analysis (right). Median 176 
expression level and coefficient of variation plotted on log2-scale, red line represents LOESS 177 
regression fit. (C) Correlation of expression variation calculated from subsets of samples 178 
versus the full data set. Error bars = standard deviation across 100 independent selections of 179 
samples. (D) Schematic overview of the random forest models and feature selection with 180 
Boruta algorithm (left). Performance shown as R^2 from 5-fold cross-validation and compared 181 
to randomly permuted data (right). Whiskers = standard deviation across the 5-fold cross 182 
validation. (E) Performance (R^2, 5-fold cross validation) for genes grouped by expression 183 
levels (quantiles). Whiskers represent standard deviation from 5-fold cross validation, number 184 
of genes per quantile indicated (x-axis). Red dotted line indicates performance of full model.  185 

 186 
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Promoter architecture is the most important predictor of expression variation 188 

Next, we used this predictive framework to investigate the genomic features that best explain 189 

expression variation and expression level. We retrieved the features’ ‘importance score’ from 190 

the Boruta algorithm and determined the correlation of each feature with both expression 191 

properties (Supplementary Table 4). Although most features are to some extent predictive of 192 

both expression level and variation, their relative importance differed substantially (Fig. 2a). 193 

Being a housekeeping gene, for example, was strongly predictive of high expression level 194 

while being less important for expression variation. Conversely, the presence of a core 195 

promoter TATA-box motif is strongly predictive of high expression variation only (Fig. 2a, 196 

see Suppl. Table 4 for full list). We note that most features are either associated with higher 197 

variation and lower expression or vice versa, suggesting that expression level and variation are 198 

not completely independent, as was previously observed (Faure, Schmiedel, and Lehner 2017), 199 

even though they are globally uncorrelated (Fig 1b). However, we found that when we split 200 

genes into the categories of the top features (e.g. housekeeping vs non-housekeeping) the 201 

differences in expression variation are pronounced at all expression levels (Fig 2b-e): For 202 

example, housekeeping genes (the strongest predictor for expression level) are less variable 203 

than non-housekeeping genes at any level of expression (Fig 2b). The same holds true for the 204 

feature ‘promoter shape index’, which is the strongest predictor for variation (Fig 2c), as well 205 

as other features such as ‘#conditions with DHS’ (DNase hypersensitive sites) (Fig 2d) and 206 

‘presence of a TATA box’ (Fig 2e). This demonstrates that the features explain expression 207 

variation independent of expression level. 208 

Promoter-associated features (TSS-proximal) are among the strongest predictors in terms of 209 

explanatory power for expression variation, and include promoter shape, core promoter motifs 210 

and GC-content, Pol II pausing, chromatin accessibility, and TF occupancy at TSS (Fig. 2a). 211 

Consequently, a model based only on TSS-proximal features can predict expression variation 212 
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fairly well with R2=0.37, while performing less well for predicting expression level (R2= 0.29) 213 

(Fig. 2f). Although lower than the model using all features (R2 of variation/level 0.45/0.43), 214 

this is markedly higher than a model on any other feature type alone. The next most predictive 215 

class of features for variation are gene body (R2 0.27/0.14) and gene type (0.20/0.25) (although 216 

more predictive of expression level), followed by gene context (0.16/0.10). 3’UTR features, 217 

which rank third among the most predictive features of expression levels, show little predictive 218 

value for variation (0.06/0.16), and distal features overall showed a rather weak predictive 219 

value for both variation and level (0.06/0.01). Finally, Genetics was the least predictive for 220 

both variation and level among the seven feature groups (0.03/0.05), in keeping with the 221 

variance decomposition analysis above.  222 

In summary, our results demonstrate that multiple regulatory features can independently 223 

predict gene expression variation or gene expression levels. Interestingly, promoter features, 224 

rather than upstream regulatory complexity (such as distal DHS sites), are the most predictive 225 

of expression variation. Given that housekeeping genes and TFs tend to have different promoter 226 

types (Arnold et al. 2016; Haberle and Stark 2018; Lenhard, Sandelin, and Carninci 2012), this 227 

suggests that specific biological functions may have distinct mechanisms to reduce variation 228 

and provide robustness to their expression as evidenced by models based solely on a gene’s 229 

functional annotation (Gene type in Fig. 2f). 230 
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 231 

Figure 2. Promoter architecture is the most important predictor of expression variation 232 
(A) Top-30 important features for predicting expression variation using Boruta feature 233 
selection. Features are ordered by their importance for expression variation (blue) and show 234 
the corresponding importance for level (orange). The absolute value and sign of correlation 235 
coefficient is indicated by the triangle size and orientation, respectively. For binary features, 236 
phi coefficient of correlation was used, otherwise Spearman coefficient of correlation. Label 237 
colors correspond to feature groups in (F). (B-E) Relationship between expression level and 238 
expression variation shown as 2D kernel density contours (left) and boxplots (right) for 239 
housekeeping genes (B), genes separated by promoter shape (C), number of embryonic 240 
conditions with a DHS (D), and presence of TATA-box at TSS (E). LOESS regression lines 241 
indicated for each gene group, P-values from Wilcoxon test. (F) Performance of random forest 242 
predictions (mean R^2 from 5-fold cross-validation) for expression level (orange) and variation 243 
(blue) trained on individual feature groups. Whiskers = standard deviation, color code of y-244 
axis labels matches Fig 2A.  245 
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Expression variation in broad versus narrow promoter genes reflects trade-off between 246 

expression robustness and plasticity 247 

The most prominent predictive feature for expression variation is promoter shape index (Fig 248 

2a), which classifies promoters based on the broadness of their transcriptional initiation region 249 

(Schor et al. 2017; Rach et al. 2009; Forrest et al. 2014; Lenhard, Sandelin, and Carninci 2012). 250 

Genes with narrow promoters generally have higher variation compared to genes with broad 251 

promoters (Fig. 2c), and, interestingly, also comprise a wider range of variation (Fig 3a). 252 

Moreover, expression variation of narrow promoter genes is better explained by genomically 253 

encoded features compared to broad promoter genes (R2= 0.37 vs 0.14), and this difference in 254 

performance becomes more pronounced with more stringently defined narrow and broad 255 

promoter genes (Fig. 3b).  256 

Interestingly, when we group genes from the two promoter classes into quartiles based on their 257 

variation we find very specific functions enriched among them: the broad class is strongly 258 

enriched for housekeeping genes (Fishers’s test odds ratio, OR=15.0, p-value<1e-16, 259 

Supplementary table 5) and GO terms related to basic cellular processes (cellular transport, 260 

secretion, and DNA/RNA biogenesis) with the exception of the top 25% most variable genes 261 

within the group being also enriched in metabolic processes (Fig. 3c, Supplementary Fig. 3a, 262 

Supplementary Table 6). In contrast, narrow promoters genes fall into two functional categories 263 

depending on their expression variation: the bottom 50% were enriched in TFs (OR=3.0, p-264 

value<1e-16) and GO terms related to development, signaling and regulation of transcription, 265 

while the top 50% are enriched for TATA-box genes (OR=7.9, p-value<1e-16) and GO terms 266 

related to metabolism, stress response, and cuticle development (Fig. 3c, Supplementary Fig. 267 

3a). We therefore grouped genes along the dimensions of promoter shape and expression 268 

variation into three classes (Fig. 3a): genes with broad promoters and low levels of variation in 269 

expression (broad), genes with narrow promoters and low expression variation (narrow-low) 270 
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and genes with narrow promoters and high expression variation (narrow-high).  271 

Next we looked at regulatory plasticity of these classes of genes defined here as the variation 272 

in accessibility of TSS-proximal DHSs across time and tissues, see [Reddington et al, 273 

submitted]. We observed that narrow promoter genes had high regulatory plasticity regardless 274 

of their expression variation (Supplementary Fig. 3b). In particular, narrow-low genes are 275 

robustly expressed across individuals at the given developmental stage, while having 276 

condition-specific regulation. In contrast, broad promoter genes are characterized by both low 277 

expression variation and low plasticity, which agrees with their housekeeping functions.  278 

Enrichment of low-variable genes in either housekeeping (broad) or developmental (narrow-279 

low) functions suggests selection pressure may act on those genes to reduce expression noise 280 

in genes essential for viability and development. One proxy for evolutionary constraints is 281 

sequence conservation across long evolutionary distances. In keeping with this, sequence 282 

conservation between Drosophila and human was among the top five most predictive features 283 

of low expression variation with conserved genes being significantly less variable (Fig 2a, 284 

Wilcoxon test p-value <2e-16). Promoter shape is also correlated with gene conservation: 285 

conserved genes are highly enriched for broad promoters (80% in broad vs. 41% in narrow) 286 

and more enriched in the narrow-low compared to narrow-high class (54% vs 28%). Within 287 

each class, conserved genes are less variable (Supplementary Fig.3c), hence sequence 288 

conservation provides additional information about variation constraints across genes.   289 

Overall, these results suggest that expression variation is an orthogonal component to the 290 

regulatory plasticity, which has previously been defined along the narrow-broad promoter 291 

spectrum (Rach et al. 2009; Lenhard, Sandelin, and Carninci 2012). Promoter shape likely 292 

reflects differences in regulatory plasticity (constitutive vs. condition-specific genes), while 293 

expression variation may reflect evolutionary constraints on expression robustness with 294 

essential and highly conserved genes being less variable. These findings indicate a partial 295 
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uncoupling between expression variation across multicellular individuals in a controlled 296 

environment and variation across tissues/development, analogous to the uncoupling between 297 

plasticity and noise observed in yeast (Lehner 2010), and suggest different mechanisms to 298 

control expression robustness for genes with ubiquitous versus condition-specific expression.  299 

 300 

Figure 3. Expression variation in broad versus narrow promoter genes reflects trade-offs 301 
between expression robustness and regulatory plasticity. (A) Genes separate into three 302 
groups based on their promoter shape index (x-axis) and expression variation (y-axis). Each 303 
dot represents a gene; colors indicate gene annotations: housekeeping (orange), non-304 
housekeeping TFs (blue), non-housekeeping with a TATA-box (red), other (grey). 305 
Distributions of promoter shape index and expression variation across gene groups are shown 306 
as density plots. Broad and narrow promoter genes are separated based on shape index 307 
threshold of -1 (vertical black line) as in (Schor et al. 2017). Narrow-low and narrow-high 308 
groups are separated based on the median expression variation of narrow promoter genes 309 
(horizontal black line). (B) Performance to predict expression variation for genes split by 310 
quartiles of promoter shape index. Horizontal lines show performance (mean R^2 from 5-fold 311 
cross-validation) on broad (orange) and narrow (blue) promoter genes separately. Whiskers = 312 
standard deviation (from 5-fold cross validation), number of genes per categories indicated (x-313 
axis). (C) GO term enrichment (Biological Process) of genes stratified by promoter shape and 314 
expression variation. Top GO terms are shown (full list in Supplementary Table 6. Quartiles 315 
of expression variation (1- lowest, 4 – highest) were calculated for broad and narrow promoter 316 
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genes separately. Quantile intervals for broad and narrow promoter genes provided in methods. 317 
 318 

Two classes of genes with low variation have distinct regulatory mechanisms 319 

The results above indicate that the partial uncoupling of expression variation and expression 320 

plasticity could be achieved by distinct mechanisms of ensuring expression robustness between 321 

different promoter architectures (broad/narrow). To explore this, we examined the most 322 

predictive features in relation to the different promoter types. Among the most significant 323 

promoter features is “#conditions with DHS” (Fig 2a), which is derived from a comprehensive 324 

tissue and embryonic stage specific atlas of open chromatin regions (DHS data for 19 325 

conditions) during a time-course of Drosophila embryogenesis (Reddington et al, submitted). 326 

The median number of developmental conditions in which a gene had at least one DHS site 327 

was 18, 8, and 1 for broad, narrow-low, and narrow-high genes respectively (Fig 4a), thus 328 

highlighting again that the narrow-low and broad classes differ in their developmental plasticity 329 

(Fig. 4a). A similar trend was observed for related features, such as using a compendium of TF 330 

occupancy data during embryogenesis (Fig 4b), TF peaks with motifs, or motifs alone 331 

(Supplementary Fig.4a-b). To understand how these promoter-type specific DHS patterns are 332 

set-up we next examined the 24 TFs that were predictive of expression variation in the full 333 

model (Supplementary Table 4, ‘med_imp_var’ column). Broad promoter genes were 334 

generally strongly enriched for ubiquitously expressed TFs, insulator proteins and chromatin 335 

remodelers (e.g. BEAF-32, MESR4, E(bx); Fig 4c, Supplementary table 5; Fishers exact test). 336 

The narrow-low class was enriched for the Polycomb-associated developmental factors Trl and 337 

Jarid2, while the narrow-high were not strongly enriched for any TF (Fig. 4c). Interestingly, 338 

some of the TFs enriched in broad vs narrow promoters, are still predictive of expression 339 

variation in the narrow-promoter only model (e.g. MESR4, E(bx), and YL-1, Supplementary 340 

Fig.4c), while the presence of ‘narrow’ TFs, despite being associated with low variation in 341 
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narrow promoters, had the opposite effect in the broad class (Fig. 4c bottom right).  342 

The next most predictive feature in our model is “PolII pausing index” (Fig 2a), defined as the 343 

density of polymerases in the promoter region divided by the gene body length (Saunders et al. 344 

2013)(Fig 2a). Narrow-low genes have the highest pausing index (40) followed by broad and 345 

narrow-high genes (10 and 7, respectively; Supplementary Fig.4d). Consequently, Pol II 346 

pausing is strongly negatively correlated with expression variation in narrow promoters 347 

(Spearman correlation Rho=-0.28, p-value<1e-16), yet showed no significant relationship in 348 

broad (Fig. 4d), again highlighting different mechanisms to confer robust expression. This may 349 

be partially explained by Trl, which can modulate the level of Pol II pausing (Tsai et al. 2016).  350 

Among the most significant non-promoter features, our model identified distal regulatory 351 

complexity (“#TF motifs (dist)” and “#DHS peaks (dist)” in Fig 2a) and post-transcriptional 352 

events (“#miRNA motifs” and “#RBP motifs” in Fig 2a) as predictive of expression variation. 353 

As for the distal regulatory complexity, narrow-low had the highest number (median of 6) of 354 

distal regulatory elements, defined as DHS within 10kb of the TSS, followed by broad (4) and 355 

narrow-high (4) genes (Supplementary Fig.4g). Consequently, the number of distal DHS is 356 

negatively correlated with expression variation in narrow promoters (Rho=-0.22, p-value<1e-357 

16) while being uncoupled from variation for broad (Fig. 4f). Similarly, narrow-low genes have 358 

a higher number of miRNA motifs in their 3’UTRs (median of 35) compared to broad (20) and 359 

narrow-high (14) genes (Supplementary Fig.4e), which again was negatively correlated with 360 

variation in narrow promoter genes only (Rho=-0.31, p-value<1e-16) (Fig. 4e). Similar results 361 

were obtained for the number of RNA-binding protein (RBP) motifs, which have an effect for 362 

narrow, but not for broad, genes (Supplementary fig. 4f).   363 

In summary, these findings provide strong evidence that robustness in gene expression across 364 

individuals is conveyed by different mechanisms depending on the gene’s promoter type: in 365 

broad promoter genes, robust expression is likely a result of a plethora of broadly expressed 366 
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TFs that bind to the core promoter and keep the chromatin constitutively accessible, compatible 367 

with their house-keeping roles. Narrow promoter genes, in contrast, seem to be regulated by a 368 

smaller number of (narrow-specific) TFs and their robustness is conveyed through mechanisms 369 

that involve Pol II pausing, distal regulatory elements, and posttranscriptional regulation. This 370 

suggests that broad and narrow promoter types have distinct mechanisms to regulate expression 371 

variation that are not necessarily transferable. This is possibly related to the relatively higher 372 

regulatory plasticity required of the narrow-low genes. 373 

Partial aspects of these findings have been reported previously. E.g. In a study of 14 374 

developmental control genes, Pol II pausing at promoters was linked to more synchronous gene 375 

activation, thereby reducing cell-to-cell variability in the activation of gene expression 376 

(Boettiger and Levine 2009). Also, miRNAs have been proposed to buffer expression noise 377 

(Schmiedel et al. 2018, 2015). Our data puts these previous findings in a more global context 378 

as part of a distinct mechanism for a particular promoter type. 379 

We summarized these mechanisms as two indices based on the ranked averages of the 380 

corresponding features: broad regulatory index (number of TF peaks, motifs and conditions 381 

with DHS, at the TSS) and narrow regulatory index (Pol II pausing index, number of distal 382 

DHS and miRNA motifs), respectively (Fig 4g), which nicely separate the three gene groups. 383 

Interestingly, we found no evidence for a specific noise-amplifying factor, except for the 384 

TATA-box. Yet, even for TATA-box genes, since they are depleted of all the aforementioned 385 

robustness features (Supplementary Fig. 4h), the observed high variation may result from a 386 

lack of robustness-conveying factors. 387 
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 388 

Figure 4. Different regulatory mechanisms lead to expression robustness in genes with 389 
broad and narrow promoters. (A,B) Chromatin accessibility (number of conditions with 390 
DHS) (A), or number of different TF peaks (B) overlapping TSS-proximal DHS for genes 391 
stratified into broad, narrow-low and narrow-high (defined in Fig 3A). P-values from Wilcoxon 392 
test. (C) Top: enrichment (odds ratio from Fisher’s test) of ChIP peaks for 24 TFs in TSS-393 
proximal DHSs of broad, narrow-low and narrow-high genes. Only TFs with predictive 394 
importance for expression variation (based on Boruta) were included. For each TF, Fisher’s 395 
test was performed separately for each category vs all other. Color = log2 odds ratio from 396 
Fisher's exact test (two-sided), grey = non-significant comparisons (adjusted p-value cutoff of 397 
0.01, Benjamini-Hochberg correction on all 24x3 comparisons). Lower panels: Presence of 398 
BEAF-32 (left) and Trl (right) ChIP-seq peaks in TSS-proximal DHS, plotted coordinates of 399 
promoter shape index and expression variation (same as Fig. 3a). Each dot represents a gene 400 
(grey if TF peak is absent, blue for Trl, orange for BEAF-32). (D-F) Relationship between 401 
polymerase pausing index (D), number of miRNA motifs in 3’UTR of a gene (E) and number 402 
of TSS-distal DHS peaks (F) and expression variation for broad (orange) and narrow (blue) 403 
promoter genes. Each dot represents a gene, lines linear regression fits, rho=Spearman 404 
correlation coefficient. (G) Gene scores by two indices constructed as the normalized rank 405 
average of: number of embryonic conditions with DHS, number of TF peaks, number of TF 406 
motifs (Broad regulatory index;; left), and number of TSS-distal DHS, number of miRNA 407 
motifs, Pol II pausing index (Narrow regulatory index; right). Colors correspond to broad 408 
(orange), narrow-low (blue) and narrow-high (red)) gene groups. P-values < 1e-09 for all 409 
pairwise comparisons of the distributions. 410 
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Expression variation can predict signatures of differential expression upon stress 411 

So far, we showed that distinct mechanisms regulating expression variation are directly 412 

encoded in the genome. In the following, we want to assess the impact of these findings for 413 

interpreting gene expression studies in general.  414 

We postulate that the expression variation of a gene across individuals can be interpreted as its 415 

ability to be modulated by any random perturbation. If this is true, we expect expression 416 

variation to be predictive of a gene’s response to changes in the environment. To test this, we 417 

used an independent gene expression dataset from adult flies that were subjected to different 418 

stress conditions related to temperature, starvation, radiation, and fungi infection (Moskalev et 419 

al. 2015). In agreement with our postulation we find that genes differentially expressed upon 420 

stress have high expression variation in our embryonic dataset (Fig. 5a, Wilcoxon test p-421 

value<1e-16). Remarkably, this held true for every individual stress condition (Supplementary 422 

Fig. 5a).  423 

Differentially expressed genes are enriched for narrow-high promoter genes (Fishers’s test 424 

odds ratio=2.97, p <1e-16). Consequently, they are associated with lower chromatin 425 

accessibility (p <1e-16, Supplementary Fig. 5b), a lower number of TFs (p=1.4e-10) and less 426 

motifs (p=3.9e-8) at their TSS, as well as other features important for distinguishing between 427 

narrow-high and -low genes (Supplementary Fig. 5c-e). Overall, differentially expressed genes 428 

showed lower regulatory complexity as reflected in our broad and narrow variability indices 429 

(Fig 5b-c).  430 

To assess this association more systematically, we next tested whether the model for predicting 431 

expression variation can also identify differentially expressed genes. We trained a random 432 

forest model using our embryonic data to classify the top-30% versus bottom-30% variable 433 

genes and used it to predict differential expression in adults subjected to different stresses 434 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.10.942276doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.10.942276
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

(Methods). The model predicted differential expression on the non-overlapping test set with an 435 

AUC of 0.65 and 0.74 when trained to predict embryonic variation for all genes, or for narrow 436 

promoter genes, respectively (Fig. 5d). This demonstrates that differential expression can be 437 

predicted based on a model trained for predicting expression variation. Since the model’s 438 

performance was better when trained only on variation in narrow promoters, it is likely that the 439 

narrow-specific regulatory mechanisms, such as micro RNA and enhancers, determine a gene’s 440 

responsiveness to stress. This is also reflected by the strong differences in narrow index 441 

between DE and non-DE genes (Fig 5c). 442 

Overall, this suggests that the same buffering mechanisms confer expression robustness to 443 

different kinds of perturbations. Since the propensity to be differentially expressed is 444 

predictable based on genomically encoded features, this implies that results from differential 445 

expression studies should always be interpreted relative to a genes inherent tendency to respond 446 

to perturbation.  447 

 448 

Figure 5. Expression variation can predict signatures of differentially expression upon 449 
stress. (A) Expression variation of genes differentially expressed (DE) upon any stress 450 
conditions from (Moskalev et al. 2015) compared to non-differentially expressed genes (non-451 
DE). (B-C) Differences in scores by the regulatory complexity indices (from Fig. 4g) between 452 
DE and non-DE genes (from Fig. 6a): broad regulatory index (B), narrow regulatory index (C), 453 
P-values from Wilcoxon rank test. (D) ROC-cures for predicting DE with random forest 454 
models trained on expression variation (top-30% variable vs. bottom-30% variable) in all genes 455 
(light blue) or narrow promoter genes (dark blue). Models were trained and tested on non-456 
overlapping subsets of genes in 10 random sampling rounds (all plotted). Median AUC values 457 
from 10 sampling rounds.  458 
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Human promoter features predict both expression variation and differential expression  460 

Given that gene expression variation across individuals can be predicted from genomic features 461 

in Drosophila we next asked whether this holds true in humans, and whether the predictive 462 

features are conserved. We used high quality RNA-seq datasets from the GTEx project 463 

comprising 43 tissues with data for at least 100 individuals (GTEx Consortium 2013). For each 464 

tissue, we measured expression variation across individuals using the coefficient of variation 465 

corrected for mean-variance dependence, applying a similar approach as for Drosophila 466 

(Methods). Since gene expression variation values were highly correlated across all tissues 467 

(Supplementary Fig 6), we also computed the mean of tissue-specific variations (mean 468 

variation) as potentially more robust metrics.    469 

Since TSS-proximal features were the most predictive of expression variation in fly, we 470 

focused on promoter features to train the models (Methods). This included promoter shape, TF 471 

binding at the TSS, chromatin states, and several sequence features (TATA-box, GC-content, 472 

CpG islands). To predict the mean expression variation, promoter shape and chromatin state 473 

features were aggregated across multiple tissues. In addition, we collated three tissue-specific 474 

datasets for muscle, lung and ovary by matching RNA-seq, CAGE and chromHMM datasets 475 

(Methods). Based only on these features, random forest models were able to predict expression 476 

variation and level within each tissue to a similar extent as in Drosophila embryos (Fig. 2f) 477 

with R^2 ranging between 0.38-0.46 for expression variation and 0.19-0.24 for expression level 478 

(Fig. 6a). Aggregating expression variation across tissues yielded even higher performance 479 

with R^2 of 0.56 versus 0.31 for mean level across all expressing tissues. The overall 480 

performance was robust to changes in the numbers of samples including subsetting by age or 481 

sex (Supplementary fig. 8a).  482 

The predictive features of expression variation in humans are highly overlapping with those 483 

for Drosophila (Fig 6b,c), and include promoter shape, TATA-box, and the number of TFs 484 
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binding to the promoter. An additional feature highly predictive of genes with low expression 485 

variation was the presence of CpG islands, in line with previous findings in single-cells 486 

(Morgan and Marioni 2018), while bivalent TSS state was predictive of high expression 487 

variation, in line with previous studies (Faure, Schmiedel, and Lehner 2017) (Fig. 6b, c). We 488 

also uncovered a number of transcription factors predictive of low variation, including 489 

GABPA, YY1, and E2F1 (84 predictive TFs in total, Supplementary Table 17). Similar to 490 

Drosophila, the presence of TSS-proximal peaks of all 84 predictive TFs were associated with 491 

reduced mean expression variation, again suggesting that high variation (in bulk RNA-seq) is 492 

due to a lack of buffering mechanisms rather than a specific mechanism for noise amplification. 493 

Extending the distance around the TSS did not improve the correlation between presence of 494 

TF peaks and expression variation, indicating that the key regulatory information is already 495 

contained within the core promoter region (Supplementary fig 8b).  496 

We next asked whether expression variation across individuals is predictive of differential 497 

expression in different conditions, as we observed in Drosophila. For this we used differential 498 

expression prior (DE prior), a metric that integrates more than 600 published differential 499 

expression datasets and reflects the probability of a gene to be DE irrespective of the biological 500 

condition tested (Crow et al. 2019). Indeed, DE prior is correlated with expression variation in 501 

all tissues (median Pearson correlation R= 0.50), while being uncorrelated with expression 502 

level (Supplementary Fig. 6). A model trained to predict the top-30% vs. bottom-30% most 503 

variable genes (based on the features predictive of mean expression variation) could predict 504 

DE prior with an AUC of 0.75 versus 0.85 when both training and testing are done on DE prior 505 

(Fig. 6d, Methods), and predictive features for variation showed similar effects in DE prior 506 

(Fig. 6e). This indicates that inherent promoter features can explain expression variation and 507 

the probability of differential expression to a similar extent – potentially, due to partially 508 

overlapping underlying mechanisms.  509 
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Importantly, both expression variation and DE prior were significantly lower for essential 510 

genes, while being higher for GWAS hits and common drug targets (Fig. 6f, Supplementary 511 

Fig. 8c). Higher expression variation of the latter agrees with an interpretation that these genes 512 

are less buffered to withstand different sources of variation (Fig 1a) and hence are more likely 513 

to change in expression level upon different types of perturbations including genetic or 514 

environmental factors. Hence, expression variation across individuals likely captures 515 

differences in selection pressure and cost-benefit trade-offs between expression precision and 516 

plasticity. 517 

In summary, despite significant differences in promoter regions between humans and 518 

Drosophila (e.g. the presence of Drosophila-specific core promoter motifs, human-specific 519 

CpG islands, predominately unidirectional versus bidirectional transcription), promoter 520 

features are highly predictive of expression variation in both species. Genes with high variation 521 

tend to also have differential expression across diverse conditions, and are significantly 522 

enriched in GWAS hits, and disease associated loci.  523 
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 524 

 525 
 526 
Figure 6. Features in human promoters predict both expression variation and differential 527 
expression. (A) Performance of random forest predictions (mean R^2 from 5-fold cross-528 
validation, whiskers = standard deviation) for expression level (orange) and variation (blue) 529 
trained on expression variation in tissue-specific RNA-seq (lung, ovary, and muscle), as well 530 
as mean variation across 43 tissues (Methods). (B) Top-20 features for predicting expression 531 
variation using Boruta feature selection. Features ordered by their importance for expression 532 
variation (blue), showing the corresponding importance for level (orange). Shapes indicate four 533 
different datasets (three tissues and mean variation). (C,E) Differences in expression variation 534 
(C) and DE prior (E) for some of the top-predictive features from (B). P-values = Wilcoxon 535 
test, number of genes indicated. ‘Share TssBiv > 0’ indicates genes that have "TSS bivalent” 536 
chromatin state (chomHMM, Methods) in at least one tissue. ‘Share broad > 0.8’ indicates 537 
genes which have broad promoter in at least 80% of tissues where it is expressed (Methods). 538 
(D) ROC-curves for predicting DE prior (top-30% variable vs. bottom-30%) with random 539 
forest models trained on DE prior (light blue) and mean expression variation (dark blue). 540 
Models trained and tested on non-overlapping subsets of genes in 10 random sampling rounds 541 
(all plotted), with median AUC values indicated.    (F) Mean expression variation of specific 542 
genes groups (GWAS hits, essential genes, drug targets) compared to the distribution of mean 543 
expression variation for all genes in the dataset.  544 
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Discussion  545 

Our analysis suggests that expression variation across a population of multicellular genetically 546 

diverse individuals is gene-specific and can be explained by genetically encoded regulatory 547 

features, all highly correlated with core promoter architecture. Overall, we found that 548 

regulatory complexity positively correlates with robust gene expression. Yet we identified two 549 

independent mechanism that decrease expression variation depending on the core promoter 550 

architecture. Genes with broad core promoters in Drosophila were overall less variable and 551 

characterized by ubiquitously open chromatin and a high number of transcription factors (TFs) 552 

binding to the TSS-proximal region. In contrast, genes with a narrow core promoter had a much 553 

higher spread of expression variation, which was, in addition to TFs, modulated by regulatory 554 

complexity outside of core promoters (miRNAs, enhancers and Pol II pausing).  555 

We found that similar promoter-related features were predictive of expression variation across 556 

human individuals by applying the same predictive framework to tissue-specific RNA-seq 557 

datasets. This was surprising given the differences in promoter features between Drosophila 558 

and mammals, with higher heterogeneity within broad promoters and high regulatory 559 

importance of CpG islands (Haberle and Stark 2018; Lenhard, Sandelin, and Carninci 2012), 560 

and suggests that some core promoter properties are ancient features that reduce expression 561 

noise, which agrees with conclusion of previous studies (Carey et al. 2013; Metzger et al. 562 

2015). 563 

Gene expression variation can arise from a multiplicity of stochastic, environmental and 564 

genetic factors, and defining the exact cause of expression variation in a particular experiment 565 

is likely an intractable task. Even for single cell experiments, which can control for genetic and 566 

macro-environmental factors, there is ongoing debate as to whether the observed gene-specific 567 

expression variation can be explained by intrinsic (e.g. transcription bursting) or extrinsic (cell-568 
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to-cell variability) factors (Battich, Stoeger, and Pelkmans 2015; Larsson et al. 2019; Foreman 569 

and Wollman 2019), or whether these are sources are indistinguishable (Eling, Morgan, and 570 

Marioni 2019). Yet, despite the differences in interpretation of the underlying sources of 571 

variation, there is a consensus that genes differ in their expression variation. Here, we found 572 

that gene expression variation, in bulk data from thousands of cells, was highly reproducible 573 

across different datasets, including developmental time-points in Drosophila and tissues in 574 

human, and did not depend on the identity of samples used. This suggests that gene expression 575 

variation, along with expression level, can be used as an informative readout of gene function 576 

and regulation in multiple biological contexts. 577 

Interestingly, we recapitulated most of the regulatory features previously linked to expression 578 

noise in single cell experiments (Ravarani et al. 2015; Morgan and Marioni 2018; Faure, 579 

Schmiedel, and Lehner 2017; Perry et al. 2010; Boettiger and Levine 2009; Schmiedel et al. 580 

2018), despite the fact that the composition of variation sources is very different between bulk 581 

and single cell experiments. A number of studies have proposed that robustness to stochastic 582 

noise and robustness to environmental and genetic variation are highly correlated (Lehner 583 

2008; Ciliberti et al. 2007; Kaneko 2011). In line with this hypothesis, expression variation in 584 

bulk is predictive of single-cell noise in yeast (Dong et al. 2011) and gene expression variation 585 

across individuals in human tissue samples correlates with promoter strength and multiple 586 

epigenetic features (Alemu et al. 2014). Indeed, genes that have evolved mechanisms to buffer 587 

stochastic variation in the levels of their expression may also be insensitive to non-stochastic 588 

changes, including genetic and environmental variation, as the same mechanisms would 589 

constrain them both (Lehner 2008).  590 

In line with the above, it was recently shown that the results of many differential expression 591 

experiments are generally predictable and to a large extent reflect some basic underlying 592 
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biology of the genes, rather than specific conditions tested (Crow et al. 2019). Our results 593 

confirm and substantially extend this model - we show that the likelihood of a gene to be 594 

differentially expressed is highly correlated with the gene’s expression variation (independent 595 

of expression level) and the corresponding predictive regulatory features. This result is 596 

important, as standard differential expression pipelines correct for variance dependence on the 597 

expression level (Love, Anders, and Huber 2014) but do not take any other gene-specific 598 

properties into account. Given the extensive amount of accumulated knowledge about 599 

regulatory features, taking into account gene-specific differences in expression variation and 600 

the underlying regulatory mechanisms will improve specificity and interpretability of 601 

differential expression results. 602 

Finally, here we focused on the most general mechanisms robustly linked to gene expression 603 

variation regardless of the specific tissue identity or developmental stage. There is, however, 604 

accumulating evidence that changes in expression variation can be an important indicator of 605 

specific biological processes happening in an organism. In particular, stochasticity of 606 

expression can differ by developmental stage i.e. following an hourglass pattern in early 607 

development (Liu et al. 2019) or decreasing with cell fate commitment (Eling et al. 2018; 608 

Richard et al. 2016). On the other hand, an increase in expression stochasticity has been linked 609 

to ageing (Viñuela et al. 2018; Kedlian, Melike Donertas, and Thornton 2019) and certain 610 

disease conditions (Zhang et al. 2015; Ran and Daye 2017). Hence, combining information on 611 

expected gene expression variation with tissue or disease-specific data might provide 612 

additional insights to condition-specific gene regulation in complex biological systems. 613 
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Methods 614 

Gene expression level and variation in Drosophila DGRP lines 615 

Gene expression quantification. To quantify gene expression, we re-processed the single-end 616 

strand-specific 3’-Tag-seq data (Cannavò et al. 2016) for 75 inbred wild Drosophila isolates 617 

from the Drosophila melanogaster Genetic Reference Panel (Mackay et al. 2012) at three time-618 

points during embryonic development (2-4, 6-8 and 10-12 hours after fertilization, 225 samples 619 

in total, each containing pool of approximately 100 embryos). Reads were trimmed using 620 

Trimmomatic v.0.33 software (Bolger, Lohse, and Usadel 2014) with the following 621 

parameters: -phred33 HEADCROP:7 CROP:43. Alignment to dm6 genome version was done 622 

with bwa v.0.7.17 aln (parameters: -n 5 -e 10 -q 20) and samse (parameters: -n 1) tools (Heng 623 

Li and Durbin 2010). Reads with mapping quality below 20 were removed using samtools view 624 

v1.9 (H. Li et al. 2009). Expression was quantified with HTSeq count v.0.9.1 (Anders, Pyl, and 625 

Huber 2015) (parameters: -m intersection-nonempty -f bam -s yes -q -i Parent). PolyA sites 626 

were identified by reproducing the analysis of the polyadenylation dataset published in 627 

(Cannavò et al. 2016) after mapping the reads to the dm6 genome assembly. We observed a 628 

partial failure of strand specificity in generating the sequencing libraries: highly expressed 629 

polyA sites showed a corresponding antisense site. To remove these artefacts, we excluded 630 

polyA sites that were perfectly included in an antisense site. Reads that spanned both the last 631 

transcribed base and the subsequent polyadenylation tail allowed for single base resolution 632 

identification of the cleavage site. We extended polyA sites 200bp downstream or up to the 633 

nearest polyA site. To identify cleavage sites within our polyA sites we produced strand 634 

specific coverage tracks of the 3’-terminal base for each of the polyadenylation reads. Within 635 

each pA region, we identified the major cleavage site as the genomic base with highest 3’-636 

terminal base coverage.  637 
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Expression data filtering and measuring expression variation. All samples selected for the 638 

analysis had high sequencing quality and were accurately staged, as described in original 639 

publication (Cannavò et al. 2016). Using principal component analysis on the expression 640 

counts from all 225 samples after applying variance stabilization transformation from DESeq2 641 

(Anders and Huber 2010), we confirmed that samples clustered by developmental time-point 642 

(Supplementary fig 1a) and not sequencing batch (Suppl. fig 1b).  643 

Expression counts from 225 samples were jointly normalized using effectSize normalization 644 

from DESeq2 package (Anders and Huber 2010). For each time-point separately, we calculated 645 

median expression and coefficient of variation (CV, standard deviation divided by mean) for 646 

each gene across 75 samples. Genes with zero median expression were removed as non-647 

expressed. Coefficient of variation exhibited strong negative relationship with median 648 

expression level (Fig. 1b) which agrees with other gene expression studies (Anders and Huber 649 

2010; Ran and Daye 2017; Faure, Schmiedel, and Lehner 2017; Eling et al. 2018). To account 650 

for this relationship, we used Locally weighed regression (LOESS) of coefficient of variation 651 

on the median expression (loess function in R from stats library, degree = 1, span = 0.75) (R 652 

Development Core Team 2013). Residuals from LOESS regression (resid_cv, residual 653 

coefficient of variation) were used in all subsequent analysis and referred to as gene expression 654 

variation. 655 

To check whether residual expression variation actually reflects expression heterogeneity 656 

(across samples) at any given expression level, we took the following approach. Genes were 657 

grouped into 20 bins by their median expression level across 75 samples (separately for each 658 

time-point). Within each bin, genes were ordered by their residual coefficient of variation (x-659 

axis), and normalized expression counts for each sample were plotted on the y-axis (example 660 

for 10-12h in Supplementary Fig. 1c). For almost all of the expression bins, spread of 661 

expression values increased for higher residual coefficient of variation, except bin-20 (top-5% 662 
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genes by expression level) and to less extend bin-1 (bottom-5%). Based on this analysis, top 663 

and bottom-5% of expressed genes were excluded from the analysis.  664 

We focused our analysis on the latest developmental stage (10-12h) and removed genes that 665 

decreased in expression between 2-4h and 10-12h after fertilization. This was done to reduce 666 

confounding effects of maternal mRNA degradation and focus on the stage when zygotic 667 

genome is fully activated (both processes happening from 2h post fertilization onwards). In 668 

total, we excluded 3275 genes, from which 90% were detected as maternally deposited (in 669 

house data, genes expressed in unfertilized eggs). In addition, genes with the strongest decrease 670 

in expression (3-fold or more) were highly enriched in cell cycle biological processes 671 

(Supplementary table 7), and cell cycle is known to slow down at later developmental stages 672 

(Edgar and O’Farrel 1989). Hence, we reasoned that variation of these genes might be strongly 673 

confounded by extrinsic factors (maternal mRNA degradation and cell cycle) that are not of 674 

particular interest for this analysis.  675 

Overall, the following filtering steps were applied to the data, and the corresponding genes 676 

were excluded from the final dataset: 677 

1. Genes with zero median expression level across samples (as non-expressed 678 

genes); 679 

2. Genes falling into top and bottom 5% by expression level (as potential source 680 

of outliers); 681 

3. Genes that decreased in expression between 10-12 and 2-4 hours after 682 

fertilization (as maternal genes with role in early embryonic development and potential 683 

targets for maternal mRNA degradation) 684 

4. Genes with missing values in the feature table (see below) unless the feature 685 

can be easily imputed, i.e. 0 for the absence of transcription factor motif 686 
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Hence, our final dataset included 4074 genes at 10-12 hours post fertilisation. Final measure 687 

of expression variation was calculated as described above on the final set of genes to avoid 688 

residual dependence on the expression level after filtering (Fig. 1b, ‘resid_cv’ column in 689 

Supplementary table 3). Full dataset for all there time-points including expression variation 690 

calculated at several intermediate filtering steps are provided in Supplementary Table 2.  691 

Expression variation on the subsets of samples. To test robustness of expression variation to 692 

the selection of samples (and hence potential batch effects), we performed multiple rounds of 693 

sample subsetting. Our full dataset comprised 75 samples (75 DGRP lines). For a given subset 694 

size N, we randomly selected N samples from the full dataset. Gene expression variation was 695 

calculated on this subset as described above (including fitting LOESS regression), and Pearson 696 

correlation of resulting variation values with the variation on the full dataset was recorded. 697 

Radom selection of samples was performed 100 times for each N. This was done for the 698 

following subset sizes: 5, 10, 20, 30, 40, 50, 60, 70, and 74 samples. Mean and standard 699 

deviation of correlation values upon 100 rounds of sampling for each subset size are shown in 700 

Fig 1c.  701 

Expression level and variation of neighboring genes. For this analysis we considered all pairs 702 

of genes located on the same chromosomes and with TSS to TSS distance below 100 kB. Genes 703 

pairs were binned into 5 quantiles by the distance between their TSSs. Coordinates of the 704 

topologically associated domains (TADs) were taken from the high-resolution HiC in Kc cells 705 

(Ramírez et al. 2018). Genes were assigned to TADs based on their TSS coordinates, and for 706 

all pairs of genes we defined whether they belong to the same TAD or span the TAD border. 707 

Within the resulting 10 groups of gene pairs (5 quantiles * same/different TAD), we calculated 708 

Spearman correlation coefficients in expression variation and median expression level between 709 

genes in the pairs (Supplementary Fig 1d).  710 
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Alternative measures of expression variation. As alternative measures of expression variation, 711 

we used the following metrics: 712 

1. sd_vst: standard deviation after applying variance stabilizing transformation 713 

from DESeq2 package to remove mean-variance dependence (instead of taking LOESS 714 

residuals) 715 

2. resid_sd: LOESS residuals from regressing standard deviation on median 716 

expression 717 

3. resid_mad: LOESS residuals from regressing median absolute deviation on 718 

median expression 719 

4. resid_iqr: LOESS residuals from regressing interquartile range (between 25th 720 

and 75th percentiles) on median expression 721 

These measures were calculated on the final set of 4074 genes at 10-12h post fertilization. 722 

Dependences on the median expression before and after correction for these measures are 723 

provided in Supplementary fig 2a. Pearson correlations with expression variation measured by 724 

resid_cv are shown in Suppl. fig 2b. 725 

 726 

Compiling Feature table for Drosophila dataset 727 

Full list of features used in this analysis is provided in Supplementary table 1. The features 728 

were grouped into seven classes (column ‘Feature class’ in Supplementary table 1): Genetics, 729 

Gene type, Gene body, TSS, 3’UTR, Distal regulators, and Gene context. Summary on 730 

assignment of features to classes is provided in Table 1. Below are the more detailed 731 

descriptions of how individual features were generated. Full feature table and final dataset are 732 

provided in Supplementary tables 2 and 3, respectively. 733 
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Basic gene properties and functional annotations. We used Flybase v6.13 genome annotation 734 

to find gene length (length_nt), number of transcripts (n_transcripts) and number of exons 735 

(n_exons) for each gene. Number of exons was defined as total number of unique exons 736 

regardless of transcript isoforms. Next, we used several gene annotations from in-house or 737 

external sources to identify specific functional groups of genes. Ubiquitously expressed genes 738 

(is_ubiquitous) were defined based on BDGP database (Tomancak et al. 2002) as genes having 739 

ubiquitous expression pattern in at least one developmental stage (data available for Drosophila 740 

embryonic stages 4-6, 7-8, 9-10, 11-12, 13-16). Maternally deposited genes (is_maternal) were 741 

defined as genes expressed in unfertilized eggs the vgn line of Drosophila melanogaster at 2-742 

4 or 6-8 hours after egg laying (in-house data, unpublished). Housekeeping genes 743 

(is_housekeeping) were defined following methodology in (Ulianov at al. 2015) as genes 744 

expressed with RPKM > 1 in all samples from (Graveley et al. 2010). List of transcription 745 

factors (is_tf) comes from (Hammonds et al. 2013) dataset.  746 

Human orthologs for Drosophila genes. Human orthologs for Drosophila melanogaster genes 747 

were identified with DIOPT - DRSC Integrative Ortholog Prediction Tool (Hu et al. 2011), and 748 

two features provided by the tool were added for each gene – conservation score 749 

(conserv_score, continuous variable indicating confidence of ortholog prediction) and 750 

conservation rank (conserv_rank, factor variable taking the following values: none, low, 751 

moderate, high). Genes with ‘high’ conservation rank were referred to as “conserved with 752 

human” (e.g. Supplementary Fig 3c).  753 

Genetics. Cis share (cis) was used as an estimate of the contribution of genetic variation to the 754 

total gene expression variation. To calculate it, we used LIMIX variance decomposition 755 

(Lippert et al. 2014) on normalized expression matrix (three time-points combined) to assess 756 

the proportion of gene expression variation explained by cis, population structure and 757 

time/environment. 3’UTR variant index (utr3_variant_index) was used to approximate a 758 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.10.942276doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.10.942276
http://creativecommons.org/licenses/by-nc-nd/4.0/


 35 

potential effect of mappability bias (because expression was estimated from 3’Tag-seq data) 759 

as well as sequence variation on gene expression variation. It was calculated with the following 760 

formula: (total number of variants in gene’s 3’UTR × mean allele frequency of variants) / total 761 

length of 3'UTR peaks. The variant counts and variant allele frequencies were obtained from 762 

the DGRP freeze 2 .vcf file (W. Huang et al. 2014), considering only the 75 lines used in this 763 

study. Presence of eQTL (with_eQTL) indicates whether a gene has associated expression QTL 764 

identified in (Cannavò et al. 2016) on the expression dataset, which is also used in this study.  765 

GC-content. GC-content was calculated using bedtools-2.27.1 nuc software (Quinlan and Hall 766 

2010) for nucleotide sequences of genes (gene_gc) and regions of -100/+50 bp around gene 767 

TSS annotations from Flybase v6.13 (tss_gc). 768 

Pausing Index, Promoter shape and promoter motifs. Polymerase II pausing index (defined 769 

as the density of polymerases in the promoter region divided by the gene body) in Drosophila 770 

melanogaster embryos was taken from (Saunders et al. 2013). 771 

Promoter shape index was defined in the earlier paper (Schor et al., 2017) following the 772 

methodology from (Hoskins et al. 2011). In brief, promoter shape index is Shannon entropy 773 

of the TSS distribution within a promoter: 774 

𝑆𝐼 = 2 +	∑ 𝑝)𝑙𝑜𝑔-.
/ 𝑝)	, 775 

where p is the probability of observing a TSS at base position i within the promoter, L is the 776 

set of base positions that have at least one TSS tag, and TSS positions were identified using 777 

the aggregated CAGE signal for all time points and 81 fly lines from the Drosophila Genetic 778 

Reference Panel (DGRP) at three developmental time-points (Schor et al. 2017). For each gene, 779 

we recorded promoter shape index of the most expressed TSS cluster (major_shape_ind). 780 

Promoters of genes were classified as broad if shape index of the most expressed TSS was 781 

below -1, and narrow otherwise. The threshold is based on the bimodality of shape index 782 
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distribution and was defined in the original publication (Hoskins et al. 2011). If any of 783 

alternative TSSs of a gene had shape different from the most expressed one, alt_shape feature 784 

took value of 1 (and 0 otherwise).  785 

PWMs for 8 core promoter motifs (Ohler et al. 2002; Ohler 2006) were scanned in -100/+50 786 

bp region around annotated TSSs from Flybase v6.13 using fimo-4.11.3 software (Bailey et al. 787 

2009) with uniform background (--bgfile –uniform--), no reverse compliment (–norc), and 788 

default p-value threshold (1e-4). Motifs were first scanned for the 5’-most TSS of each gene 789 

(start coordinate of genes in gff annotation) and referred to as ‘ohler_maj.motif_name’ (e.g. 790 

ohler_maj.TATA for TATA-box; 0/1 for motif absence/presence respectively). In addition, 791 

motifs were scanned for TSSs of all transcripts for each gene (start coordinates of transcripts 792 

in gff annotation). If motif was predicted for some of the transcript TSSs but not for the gene 793 

TSS, then the corresponding feature ohler_alt.motif_name took value of 1, otherwise 0.  794 

DNase hypersensitive sites. DNase hypersensitive sites (DHS) in Drosophila melanogaster 795 

embryos were identified in [Reddington et al, submitted]. The experiment was conducted at 796 

four developmental time-points in whole embryo (2-4h, 4-6h, 6-8h, and 10-12h after 797 

fertilization) and with tissue sorting (mesoderm, neuroectoderm, and other (double negative) 798 

at all time-points except 2-4h; bin-positive and bin-negative mesoderm (marker for visceral 799 

muscles) at 6-8h). This resulted in 19 experiments, which we refer to here as DHS conditions. 800 

Peaks called in all experiments were combined in a single table, and for each DHS, conditions 801 

when the site was accessible were recorded. Coordinates of DHS peaks from the combined 802 

table were lifted over from dm3 to dm6 genome version using UCSC liftOver-5.2013 tool 803 

(Kent et al. 2002).  804 

For each gene, we quantified a number of features related to DHS in TSS-proximal (+/- 500 805 

bp. around TSS from gene annotation, class TSS) or TSS-distal (more than 500 bp and less 806 

than 10kB around annotated TSS, class Distal regulators): 807 
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- Number of conditions with DHS (num_dhs_conditins.prox and 808 

num_dhs_conditions.dist) is the number of conditions (out of 19 in total) when there 809 

was a DHS peak detected in TSS-proximal or TSS distal region.  810 

- DHS tissue profile (dht_tissue_profile.prox and dhs_tissue_profile.dist) 811 

summarizes accessibility profile across tissues and takes the following values: 1 – peak 812 

present only in tissues (any of mesoderm, neuroectoderm and double negative); 2 - 813 

present in whole embryo (WE); 3 – both in WE and tissues.   814 

- DHS time profile (dhs_time_profile.prox and dhs_time_profile.prox) reflects 815 

accessibility profile across developmental time points: 1 – peak present only at early 816 

developmental time-points (2-4h, 4-6h or 6-8h after fertilization); 2 – peak present only 817 

at late developmental time-points (8-10h or 10-12h after fertilization); 3 – peak present 818 

in at least one early and late time-point. 819 

- Presence of ubiquitous DHS (is_ubiq.prox and is_ubiq_dist) indicates presence 820 

of ubiquitously accessible DHS peak in the corresponding genomic region. We consider 821 

DHS peak ubiquitous if it was present in all three tissues at four developmental time-822 

points where tissue sorting was done (12 conditions in total). 823 

- Number of DHS peaks (num_dhs_any.prox and num_dhs_any.dist) is the total 824 

number of non-overlapping DHS peaks in the corresponding intervals present in any of 825 

the 19 conditions. 826 

DNA binding proteins. 280 embryonic ChIP-seq datasets for various DNA binding proteins 827 

(referred to as transcription factors or TFs for simplicity though not all of them have 828 

transcription factor activity) were downloaded from modERN database (Kudron et al. 2018). 829 

Of note, for several transcription factors, ChIP-seq data are available either for several 830 

developmental time-points (Trl at 0-24h, 8-16, and 16-24h. after fertilization) or for several 831 

experimental setups (chif-RA-GFP and chif-RB-GFP). In case more than one data set was 832 
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available for a TF it was included independently. For the analysis, we used peaks called 833 

according to the methodology from the original publication (IDR threshold of 0.01, optimal 834 

set). ChIP-seq peaks were overlapped with DHS coordinates (single base pair overlap required) 835 

using findOverlaps function from GenomicRanges package in R (Lawrence et al. 2013) 836 

resulting in 280 binary variables (1/0 for presence/absence of each TF) were added to the DHS 837 

table. These data were then summarized for each gene’s TSS-proximal and TSS-distal region 838 

resulting in the following variables: 839 

- Presence of TF peak in TSS-proximal DHSs (280 variables with name format 840 

like modERN.tf_name.prox) and TSS-distal DHSs (280 variables with name format 841 

like modERN.tf_name.dist); 1 – peak present (any number of occurencies), 0 – peak 842 

absent. 843 

- Total number of different TF peaks overlapping TSS-proximal 844 

(num_tf_peaks.prox) and TSS-distal (num_tf_praks.dist) DHS. 845 

640 PWMs for different TF binding motifs (Drosophila melanogaster database, version 846 

available on 05.03.2019) were downloaded from CIS-BP database (Weirauch et al. 2015). 847 

PWMs were scanned in the sequences of DHSs resized to 200 bp. width using fimo-4.11.3 848 

software (Bailey et al. 2009) with uniform background (--bgfile –uniform--), with reverse 849 

compliment (default), and default p-value threshold (1e-4). Similar to TF peaks, these data 850 

were then summarized for each gene’s TSS-proximal and TSS-distal region resulting in the 851 

following variables: 852 

- Presence of TF motif in TSS-proximal DHSs (280 variables with name format 853 

like cisbp.tf_name.prox) and TSS-distal DHSs (280 variables with name format like 854 

cisbp.tf_name.dist); 1 – motif present (any number of occurencies), 0 – motif absent. 855 

- Total number of different TF motifs overlapping TSS-proximal 856 

(num_tf_motifs.prox) and TSS-distal (num_tf_motifs.dist) DHS. 857 
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Chromatin colours. Annotation of chromatin states (5 states) was taken from (Filion et al. 858 

2010). Coordinates of genomic regions assigned to different colours were overlapped with 859 

DHS table, and for each DHS overlap with any of the colours by at least 1 bp. was recorded. 860 

The results were aggregated by gene into 5 TSS-proximal (i.e. color_green.prox) and 5 TSS-861 

distal (i.e. color_green.dist) binary features indicating presence/absence of the corresponding 862 

states. 863 

Annotated enhancers. We used several datasets of annotated enhancers from the following 864 

sources: 865 

- Combined set of CAD4 enhancers (curated in-house list from various sources) 866 

and Vienna tiles (Kvon et al. 2014) lifted over to dm6 genome version; 867 

- Combined set of cis-regulatory modules (CRMs) of mesoderm TFs (Zinzen et 868 

al. 2009) and cardiac TFs (Junion et al. 2012) lifted over to dm6 genome version; 869 

Both datasets were first overlapped with DHS table and number of annotated enhancer 870 

elements in TSS-proximal and TSS-distal regions were added to the feature table.  871 

3’UTR features. PWM of micro-RNAs (miRNAs) from MIRBASE (Kozomara and Griffiths-872 

Jones 2014; Kozomara, Birgaoanu, and Griffiths-Jones 2019) and RNA-binding proteins 873 

(RBPs) from CISBP-RNA (Ray et al. 2013) were downloaded from MEME v4 (Bailey et al. 874 

2009), files Drosophila_melanogaster_dme.dna_encoded.meme and 875 

Drosophila_melanogaster.dna_encoded.meme for miRNA and RBP PWMs respectively. 876 

3’UTRs were defined as the region comprised between a major cleavage site (as defined above) 877 

and the closest annotated stop codon. PWMs were scanned in nucleotide sequences of the 878 

3’UTRs using fimo-4.11.3 software (Bailey et al. 2009) with uniform background (--bgfile –879 

uniform--), no reverse compliment (–norc), and default p-value threshold (1e-4). Features for 880 

motif occurrences have were named mirbase.motif_name and cisbp_rna.motif_name for 881 
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miRNA and RBP motifs respectively. The feature took value of 1 for a gene if the 882 

corresponding motif was predicted for any of the annotated 3’UTRs of a gene and 0 otherwise. 883 

Total number of unique miRNA and RBP motifs per gene were counted and included as 884 

num_mirna and num_rbp features respectively. 885 

Lists of genes that are putative targets of Pumilio (embryonic and adult data) and Smaug 886 

(embryonic data) RBPs were obtained from (Gerber et al. 2006) and (Chen et al. 2014), 887 

respectively. 888 

For each gene, we calculated the mean UTR length at different time points as the weighted 889 

mean UTR length between UTR isoforms. We used the polyA site expression as weights in the 890 

mean calculation. Since length of 3’UTR was highly correlated with gene length (Spearman 891 

correlation, Rho=0.62), utr3_length feature was calculated as actual 3’UTR length divided by 892 

gene length. Finally, 3’UTR length changes (log2-fold change) between different time-points 893 

(10-12h vs. 6-8h, 6-8h vs. 2-4h, 10-12h vs 2-4h) were calculated for each gene 894 

(utr3_l2fc_10vs6, utr3_l2fc_6vs2, and utr3_l2fc_10vs2 features).  895 

Genomic context features. Insulation score (ins_score_2_4h and ins_score_6_8h) was 896 

calculated based on Hi-C data in-house data (unpublished) for Drosophila melanogaster 897 

embryos at 2-4 and 6-8 hours after fertilization (in-nucleus ligation, whole embryo). To assign 898 

insulation score to genes, we recorded the nearest value to the annotated TSS of each gene. 899 

Coordinates of topologically associated domains (TADs) were taken from the high-resolution 900 

Hi-C in Kc cells from (Ramírez et al. 2018) and Hi-C in 2-4h embryos (in-house data, 901 

unpublished). Each gene was then assigned to TAD from the two aforementioned annotations 902 

based on its TSS coordinate, and distance to TAD border and TAD size were recorded 903 

(dist_to_tad_border.ramirez, dist_to_tad_border.2_4h, tad_size.ramirez, and tad_size.2_4h, 904 

respectively).  905 
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Gene density was calculated as number of genes in +/-1000 bp and +/-20kB from the TSS of 906 

each gene (num_genes.prox and num_genes_dist, respectively) based on Flybase v6.13 907 

genome annotation. 908 

Broad and narrow indices. Broad and narrow indices were calculated based on the subset of 909 

features from the feature table. Broad index was composed of the following features (all TSS-910 

proximal): number of conditions with DHS (num_dhs_conditions.prox) , number of TF peaks 911 

(num_tf_peaks.prox), number of TF motifs (num_tf_motifs.prox). Narrow index was 912 

composed of number of TSS-distal DHSs (num_dhs_any.dist), number of miRNA motifs 913 

(num_miRNA), and Pol II pausing indes (PI). All features were first converted to ranks 914 

(random order for ties). Indices were calculated as simple averages of the corresponding 915 

features. 916 

 917 

Measuring expression level and variation in human tissues 918 
 919 

Genome version. We used Ensembl GRCH37/hg19 genome version downloaded from UCSC 920 

table browser (Kent et al. 2002; Haeussler et al. 2019) throughout the analysis. Sex 921 

chromosomes and non-standard chromosomes were removed for all subsequent analyses. For 922 

selecting the main transcript per gene we used GRCH37/hg19 genome annotation downloaded 923 

from Ensembl website (Cunningham et al. 2019). 924 

Quantifying expression level and variation. Gene expression matrix (raw read counts) was 925 

downloaded from the GTEx project website (GTEx Consortium 2013). Gene read counts 926 

matrices per tissues were produced by using GTEx sample details downloaded from GTEx 927 

website. Tissues with more than 100 samples (43 tissues in total) were chosen for further 928 

analysis (Supplementary table 8). In each tissue, genes with 0 median counts were removed 929 

and expression counts were normalized using size factor normalization form DESeq2 package 930 
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in R (Love, Anders, and Huber 2014). Median expression levels were calculation for each gene 931 

in each tissue and converted to log-scale (natural logarithm) for subsequent analysis. 932 

Next, we removed top-5% of genes by median expression level as potential outliers, following 933 

the same reasoning as for Drosophila. Since distributions of gene expression in all tissues had 934 

long left tails, we set additional stringent threshold on lowly expressed genes (minimum 935 

median of 5).  936 

Gene expression variation was calculated on the final set of genes for each tissue following the 937 

same approach as for Drosophila. Namely, gene expression variation was defined as the 938 

residuals from the local linear regression of coefficient of variation (CV) on the median 939 

expression (both on the log-scale, loess function in R from stats library, span = 0.25 and degree 940 

= 1). Gene expression levels and variations in all tissues are provided in Supplementary table 941 

9. 942 

Mean expression variation for each gene was calculated as the mean of expression variations 943 

in all tissues where a gene was expressed using final tables that passed all filtering steps. 944 

Similarly, mean expression level was calculated by computing the mean of median expression 945 

levels in all tissues where a gene was expressed. Mean expression variation calculated in this 946 

way exhibited weak dependence on mean expression level (Spearman correlation, Rho=-0.11). 947 

To control for this effect, we also calculated ‘global mean variation’ as the residuals from the 948 

local linear regression of the mean CV on the mean expression level (calculated as above). This 949 

measure was highly correlated with mean variation (Supplementary fig S6) and showed similar 950 

results in the downstream analysis (results not shown, global mean variation is provided in 951 

Supplementary Table 9). 952 

Feature tables for human dataset 953 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.10.942276doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.10.942276
http://creativecommons.org/licenses/by-nc-nd/4.0/


 43 

Only TSS-proximal features and several gene properties (i.e. gene length and number of 954 

transcripts) were used to predict expression level and variation in human. Full list of features 955 

used in this analysis is provided in Supplementary table 10. Most of the TSS-proximal features 956 

(TF peaks and chromatin states) were scanned in the −500/+500 bp of the main TSS of the 957 

genes (referred to as TSS-proximal regions), following the same approach as for Drosophila. 958 

Several features more strictly linked to the gene core promoters (promoter shape, TATA-box, 959 

CpG islands, and promoter GC-content) were scanned in -300/+200 bp of the main TSS of the 960 

genes (referred to as core promoter regions). 961 

Gene properties. Number of transcripts, gene length, mean exon length, number of exons and 962 

exon length mean absolute deviation were calculated for each gene directly using hg19 genome 963 

annotation from Ensembl website (Cunningham et al. 2019). Transcripts width was calculated 964 

for each transcript by using the same file, and length of the main transcript was assigned to 965 

each gene. 966 

Promoter Shape. CAGE data for 31 tissues (library size of about 10M mapped reads or above, 967 

Supplementary table 11) was downloaded from FANTOM5 project (Lizio et al. 2015) using 968 

CAGEr package in R (Haberle et al. 2015). On each dataset separately, we did power-law 969 

normalization (Balwierz et al. 2009) using CAGEr package. TSSs with low count numbers 970 

(less than 5 counts) were removed. Next, we applied a simple clustering method (distclu, 971 

maximum distance = 20) form CAGEr package on each dataset separately. Clusters with low 972 

normalized CAGE signals (sum of TSSs normalized signals of the cluster below 10-50 973 

depending on the tissue) were removed. CAGE clusters were then assigned to genes by 974 

overlapping them with core promoter regions (-300/+200 bp around TSSs of all annotated 975 

transcripts). Clusters that did not overlap any core promoters were removed. 976 

Next we defined promoter shape for all CAGE clusters by using two commonly accepted 977 

metrics: promoter width and promoter shape index. Promoter width was calculated by using 978 
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the inter-percentile width of 0.05 and 0.95 following methodology from (Haberle et al. 2015). 979 

Promoter shape index (SI) was calculated by the formula as above (Drosophila section) 980 

proposed in (Hoskins et al. 2011).  981 

For classifying promoters into broad and narrow based on promoter width, we used the 982 

following approach. First, we did a linear transformation of promoter width values (actual 983 

value minus 1 divided by 10; for fitting gamma distribution) On the transformed data, we fitted 984 

gamma mixture model (2 gamma distribution), and parameters was trained using EM algorithm 985 

(Dempster, Laird, and Rubin 1979) using mixtools package in R (Benaglia et al. 2009). The 986 

threshold for classifying promoters as broad or narrow was selected by finding the point which 987 

best separates the two distributions. Following this approach, promoters with width above 988 

about 10-15 bp. were classified as broad, which was consistent across all tissues and agreed 989 

with earlier studies (Forrest et al. 2014). To classify promoters into broad/narrow using shape 990 

index, we fitted Gaussian mixture model (2 Gaussian distribution) to the data and selected the 991 

threshold separating the two distributions using the same approach as above. For the 992 

subsequent analysis, we used promoter width feature since it showed more clear bi-modal 993 

distribution in all tissues (example in Supplementary fig 7a-c) and is a more common metrics 994 

in the analysis of mammalian promoters (Forrest et al. 2014; Carninci et al. 2006).   995 

Each gene was then assigned the promoter width of its main transcript. If more than one CAGE 996 

cluster was present for a gene’s main transcript, the cluster with the highest normalized CAGE 997 

signal was selected. Promoter width values for most of the genes were highly correlated across 998 

tissues (Supplemetary fig 7d). Based on the tissue-specific shape data, we calculated two 999 

aggregated features for each gene. Mean promoter width (mean_width feature) was calculated 1000 

as the mean of gene promoter widths in all tissues where it had CAGE signal (passing the 1001 

filtering criteria defined above). Share of tissues where a gene had broad promoter 1002 

(percentage_of_broad feature) was calculated for each gene by dividing the number of tissues 1003 
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where the gene had broad promoter by the total number of tissues where the gene had CAGE 1004 

signal. 1005 

TATA-box motif. TATA-box motif coordinates were obtained from the PWMTools web server 1006 

(Ambrosini, Groux, and Bucher 2018): JASPAR core 2018 vertebrates motif library (Khan et 1007 

al. 2018), p-value cutoff of 10-4, GRCh37/hg19 genome assembly). Motif coordinates were 1008 

overlapped with gene core promoter regions (-300/+200 bp), and number of overlaps for each 1009 

gene was recorded (TATA_box feature). 1010 

Transcription Factors. Transcription factors dataset (444 TFs, peaks with motifs, hg19 1011 

genome) ware obtained from (Vorontsov et al. 2018). If several datasets were available for the 1012 

same TF, the dataset with the best quality was selected. For each TF, the corresponding feature 1013 

was calculated by overlapping the TF regions and gene TSS-proximal regions (-500/+500 bp) 1014 

and counting the number of overlaps for each gene. 1015 

Chromatin States. Chromatin States dataset (chromHMM core 15-state model with 5 marks 1016 

and 127 epigenomes (Ernst and Kellis 2017)) was downloaded from Epigenomics Roadmap 1017 

project (https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html). We considered 1018 

26 tissues (Supplementary table 12). For each tissue, 15 features (one for each state, e.g. TssA 1019 

or TssBiv) were obtained. Each feature was calculated by overlapping corresponding state 1020 

regions and gene TSS-proximal regions (-500/+500 bp) and counting the number of overlaps 1021 

for each region. Finally, aggregated features (e.g. mean_TssA or mean_TssBiv ) were 1022 

calculated as the mean of feature values for each state over all 26 tissues. 1023 

CpG Islands. CpG islands (CGI) data for hg19 were downloaded from the UCSC Genome 1024 

browser (Haeussler et al. 2019). For each CGI, these included CGI length (CpG_Length), 1025 

number of CpG clusters (CpGNum) and number of GC dinucleotides (gcNum). The three 1026 

corresponding features for each gene were calculated by overlapping CGI regions and gene 1027 

core promoter regions (-300/+200 bp). When a gene did not overlap any CGI, the three features 1028 
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were assigned to 0. If multiple overlaps were present, CGI with the biggest overlap was 1029 

considered for each gene. 1030 

Promoter GC-Content. Promoter GC-content (GC_content) was calculated by using biostring 1031 

package (Pagès H et al 2019) and BSgenome.Hsapiens.UCSC.hg19 v1.4.0 in R in gene core 1032 

promoter regions (-300/+200 bp). 1033 

Compiling final feature tables. We collated three tissue-specific datasets for lung, muscle, and 1034 

ovary by combining the above promoter features and tissue-specific expression data 1035 

(Supplementary tables 13-15). These tables included three types of features: 1036 

- Tissue-specific features (promoter width and chromatin states); 1037 

- Features aggregated across tissues (mean promoter width, percentage of broad, 1038 

mean chromatin states – see above); 1039 

- Non tissue-specific features (all other features, e.g. TATA-box or TF peaks)   1040 

These tables included genes that were expressed and had CAGE signal (passing the above 1041 

filtering criteria in both datasets) in the corresponding tissues. For muscle tissue, ‘Skeletal 1042 

muscle male’ dataset was used for tissue-specific chromatin states. The fourth feature table 1043 

included only non-tissue-specific and aggregated features along with mean expression level 1044 

and variation (Supplementary table 16). This table was comprised of genes that were expressed 1045 

and had CAGE signal in a least one of the analysed tissues. Expression variation was adjusted 1046 

for the expression level on these final sets of genes in each table (see above). 1047 

Essential genes, drug targets, and GWAS catalogue. Essential genes (essential in multiple 1048 

cultured cell lines based on CRISPR/Cas screens (Hart et al. 2017)) and drug targets (FDA-1049 

approved drug targets (Wishart et al. 2018) and drug targets according from (Nelson et al. 1050 

2015)) were downloaded from Macarthur lab repository (https://github.com/macarthur-1051 

lab/gene_lists). GWAS dataset was downloaded from EBI GWAS catalog (Buniello et al. 1052 
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2019). Genes with GWAS associations within upstream regions or downstream regions were 1053 

considered. These gene annotations were used in Fig. 6f and Supplementary fig. 8c, but not 1054 

included in prediction models. Information on these gene types is provided in Supplementary 1055 

table 9. 1056 

 1057 

Predicting expression level and variation 1058 

Random forest models for Drosophila embryos 1059 

Feature selection was done with the Boruta algorithm implemented in R (Kursa and Rudnicki 1060 

2010) with the following parameters: p-value = 0.01, maxRuns = 500; Z-scores of mean 1061 

decrease accuracy measure as importance attribute; ranger implementation of random forest 1062 

regression. Feature selection was done separately for several tasks: (1) predicting expression 1063 

variation; (2) predicting expression level (log-transformed values); (3) predicting promoter 1064 

shape index; (4-5) predicting expression variation and level in broad and narrow promoter 1065 

genes separately. Median feature importance from 500 iterations were used as feature 1066 

importance metrics. All features selected in at least one of the 5 setting listed above are 1067 

provided in Supplementary table 5 with the corresponding importance. Only selected features 1068 

were used in random forest predictions and all downstream analysis. 1069 

For each explained variable (expression variation, level or promoter shape index), we ran 1070 

random forest regressions using mlr package in R (Bischl et al. 2016) with ranger 1071 

implementation of random forest (Wright and Ziegler 2015); default parameters: num.trees = 1072 

500, mtry = square root of the number variables). Model performance was reported with 1073 

coefficient of determination (R2) based on five-fold cross validation (Fig 1d). 1074 

Random forest models for human tissues 1075 
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As above, we used random forest regression to predict expression level and variation in three 1076 

tissues (lung, ovary, and muscle), as well as mean expression level and variation. Feature 1077 

selection and random forest regression were performed in the same way and with the same 1078 

parameters as for Drosophila dataset. Boruta feature selection algorithm was used to select 1079 

important features predictive of expression level (log-transformed) and expression variation in 1080 

each of the four datasets (three tissues and average). Feature importance scores are reported in 1081 

Supplementary Table 17. Random forest regressions were run on the sets of selected features 1082 

for the corresponding datasets. Model performance was reported with coefficient of 1083 

determination (R2) based on five-fold cross validation (Fig 6a for performance in all 4 1084 

datasets). 1085 

 1086 

Testing robustness of the random forest models 1087 

Robustness tests for Drosophila dataset 1088 

We have run the following models to test robustness of our predictions to various potential 1089 

confounding factors: 1090 

1. Binning genes by their median expression level into 5 quantiles and rerunning 1091 

variation prediction for each quantile separately (Fig 1e); 1092 

2. Predicting alternative variation measures (see above): resid_sd, resid_mad, 1093 

resid_iqr, and sd_vst (Supplementary Fig 2c);  1094 

3. Binning genes by their median expression change between 10-12 and 6-8 hours 1095 

after fertilization into 5 quantiles and rerunning variation prediction for each quantile 1096 

separately (Supplementary Fig 2d); 1097 

4. Binning genes by their promoter shape index into 4 quartiles and rerunning 1098 

variation prediction for each quartile separately (Fig 3b). 1099 
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5. Training and predicting on different chromosomes (or chromosome arms), e.g. 1100 

leaving out all genes on chr3L for testing the model trained on all other genes 1101 

(Supplementary Fig 2e).  1102 

For these tests, random forest regressions were run with the same parameters as above and on 1103 

the set of features selected for the variation prediction on the full set of genes. Performance of 1104 

the models measured with R^2 on the five-fold cross-validation in 1-4 and on holdout 1105 

chromosome (arm) in 5. 1106 

Robustness tests on human datasets 1107 

Since human gene expression datasets from GTEx project contain high sample heterogeneity 1108 

(different ages, sexes, reasons of death etc), we have rerun prediction models on the following 1109 

subsets of individuals (using samples metadata from GTEx website) for the lung tissue 1110 

expression dataset: 1111 

- Only 20-39 year old individuals;  1112 

- Only 40-59 year old individuals;  1113 

- Only 60-79 year old individuals;  1114 

- Only males; 1115 

- Only females 1116 

- Only violence group (as the reason of death); 1117 

- Only non-violence group (as the reason of death) 1118 

Gene expression variation and level were recalculated on the corresponding subsets of samples 1119 

using the same methodology as above. Random forest regressions were rerun with the same 1120 

parameters as above and on the set of features selected for the variation prediction on the full 1121 

set of samples. Performance of the models was measured with R^2 on the five-fold cross-1122 

validation (Supplementary fig. 8a). 1123 
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 1124 

Predicting differential expression in Drosophila 1125 

Lists of differentially expressed genes were obtained from (Moskalev et al. 2015). All 1126 

experiments were conducted in adult Drosophila melanogaster flies (five-day old males) and 1127 

included the following stress condition: entomopathogenic fungus infection (10 CFU, 10 1128 

CFU), ionizing radiation (144 Gly, 360 Gly, 864 Gly), starvation (16 h), and cold shock (+4oC, 1129 

0oC, -4oC). In total, 1356 out of our final set of 4074 genes were detected as differentially 1130 

expressed in at least one of the above stress conditions (DE) versus 2718 non-DE genes.  1131 

To test how well model trained on expression variation can predict differential expression, we 1132 

reformulated variation prediction into classification task to predict top-30% (class = 1) vs. 1133 

bottom-30% (class = -1) of genes ranked by their expression variation (our embryonic dataset) 1134 

and used trained model to predict DE (class = 1) versus non-DE genes (class = -1). To avoid 1135 

having same genes in test and train sets, we undertook the following approach. Randomly 1136 

sampled 50% of DE genes (678) and sample number of non-DE genes were set aside for train 1137 

set. From the remaining genes (after excluding test set - either all 2718 genes, or only genes 1138 

with narrow promoters), top-30% and bottom-30% of genes ranked by expression variation 1139 

were used for training. Model was trained on the test set using random forest classification with 1140 

default parameters (mlr package; ranger implementation of random forest; default parameters: 1141 

num.trees = 500, mtry = square root of the number variables). Training was performed on the 1142 

features important for predicting expression variation on the full set of genes (see above, 1143 

Supplementary table 4) for expression variation (1 for high-variable, -1 for low-variable). 1144 

Testing was done on the same set of features for differential expression (1 for DE, -1 for non-1145 

DE). Performance on the test set was assessed by Area Under the ROC curve (AUC). 10 rounds 1146 

of random sampling of genes were performed, and mean AUC was reported (Fig 5d).  1147 
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 1148 

Predicting differential expression prior in human 1149 

Differential expression Prior data (DE Prior rank) was obtained from (Crow et al. 2019). 1150 

Ensembl ids were converted to entrez ids by using BioMart package in R (Durinck et al. 2009). 1151 

We had information on both DE prior and mean variation (average of 43 tissue-specific 1152 

variations across individuals, see above) for 11312 human genes. As above, we reformulated 1153 

variation prediction into classification task to predict top-30% (class = 1) vs. bottom-30% (class 1154 

= -1) of genes ranked by their expression variation and used trained model to predict top-30% 1155 

(class = 1) versus bottom-30% (class = -1) genes ranked by DE prior. Training and testing were 1156 

performed on the set of features predictive of mean expression variation in the main dataset 1157 

(Supplementary table 17). Training and testing were done on the non-overlapping sets of genes 1158 

using the following approach. First, we defined top-prior (top-30% by DE prior) and bottom-1159 

prior genes (bottom-30% by DE prior). 50% of genes from both groups were randomly sampled 1160 

and assigned to test set. From the remaining genes, top-30% and bottom-30% by mean 1161 

expression variation were selected for train set. The model was trained on the test set to classify 1162 

top versus bottom variable genes (random forest classification with default parameters; mlr 1163 

package in R, ranger implementation of random forest). Trained model was then used on the 1164 

test set to predict top versus bottom DE prior genes. Similarly, another model was both trained 1165 

and tested on classifying top versus bottom DE prior genes on the same train and test sets, 1166 

respectively. Performance of the models on the test set was assessed by Area Under the ROC 1167 

curve (AUC). 10 rounds of random sampling of genes were performed, and mean AUC was 1168 

reported (Fig 6d).  1169 

  1170 

Statistical data analysis and visualization 1171 
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Data analysis in R was done using base, stats, MASS, rcompanion, psych, tidyverse, magrittr, 1172 

data.table, ltm, yaml, Boruta, mlr, ranger, GenomicRanges, DEseq2, CAGEr, and rtracklayer 1173 

packages. All plots were done in R using ggplot2, ggpubr, gridExtra, ggExtra, RColorBrewer 1174 

and pheatmap libraries. Contour lines in in Fig 2b-e represent 2D kernel density estimations 1175 

(geom_density_2d with default parameters). P-values on the plots (Fig 2 b-e, Fig 4a-c,Fig 5b-1176 

c, Fig 6c,e,f) come from Wilcoxon rank test. Whiskers on the plots (Fig 1c-e, Fig 2f, Fig 3b, 1177 

Fig 6a) indicate one standard deviation around the mean.  1178 

Correlation analysis. Generally, we used Spearman coefficient of correlation (R base) for 1179 

comparing pairs of continuous variables or discrete variables taking more than two values (e.g. 1180 

expression variation and promoter shape index or expression variation and conservation rank). 1181 

In some cases, we used Spearman correlation coefficient (R base) to compare variables that are 1182 

on the same scale, e.g. expression variations at different-time-points or for neighboring genes 1183 

(same for comparing expression levels). Finally, point-biserial correlation coefficient (R, ltm 1184 

library) was computed between continuous and binary variables (e.g. expression variation and 1185 

presence of TATA-box motif). Median expression levels were log-transformed before 1186 

computing correlation. 1187 

Gene Ontology enrichments. Gene Ontology (GO) enrichment tests were performed using 1188 

clusterProfiler package in R (Yu et al. 2012). We used compareCluster function (p-value cut-1189 

off=0.01) to find enriched biological processes (Fig. 3c) and molecular functions 1190 

(Supplementary fig. 3a) in genes grouped by their promoter shape and expression variation. 1191 

For this analysis, genes with broad and narrow promoters were separately split into four 1192 

quantiles by their expression variation (1-4 x-axis labels in Fig. 3c and Supplementary fig. 3a 1193 

indicate quantiles: from low to high variation). Quantile intervals for broad promoter genes (1 1194 

to 4): [-1.06,-0.444]; (-0.444,-0.266]; (-0.266,-0.0754]; (-0.0754,1.89]. Quantile intervals for 1195 
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narrow promoter genes (1 to 4): [-0.98,-0.173]; (-0.173,0.0751]; (0.0751,0.416]; (0.416,1.99]. 1196 

Full results of GO enrichment tests are provided in Supplementary tables 5 and 6. 1197 

Fisher’s tests. We used Fisher’s exact test (R base package) to find enrichments of features in 1198 

different gene groups in Drosophila dataset (broad, narrow-low, narrow-high). All tests were 1199 

done for 2x2 contingency tables, and odds ratios and p-values provided by the test were 1200 

recorded. We used Benjamini-Hochberg correction to adjust p-values for the multiple testing. 1201 

We used adjusted p-value threshold of 0.01 and odds ratio above 2 to define significantly 1202 

enriched features (p-value adjusted < 0.01; odds ratio < 0.5 for significantly depleted). 1203 

First, we tested enrichment of housekeeping genes, transcription factors and TATA-box 1204 

promoter motifs in the following pairwise comparisons: (1) broad vs. narrow, (2) narrow-low 1205 

vs. two other groups, (3) harrow-high vs. two other groups. P-values were corrected for the 1206 

number of tests (9 comparisons). 1207 

Next, we tested enrichments of ChIP-seq peaks of 24 transcription factors in the TSS-proximal 1208 

regions in the same comparisons as above. 25 TSS-proximal TF features selected by Boruta 1209 

algorithm, including two ChIP-seqs for Trl (in embryos at 8-16 and 16-24 hours after 1210 

fertilization) from which the one with the overlapping time window was used (8-16h). Since 1211 

ChIP-seq peaks were first overlapped with DHS peaks before assigning to genes (see Features 1212 

section above), we restricted the analysis of TF enrichments to the genes that have at least one 1213 

DHS peak in their TSS-proximal regions. P-values were corrected for 72 comparisons (24*2). 1214 

Log2-transformed odds ratios from these tests are shown in Fig. 4c, weak 1215 

enrichments/depletions (odds ratios above 0.5 and below 2) are shown in grey, actual values 1216 

are provided in Supplementary table 5.  1217 

Peaks of Trl and Jarid2 (enriched in narrow-low) also showed weak enrichments in narrow-1218 

high, which likely comes from strong depletion of these TFs at the TSSs of broad promoter 1219 
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genes. To control for that, we also tested enrichments of the same 24 TF peaks in three 1220 

comparisons between gene groups: (1) broad vs. narrow-low, (2) broad vs. narrow-high, (3) 1221 

narrow-low vs. narrow high (also 72 comparisons for p-values correction).  1222 

Results from all Fisher’s tests described above are provided in Supplementary table 5.  1223 

 1224 

 1225 

Table 1. Summary of features in Drosophila table by class. Description of features and 1226 

sources are provided in methods.  1227 

Gene body 
gene length, number of transcripts, number of exons, gene GC 

content 

Gene context 
Insulation score, TAD size, distance to TAD borders, gene density, 

chromosome 

Gene type  
maternal genes, transcription factor, housekeeping genes, 

ubiquitously expressed genes, genes conserved in human 

Genetics 
Share of genetic variance in cis, presence of expression QTL, 3’UTR 

sequence variation index 

TSS  

8 core promoter motifs (TATA-box, Inr, Motif1, Motif6, Motif7, 

DRE, DPE, MTE), TSS GC-content, promoter shape, Polymerase II 

pausing index, DHS features (number of DHS peaks, number of 

conditions with DHS, DHS time and tissue profile, presence of 

ubiquitous DHS), TF features (280 features indicating presence of 

peaks and/or motifs of various DNA-binding proteins, total number 

of TF peaks and motifs in TSS-proximal region), annotated 
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enhancers (CAD4 and Vienna sets; heart and mesoderm CRM sets), 

5 chromatin colors 

Distal regulators 

DHS features (number of DHS peaks, number of conditions with 

DHS, DHS time and tissue profile, presence of ubiquitous DHS), TF 

features (280 features indicating presence of peaks and/or motifs of 

various DNA-binding proteins, total number of TF peaks and motifs 

in TSS-proximal region), annotated enhancers (CAD4 and Vienna 

sets; heart and mesoderm CRM sets), 5 chromatin colors 

3’UTR 

Presence of motifs for 466 miRNAs and 54 RNA-binding proteins 

(RBP), total number of miRNA and RBPs, relative 3’UTR length, 

3’UTR length log2 fold change across time-points (10-12h vs 2-4h; 

10-12h vs. 6-8h; 6-8h vs. 2-4h), targets of Smaug and Pumilio 

(embryonic and adult) RNA-binding proteins 

  1228 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.10.942276doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.10.942276
http://creativecommons.org/licenses/by-nc-nd/4.0/


 56 

Figure Legends 1229 

Figure 1. Genomic features can predict expression variation independent of expression 1230 
levels. (A) Differences of gene regulatory mechanisms related to noise amplification and noise 1231 
buffering would result in different observed expression variation given the same variation 1232 
sources (left). (B) Dependence between coefficient of variation (CV) and median expression 1233 
level of 4074 genes across 75 samples (left). Residuals from LOESS regression of CV on the 1234 
median were used as the measure of variation throughout the analysis (right). Median 1235 
expression level and coefficient of variation plotted on log2-scale, red line represents LOESS 1236 
regression fit. (C) Correlation of expression variation calculated from subsets of samples 1237 
versus the full data set. Error bars = standard deviation across 100 independent selections of 1238 
samples. (D) Schematic overview of the random forest models and feature selection with 1239 
Boruta algorithm (left). Performance shown as R^2 from 5-fold cross-validation and compared 1240 
to randomly permuted data (right). Whiskers = standard deviation across the 5-fold cross 1241 
validation. (E) Performance (R^2, 5-fold cross validation) for genes grouped by expression 1242 
levels (quantiles). Whiskers represent standard deviation from 5-fold cross validation, number 1243 
of genes per quantile indicated (x-axis). Red dotted line indicates performance of full model.  1244 
 1245 

Figure 2. Promoter architecture is the most important predictor of expression variation 1246 
(A) Top-30 important features for predicting expression variation using Boruta feature 1247 
selection. Features are ordered by their importance for expression variation (blue) and show 1248 
the corresponding importance for level (orange). The absolute value and sign of correlation 1249 
coefficient is indicated by the triangle size and orientation, respectively. For binary features, 1250 
phi coefficient of correlation was used, otherwise Spearman coefficient of correlation. Label 1251 
colors correspond to feature groups in (F). (B-E) Relationship between expression level and 1252 
expression variation shown as 2D kernel density contours (left) and boxplots (right) for 1253 
housekeeping genes (B), genes separated by promoter shape (C), number of embryonic 1254 
conditions with a DHS (D), and presence of TATA-box at TSS (E). LOESS regression lines 1255 
indicated for each gene group, P-values from Wilcoxon test. (F) Performance of random forest 1256 
predictions (mean R^2 from 5-fold cross-validation) for expression level (orange) and variation 1257 
(blue) trained on individual feature groups. Whiskers = standard deviation, color code of y-1258 
axis labels matches Fig 2A.  1259 
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Figure 3. Expression variation in broad versus narrow promoter genes reflects trade-offs 1260 
between expression robustness and regulatory plasticity. (A) Genes separate into three 1261 
groups based on their promoter shape index (x-axis) and expression variation (y-axis). Each 1262 
dot represents a gene; colors indicate gene annotations: housekeeping (orange), non-1263 
housekeeping TFs (blue), non-housekeeping with a TATA-box (red), other (grey). 1264 
Distributions of promoter shape index and expression variation across gene groups are shown 1265 
as density plots. Broad and narrow promoter genes are separated based on shape index 1266 
threshold of -1 (vertical black line) as in (Schor et al. 2017). Narrow-low and narrow-high 1267 
groups are separated based on the median expression variation of narrow promoter genes 1268 
(horizontal black line). (B) Performance to predict expression variation for genes split by 1269 
quartiles of promoter shape index. Horizontal lines show performance (mean R^2 from 5-fold 1270 
cross-validation) on broad (orange) and narrow (blue) promoter genes separately. Whiskers = 1271 
standard deviation (from 5-fold cross validation), number of genes per categories indicated (x-1272 
axis). (C) GO term enrichment (Biological Process) of genes stratified by promoter shape and 1273 
expression variation. Top GO terms are shown (full list in Supplementary Table 6. Quartiles 1274 
of expression variation (1- lowest, 4 – highest) were calculated for broad and narrow promoter 1275 
genes separately. Quantile intervals for broad and narrow promoter genes provided in methods. 1276 
 1277 

Figure 4. Different regulatory mechanisms lead to expression robustness in genes with 1278 
broad and narrow promoters. (A,B) Chromatin accessibility (number of conditions with 1279 
DHS) (A), or number of different TF peaks (B) overlapping TSS-proximal DHS for genes 1280 
stratified into broad, narrow-low and narrow-high (defined in Fig 3A). P-values from Wilcoxon 1281 
test. (C) Top: enrichment (odds ratio from Fisher’s test) of ChIP peaks for 24 TFs in TSS-1282 
proximal DHSs of broad, narrow-low and narrow-high genes. Only TFs with predictive 1283 
importance for expression variation (based on Boruta) were included. For each TF, Fisher’s 1284 
test was performed separately for each category vs all other. Color = log2 odds ratio from 1285 
Fisher's exact test (two-sided), grey = non-significant comparisons (adjusted p-value cutoff of 1286 
0.01, Benjamini-Hochberg correction on all 24x3 comparisons). Lower panels: Presence of 1287 
BEAF-32 (left) and Trl (right) ChIP-seq peaks in TSS-proximal DHS, plotted coordinates of 1288 
promoter shape index and expression variation (same as Fig. 3a). Each dot represents a gene 1289 
(grey if TF peak is absent, blue for Trl, orange for BEAF-32). (D-F) Relationship between 1290 
polymerase pausing index (D), number of miRNA motifs in 3’UTR of a gene (E) and number 1291 
of TSS-distal DHS peaks (F) and expression variation for broad (orange) and narrow (blue) 1292 
promoter genes. Each dot represents a gene, lines linear regression fits, rho=Spearman 1293 
correlation coefficient. (G) Gene scores by two indices constructed as the normalized rank 1294 
average of: number of embryonic conditions with DHS, number of TF peaks, number of TF 1295 
motifs (Broad regulatory index;; left), and number of TSS-distal DHS, number of miRNA 1296 
motifs, Pol II pausing index (Narrow regulatory index; right). Colors correspond to broad 1297 
(orange), narrow-low (blue) and narrow-high (red)) gene groups. P-values < 1e-09 for all 1298 
pairwise comparisons of the distributions. 1299 
 1300 
Figure 5. Expression variation can predict signatures of differentially expression upon 1301 
stress. (A) Expression variation of genes differentially expressed (DE) upon any stress 1302 
conditions from (Moskalev et al. 2015) compared to non-differentially expressed genes (non-1303 
DE). (B-C) Differences in scores by the regulatory complexity indices (from Fig. 4g) between 1304 
DE and non-DE genes (from Fig. 6a): ‘broad’ complexity index (B), ‘narrow’ complexity index 1305 
(C), P-values from Wilcoxon rank test. (D) ROC-cures for predicting DE with random forest 1306 
models trained on expression variation (top-30% variable vs. bottom-30% variable) in all genes 1307 
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(light blue) or narrow promoter genes (dark blue). Models were trained and tested on non-1308 
overlapping subsets of genes in 10 random sampling rounds (all plotted). Median AUC values 1309 
from 10 sampling rounds.  1310 
 1311 
Figure 6. Features in human promoters predict both expression variation and differential 1312 
expression. (A) Performance of random forest predictions (mean R^2 from 5-fold cross-1313 
validation, whiskers = standard deviation) for expression level (orange) and variation (blue) 1314 
trained on expression variation in tissue-specific RNA-seq (lung, ovary, and muscle), as well 1315 
as mean variation across 43 tissues (Methods). (B) Top-20 features for predicting expression 1316 
variation using Boruta feature selection. Features ordered by their importance for expression 1317 
variation (blue), showing the corresponding importance for level (orange). Shapes indicate four 1318 
different datasets (three tissues and mean variation). (C,E) Differences in expression variation 1319 
(C) and DE prior (E) for some of the top-predictive features from (B). P-values = Wilcoxon 1320 
test, number of genes indicated. ‘Share TssBiv > 0’ indicates genes that have "TSS bivalent” 1321 
chromatin state (chomHMM, Methods) in at least one tissue. ‘Share broad > 0.8’ indicates 1322 
genes which have broad promoter in at least 80% of tissues where it is expressed (Methods). 1323 
(D) ROC-curves for predicting DE prior (top-30% variable vs. bottom-30%) with random 1324 
forest models trained on DE prior (light blue) and mean expression variation (dark blue). 1325 
Models trained and tested on non-overlapping subsets of genes in 10 random sampling rounds 1326 
(all plotted), with median AUC values indicated.    (F) Mean expression variation of specific 1327 
genes groups (GWAS hits, essential genes, drug targets) compared to the distribution of mean 1328 
expression variation for all genes in the dataset.  1329 
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