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 2 

SUMMARY 1	

 2	

Chromosome copy number variations (CNVs) are a near-universal feature of cancer however 3	

their specific effects on cellular function are poorly understood. Single-cell RNA sequencing 4	

(scRNA-seq) can reveal cellular gene expression however cannot directly link this to CNVs. 5	

Here we report scRNA-seq normalization methods that improve gene expression alignment 6	

between cells, increasing the sensitivity of scRNA-seq for CNV detection. We also report 7	

sciCNV, a tool for inferring CNVs from scRNA-seq. Together, these tools enable dual profiling 8	

of DNA and RNA in single cells. We apply these techniques to multiple myeloma (MM) and 9	

examine the cellular effects of cancer CNVs +8q23-24 and +1q21-44. Primary MM cells with 10	

+8q23-24 upregulate MYC, MYC-target genes, mRNA processing and protein synthesis; but 11	

also upregulate DEPTOR and have smaller transcriptomes. MM cells with +1q21-44 instead 12	

reconfigure translation and suppress unfolded protein stress whilst increasing proliferation, 13	

oxidative phosphorylation and MCL1. Overall, we provide tools that can enhance the analysis of 14	

scRNA-seq and help reveal the effects of cancer CNVs on cellular reprogramming.  15	
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Genomic CNVs are a pervasive feature of cancer. Copy number gains on chromosome arms 8q, 16	

1q, 3q and 5p are amongst the most common karyotype abnormalities in human cancer, yet the 17	

action of these and other CNVs on the molecular processes within cancer cells remains poorly 18	

understood1,2.  19	

 20	

ScRNA-seq can reveal the transcription state of single cells, however it cannot directly relate this 21	

to DNA lesions. Although physical sequencing of both DNA and RNA within single cells has 22	

been reported3-5, and should enable pairing of CNVs with their transcriptional outcomes, existing 23	

techniques provide profiling of only a few cells and thus afford only a limited view of the 24	

genomic and transcriptional heterogeneity within any cancer. Furthermore, while CNVs and 25	

gene expression can be profiled in separate populations of cells and computationally integrated6, 26	

this may not recapitulate the biological state of individual cells.  27	

 28	

DNA CNVs can be inferred from scRNA-seq, which could thus be leveraged to provide both 29	

layers of omics information within individual cells. However, previously reported approaches7-9 30	

reveal constraints imposed by the sparsity of single-cell data.  In particular, inconsistencies in the 31	

detection of lowly-expressed genes within single cells causes stochastic noise that influences 32	

transcriptome distribution and interferes with RNA-based CNV detection. Normalization is thus 33	

critical for accurate scRNA-seq interpretation10-14 and for secondary CNV detection.  34	

 35	

Here we report scRNA-seq normalization methods that reduce the influence of noise from lowly-36	

expressed genes on single-cell transcriptome scale. These methods improve gene expression 37	

comparisons between cells and thus enhance the sensitivity of scRNA-seq for the detection of 38	

small expression changes arising from gene copy number differences. We also report sciCNV, a 39	

new tool for inferring CNVs in single cells from scRNA-seq. Together, these methods enable 40	

high-throughput profiling of both DNA copy number and RNA in the same cell, facilitating 41	

direct examination of the effects of cancer CNVs on gene expression programs at a cellular level. 42	

  43	
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 4 

RESULTS 44	

 45	

Enhanced single-cell RNA-seq normalization methods: RTAM1 and -2 46	

Single-cell RNA-seq enables gene expression comparisons between cells. However, the accuracy 47	

of such comparisons depends critically upon data normalization. As the best methods for 48	

normalizing scRNA-seq remain controversial, we developed RTAM1 and -2 (described in the 49	

online methods and supplementary figures S1-3) and compared the RTAM methods with other 50	

normalization strategies currently in use. 51	

 52	

To compare the methods for their control of systemic and stochastic variations between cells due 53	

to size or sequence depth we generated scRNA-seq data for cells belonging uniformly to the B 54	

cell lineage (n>15,000) (figure 1a). We examined a single lineage in order to minimize 55	

confounding biological variation between cells due to their ancestry. However, we deliberately 56	

generated data from a mix of both small quiescent B cells and large transformed plasma cells to 57	

ensure that the normalization methods would be challenged by cells embodying a full spectrum 58	

of sizes and transcriptional activities. The cells were isolated from MM patient bone marrow 59	

samples by FACS and were profiled using the 10X Genomics single cell RNA-seq library kit. 60	

Cell- and gene-specific transcripts were enumerated using barcoded unique molecular identifiers 61	

(UMI).  62	

 63	

The raw scRNA-seq data from one of three initial test samples is depicted in figure 1b. As 64	

shown, the distributions of transcript counts per gene varied significantly from cell to cell, 65	

reflecting differences in their cellular transcriptome sizes and demonstrating a clear need for 66	

normalization.  The samples were next normalized using either TPM15, SCRAN11, SCONE12 or 67	

Seurat’s SCTransform function16 (figure 1b and supplementary figures S4-S20). To compare 68	

the alignments of the normalized transcriptomes, we examined the mean and median expression 69	

in each cell of a curated list of housekeeping genes (HKG) known to be broadly expressed with 70	

low variation9. We also examined the average expression in each cell of all of the ubiquitously-71	

expressed genes (UEG) detected in >95% of the cells in the sample. For each sample tested, the 72	

UEG represent the largest possible set of genes that are commonly expressed across the test cells. 73	

Whilst the expression of any individual gene is expected to vary between cells for both 74	
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 5 

biological and technical reasons, the average expression per cell of a large set of ubiquitous 75	

genes should be similar, particularly amongst cells of the same lineage, and its variance between 76	

cells provides a metric of normalization effectiveness.  77	

 78	

As shown, TPM, which normalizes cellular transcriptomes primarily by their total transcript 79	

count, produced a very large variance in the average expression of HKG or UEG between cells, 80	

suggesting significant limitations for scRNA-seq application. By comparison, SCRAN and 81	

SCONE produced superior alignments of gene expression averages across cells. However, 82	

SCONE, which produced the better alignment, achieved this only by implementing quantile 83	

normalization – exchanging the actual distribution of transcript counts in each cell for a 84	

standardized distribution – which caused a loss of inter-cellular variation, particularly in highly-85	

expressed genes. The expression of IGH or IGL genes, for example, a critical feature of plasma 86	

cells, was reduced by SCONE’s quantile normalization into a virtual constant across cells 87	

(supplementary figure S21). 88	

 89	

As each of these scRNA-seq normalization methods has limitations, we developed RTAM1 and -90	

2. The RTAM approach originates from a consideration of the strengths and weaknesses of 91	

scRNA-seq. Whereas lowly expressed genes are detected within single cells with low resolution 92	

(due to low integer transcript counts) and show significant stochastic variation, highly expressed 93	

genes are robustly detected and show finer quantisation of variation relative to intensity. RTAM 94	

thus utilizes highly-expressed genes, whose expression is resolved with greater accuracy, to align 95	

cellular transcriptomes. Genes are ranked in each cell by their expression and the summed 96	

intensities of the top-ranked genes is standardized in log-space using unique non-linear cell- and 97	

gene-specific adjustments of gene expression determined either by cellular gene expression rank 98	

(RTAM1) or by gene expression intensity (RTAM2) (see methods).  99	

 100	

Importantly, compared to TPM, SCTransform or SCRAN, both RTAM1 and RTAM2 reduce the 101	

cell-to-cell variance in the average (median or mean) expression of HKG and UEG sets (figure 102	

1c and supplementary figures S4-S20). The coefficients of variation (CV) produced by each 103	

normalization method for the “average” expression of HKG or UEG in individual cells is shown 104	

in figure 1d and supplemental figure S21a, for 3 independent patient samples. As shown, 105	
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RTAM1 (red) and RTAM2 (blue) reduce variations in the average gene expression of single 106	

cells, even when this average expression is calculated by 3 different methods. By design, the 107	

RTAM methods also standardize the average expression of highly-expressed genes, and thus 108	

overall these methods produce superior alignments of cellular transcriptomes and of gene 109	

expression between cells. At the same time, both RTAM1 and RTAM2 maintain the original 110	

variability observed between cells in the expression of individual highly-transcribed genes, 111	

unlike the quantile normalization implemented by SCONE (supplementary figure S21b-d). 112	

Overall, therefore, the RTAM methods represent useful new strategies for normalizing scRNA-113	

seq data that can enhance the accuracy of gene expression comparisons between cells. 114	

 115	

Single-cell inferred chromosomal copy number variation: sciCNV 116	

We next sought to develop a method for detecting single-cell chromosomal CNV from scRNA-117	

seq, leveraging the enhanced normalization provided by RTAM to increase the sensitivity of 118	

single-cell transcriptomics for CNV detection. To optimize DNA copy number estimates from 119	

gene expression, and to mitigate against data sparsity in single cells, we developed a two-120	

pronged approach, called sciCNV (described in the supplemental methods). Briefly, RTAM-121	

normalized gene expression data from single cells was aligned with matching data from pooled 122	

control cells to develop expression disparity scores, which were averaged in a moving window 123	

defined by genomic location. Gene expression in the control cells was weighted according to the 124	

probability of gene detection, enhancing the comparison with single cell data, where signal 125	

dropout was common for many genes. In a parallel method, the expression disparity values were 126	

exchanged for binary values, which were summed cumulatively as a function of genomic 127	

location; the gradient of this function yielded a second estimate of CNV that was sensitive to 128	

small concordant expression variations in contiguous genes and that was insensitive to large 129	

single-gene variations. The CNV estimates of the two methods were combined by their 130	

geometric mean.  131	

 132	

Figure 2 shows sciCNV applied to scRNA-seq data from primary MM cells. Significantly, the 133	

CNV profile of a single cell, inferred from its RNA, closely resembles the average CNV profile 134	

of >104 tumor bulk cells, derived from whole exome DNA sequencing (WES) (R2=0.72) (figure 135	

2a-b). The CNV predictions produced from a single cell by sciCNV were also validated at key 136	
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 7 

locations by FISH (figure 2c). Furthermore, examination of >1700 plasma cells from the same 137	

MM patient biopsy using sciCNV revealed that the tumor-specific CNV were robustly detected 138	

in all of the MMPC (figure 2d), despite biological and technical variations between the cells; 139	

and were not detected in normal plasma cells (NPC). Thus, sciCNV can utilize scRNA-seq to 140	

reveal CNVs in single cells. Moreover, it can distinguish cancer cells and normal cells on the 141	

basis of their CNV profile (figures 2e-f). 142	

 143	

Identification of subclones and intra-clonal evolution using scRNA-seq  144	

The detection of CNV with single cells from scRNA-seq data enables the identification of 145	

subclones and examination of intra-clonal evolution. Using scRNA-seq, RTAM2 and sciCNV 146	

we readily detected up to 7 subclones in primary MM samples comprising <4000 cells (figure 147	

3a-b) and identified an average of 2-3 subclones per sample. Examination of the sciCNV profiles 148	

of the individual MM cells yielded evidence of both branching and linear intra-clonal evolution 149	

(figure 3c-d). In some tumors, marked divergence of two subclones from an inferred ancestral 150	

cell was evident, as in figure 3a, c; however, in the majority of MM samples examined the 151	

subclones diverged at only one or two loci. 152	

 153	

Dissecting the effects of CNVs on gene expression: +8q23-24 in MM 154	

Simultaneous profiling of both DNA copy number and RNA in the same cell should enable 155	

examination of the influence of CNVs on transcriptional programs. To explore this, we used 156	

sciCNV to screen MM patient bone marrow samples for tumor cells with +8q24. We sought to 157	

examine +8q24 as this is one of the most recurrent abnormalities in human cancer1,17 and is 158	

known to target MYC18, providing a benchmark for our analyses.  159	

 160	

Using sciCNV, primary MM samples MM199 and MM244 were both found to contain subclonal 161	

gains of chromosome 8 encompassing 8q23-24 (figure 3e). Both samples also contained closely-162	

related isogenic subclones without +8q. To facilitate gene set enrichment analyses (GSEA)19 of 163	

the intra-tumor subclone pairs, these subclones were next subsampled to yield cellular 164	

subpopulations with matching transcriptome depth (figure 3f). This prevented subclone biases in 165	

total cellular gene expression from influencing specific gene-set detection. The gene expression 166	

of the intra-clonal subpopulations, representing isogenic cells with and without +8q23-24, with 167	
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 8 

matched transcriptome sizes, were then compared by GSEA using RTAM2-normalized data. 168	

From an analysis of 215 gene sets defined by chromosome location, +8q cells in both samples 169	

were strongly enriched for the gene-sets located at 8q23-24, with striking statistical confidence 170	

(p=0.000, q=0.000, FWER=0.000), compared to cells without +8q (supplemental figure S22). 171	

In contrast, no other genomic regions were significantly enriched. Thus, sciCNV accurately 172	

resolved single MM cells into intra-tumor subclones, isolating +8q23-24 as a unique variation 173	

distinguishing these. 174	

 175	

We next used GSEA to explore the influence of +8q23-24 on cellular programming. As 176	

expected, +8q cells from both MM199 and MM244 samples showed increased MYC expression 177	

(p<0.05) compared to sibling cells without +8q (figure 3g). Surprisingly, however, only +8q 178	

cells from MM199 showed a broad increase in MYC target genes (p=0.000, q=0.000, 179	

FWER=0.000). Canonical MYC signature genes were not upregulated in MM244 +8q cells 180	

(p=0.767, FWER=1.0)(figure 3h). Nevertheless, from an analysis of 3303 curated gene sets, +8q 181	

cells from both MM199 and MM244 tumors showed similar upregulation of gene-sets encoding 182	

the machinery of mRNA translation and protein synthesis, including specifically genes involved 183	

in 3’UTR-mediated mRNA translation regulation (enrichment rank 5/3303 in MM199 and 184	

9/3303 in MM244), ribosome biogenesis (enrichment rank 4/3303 in both) and peptide chain 185	

elongation (enrichment rank 3/3303 and 6/3303)(figure 3h, supplemental figure S22), 186	

potentially representing a more restricted MYC response. Conspicuously, these transcriptional 187	

effects of +8q23-24 in MM cells were remarkably close to those of +8q23-24 in breast cancer 188	

(FWER p=0.000, enrichment rank 1-2/3303 in both tumors), and this similarity was strong even 189	

when MYC hallmark genes were not increased (figure 3h, supplemental figure S22). Thus, 190	

+8q23-24 induces analogous gene expression changes across malignancies; and these analogous 191	

effects are not dependent on broadly-defined MYC-target genes but instead map to the specific 192	

upregulation of mRNA translation and protein synthesis.  193	

 194	

The cellular re-programming induced by +8q23-24 might be expected to promote significant 195	

increases in gene expression and in cell mass. Notably, however, in the MM samples examined 196	

the mTOR-interacting gene, DEPTOR, located at 8q24, was also upregulated in +8q cells (figure 197	

3g), and likely serves to counter increases in cell size, as previously reported20. Indeed, from our 198	
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 9 

examination of +8q at a single cell level we uniquely observed that the transcriptome sizes of 199	

+8q cells were in fact mildly reduced, compared to sibling cells without the CNV 200	

(p<0.001)(figure 3i). Thus, from a single-cell analysis of +8q23-24 it appears that this CNV acts 201	

to boost protein synthesis capacity (ribosomes, translation) without increasing cellular 202	

transcriptome size. Ultimately this may lead to enhanced expression of MYC-target genes as 203	

proteins in some cancers, but may also serve more broadly to improve the dynamics of protein 204	

synthesis and reduce the lag-time required to respond to gene expression changes, potentially 205	

enhancing cellular adaptability. 206	

 207	

The effects of +1q on MM cells 208	

Like +8q23-24, gain of chromosome 1q is highly recurrent in human cancer and is present in 209	

>30% of clinical tumors1,17 Although rare in MM precursor disease, the prevalence of +1q 210	

increases significantly in symptomatic MM, more so than any other copy number gain.18,21 In 211	

newly diagnosed MM, +1q is found in 35% of cases and is associated with poor prognosis.22-29 212	

Despite this, the effects of +1q on cancer cell biology remain poorly understood.  213	

 214	

To examine the cellular effects of +1q, we screened MM patient bone marrows (n=30) by 215	

scRNA-seq and RTAM2/sciCNV, and identified ten tumors with +1q (figure 4a), including 216	

three (MM241, MM244 and MM379) containing synchronous subclones with and without the 217	

CNV (figure 4b). Although these tumor samples contained 2-6 subclones by sciCNV profiling, 218	

the subclones were only partially segregated by expression-based clustering (supplementary 219	

figure S23). 220	

 221	

By GSEA, +1q cells in MM241 showed significant enrichment for all 10 chromosome position 222	

gene-sets located at 1q21-1q44 (p=0.000, FDR q<0.005, FWER p=0.000-0.058), while MM244 223	

and MM379 +1q cells were correspondingly enriched for gene-sets located at 1q23-1q32 224	

(p=0.000, q≤0.004, FWER≤0.019) or 1q22-1q42 (p≤0.004, q≤0.03, FWER≤0.024; 1q23 225	

FWER=0.359)(Figure 5a-b and supplementary figures S24-26). No other genomic regions 226	

were significantly enriched, confirming that the intra-clonal +1q subpopulations identified by 227	

sciCNV were uniquely divergent at this locus alone. 228	

 229	
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We next examined the influence of +1q on transcriptional programs in MM241, MM244 and 230	

MM379. Remarkably, the +1q cells in all three tumors showed significant reductions in the 231	

unfolded protein response (UPR) compared to their sibling cells lacking +1q (p<0.003, 232	

FDR≤0.015, FWER≤0.028), suggesting that +1q acts consistently in MM to reduce endoplasmic 233	

reticulum (ER) stress (figure 5b and supplementary figures 27-29). This effect of +1q on the 234	

UPR has not previously been reported, though is likely highly advantageous to MM cells, which 235	

are professional secretor cells burdened by high proteotoxic stress. In MM241, with the largest 236	

+1q CNV, UPR genes EIF4EBP1, EIF4A2, DDIT4, ATF4, ERN1, XBP1 and CEBPB were 237	

amongst the genes most downregulated in +1q cells (figure 5c). In contrast, ATF6, UAP1 and 238	

PSMD4 were incongruously upregulated, likely as result of their location within the 1q gain. 239	

With respect to mechanism, we observed that the 1q24 gene EEF1AKNMT, which selectively 240	

enhances protein translation in a codon-specific manner30 to support oncogenic growth31, was 241	

increased in all three +1q subclones, as was TIPRL, which regulates the mTORC1 pathway by 242	

inhibiting PP2A and sustaining phosphorylation of EIF4EBP1 and RPS6KB1. In contrast, 243	

EIF4A1 or EIF4A2, which jointly promote EIF4E-dependent translation (ET), were reduced, as 244	

was the ET-repressor EIF4EBP1 (figure 5d). Thus +1q induces complex alterations of 245	

translation and of the mTORC pathway that likely influence misfolded protein load. Expression 246	

of UAP1 and/or COPA from 1q23 may further alleviate ER stress32,33. 247	

 248	

Additional +1q effects were observed. Mitochondrial oxidative phosphorylation (OxPhos) and 249	

reactive-oxygen gene sets were enriched in MM241 +1q cells, likely driven by the increased 250	

expression of COX20, NDUFS2, SDHC, MRPS14 and MRPS21 from 1q21-44 (figure 5b-c). 251	

However, similar metabolic signatures were not observed in MM244 or MM379, perhaps 252	

because MRPS21 (1q21.2) falls outside of the +1q CNV in these later samples, or because 253	

enhanced NF-kB signaling may also be required for OxPhos augmentation34 and was observed 254	

only in the MM241 subclone (supplementary figure S27), associated with TNFRSF13B over-255	

expression (figure 5c). 256	

 257	

Both MM244 and MM379 also showed significant enrichment of E2F, G2M and mitosis 258	

programs in +1q cells (p=0.000, FDR=0.000, FWER≤0.001) (figure 5b) and small increases in 259	

cycling cells in G2/M (figure 5e), consistent with increased proliferation. However, no increase 260	
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in proliferation was observed in MM241 +1q cells, indicating that 1q-induced proliferation 261	

requires a permissive cellular context. Although CKS1B has been proposed to be mechanistic in 262	

+1q-induced proliferation22,35, we observed no increase in CKS1B in two of the three +1q 263	

subclones examined (figure 5f), indicating that alternative mechanisms likely drive cell cycling. 264	

Overexpression of EEF1AKNMT31, increased oxidative phosphorylation and reductions in the 265	

UPR, may instead contribute to the enhanced proliferation of +1q cells.  266	

 267	

MCL1, a critical anti-apoptosis gene for MMPC36,37 located at 1q21.2, was also increased 1.45-268	

fold (p<10-9) in +1q cells from MM241 (figure 5f) in direct proportion to 1q copy number. 269	

MCL1 was not however upregulated in either MM244 or MM379, whose 1q gains narrowly 270	

excluded the MCL1 locus. Increased MCL1 and apoptotic threshold thus represents an additional 271	

function of +1q that may further increase cancer cell aggressiveness.  272	

 273	

A summary of these cellular effects of +1q21-44 in MM is shown in figure 6a. 274	

 275	

Comparison of intra-tumor and inter-tumor CNV studies 276	

We next compared our intra-tumor studies (figure 6b) with a traditional inter-tumor study 277	

designed to identify the biological role of +1q (figure 6c). To perform the inter-tumor study, we 278	

examined microarray data from a large published series of MM tumor samples (n=532) 279	

characterized by +1q FISH22 (supplementary Figures S30-32). As expected, the MM samples 280	

with 1q21 gain by FISH showed enrichment by GSEA for chromosomal position gene sets 281	

located at 1q21-44. However, the same samples also showed enrichment for gene-sets located on 282	

chromosome 1p22, 13q22, 11q13, 11q22, 5q14, 8q24 and Xq28, compared to tumors without 283	

+1q, undermining the value of this cohort for isolating gene expression changes attributable to 284	

+1q (figure 6c). The samples defined by +1q FISH were also biased towards distinctive MM 285	

subtypes, as the +1q cohort included more tumors with t(4;14) while the control samples 286	

included more tumors with t(11;14) or hyperdiploidy. Consequently, the utility of these cohorts 287	

for the isolation effects specifically attributable to +1q was undermined. GSEA of the cohorts 288	

yielded an overabundance of putative +1q-associations whose attribution to +1q or to 289	

confounding CNVs or biases in MM subtype was unclear (figure 6c).  290	

 291	
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Conspicuously, both intra- and inter-tumor studies identified the UPR as a significant +1q co-292	

variant in MM. Strikingly, however, the direction of association differed between the studies, 293	

suggesting an error in one of the approaches. Notably, whereas dual profiling of DNA and RNA 294	

in single cells enables direct matching of a CNV with its effects on gene expression (figure 6d), 295	

inter-tumor studies must instead infer associations between CNVs and gene expression from 296	

their correlation across unrelated tumors, which can lead to erroneous conclusions as 297	

demonstrated in figure 6e. Thus, single cell studies of intra-tumor heterogeneity can better 298	

isolate CNV-specific effects than traditional multi-tumor bulk profiling studies and may reveal 299	

the cellular effects of CNVs with greater accuracy.  300	

 301	

DISCUSSION 302	

CNVs are critical drivers of cancer biology yet their specific effects on cellular processes remain 303	

poorly understood. Here, we report the dual profiling of DNA copy number and RNA within the 304	

same cells, using scRNA-seq, and leverage this to explore the effect of CNVs on gene 305	

expression. To capture intra-tumor heterogeneity, we profile the RNA and CNVs or thousands of 306	

cells per sample. Using these new techniques, we examine the transcriptional effects of copy 307	

number gains of chromosome regions 8q23-24 and 1q21-44, representing two of the most 308	

common CNVs in human cancer. We show that these lesions induce critical reprogramming of 309	

cancer cells that can explain their influence on clinical disease. 310	

 311	

Chromosome +1q is the most common adverse CNV in MM. We demonstrate that +1q causes 312	

multiple effects on MM cells including a reduction in the unfolded protein response, which likely 313	

results from 1q-associated reconfiguration of translation and from changes in the mTOR 314	

pathway. In addition, we demonstrate that primary MM cells with +1q show enhanced oncogenic 315	

growth, oxidative phosphorylation and MCL1 expression. Significantly, these specific 316	

reprogramming effects may explain the inferior disease control achieved by MM patients with 317	

tumors harboring this abnormality, following standard of care therapies22,26-28,35,38,39.  Thus, the 318	

suppression of unfolded protein stress in +1q MM cells may counteract the activity of 319	

proteasome inhibitors26-28, which induce cytotoxicity via ER stress40,41.  Similarly, the 320	

upregulation of MCL1 in cells with +1q21 may counteract treatment-induced apoptosis. And 321	
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cellular proliferation, which may be induced by 1q-mediated upregulation of EEF1AKNMT, or 322	

by UPR reduction, may further contribute to early disease recurrence.  323	

 324	

We demonstrate that the transcriptional effects of +8q23-24 are remarkably similar in MM and 325	

breast cancer (FWER p=0.000), irrespective of whether or not hallmark MYC target genes are 326	

increased (figure 3h). Although +8q23-24 can upregulate the expression of a broad spectrum of 327	

MYC target genes, we demonstrate that the transcriptomes of MM cells with +8q are in fact 328	

smaller than those of cells lacking +8q, at least in the samples examined by us. Significantly, we 329	

demonstrate that a consistent function of +8q23-24 is the upregulation of gene sets involved in 330	

mRNA translation, ribosomal biogenesis and peptide elongation. Thus +8q23-24 selectively 331	

enhances protein synthesis capacity, without increasing transcriptome size. We propose that this 332	

may improve the dynamics of proteome reconfiguration following gene expression changes; and 333	

that this may enhance the malleability of cancer cells to environmental challenges. 334	

 335	

We show here that the study of CNVs via single-cell transcriptomics offers a number of 336	

advantages. As intra-clonal cells that diverge at a single CNV are virtually isogenic, any 337	

consistent divergence in their gene expression can be precisely matched to the subclonal CNV. 338	

Furthermore, as the test and control cells are present within the same sample, differences in gene 339	

expression due to the microenvironment, clinical factors or due to sample processing are 340	

minimized. Inter-tumor cohort studies instead rely upon the identification of correlations 341	

between CNVs and gene expression across unrelated samples, and suffer from the substantial 342	

additional genetic and clinical heterogeneity that exists between samples. As a result of these 343	

limitations, the effects of most cancer CNVs on gene expression remain poorly understood. 344	

Fortunately, the compelling benefits of intra-clonal studies suggest that a new era of cancer 345	

genomics is emerging in which the precise effects of all cancer CNVs on cellular programming 346	

can be determined at the single-cell level. This important knowledge is critical for understanding 347	

cancer and for advancing therapeutic strategies that seek to address the foundations of this 348	

disease.  349	
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SUPPLEMENTARY INFORMATION: 471	

Methods and supplementary figures can be found on-line. 472	
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Figure 1. Comparison of scRNA-seq normalization strategies 1	

a. Overview of workflow. MM, multiple myeloma. FACS, fluorescence activated cell sorting.  b. 2	

Plot of scRNA-seq data from >6,000 cells of B cell lineage, isolated from the bone marrow of a 3	
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MM patient, depicting the raw (pre-normalized) transcript counts per gene per cell. Each dot 4	

represents an integer transcript count for one or more genes in a single cell; cells (columns) are 5	

ranked from left to right by their total transcript count. c. The same data is shown following 6	

normalization using TPM, SCRAN, SCONE, SCTransform, RTAM1 or RTAM2 methods (and 7	

following log transformation). To compare the methods, the mean expression (blue) of a curated 8	

set of house-keeping genes (HKG) is plotted in each cell, omitting genes with zero values due to 9	

non-expression or detection “drop-out”. d. The coefficient of variation (CV) across cells in the 10	

average expression of HKGs within each cell is shown for 3 patient samples containing >15,000 11	

cells. The average HKG expression in each cell was calculated in 3 different ways as either the 12	

mean of the detected HKG (left panel), the mean of all HKG [with imputation of null “dropout” 13	

values] (middle panel), or the median of all HKG without imputation (right panel). As the 14	

various normalization methods expand or compress the distribution of the overall gene 15	

expression data to different extents, the CV of HKG averages is plotted against the CV of 16	

expression of all genes.   17	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.10.942607doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.10.942607
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

 

 

Figure 2. Single cell inferred chromosomal copy number variation (sciCNV)  18	

a. The inferred CNV profiles of 1,625 pooled MM cells (top panel) or of a single MM cell 19	

(middle panel) were calculated from scRNA-seq data using RTAM2/sciCNV and are shown 20	

compared with the CNV profile of bulk tumor cells (lower panel), which was determined by 21	

whole exome sequencing (WES) of 200ng DNA (representing >30,000 complete exomes) 22	
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purified from 1.9x106 cells. Cells were isolated from bone marrow by FACS. b. Correlation of 23	

the scRNA-seq sciCNV profiles from (a) with the tumor bulk CNV profile derived from WES. 24	

For the correlation, the CNV results from sciCNV and WES were paired by genomic location 25	

and averaged over similar chromosomal segment lengths; sciCNV results were generated 26	

without a noise cut-off filter.  c. FISH was also used to verify sciCNV–derived copy number 27	

predictions, focusing on the genes highlighted in a.; this showed 3 copies of CKS1B (1q21), 1 28	

copy of FGFR3 (4p16), 1 copy of SEC63 (6q21), 2 copies of PNOC (8p21), 3 copies of MYC 29	

(8q24), 1 copy of RB1 (13q14,) and 1 copy of TP53 (17P13) in accordance with sciCNV 30	

predictions derived from the RNA of a single cell. Brightness and contrast were adjusted during 31	

figure construction to enhance probe visualization.  d. Heatmap showing chromosome copy 32	

number gains (red) and losses (blue) in individual multiple myeloma plasma cells (MMPC, 33	

n=1724), inferred from scRNA-seq using sciCNV. The MMPC are grouped into subclones 34	

(coloured bars at left) and their CNVs are compared with that of normal plasma cells (NPC, 35	

n=205, green bar) from a control sample.  e. Identification of malignant cells using scRNA-seq 36	

and sciCNV. The tumor plasma cells in subclones (SC) 1-3 in d. were distinguishable from NPC 37	

on the basis of the similarity of their individual sciCNV profiles to the mean tumor clone 38	

sciCNV profile, calculated as a ‘tumor CNV score’.  f. Validation of cancer cell identification by 39	

the tumor CNV score. The tumor CNV scores for single cells are shown plotted again a cellular 40	

immunoglobulin-isotype score, derived to distinguish cells expressing immunoglobulin of the 41	

tumor clone isotype from polyclonal cells expressing other isotypes. Virtually all cells with a 42	

high tumor CNV score also expressed immunoglobulin of the tumor isotype. Whereas 43	

immunoglobulin restriction is only informative for lymphoid malignancies the tumor CNV score 44	

can be applied to all tumor types.  45	
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Figure 3. Examination of subclones with 8q gain at single cell resolution using sciCNV. 46	

a. and b. The sciCNV profiles of plasma cells from multiple myeloma patient bone marrow 47	

samples MM237 (a) and MM244 (b) were calculated using scRNA-seq and are shown compared 48	
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to normal plasma cells (NPC). The tumor cells in each sample are grouped into subclones (colour 49	

bars at left) distinguished by divergent CNV.  c. and d. Possible evolutionary paths for the 50	

subclones detected in MM237 and MM244, revealing branching and linear intra-clonal 51	

evolution. Subclones (SC) are represented by coloured circles corresponding to the colour bars in 52	

a. and b.   53	

e. Heatmaps showing the sciCNV profiles of near isogenic subclone cells in MM199 and 54	

MM244 that that diverge at +8q.  f. The distribution of total gene expression per cell (normalized 55	

transcriptome size) for the subclones shown in e. The subclones were sampled for 56	

subpopulations of cells with matching transcriptome sizes (right panel), which were then 57	

compared in subsequent panels (g.-i.).  g. Bean plots showing the mRNA expression (RTAM2) 58	

of MYC or DEPTOR genes, located on chromosome 8q24, in transcriptome size-matched 59	

subpopulations from MM199 or MM244, by +8q status. Expression is plotted on log10 scale. P-60	

values were calculated by t-test.  h. Results of gene set enrichment analysis (GSEA) performed 61	

on subpopulations of MM199 and MM244 cells, comparing cells with or without +8q. The 62	

analysis of chromosome position gene sets (n=215) shows highly-significant enrichment of gene 63	

sets located on chromosome 8q23-24 in the populations of cells identified at single cell 64	

resolution as containing +8q by sciCNV (left panels). Key results of GSEA for hallmark (n=49) 65	

and curated (n=3303) gene sets are shown in the middle and right panels, demonstrating broad 66	

upregulation of MYC target genes in MM199 +8q cells, but not in MM244 +8q cells, and 67	

upregulation of ribosome and peptide_elongation signatures in +8q cells from both tumors; the 68	

expression changes attributable to +8q in MM cells from both tumors strongly resemble those 69	

found in breast cancer cells with an 8q23-24 amplicon. i. Bean plots showing the pre-normalized 70	

transcriptome sizes of subclonal MM cells from MM199 or MM244, demonstrating slightly 71	

fewer RNA transcripts in cells with +8q. P-values were calculated by t-test.  72	
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Figure 4. sciCNV profiles of MM samples with chromosome 1q gain.  73	

a. The CNV profiles of MM cells (n=16,299) from 10 MM tumor samples with chromosome 1q 74	

gain, inferred from scRNA-seq by sciCNV. The profiles of normal plasma cells (n=205) are 75	

shown at the top. The number of cells in each sample is shown at the right. Samples containing 76	

>3,000 cells are scaled by 0.5x for figure construction. Samples GES-MM06-1 and GES-MM10 77	
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at the bottom were characterized by MARS-seq42; single cell CNV predictions are shown here 78	

calculated on the MARS-seq data using sciCNV.  79	

b. Magnified view of MM241, MM379 and MM244, which were identified by sciCNV as 80	

containing sibling subclones with and without gain of chromosome 1q (blue and red bars at left).  81	
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Figure 5. The effects of +1q on cellular programs in primary MM cells 82	

a.  The total gene expression (mRNA per cell) of cells in MM241, MM244 and MM379 with or 83	

without +1q (left column), demonstrating that +1q has no effect on transcriptome size (unlike 84	
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+8q). The subclones were nevertheless subsampled for subpopulations that were matched for 85	

transcriptome depth (right column), which were examined in the subsequent studies.  b. Results 86	

of GSEA comparing sciCNV-resolved primary MM cells with or without +1q using RTAM2-87	

normalized transcriptomics data. Analysis of chromosome position gene sets (n=215) revealed 88	

highly-significant enrichment for 1q gene sets in the cells identified individually as containing 89	

+1q by sciCNV (left panels). GSEA results for hallmark gene sets are shown at the right. G2M, 90	

E2F, oxidative phosphorylation (OxPhos) and reactive oxygen species (ROS) gene sets were 91	

variably enriched in subclones with +1q, while the UPR was decreased in all subclones with +1q.  92	

c. Heatmap depicting the differential gene expression of MM cells with or without +1q from 93	

sample MM241 (which contains a full-length +1q21-44 CNV). Columns represent cells and rows 94	

represent genes. d. Heatmaps showing the differential expression of UPR genes in cells with or 95	

without +1q, for MM241, MM244 and MM379 patient samples.  e. Cell cycle phase of matched 96	

primary MM cells from the 3 patient samples, comparing cells with or without +1q. Cells were 97	

assigned to a cell cycle phase (colour-coded as per the legend) and plotted according to their 98	

relative expression of gene sets associated with G1/S and G2/M. The fraction of cells in each 99	

phase according to +1q status is summarized by histogram (right). f. Bean plots depicting the 100	

relative expression of MCL1 (located at 1q21.2) and CKS1B (1q21.3) in cells with or without 101	

+1q. The expression of BCL2 (located at 18q21) is shown as a control. Expression is plotted on a 102	

log10 scale. P-values were calculated by t-test.  103	
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Figure 6. The effect of +1q on cellular programs in MM and comparison of intra-tumor 104	

and inter-tumor studies.  105	

a. Summary of the influences of +1q21-44 on MM cell biology, as determined by scRNA-seq. 106	

Genes located on 1q that are increased in +1q cells (blue) are linked to downstream subcellular 107	

programs that altered by +1q (red) via intermediate genes that also show altered expression in 108	

+1q cells (green). 109	

b. and c. Comparison of intra-tumor and inter-tumor studies to determine the effects of +1q in 110	

MM.  b. The results of intra-tumor GSEA of MM241, MM244 and MM379 are summarized. 111	

Amongst chromosome position gene sets, only 1q gene sets were enriched in +1q cells. The 112	

hallmark gene sets that were significantly co-modulated are shown. c. The results of an inter-113	

tumor analysis addressing the same biological question are summarized. MM tumor cohorts from 114	

GSE265822 (n=532 samples) were defined by the presence or absence of +1q by FISH. 115	
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Chromosome position gene-sets that were significantly divergent between the cohorts by GSEA 116	

are listed above the graphic. Gene sets with nominal p-value<0.05 but FWER p-value>0.05 are 117	

bracketed. Although large numbers of tumor samples were grouped specifically according to 118	

their 1q status, additional genomic heterogeneity persists between the cohorts. Biases in MM 119	

genetic subtypes(*), correlating with +1q status, were also observed, as reported22,43. Hallmark 120	

gene sets that were divergent between the cohorts are listed below the schema. MCL1 expression 121	

was analyzed at single gene level.   122	

d. Illustration of an intra-tumor analysis of sibling subclones. The effect of a divergent CNV on 123	

transcriptional programs can be directly assessed. The subclones are otherwise isogenic, 124	

reducing the influence of confounding genetic variations, and are derived from the same sample, 125	

minimizing the influence of confounding variations due to sample processing, batch effect or 126	

recent patient treatment.  127	

e.  Illustration of an inter-tumor analysis in which the influence of a CNV on cell phenotype is 128	

examined, highlighting potential biases. In the example, the CNV does not occur randomly but is 129	

preferentially selected for by tumors experiencing a specific stressor (left column). The gene 130	

expression of the tumor cohorts that do or do not develop the CNV are therefore not identical at 131	

baseline. Although the CNV may act to reduce the stressor, it’s occurrence may appear to 132	

correlate with increased rather than with decreased stress, or may fail to correlate.  133	
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