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Abstract

Mapping is the process of finding the original location of a DNA read in a reference
sequence, typically a genome. Short read mappers are software tools used in most applications
that involve high-throughput sequencing. As such, they must be continuously improved to
keep up with increasing needs. Modern mappers rely on seeding heuristics, making them fast
but inexact. For lack of a method to compute the reliability of their own output, mappers have
so far used approximations of variable quality. Here we focus on faithfulness, the capacity to
provide accurate mapping confidence, and we devise a strategy to map short reads faithfully.
The key is to estimate the repetitiveness of the target reference, which is the dominant factor
for the reliability of the mapping process. This approach highlights the existence of a class
of reads that can be mapped with unprecedented confidence. We exploit this strategy in a
prototype mapper that is competitive with state-of-the-art mappers BWA-MEM and Bowtie2,
with the benefit of faithfulness. The software is open-source and available for download at
https://github.com/gui11aume/mmp.

1 Introduction

High throughput DNA sequencing is now a well-established technology with countless applications
in industry and medicine [1]. The Illumina short-read technology currently dominates the market
of DNA sequencing over newer technologies that promise longer reads at the expense of higher
error rates. Software and tools to process short-read sequencing data are therefore an important
target for optimization [2].

In most analyses, short reads reads are mapped to a known reference, typically a genome,
using a software tool known as a mapper. Mappers are complex algorithms that must solve
approximate string-matching problems, where the reads and the reference do not match perfectly
due to biological divergence or to measurement errors of the sequencing machinery. The traditional
vision of mapping algorithms is to optimize speed and accuracy while maintaining a low memory
footprint. From this perspective, a major breakthrough was the conception of the FM-index [3, 4],
a data structure based on the Burrows-Wheeler transform [5] and the suffix array [6]. Modern
short-read mappers such as BWA-MEM [7] and Bowtie2 [8] rely on specialized implementations
of the FM-index for DNA sequences. More recently, new specialized algorithms such as RNA-seq
mappers have further improved the speed and the accuracy for their specific applications [9].
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However, speed, accuracy and memory usage are not the only metrics that matter for mapping
algorithms. Equally important is an attribute called faithfulness.

Faithfulness comes into play for heuristic algorithms, i.e., algorithms that are not guaranteed to
return a correct result. In this context, a heuristic is faithful if it provides an accurate probability
that the reported result is correct. Importantly, faithfulness is orthogonal to accuracy in the sense
that a faithful algorithm is not necessarily accurate and vice versa.

The importance of faithfulness is recognized in the specifications of the SAM format [10],
featuring a mandatory mapping quality field MAPQ, defined as “−10 · log10 Pr{mapping position
is wrong}”. The concept was originally introduced in the MAQ mapper [11], but the proposed
method cannot be carried to more modern mappers based on the FM-index.

More generally, there is no exact method to estimate these probabilities and most mappers
rely on approximations that are valid only for some genomes and some sequencing technologies.
The computations of mapping quality scores are usually undocumented, variable between mappers
and versions, often spreading puzzlement and frustration in the community [12, 13]. At times, the
standard is even disregarded as some mappers, like STAR [14], use the MAPQ field as a qualitative
scale instead.

As a consequence, mapping quality is often neglected by users and developpers, even though
it is critical in many applications. For instance, when calling de novo mutations, the standard
procedure is to map sequencing reads to the genome of interest and identify mismatches as evidence
for mutations. In this context, mapping errors cause artifacts that explain nonexistent mismatches,
so the confidence in the final call is commensurate with the mapping quality. Inaccuracies of the
mappers cause recurrent errors in cancer genomics [15, 16] where faithfulness would make a major
difference.

Mapping quality and faithfulness are also important in multi-genome applications. For instance,
when sequencing DNA from heterozyotes or chimeras, the confidence that a read is mapped to the
correct location is in fact the confidence that the read is assigned to the correct genome. Applied
to RNA-seq, for instance, mapping quality thus dictates the calls for mono-allelic expression. More
generally, every analysis of this type depends on the confidence in the locations of the reads.

Improving the mapping process requires to understand why it is sometimes inaccurate in the
first place. Mapping heuristics are usually based on a filtration strategy called seeding, whereby
short exact matches between the read and the reference are used to extract a set of candidate
locations. The downside of seeding is that errors in the read may cause the correct location
to be filtered out, in turn the read to be mapped incorrectly. We recently developped a formal
computational framework to compute the error rate of different seeding strategies used for mapping
short reads [17].

Here we propose a method to estimate the unknown parameters of our previous model and we
implement it in a mapper called MEM Mapper Prototype (MMP) that aims to be faithful. We use
MMP to study the feasibility of this strategy and we highlight the additional benefits gained from
faithfulness. In the process, we discover a class of reads that can be mapped with extremely high
confidence and we show that faithfulness can be achieved without sacrificing speed or accuracy.
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2 MATERIALS AND METHODS

2.1 Estimating the number of paralogs

The main source of uncertainty in the mapping is the existence of near-repetitive sequences, here
referred to as paralogs. Paralogs are groups of sequences that share high levels of similarity, likely
because they resulted from duplication or horizontal DNA transfer events. Paralogs are hard to
map reliably because the read can be similar to some secondary candidates. At the same time,
the exact probability that the read originated from one of the paralogs is difficult to quantify in
practice. In this section we introduce a method to estimate the number of paralogs of a sequence.
This estimate is crucial in the whole process of computing the mapping quality because the number
of paralogs will be the main determinant of the quality.

We assume that the true location of the read is a sequence of the genome that has N ≥ 0
paralogs. For every nucleotide, the probability that a paralog differs from the target is a constant
µ (this event is a mutation), and the probability that the read differs from the target is a constant
p (this event is a sequencing error). We further assume that the genome has size G and that its
composition is an equiprobable random mix of the four nucleotides.

For every nucleotide, the probability that the read differs from a given paralog is λ = (1 −
p)µ + p(1 − µ/3). The probability that the paralog matches the last L nucleotides of the read is
thus aL = (1 − λ)L, and the probability that at least one of the the N paralogs matches them is
1 − (1 − aL)N . Finally, the probability that some paralog matches the last L nucleotides of the
read, but none matches the last L+ 1 is `(L|N) = (1− aL+1)N − (1− aL)N .

From the expression above, it is possible to estimate N by the maximum likelihood method.
For this, we need to find the value of N that maximizes `(L|N) for fixed L. This can be done
analytically by solving ∂`/∂N = 0, yielding

N̂(L) =
log

(
log(1− aL+1)/ log(1− aL)

)
log(1− aL+1)− log(1− aL)

. (1)

In practice, we can compute L with the backward search by extending the query until there are
fewer than two hits in the genome (when there is only one hit, it is most likely the target). This is
not exactly a maximum likelihood estimate because we should specifically account for the target
as one of the hits. Also, µ is usually unknown, so we take a conservative approach and set µ to a
value where the recall is lowest for reads in the range 50–150 bp (for MEM seeds we set µ = 0.06).

Finally, the formula is symmetric so we can obtain two estimates of N , one from each end of
the read, and average them for more robustness. Note that expression (1) is a maximum likelihood
estimate, but the final estimate of N is not, because of the approximations mentioned above.

2.2 Mapping quality

Based on the estimate of the number of paralogs, we define three different groups of reads. The
mapping quality for each read group is computed differently because the dominant mapping un-
certainty depends on the number of paralogs.

2.2.1 Super quality

Super reads are defined as reads that satisfy the two following conditions: 20-mers extracted every
10 nucleotides all have a single hit in the genome (see the Results section and Figure 4), and the
read is mapped without mismatch. Super reads are mapped to an incorrect location if:

1. the read contains m errors,

2. the target has exactly one paralog,
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3. the paralog differs from the target exactly at the m locations of the errors,

4. the m incorrect nucleotides match the sequence of the paralog,

5. the m errors are in the odd-numbered 10-mers of the read.

The justification for these conditions are explained in more detail in Figure 5.
The last condition imposes m = 1 + bL/20c for a read of size L. The probability of condition

1 is denoted α. The probability of condition 2 is
(
L
m

)
pm(1 − p)L−m, where p is the error rate of

the sequencer. The probability of condition 3 is µm(1 − µ)L−m, where µ is the probability that
the paralog differs from the target. The probability of condition 4 is 1/3m and the probability of
condition 5 is 10m/

(
L
m

)
.

We need to multiply the probability of each condition together and divide them by the proba-
bility that a read is a super read, which is a fraction β of the probability that a read has no error.
The mapping quality of super reads is finally computed as

α

β

(
3.33 · pµ

1− p

)m

(1− u)L−m. (2)

The parameter µ is set to m/L so as to maximize (2), and α/β was observed empirically to be
close to 0.1.

2.2.2 Normal quality

Reads with initial estimate N ≤ 20 are aligned to all the locations. The prior probability that the
true location was not discovered at the seeding step can be calculated with sesame [17]. We can
gain precision by computing the posterior probability given the number of mismatches (intuitively,
a large number of mismatches is evidence that the read is mapped to an incorrect location). If the
read is mapped to the correct location, the number of errors follows a binomial distribution where
the parameter p is the error rate of the sequencer. If it is mapped to a paralog, the parameter
is λ as defined above. A complication is that the distribution of errors is not binomial when
N > 1 because the best hit is not chosen randomly among the N paralogs. We thus compute the
posterior probablity using Bayes’ formula, but put an upper threshold equal to 1 on the log-ratio
of the evidence. This means that many mismatches give strong support for an incorrect location,
but few mismatches give only weak support for the correct location.

Assuming that the read is mapped with x mismatches, the probability that the location is
incorrect is computed as

P (N ≥ 1) · Ps

Ps + (1− Ps)emin(a−b,1) , (3)

where Ps is the prior probability provided by sesame, where a− b = x · log(p/λ)+(L−x) · log((1−
p)/(1−λ)), and where P (N ≥ 1) is a probability computed during the estimation of N (see below).

It was verified empirically that expression (3) is an overestimate when x = 0 (because here the
upper threshold of 1 is too pessimistic). In this case, the estimate is replaced by a direct approach
where we compute the probability that a paralog matches the read perfectly. More specifically,
we compute the probability that the read has exactly one error and that a paralog matches the
incorrect sequence. In this case, the probability that the location is incorrect is computed as

P (N ≥ 1) ·
Lp(1− p)L−1

(
1−

(
(1− µ)L−1µ/3

)N)
(1− p)L

. (4)

In both (3) and (4), µ is set to 0.06 as this gives a high proability that MEM seeding fails for
reads of size 50–150.

4

remix, or adapt this material for any purpose without crediting the original authors. 
preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, 

The copyright holder has placed thisthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.10.942599doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.10.942599


2.2.3 Low quality

Reads with initial estimate N > 20 are aligned only to the longest MEM seed. A seed of size S
exists if there are S nucleotides without error or if there are S nucleotides with possibly many
errors matching at least one of the N paralogs. In the first case, the target is discovered, in the
second it is not. We also have to know whether the seed is flanked by errors or by the end of the
read. The probability of the first case is

Phit = δL · (1− p)S · δR,

where δL/R = 1 if the seed is flanked by the end of the read and δL/R = p otherwise.
Considering only the most frequent case with a single error, the probability of the second case

is

Pmiss = δL · Sp(1− p)S−1 · δR

×
(

1−
(
1− δ′L · (1− λ)S−1λ/3 · δ′R

)N)
,

where λ is defined as above, and where δ′L/R = 1 if the seed is flanked by the end of the read and

δ′L/R = λ otherwise. Applying Bayes’ formula, the mapping quality is finally computed as

Pmiss

Phit + Pmiss
. (5)

2.2.4 Estimating P (N ≥ 1)

This quantity appears in expressions (3) and (4). The estimate is based on the method shown in
Figure 3, where we use the end of the read with the shortest query. We consider three cases: i.
the target has a paralog, ii. only one end of the target has a paralog, and iii. the target is unique.
Case ii. can occur when the read straddles the end of a transposon or other repeated sequence.
We consider that N ≥ 1 only in case i. where the sequence has a full-length paralog.

We denote m the longest query size with two or more hits in the genome (see Figure 3) and we
work the probability P (m) in the three cases above. The genome has size G and every nucleotide
matches the query with probability 1/4 if it is unrelated to the target, and with probability λ if it
is a paralog. For convenience, we also denote the probability of a random hit of size less than m
as ξ(m) = 1− 1/4m.

In case i., the observed value is m if there is a match of size m with the paralog at one end of
the read, and a match of size ≥ m at the other end, and a match of size < m with the rest of the
genome; or if the match with the paralog has length < m at both ends of the read, and there is
a match of size m with the rest of the genome; or if there is a match of size m with the paralog
at one end of the read, and a match of size ≥ m at the other end, and a match of size m with the
rest of the genome. In case i., P (m) is thus

P1 = λ(1− λ)2mξ(m)G+(
1− (1− λ)m

)
(1− λ)m

(
ξ(m+ 1)G − ξ(m)G

)
+

λ(1− λ)2m
(
ξ(m+ 1)G − ξ(m)G

)
.

In case ii., the observed value is m if there is a match of size ≥ m with the paralog at the
duplicated end, and a match of size m with the rest of the genome at the other end; or if there is
a match of size < m with the paralog at the duplicated end, and a match of size m with the rest
of the genome at any end, and a match of size ≥ m at the other end. In case ii., P (m) is thus

P2 = (1− λ)m
(
(ξ(m+ 1)G − ξ(m)G

)
+(

1− (1− λ)m
)(
ξ(m+ 1)G − ξ(m)G

)(
1− ξ(m)G

)
.
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In case iii., the observed value is m if there is a random match of size m with the genome at
one end of the read, and a random match of size ≥ m at the other end. In case iii., P (m) is thus

P3 =
(
1− ξ(m+ 1)G

)(
ξ(m+ 1)G − ξ(m)G

)
.

Finally, to compute the probability of case i. given the observed value of m, we use Bayes’
formula with prior odds in proportion 1 : 1 : 8 because we estimate that the probability that a
sequence has exactly one paralog is approximately 1/10 (remember that those calculations are
performed when there is evidence that N ≤ 20).

P (N ≥ 1) =
P1

P1 + P2 + 8 · P3
.

3 RESULTS

3.1 General design principle of a faithful mapper

Implementing a faithful mapper requires a theory to estimate the probability that the location
of a read is wrong. We recently showed that most of the errors can be attributed to the seeding
step and we developed a computational framework to estimate the error rate of different seeding
schemes [17]. If we want those probabilities to correspond to the overall error rate of the mapper,
it is important to verify all the candidate locations after the seeding step, otherwise neglecting
some candidates would introduce some further mapping errors with unknown probability.

We thus opted to implement a mapper based on MEM seeds (where MEM stands for Maximal
Exact Match) because this strategy produces a smaller candidate set than the alternatives. In
order to optimize the design of the filtration step, we used the sesame library [17] to sketch the
projected performance of MEM seeds (Figure 1).

The results reveal two essential insights: The first is that the asymptotic decay of the failure
rate is approximately constant when the read maps to a location with N ≤ 20 paralogs. Beyond
this, the asymptotic decay slows down and the recall decreases markedly. The second insight is
that up to 100 nucleotides, the failure rate is always above 1 mapping error per 100,000 reads. In
other words, there is no hope to map a read with very high confidence using MEM seeds if the
target has a paralog.

These insights suggest that an efficient strategy is to use a fast mapping mode when the target
has many paralogs because the read cannot be mapped with high confidence anyway. In contrast,
when the number of paralogs is low, it is important to know whether the target is a unique
sequence because this is the only way to map a read with high confidence. So after MEM seeding,
our strategy is to quickly estimate the number of paralogs, find a decent candidate location as fast
as possible and finally estimate how reliable this location is. In essence, we search the reads that
can be mapped with high confidence instead of searching a high-confidence location for every read.
A high-level summary of this strategy is shown in Figure 2.

3.2 Estimating N

The key in the flow chart of Figure 2 is to dispatch the reads based on the number N of paralogs
of the target, which is an indirect measure of the mappability of the read [18]. Estimating N must
be fast so that this step does not become a bottleneck. To achieve this, we propose to use the
seeding process itself. MEM seeds are best computed using the backward search [3], an algorithm
that returns the number of hits in the genome as the query is extended backward. If the target
has no or few paralogs (Figure 3a), the number of hits will quickly go below 2 (when there is only
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Figure 1: Projected performance of MEM seeds. The probability of filtering out the target is
plotted against the size of the read (notice the log scale on the y axis). Computations are carried
out with sesame for MEM seeds of minimum size 19, assuming an error rate of 1% and a divergence
rate of 6% between paralogs (i.e. the probability that a given nucleotide of the target is different
in a given paralog is 0.06). Each line represents the probabilities for a different number N of
paralogs. Note that the asymptotic decay is approximately constant up to N = 20 and slows down
for larger N .

one hit, it is most likely the target itself). In contrast, if the target has many paralogs (Figure 3b),
the number of hits will remain at 2 or above for many additional iterations.

We can thus use the length of the largest query with 2 or more hits in the genome as a statistic
to estimate N (see Materials and Methods).

3.3 Super reads

As mentioned above, our strategy to map reads with high confidence is to test whether the target
is unique. Intuitively, a read that maps to a sequence without paralog in the genome is very likely
to be mapped to the correct location.

We designed another estimation procedure based on the backward search, where this time we
use the best candidate location as a query instead of the read. The principle, sketched in Figure 4a,
is to perform the backward search on 20-mers and to test whether the genome contains a single
hit. The rationale is that the total number of 20-mers is approximately 1012, so the chances of
spurious random hits are very low, even in the largest known genomes.

For a complete test, the candidate location of the read is segmented in 20-mers overlapping
by 10 nucleotides, as shown in Figure 4b. The sequence is considered unique if all the extracted
20-mers have a single hit in the genome.
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Collect MEM seeds

Estimate

Align all seeds Align largest seed

Use low quality

Use super quality Use Sesame

Super read Typical read

Test uniqueness

Figure 2: Proposed strategy for a faithful mapper. Each read is routed through one of three
mapping pathways. First, all the MEM seeds are extracted (top). Then the number N of paralogs
of the target is estimated. If N is 20 or less (left branch), all the candidates are tested with the
Needleman-Wunsch algorithm. Once the best candidate is found, the probability that it is unique
is estimated. If it is high and the alignment has no mismatch, mapping quality is computed using
expression (2). If the best candidate is not unique or if the alignment has a mismatch, mapping
quality is computed using expression (3) or (4). If N is higher than 20 (right branch), only the
largest MEM seed is used and the mapping quality is computed using expression (5).

While testing this procedure, we noticed that a class of reads were mapped with higher confi-
dence than ever reported before. The super reads, as we called them, were those aligning without
mismatch to a unique location.

The extremely high mapping quality of super reads comes from an unexpected property of
the test depicted in Figure 4. To see why they can be mapped with such confidence, consider a
read aligning without mismatch to an incorrect sequence of the genome. Observe that for this to
happen, the read must contain one or more errors that are perfectly compensated in some paralog
of the target. This can only happen if i. the target has a paralog, ii. the read contains an error,
iii. this error matches the paralog and iv. the target and the paralog are otherwise identical.

But those conditions are not sufficient to make a read super. As shown in Figure 5a, the
mapping location would not be considered unique because there would exist at least one 20-mer
where the target and its dupliate are identical, yielding two hits. For a read of size 50, the paralog
can be overlooked only if there are at least two errors in the read that match the paralog.

But as shown in Figure 5b, this is still not sufficient for a wrongly mapped read to qualify
as super. For this, the errors must be in every second 10-mer, as indicated in Figure 5c. In
this configuration, the errors mask the presence of another hit on all the tested 20-mers and the
incorrect target location is considered unique. There are other scenarios where a super read is
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N
b

 hits

BWS
2

Read

Many paralogsFew paralogs

2

a b

Figure 3: Estimating N with the backward search. (a) The target has no or few paralogs. It takes
only a few iterations until the backward search (BWS) finds fewer than 2 hits in the genome. (b)
The target has many paralogs. In this case it takes more iterations before the query has fewer
than 2 hits. The number of iterations before hitting the threshold is used as a statistic to estimate
N .

10 10 10

a b
Unique?

Figure 4: Test for uniqueness. (a) Basic principle. After the alignment stage, the sequence of the
best hit is segmented in 20-mers. The uniqueness of a given 20-mer is tested with the backward
search. (b) Complete test. The genomic location returned by the search process is considered to
be unique if all the 20-mers overlapping by 10 nucleotides are unique.

mapped to an incorrect location, but they involve even more compensated errors so they can be
neglected.

3.4 MEM Mapper Prototype

We implemented the mapping strategy presented in Figure 2 in a prototype mapper called MEM
Mapper Prototype (MMP). MMP is implemented as a stand-alone C program including the code
of sesame [17] and of divsufsort [19]. We used plain mapping algorithms to better highlight
the benefits of building a mapper for faithfulness. The index consists of a standard FM-index of
the genome and its reverse complement [the implementation is detailed in ref. 20]. In line with
the GEM mapper [21], we also added an auxiliary lookup table storing the states of the bacwkard
search for all possible 12-mers, allowing us to skip the first 12 iterations for every query. This
lookup table has a fixed size of 256 MB. Sequence alignment is carried out using a version of the
Needleman-Wunsch algorithm [22] with an option to abort if the score of the current best hit is
exceeded (continuing the algorithm is useless to find the optimal location of the read). Mapping
quality is computed as detailed in the Materials and Methods section.

The implementation otherwise follows the flow chart of Figure 2, with two differences. The
first is that super reads can have 0, 1 or two mismatches, as long as all the extracted 20-mers have
a single hit in the genome (the mapping quality is modified accordingly). The second difference is
that once the best hit is found, N is estimated again using the genomic sequence instead of the
read, and the higher of the two estimates is kept.
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Compensation

Figure 5: Properties of super reads. (a) Incorrect alignment with no mismatch. For a read
to align perfectly to an incorrect sequence, it must contain an error (star in the read) and the
incorrect nucleotide must match a paralog (star in the hit). This is not a super read because some
extracted 20-mers are not unique (red arrows). (b) Incorrect alignment with several errors and no
mismatch. Adding compensated errors is not always sufficient to make 20-mers unique: too much
space between errors can leave 20-mers that are not unique, in which case the read is not super.
(c) Incorrectly mapped super reads. If the compensated errors are in odd-numbered 10-mers (grey
boxes), then all the extracted 20-mers are unique and the read is super. Those conditions are
exceedingly rare, so super reads are mapped with high confidence.

3.5 Benchmark

We set up a test bed using the genomes of Drosophila melanogaster (the fruit fly), homo sapiens
(modern humans) and Pinus taeda (a north American species of pine). The high-level features of
the genomes are summarized in Table 1. We included Drosophila and human as model organisms
with high-quality genome assemblies, and pine as a non-model organism with a very complex
genome and a draft assembly.

The data sets used for the benchmark consist of 50 million sequences drawn uniformly at
random from each genome. To simulate sequencing errors, nucleotides were randomly substituted
with a fixed probability; there were no insertions or deletions. For each data set, the sequences
have the same length (50, 75 or 100 nucleotides) and the same error rate (1%, 2%, 5% or 10%).

To set a baseline for comparison we used BWA-MEM and Bowtie2. The purpose of the bench-
mark is to test faithfulness as a viable mapping strategy, not to run a comprehensive survey of
each mapper on the data set. Each mapper was thus used with its default parameters (but we
passed the error rate to MMP, e.g., -e .02 for a 2% error rate). We used BWA-MEM version
0.7.9a-r786 [7], Bowtie2 version 2.3.5.1 [8], and MMP version 1.0. All the mappers were run in
single thread.

The mapping experiments were run on a Hewlett Packard Z800 workstation with 64 bit Intel
Xeon CPU X5675 at 3.07 GHz, with 64 GB of DDR3 RAM, 12 MB of cache, and running Linux
Ubuntu 18.04.3. Indexing the pine genome with MMP had to be done on a machine with 512 GB
of RAM because of the high memory footprint used by the library divsufsort.

We measured faithfulness by comparing observed versus claimed MAPQ score on simulated
data. Figure 6 shows a series of scatter plots at 1% error rate on simulated reads. The area of the
circles is proportional to the number of reads in the given category, and pink circles indicate that
the observed mapping quality had to be imputed because all the reads were mapped correctly.

The faithfulness of MMP compares favorably to that of BWA-MEM and Bowtie2 because on

Table 1: Features of the genomes used for benchmark.
Organism Reference Size Sequences
Drosophila melanogaster dm4/R6 150 Mbp 1,870
Homo sapiens hg38/GRCh38 3.27 Gbp 455
Pinus taeda GCA 000404065.3 22.50 Gbp 1,760,464
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Figure 6: Faithfulness with 1% error rate. The observed mapping quality (MAPQ) is plotted
against the value computed by MMP, BWA-MEM or Bowtie2. The data is showed for reads of size
100, 75 or 50, sampled from the genome of the fruit fly (D. melanogaster), of modern humans (H.
sapiens) or of the pine (P. taeda). The size of the circle is proportional to the number of reads in
the given category. Pink circles indicate that no mapping error was observed, so that the observed
mapping quality was undefined. In this case one pseudo error was added if the expected number
of errors was higher than 1 (we should observe errors but we did not), otherwise the observed
mapping quality was set to the claimed mapping quality (we should not observe errors and we did
not).

average, the points lie closer to the diagonal. BWA-MEM tends to overestimate mapping quality
in the high range (except for the human genome) whereas Bowtie2 tends to understimate it.
Importantly, MMP explores a wider range of mapping qualities, allowing it to map reads with
extremely high confidence. Those high-confidence reads with MAPQ above 60 are all super reads,
and Figure 6 shows that in typical mapping conditions, their number can be very high (up to two
thirds when mapping 100-mers in the Drosophila genome). Intuitively, the number of super reads
goes down as the complexity of the genome increases.

Similar analyses for reads with higher error rates are shown in Supplementary Figures 5, 6 and
7. The faithfulness of MMP is equally good at 2% error rate, but it decreases substantially at 5%
and 10% error rates, showing that our strategy is valid only within the scope of current short-read
sequencing technologies.

It is important to evaluate the impact of faithfulness in terms of accuracy, speed and memory
footprint. Figure 7 shows that the accuracy of MMP is competitive with that of BWA-MEM and
Bowtie2 (recall that the mappers were used with default parameters). On the Drosophila genome,
MMP is more accurate at most confidence levels, whereas there are more variations on the human
and the pine genomes. The worst case for MMP is that of 50-mers mapped in the pine genome,
perhaps because a MEM-only seeding strategy is not competitive in such cases. At 2% error rate,
MMP shows a neat advantage in accuracy in most conditions (Supplementary Figure 2) but at 5%
and 10% error rates, i.e. outside the realm of current short read technologies, the performance of
MMP is more variable (Supplementary Figures 3 and 4). Those results show that optimizing for
faithfulness can resut in good performance for accuracy.

In terms of speed, MMP is 2–4 faster than BWA-MEM and Bowtie2 on the present data set
(Figure 8a), with a memory footprint that is approximately 2–3 times higher (Figure 8b). Part
of the speed-up is due to the implementation and the larger stress on memory, but the strategy
highlighted in Figure 2 aims to reduce the number of alignments when reads cannot be mapped
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Figure 7: Mapping accuracy with 1% error rate. Plotted in each panel is the cumulative fraction
of the reads above a certain mapping quality for MMP, BWA-MEM or Bowtie2. The score is com-
puted empirically by sorting the reads on their MAPQ score and computing the average mapping
quality of the reads in the top x% for all values of x. The data is showed for reads of size 100, 75
or 50, sampled from the genome of the fruit fly (D. melanogaster), of modern humans (H. sapiens)
or of the pine (P. taeda).

accurately. For instance, MMP spends 8.3% of the time on incorrectly mapped reads, versus 29.2%
and 12.5% for BWA-MEM and Bowtie2, respectively (100 nucleotide reads in the human genome,
data not shown). At 2% error rate, MMP remains the faster mapper, but at 5% and 10% error
rates, Bowtie2 can be somewheat faster (Supplementary Figure 1). However, at such high error
rates, the mappers have poor accuracy and the running time is rather a reflection of how fast they
“give up” on mapping the reads.

Overall, Figures 7 and 8 show that the investment in faithfulness is paid back in several ways:
First, it gives access to very high confidence levels. Second, it auto-tunes accuracy by better
separating low from high-confidence reads. Third, it allows the mapper to save time on low-
confidence reads. Taken together, our results thus show that faithful mapping is not only a viable
strategy: it also opens opportunities for further optimizations that can make the mapping process
more efficient.

4 DISCUSSION

Here we designed and implemented a strategy to map short reads faithfully. The principles are
based on key insight gained from models to compute seeding probabilities [17], showing that MEM
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Figure 8: Resource usage at 1% error rate. (a) Speed. The running time is plotted for MMP,
BWA-MEM or Bowtie2. The data is showed for reads of size 100, 75 or 50, sampled from the
genome of the fruit fly (D. melanogaster), of modern humans (H. sapiens) or of the pine (P.
taeda). (b) Memory usage. The peak memory footprint is plotted for the different mappers with
reads from different genomes (the memory footprint is the same for all read sizes).

seeds are efficient only when the target has few paralogs (Figure 1). This motivates the design
of a strategy where we first estimate the number of paralogs of the target (Figure 3) to dispatch
reads to different mapping subroutines (Figure 2). This amounts to allocating more resources to
the most mappable reads [18]. This process revealed the existence of super reads, i.e., reads that
can be mapped with extremely high confidence (Figures 4 and 5), together setting the basis of an
efficient mapping strategy. We wrote a mapper based on this strategy and we showed that it is
competitive with BWA-MEM and Bowtie2 (Figures 6, 7 and 8). Importantly, the mapping process
itself relies only on standard algorithm, so all the benefits of the mapper come from faithfulness.
Overall, this demonstrates that improving faithfulness is a fruitful strategy to improve short-read
mappers.

4.1 Estimating MAPQ

Our previous work indicated that seeding is the critical step to estimating mapping quality [17].
Computing seeding probabilities requires to know the error rate of the sequencer, the number
N of paralogs of the target and their sequence divergence. The error rate may be known with
reasonable accuracy, but N is typically less reliable, which is one of the major difficulties with the
strategy developed here, and also the main reason why the mapping quality of MMP is sometimes
inaccurate (Figure 6).

sesame computes probabilities with high precision [17], but several practical considerations
obstruct the estimation of N . The first is that estimating N must be fast. The method depicted
in Figure 3 only requires a backward search at each end of the read, but it provides only two
measurements and is thus noisy. The second practical consideration is that the left and right halves
of the read may have different values of N . This is the case, for instance, when the read straddles
a transposon, where the end in the transposon may have a high copy number and the other end
may be unique. The final consideration is that the evolutionary model assumes that the paralogs
drift away from each other at the same speed, which ignores their genealogy. The estimation thus
provides a proxy estimate of N , as if the read behaved according to our assumptions.

When there is evidence that the target is unique, the mapping quality is commensurate with
the belief that N = 0. In this case, it would be more appropriate to describe the estimation of N
as measuring the probability that a paralog was missed during the search. This is the logic that
explains the high mapping quality of super reads: when there is a perfect match, the screening
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process described in Figure 4 implicitly rules out many scenarios where the target has a paralog in
the genome (Figure 5), so that only rare events remain possible. The calculations are completely
independent of sesame and even independent of the seeding process, they are thus very general
and can be used in any mapper based on the FM-index. In this sense, the introduction of super
reads constitutes one of the most important contributions of the present work.

Figure 6 suggests that the mapping quality of super reads is properly calibrated but the rep-
resentation is somewhat self serving because in reality the true error rate cannot be computed in
this case. A mapping quality of 120 means one error every 2000 sequencing runs (assuming that
all 500 million reads of each run are super reads), meaning that in practice one will never observe
a mapping error for reads in this category. So the exact MAPQ score above 120 does not matter,
as long as all the reads are mapped correctly. For super reads of size 50, the mapping quality is
around 75 and it seems to be correctly estimated based on the simulated data from the human
genome (sixth panel from the left in Figure 6), there is thus no reason to doubt the estimates at
higher quality.

Mapping quality increases with the read length (Figure 6), but longer reads are less likely to be
super. The reason is simply that they are more likely to contain a sequencing error. This appears
on the rightmost panel of Figure 6, where in the pine genome, there are more reads of size 50 that
map without mistakes than reads of size 100. This suggests that the strategy of MMP could be
improved by running the uniqueness test of Figure 4 only on the parts of the reads that have a
perfect match in the genome. This would allow more reads to be labelled as super, though with
a lower mapping quality. But overall, future improvements are more likely to come from better
indexing, as we explain below.

4.2 Performance

Figure 8 shows that MMP is 2–4 times faster than BWA-MEM and Bowtie2, while using 2–3 times
more memory (trading speed for memory in MMP was a design decision based on the standards
of present-day hardware). It is probable that BWA-MEM and Bowtie2 would also run 2–3 times
faster with an equally large index size, but the strategy of not investing time in reads that cannot
be mapped accurately seems valid. It is also important to bear in mind that our benchmark is not
entirely fair because BWA-MEM and Bowtie2 are general mappers: they have to meet the demand
on many different tasks so they cannot use some of the shortcuts implemeted in MMP.

Overall the mappers spend time on very different tasks: BWA-MEM and Bowtie2 use sophisti-
cated methods to refine the candidate set after seeding, for instance by extending the set through
re-seeding. In comparison MMP either tests all the candidates (when N ≤ 20) or tests only one
(when N > 20), but it never extends the candidate set. The extra work that has to be done by
MMP is to estimate N (Figure 3), test uniqueness (Figure 4) and compute mapping qualities with
sesame. The running time of sesame is negligible, but the other two tasks represent a significant
part of the running time (around 10–20% with large variations on different data sets). The point
of MMP is to demonstrate that these steps can be carried out fast enough for a mapper to remain
competitive.

However, it is wasteful to test uniqueness for every read. Unique sequences can be flagged at
indexing time so that no additional computations are required at mapping time. For instance, if
it is known with absolute certainty that a locus has no paralog, then mapping quality is extremely
high throughout the locus (remember that spurious random hits are easy to detect as soon as the
reads are longer than approximately 30 nucleotides). With this kind of information, super reads
would be unnecessary and even higher mapping quality could be achieved on large parts of the
genome. Likewise, the number of paralogs N of each locus could be stored to save computation time
and to obtain more accurate estimates of the mapping quality throughout the genome, somewhat
analogous to the concept of mappability [18]. It is presently unclear how to compute N for every
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locus and how to annotate a genome accordingly, but when practical solutions exist, faithful
mapping will gain speed and robustness.

The case of accuracy is interesting (Figure 7). For the genome of Drosophila, which is relatively
simple, the benefits of MMP are evident, while they are mitigated for the more complex human
and pine genomes. MMP tends to “give up” easily to save time on difficult reads, so it may
underperform when these cases are too frequent. One straightfoward way to improve the accuracy
would be to map the reads with a more sensitive strategy when their mapping quality is too low.
For instance, using skip seeds like Bowtie2 may redeem such reads, if one is willing to spend the
time to give them a second chance. This would not be a problem because the seeding probabilities
of skip seeds are readily available in sesame. The only downside would be a loss of speed, but the
mapper would still be faithful.

4.3 Benefits of faithul mapping

The idea of developing a faithful heuristic for better calibration was originally proposed in BLAST [23].
The speed gain over its ancestor FASTP was very substantial, whereas this is not the case for MMP.
Modern short-read mappers are highly optimized so it is unlikely that a 10-fold speedup could be
gained by just calibrating the heuristics they rely on. That said, MMP demonstrates that there is
room for improvement by exploring new ways to efficiently estimate faithfulness.

The present work focuses on general mapping tasks in eukaryotic genomes, but faithful read
mappers may find much more interesting applications, such as when the reference contains several
variants of the same sequences. This is the case for the genome of hybrid species or of heterozygote
individuals where each sequence has N ≥ 1 paralogs in the reference. In this case, the challenge
is to estimate the confidence that the read maps to one genome or the other. MMP could be used
for this kind of problem, but a more specialized method that capitalizes on the key information
N ≥ 1 would be more appropriate. For instance, the time spent looking for super reads is wasted
in this context because they cannot occur (not a single sequence is unique). A more specialized
method dedicated to calibrating low mapping quality is expected to give better results.

Another case of interest is when the DNA sample is contaminated and needs to be mapped to
several species. This occurs when working with primates because experimenters can contaminate
the biological material with their own DNA, or simply when the source of the DNA is unknown.
In such cases, only few sequences are expected to have no paralog in the reference. In particular,
if the genomes of interest are relatively close, the copy number will usually be equal to the number
of genomes. In such cases, a general faithful mapper such as MMP is expected to give decent
results, even though it was not tested in this context. More generally, we expect faithful mapping
algorithms to find other applications in many areas of biology.

5 CONCLUSION

Faithfulness is an important feature of the mapping process. We have demonstrated that it is
possible to achieve faithful mapping while remaining competitive in terms of speed, accuracy and
memory usage. Exploring new algorithms for faithful mapping is a promising avenue of research
that can also bring benefits in speed and mapping quality.
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