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ABSTRACT 158 

Pancreatic cancer (PC) is a complex disease in which both non-genetic and genetic factors 159 

interplay. To-date, 40 GWAS hits have been associated with PC risk in individuals of 160 

European descent, explaining 4.1% of the phenotypic variance. Here, we complemented 161 

a classical new PC GWAS (1D) with spatial autocorrelation analysis (2D) and Hi-C maps 162 

(3D) to gain additional insight into the inherited basis of PC. In-silico functional analysis 163 

of public genomic information allowed prioritization of potentially relevant candidate 164 

variants. We replicated 17/40 previous PC-GWAS hits and identified novel variants with 165 

potential biological functions. The spatial autocorrelation approach prioritized low MAF 166 

variants not detected by GWAS. These were further expanded via 3D interactions to 54 167 

target regions with high functional relevance. This multi-step strategy, combined with an 168 

in-depth in-silico functional analysis, offers a comprehensive approach to advance the 169 

study of PC genetic susceptibility and could be applied to other diseases. 170 

  171 
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INTRODUCTION 172 

Pancreatic cancer (PC) has a relatively low incidence but it is one of the deadliest tumors. 173 

In Western countries, PC ranks fourth among cancer-related deaths with 5-year survival 174 

of 3% in Europe1-3. In the last decades, progress in the management of patients with PC 175 

has been meagre. In addition, mortality is rising2 and it is estimated that PC will become 176 

the second cause of cancer-related deaths in the United States by 20304. 177 

PC is a complex disease in which both genetic and non-genetic factors participate. 178 

However, relatively little is known about its etiologic and genetic susceptibility 179 

background. In comparison with other major cancers, fewer genome-wide association 180 

studies (GWAS) have been carried out and the number of patients included in them is 181 

relatively small (N=9,040). According to the GWAS Catalog, (January 2019)5, 40 182 

common germline variants associated with PC risk have been identified in 32 loci in 183 

individuals of European descent6-11. However, these variants only explain 4.1% of the 184 

phenotypic variance for PC12. More importantly, given the challenges in performing new 185 

PC case-control studies with adequate clinical, epidemiological, and genetic information, 186 

the field is far from reaching the statistical power that has been achieved in other more 187 

common cancers such as breast, colorectal, or prostate cancers with >100,000 subjects 188 

included in GWAS, yielding a much larger number of genetic variants associated with 189 

them5. 190 

Current GWAS methodology relies on setting a strict statistical threshold of 191 

significance (p-value=5x10-8) and on replication in independent studies. This approach 192 

has been successful in minimizing false positive hits at the expense of discarding variants 193 

that may be truly associated with the disease (false negatives) displaying association p-194 

values not reaching genome-wide significance after multiple testing correction or not 195 

being replicated in independent populations. The "simple" solution to this problem is to 196 

increase the number of subjects. However, it will take considerable time for PC GWAS 197 
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studies to reach the sample size achieved in other tumors and the funding climate for 198 

replication studies is extremely weak. While a meta-analysis based on available datasets 199 

provides an alternative strategy for novel variant identification, this approach may 200 

introduce heterogeneity because studies differ regarding methods, data quality, testing 201 

strategies, genetic background of the included individuals (e.g., population substructure), 202 

and study design, factors that can lead to lack of replicability. Therefore, we are faced 203 

with the need of exploring alternative approaches to substantiate findings of putative 204 

genetic risk variants not fulfilling conventional GWAS criteria.  205 

Here, we build upon one of the largest epidemiological PC case-control studies 206 

with extensive standardized clinical and epidemiological annotation and expand the 207 

findings of a classical GWAS to include novel strategies for risk-variant discovery. First, 208 

we used the Local Moran’s Index (LMI)13, an approach that is widely applied in 209 

geospatial statistics. In its original application to geographic two-dimensional analysis, 210 

LMI identifies the existence of relevant clusters in the spatial arrangement of a variable, 211 

highlighting points closely surrounded by others with similar values, allowing the 212 

identification of “hot spots”. In our genomic application, we computed local indexes of 213 

spatial (genomic) autocorrelation to identify clusters of SNPs based on their similar 214 

magnitudes of association (odds ratio, OR) weighted by their genomic distance as 215 

measured by linkage disequilibrium (LD). By capturing LD structures of nearby SNPs, 216 

LMI leverages the values of SNPs with low minor allele frequencies (MAF) that 217 

conventional GWAS fail to assess properly. In this regard, LMI offers a novel opportunity 218 

to identify potentially relevant new set of genomic candidates associated with PC genetic 219 

susceptibility. 220 

In addition, we have taken advantage of recent advances in 3D genomic analyses 221 

providing insights into the spatial relationship of regulatory elements and their target 222 

genes. Since GWAS have largely identified variants present in non-coding regions of the 223 
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genome, a challenge has been to ascribe such variants to the corresponding regulated 224 

genes, which may lie far away in the genomic sequence. Chromosome Conformation 225 

Capture experiments (3C-related techniques)14 can provide insight into the biology and 226 

function underlying previously “unexplained” hits15,16.  227 

High-throughput technologies have produced large amounts of publicly-available 228 

data from cell types and tissues. Given the hypothesis-free nature of GWAS, the 229 

aforementioned resources represent a valuable approach to validate prioritized variants 230 

using novel criteria, as well as for functional interpretation of genetic findings.  231 

The combined use of conventional GWAS (1D) analysis with LMI (2D) and 3D 232 

genomic approaches has allowed enhancing the discovery of novel candidate variants 233 

involved in PC (Figure 1). Importantly, several of the new variants are located in genes 234 

relevant to the biology and function of pancreatic epithelial cells. 235 

 236 

RESULTS 237 

1D Approach: PanGenEU GWAS - Single marker association analyses 238 

We performed a GWAS including data from 1,317 patients diagnosed with PC (cases) 239 

and 1,616 control individuals from European countries. In addition to all genotyped SNPs 240 

that passed the QC procedure, we included imputed data for the previously reported PC-241 

associated hits not genotyped in OncoArray-500K; the 1000G Phase3 (Haplotype release 242 

date October 2014) being used as reference17. In all, 317,270 SNPs were tested (Figure 243 

S1) with little evidence of genomic inflation (Figure S2).  244 

 245 

Replication of previously reported GWAS hits. Of the 40 previously GWAS-246 

discovered variants associated with PC risk in European ancestry populations5, 17 247 

(42.5%) were replicated with nominal p-values<0.05. For all 17, the associations were in 248 

the same direction as in the primary reports (Table S1). Among them, we replicated 249 
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NR5A2-rs2816938 and NR5A2-rs3790844. Furthermore, we observed significant 250 

associations for seven additional variants tagging NR5A2 previously reported in the 251 

literature7-10,18. At the GWAS significance level, we also replicated the GWAS hits 252 

LINC00673-rs721404111 and TERT-rs27360988,11. 253 

 254 

Validation of the top 20 PanGenEU GWAS hits in independent populations. The risk 255 

estimates of the top 20 variants in the PanGenEU GWAS were included in the meta-256 

analyis with those derived from PanScanI+II, PanScan III, and PanC4 consortia GWAS, 257 

representing a total of 10,357 cases and 14,112 controls (Table S2). PanGenEU GWAS 258 

identified a new variant in NR5A2 associated with PC (NR5A2-rs3790840, metaOR=1.23, 259 

p-value=5.91x10-6) which is in moderate LD with NR5A2-rs4465241 (r2=0.45, 260 

metaOR=0.81, p-value=3.27x10-10) and had previously been reported in a GWAS 261 

pathway analysis18. NR5A2-rs3790840 remained significant (p-value<0.05) when 262 

conditioned on NR5A2-rs4465241, on NR5A2-rs3790844 plus NR5A2-rs2816938, and 263 

even on the 13 NR5A2 GWAS hits reported in the literature, indicating that NR5A2-264 

rs3790840 is a new, distinct, PC risk signal. Using SKAT-O (seqMeta R package), we 265 

performed a gene-based association analysis considering all significant NR5A2 hits plus 266 

NR5A2-rs3790840; the NR5A2-based association results were significant (p-267 

value=8.9x10-4). Furthermore, in a case-only analysis conducted within the PanGenEU 268 

study, NR5A2 variation was also associated with diabetes (p-value=6.0x10-3), suggesting 269 

an interaction between both factors in relation to PC risk. 270 

 271 

Post-GWAS Functional in-silico analyses. 272 

Assessment of potential functionality of the variants. We expanded the primary 273 

assessment by performing a systematic in silico functional analysis of SNPs with GWAS 274 

p-values<1×10−4 (N=143) at the variant, gene, and pathway levels (Figure S3). The 275 
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potential functionality of the most relevant SNPs, according to the features considered at 276 

all levels, is summarized in Supplementary Material and Table S3.  277 

Among the functionally suggestive variants, we highlight those in CASC8 278 

(8q24.21) (Figure 2): 27 variants with p-values <1x10-4 organized in four LD-blocks 279 

were identified. The largest block contained 11 variants (r2=0.87-1). For 8 of them, the 280 

ORs of the association alleles were below unity. CASC8 codes for a non-protein coding 281 

RNA overexpressed in tumor vs normal pancreatic tissue (Log2FC=1.25, p-282 

value=2.29x10-56). All CASC8 variants were associated with differential leukocyte 283 

methylation (mQTL) of RP11-382A18.1-cg25220992 in our PanGenEU population 284 

sample. Moreover, 20 of them were also associated with differential methylation of 285 

cg03314633, also in RP11-382A18.1. Twenty-three of the variants overlapped with at 286 

least one histone mark in either endocrine or exocrine pancreatic tissue. Two of these hits 287 

have been previously associated with other cancers: CASC8-rs1562430 (breast, 288 

colorectal, and stomach) and CASC8-rs2392780 (breast). None of the CASC8 hits were 289 

in LD with CASC11-rs180204, a GWAS hit previously associated with PC risk, which is 290 

~205 Kb downstream10. CASC8 also overlaps with a PC-associated lncRNA19, suggesting 291 

that genetic variants in CASC8 may contribute to the transcriptional program of pancreatic 292 

tumor cells. Moreover, 5% of PC tumors catalogued in cBioPortal had alterations in 293 

CASC8 (37 cases showed gene amplifications and one sample presented a fusion). 294 

Alterations in CASC8 significantly co-occur with alterations in TG (adjusted p-295 

values<0.001), also associated with PC in our GWAS, which is located downstream.  296 

Three of the variants prioritized for in-silico analysis are located in genes involved 297 

in pancreatic function: rs1220684 is in SEC63, coding for a protein involved in 298 

endoplasmic reticulum function and ER stress response20; rs7212943, a putative 299 

regulatory variant, is in NOC2/RPH3AL, a gene involved in exocytosis in exocrine and 300 

endocrine cells21; and rs4383344 is in SCTR, which encodes for the secretin receptor, 301 
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selectively expressed in the exocrine pancreas and involved in production and indirectly 302 

in regulation of bicarbonate, electrolyte, and volume secretion in ductal cells. 303 

Interestingly, secretin regulation is affected by H. pylori which has been suggested a PC 304 

risk factor22. High expression of SCTR has also been reported in PC23. 305 

Gene set enrichment analyses. When considering the 81 genes harboring the 143 SNPs 306 

prioritized as described above, 6 chromosomal regions were significantly enriched 307 

(Table S4). Moreover, a gene-set enrichment analysis was performed for the gene-trait 308 

associations reported in the GWAS Catalog resulting in 29 traits (Table S4). The most 309 

relevant GWAS traits with significant enrichment were ‘Pancreatic cancer’, ‘Uric acid 310 

levels’, ‘Major depressive disorder’ and ‘Obesity-related traits’, in addition to ‘Lung 311 

adenocarcinoma’, ‘Lung cancer’, and ‘Prostate cancer’ traits. We also performed a 312 

network analysis using the igraph R package24 to visualize the relationships between the 313 

enriched GWAS traits and the prioritized genes. Twelve densely connected subgraphs 314 

were identified via random walks (Figure 3). Interestingly, ‘pancreatic cancer’ and ‘uric 315 

acid levels’ GWAS traits were connected through NR5A2, which is also linked to ‘chronic 316 

inflammatory diseases’ and ‘lung carcinoma’ traits. NR5A2 is an important regulator of 317 

pancreatic differentiation and inflammation in the pancreas25. 318 

Pathway enrichment analyses. A total of 112 Gene Ontology (GO) terms according to 319 

their biological function (GO:BP) (adjusted p-values<0.05, with minimum of three genes 320 

overlapping), seven GO terms according to their cellular components (GO:CC) and 11 321 

terms according to their molecular functions (GO:MF) were significantly enriched with 322 

the prioritized genes (Table S4). Interestingly, GO terms relevant to exocrine pancreatic 323 

function were overrepresented. Three KEGG pathways were significantly enriched 324 

with >2 genes from our prioritized set (Table S4); among them are: “Glycosaminoglycan 325 

biosynthesis heparan sulfate” (adj-p=3.86x10-3), “ERBB signaling pathway” (adj-326 

p=3.73x10-2) and “Melanogenesis” (adj-p=3.73x10-2). Interconnections between the 327 
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three significant KEGG pathways after gene enrichment were explored using the 328 

Pathway-connector webtool (Figure S4), which also found six complementary pathways: 329 

‘Tyrosine metabolism’, ‘Metabolic pathways’, ‘Glycolysis/Gluconeogenesis’, 330 

‘Glycerolipid metabolism’, ‘PI3K-Akt signaling pathway’, ‘mTOR signaling pathway’. 331 

 332 

2D-Approach: Integration of geospatial features. 333 

Variant prioritization using LMI. We scaled up from the single-SNP (1D) to the 334 

genomic region (2D) association analysis by considering both genomic distance (LD) 335 

between variants and association magnitude (OR). We calculated a LMI score (see 336 

Methods) for 98.8% of the SNPs in our dataset, as 1.2% of the SNPs were not genotyped 337 

in the 1000 G (Phase 3, v1) reference data set17 or had a MAF<1% in the CEU European 338 

population (n=85 individuals, phase 1, version 3). We selected those SNPs with positive 339 

LMI or within the top 50% of OR values. This filter resulted in a final set of 102,146 340 

SNPs. The LMI scores and p-values for these variants showed a direct correlation 341 

(Spearman r=0.62; p-value=2.2x10-16, Figure 4). Next, an LMI-enriched variant set was 342 

generated by selecting the top 0.5% of SNPs according to their LMI scores, which 343 

included 29 out of the 143 SNPs selected through their GWAS p-values. Finally, a 344 

combined SNP set was generated by adding the remaining 114 SNPs prioritized in the 1D 345 

approach to the LMI-enriched dataset, resulting in 624 SNPs (Figure 4). To assess the 346 

versatility of LMI, we ran two benchmarks on the MAFs and the ORs, both confirming 347 

the potential to prioritize SNPs (Supplementary Material). We compared the MAF 348 

distribution between the GWAS-prioritized and the LMI-selected SNPs. Notably, LMI-349 

SNPs were mainly variants with low MAF (<0.1). (Figure S5). After excluding correlated 350 

SNPs among the 143 GWAS-SNPs and the 624 LMI-SNPs by LD (r2 < 0.2 to consider 351 

independent loci; Methods), we obtained 97 and 248 independent signals, respectively. 352 

Average MAF for the GWAS-prioritized variants was 0.24 (SD=0.13), compared with 353 
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0.07 (SD=0.03) for the top-rank LMI-SNPs. This result emphasizes that statistical 354 

significance for GWAS-SNPs is largely dependent on MAF and the statistical power of 355 

the study, highlighting this as a major limitation of classical GWAS analyses. LMI 356 

captured a new dimension of signals independent from MAF (Figure S5). In line with 357 

the above observation, the average OR for the LMI-SNPs was significantly higher than 358 

that for the GWAS-SNPs (1.46 vs. 1.32, respectively, Wilcoxon statistic p-359 

value=1.63x10-10). Altogether, these results support the notion that LMI is more sensitive 360 

to detect candidate SNPs with lower MAFs but relevant effect sizes. 361 

Biological annotation of LMI-regions. Variants prioritized according to both LMI and 362 

GWAS p-value (N=624) were annotated to 338 genes using annotatePeaks.pl HOMER 363 

script26 (Table S5). The two top LMI-SNPs were also captured by the GWAS approach. 364 

They map, respectively, to intronic sequences of MINDY1 (p-value= 1.26x10-6) and 365 

SETDB1 (p-value=4.94x10-6). Importantly, among the top SNPs identified by LMI was 366 

BCAR1-rs7190458, a variant with a relevant role in PC27 reported in two previous 367 

GWAS8,11. An additional SNP (rs13337397) in the first exon of BCAR1, and in low LD 368 

with BCAR1-rs7190458 (r2=0.36), was also prioritized by LMI. This SNP is intergenic to 369 

CTRB1-2 and BCAR1 (Figure 5). While BCAR1 is ubiquitous, CTRB1-2 is expressed 370 

exclusively in the exocrine pancreas and genetic variation therein has been previously 371 

associated with alcoholic pancreatitis28 and type-2 diabetes29,30. The expression of both 372 

genes is reduced in tumors vs. normal tissue31.  373 

We also found 11 SNPs associated with CDKN2A, a gene that is almost 374 

universally inactivated in PC32 and that is mutated in some hereditary forms of PC33,34. 375 

Other SNPs identified by LMI were DVL-rs73185718 and PRKCA-rs11654719, that were 376 

also prioritized by GWAS, and two SNPs tagging ROR2 (rs12002851 and rs2002478), a 377 

member of the Wnt pathway that plays a relevant role in PC35. KDM4C-rs72699638, a 378 

Lys demethylase 4C highly expressed in PC36 was also prioritized by LMI. Interestingly, 379 
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the LMI analysis identified a hotspot region of 61 SNPs located upstream of XBP1 (chr. 380 

22, 28.3-29.3 Mb), a highly expressed gene in the healthy pancreas. The transcription 381 

factor XBP1 is involved in ER stress and the unfolded protein response - a highly relevant 382 

process in acinar homeostasis due to the high protein-producing capacity of these cells - 383 

and it plays an important role in pancreatic regeneration37. 384 

Functionality of LMI-variants. We used CADD (Combined Annotation Dependent 385 

Depletion38 values to score the deleteriousness of LMI SNPs. LMI variant prioritization 386 

detected three variants in coding transcripts which showed the top CADD values and were 387 

not prioritized using the GWAS approach: GPRC6A-rs6907580 in chr6:117,150,008, 388 

CADD-score=5.0, LMI=8.93, GWAS p-value=4x10-3; MS4A5-rs34169848 in 389 

chr11:60,197,299, CADD-score=24.4, LMI=7.09, GWAS p-value=1x10-2; and LRRC36-390 

rs8052655 in chr16:67,409,180, CADD-score=24.4, LMI=5.75, GWAS p-value=2x10-2. 391 

GPRC6A-rs6907580 is a well-characterized stop-gain variant in exon 1 of GPRC6A (G 392 

protein-coupled receptor family C group 6 member A). GPRC6A is expressed in 393 

pancreatic β-cells and participates in endocrine metabolism39 and this SNP is linked to a 394 

non-functional variant of GPRC6A receptor protein40. Furthermore, LMI identified 395 

rs17078438 (6q22.1) in RFX6, a pancreas-specific gene involved in endocrine 396 

development41 (Figure 5).  397 

 398 

3D-Approach: genomic interaction analysis.  399 

To gain further insight into the putative biological functions of the 624 candidate 400 

SNPs selected through GWAS-LMI, we focused on a set of 6,761 significant chromatin 401 

interactions (p-values≤1x10-5) (see Methods) identified using Hi-C interaction pancreatic 402 

tissue maps at 40Kb resolution42. Throughout the rest of the text, we will refer to the 403 

chromatin interaction component containing the prioritized SNP as “bait” and to its 404 

interacting region as “target”. In total, 54 target regions overlapping with 37 genes 405 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 12, 2020. ; https://doi.org/10.1101/2020.02.11.941351doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.11.941351


PanGenEU – GWAS Ms (31/12/19) 16 

interacted with bait regions harboring 76/624 (12.1%) SNPs (Table S6). Among them, 406 

we highlight again XBP1 as we discovered that an intronic region of TTC28 (bait: 407 

22:28,602,352-28,642,352bp) including four LMI-selected SNPs (rs9620778, rs9625437, 408 

rs17487463 and rs75453968, all in high LD, r²>0.95, in CEU population) significantly 409 

interacted with the XBP1 promoter (target: 22:29,197,371-29,237,371bp, p-410 

value=1.3x10-9) (Figure 6). To confirm that this target region is relevant for pancreatic 411 

carcinogenesis, we retrieved from ENCODE the Chip-Seq data of all available non-tumor 412 

pancreatic samples (n=4 individuals) as well as from PANC-1 pancreas cancer cells (see 413 

Methods). We found that the H3K27Ac mark present in the XBP1 promoter is completely 414 

lost in PANC-1 cells and is reduced in a sample of a Pancreatic Intraepithelial Neoplasia 415 

1B, a PC precursor in comparison to normal pancreas (Figure 6). To characterize the bait 416 

and promoter regions upstream of XBP1 further, we ran eight chromatin states using 417 

ChromHMM (Supplementary Methods). We observed a clear loss of enhancers/weak 418 

promoters in the corresponding target regions in the precursor lesions and in PANC-1 419 

cells. This loss of activity is in line with the observation that XBP1 expression is reduced 420 

in cancer. Moreover, small enhancers are also lost in the bait region of the aforementioned 421 

samples. We also checked whether the 3D maps for this region were comparable in 422 

healthy pancreas and PANC-1 cells and found that there was no significant contact in 423 

PANC-1 cells (Figure 6). Overall, these analyses indicate that the SNPs interacting in 3D 424 

space with the XBP1 promoter could contribute to the differential expression of the gene 425 

associated with malignant transformation. These findings provide proof of concept that 426 

the LMI analysis combined with 3D genomics can contribute to decipher the biological 427 

relevance of orphan SNPs. 428 

To explore the translatable potential of the loci identified, we searched for all 429 

genes detected through GWAS-LMI and 3D genomic interactions in the PharmaGKB 430 

database (Supplementary Material). While we did not find direct evidence of these 431 
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genes as targets for current PC treatments, 23/338 (6.8%) of the genes were annotated in 432 

the list of clinically actionable gene-drug associations for other cancer types or conditions 433 

associated with PC. 434 

 435 

DISCUSSION 436 

In this work, we have expanded the scope of genomic analysis of the susceptibility to PC 437 

from the standard GWAS strategy to include novel approaches building on spatial 438 

autocorrelations of LMI and the 3D chromatin. An in-depth in-silico functional analysis 439 

leveraging available genomic information from public databases allowed us to prioritize 440 

novel candidate variants with strong biological plausibility. We have thus reached a novel 441 

landscape on the inherited basis of PC and have paved the way to the application of a 442 

similar strategy to any other human disease or interest. 443 

This is the first PC GWAS involving an exclusively Europe-based population 444 

sample. Of the previously reported European ancestry population GWAS hits, 42.5% 445 

were replicated, supporting the methodological soundness of the study. The lack of 446 

replication of other PC GWAS hits may be explained by variation in the MAFs of the 447 

SNPs among Europeans, population heterogeneity, differences in the genotyping 448 

platform used, and differences in calling methods applied, among others. Replicated 449 

GWAS hits included LINC00673-rs7214041 reported to be in complete LD with 450 

LINC00673-rs1165523711, previously shown to be a PC-associated variant9 and 451 

replicated in our GWAS. LINC00673 lies in a genomic region that is recurrently amplified 452 

and overexpressed in PC and is associated with poor clinical outcome19. Experimental 453 

evidence supports a functional role of LINC00673 in the regulation of PC differentiation 454 

and in epithelial-mesenchymal transition19. Independent studies have confirmed the 455 

relevance of LINC00673 in tumors and in vitro43. Beyond replicating previous GWAS 456 
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hits, our study identified a novel variant in NR5A2 (rs3790840) that independently 457 

associated with PC risk, strengthening the relevance of this gene in PC susceptibility. 458 

We have also explored the potential of novel post-GWAS approaches to uncover 459 

variants failing to reach the strict GWAS p-value significance threshold. We applied the 460 

LMI for the first time in the genomics field (Anselin 1995). We replicated 6.4% of the 461 

previous reported GWAS Catalog signals for PC in European populations by considering 462 

the top 0.5% LMI variants, a LMI threshold that is overly conservative, given that many 463 

of the GWAS Catalog-replicated signals have lower LMI than the cut-off value we 464 

selected (see Methods). The ability of LMI to prioritize low MAF SNPs, unlike the 465 

GWAS approach, may also explain the low replicability rate. Despite the latter, LMI helps 466 

to identify correct signals within genomic regions, by scoring lower those regions that do 467 

not maintain LD structure (Figure S5). 468 

To shed light into the functionality of the newly identified variants, we 469 

interrogated several databases at the SNP, gene, and pathway levels. We found sound 470 

evidence pointing to the functional relevance of several of the 143 GWAS p-value 471 

prioritized SNPs in the pancreas (Table S3, Supplemental Material). The importance of 472 

the multi-hit CASC8 region (8q24.21) is supported by post-GWAS in-silico functional 473 

analyses as well as by its previously associations with PC at the gene level19. In particular, 474 

12/27 SNPs identified in CASC8 were annotated as regulatory. Among them, CASC8-475 

rs283705 and CASC8-rs2837237 (r2=0.68) are likely to be functional with a score of 2b 476 

in RegulomeDB (TF binding + any motif + DNase Footprint + DNase peak). Another 477 

variant (CASC8-rs1562430) was previously associated with risk of breast carcinoma44 478 

and is in high LD (r2>0.85) with 18 CASC8 prioritized variants. None of the prostate 479 

cancer-associated SNPs in CASC8 overlapped with the 27 identified variants in our study. 480 

The fact that this gene has not been reported previously in other PC GWAS could be due 481 
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to the different genetic background of the study populations or to an overrepresentation 482 

of the variants tagging CASC8 in the Oncoarray platform used here.  483 

In addition to confirming SNPs in TERT, we found strong evidence for the 484 

participation of novel susceptibility genes in telomere biology (PARN) and in the post-485 

transcriptional regulation of gene expression (PRKCA and EIF2B5). Our study also 486 

expands the landscape of variants and genes involved in exocrine biology, including 487 

SEC63, NOC2/RPH3AL and SCRT whose function is likely to participate in acinar 488 

function and in acinar-ductal metaplasia, a PC pre-neoplastic lesion45. 489 

The results from LMI and 3D genomic interactions further reinforce the role of 490 

genetic variation in these pathways. Among the SNP-LMI variants, in-silico functional 491 

assessment found evidence for a role of GPRC6A-rs6907580, MS4A5-rs34169848, 492 

LRRC36-rs8052655, RFX6-rs17078438, and KDM4C-rs72699638. The 3D genomic 493 

interaction approach also converged in XBP1, a critical regulator of acinar homeostasis. 494 

XBP1 is a potential candidate detected through a previously uncharacterized “bait” SNP. 495 

These findings are particularly important considering that genetic mouse models have 496 

unequivocally shown that pancreatic ductal adenocarcinoma, the most common form of 497 

PC, can be initiated from acinar cells46. Similar results were found with other LMI 498 

selected SNPs associated with their target genes only by detecting significant spatial 499 

interactions between them (Table S6). 500 

KEGG pathway enrichment analysis also validated other important pathways for 501 

PC, including “Glycosaminoglycan biosynthesis heparan sulfate” and “ERBB signaling 502 

pathway”. Heparan sulfate (HS) is formed by unbranched chains of disaccharide repeats 503 

which play roles in cancer initiation and progression47. Interestingly, the expression of 504 

HS proteoglycans increases in PC48 and related molecules, such as hyaluronic acid, are 505 

important therapeutic targets in PC49,50. ERBB signaling is important both in PC initiation 506 

and as a therapeutic target51. 507 
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The enrichment analysis indicates that urate levels, depression, and body mass 508 

index - three GWAS traits previously reported to be associated with PC risk - were 509 

enriched in our prioritized gene set. Urate levels have been associated with both PC risk 510 

and prognosis52,53. In addition, patients with lower relative levels of kynurenic acid have 511 

more depression symptoms54. PC is one of the cancers with the highest occurrence of 512 

depression preceding its diagnosis55. Furthermore, body mass index has been previously 513 

associated with PC risk in diverse populations56-58 and it has been suggested that 514 

increasing PC incidence may be partially attributed to the obesity epidemic. Insulin 515 

resistance is one of the mechanisms possibly underlying the obesity and PC association, 516 

through hyperinsulinemia and inflammation59. 517 

Our post-GWAS approach has limitations that should be addressed in future 518 

studies. For example, our study has a relatively small sample size, some imbalances 519 

regarding gender and geographical areas, and the Hi-C maps that we used have limited 520 

resolution (40 kb). To account for population imbalances, regression models were 521 

adjusted for gender and for country of origin, as well as for first five principal 522 

components. In turn, our study has many strengths: a standardized methodology was 523 

applied in all participating centers to recruit cases and controls, to collect information, 524 

and to obtain and process biosamples; state-of-the-art methodology was used to extend 525 

the identification of variants, genes, and pathways involved in PC genetic susceptibility. 526 

Most importantly, the combination of GWAS, LMI and 3D genomics to identify new 527 

variants has not been applied in the past and has proven crucial to refine results, reduce 528 

the number of false positives, and establish whether borderline GWAS p-value signals 529 

could be true positives. These three strategies, together with an in-depth in-silico 530 

functional analysis, offer a comprehensive approach to advance the study of PC genetic 531 

susceptibility.532 
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METHODS 533 

1D Approach: PanGenEU GWAS - Single marker association analyses  534 

Study population. We used the resources from the PanGenEU case-control study 535 

conducted in Spain, Italy, Sweden, Germany, United Kingdom, and Ireland, between 536 

2009-201460,61. Eligible PC patients, men and women ≥18 years of age, were invited to 537 

participate. Eligible controls were hospital in-patients with primary diagnoses not 538 

associated with known risk factors of PC. Controls from Ireland and Sweden were 539 

population-based. Institutional review board approval and written informed consent was 540 

obtained from all participating centers and study participants, respectively. To increase 541 

statistical power, we included controls from the Spanish Bladder Cancer 542 

(SBC)/EPICURO study, carried out in the same geographical areas where PanGenEU 543 

Study was conducted. Characteristics of the study populations are detailed in Table S7. 544 

 545 

Genotyping and quality control in the PanGenEU study. DNA samples were 546 

genotyped using the Infinium OncoArray-500K at the CEGEN facility (Spanish National 547 

Cancer Research Centre, CNIO). Genotypes were called using GenTrain 2.0 cluster 548 

algorithm in GenomeStudio software v.2011.1.0.24550 (Illumina, San Diego, CA). 549 

Genotyping quality control criteria considered the missing call rate, unexpected 550 

heterozygosity, discordance between reported and genotyped gender, unexpected 551 

relatedness, and estimated European ancestry <80%. After removing samples that did not 552 

pass the quality control filters, duplicated samples, and individuals with incomplete data 553 

regarding age of diagnosis/recruitment, 1,317 cases and 700 controls were available for 554 

the association analyses. SNPs in sex chromosomes and those that did not pass the Hardy-555 

Weinberg equilibrium (p-value<10-6) were also discarded. Overall, 451,883 SNPs passed 556 

the quality control filters conducted before the imputation. 557 

 558 
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Genotyping and quality control of SBC/EPICURO controls. Genotyping of germline 559 

DNA was performed using the Illumina 1M Infinium array at the NCI Core Genotyping 560 

Facility as previously described62, which provided calls for 1,072,820 SNP genotypes. 561 

We excluded SNPs in sex chromosomes, those with a low genotyping rate (<95%), and 562 

those that did not pass the Hardy-Weinberg equilibrium threshold. In addition, the exome 563 

of 36 controls was sequenced with the TruSeq DNA Exome and a standard quality control 564 

procedure both at the SNP and individual level was applied: SNPs with read depth <10 565 

and those that did not pass the tests of base sequencing quality, strand bias or tail distance 566 

bias, were considered as missing and imputed (see Imputation section for further details). 567 

Overall, 1,122,335 SNPs were available for imputation. In total, 916 additional controls 568 

were considered for this analysis. 569 

 570 

Imputation. Imputation was performed at the Wellcome Sanger Institute, Cambridge, 571 

UK, and CNIO, Madrid, Spain, for the PanGenEU and the SBC/EPICURO studies, 572 

respectively. Imputation of missing genotypes was performed using IMPUTE v263 and 573 

genotypes of SBC/EPICURO controls were pre-phased to produce best-guess haplotypes 574 

using SHAPEIT v2 software64. For both PanGenEU and EPICURO studies, the 1000 G 575 

(Phase 3, v1) reference data set was used17. 576 

 577 

Association analyses. A final set of 317,270 common SNPs (MAF>0.05) that passed 578 

quality control in both studies and showed comparable MAF across genotyping platforms 579 

was considered for analysis. We ensured the inclusion of the 40 variants previously 580 

associated with PC risk in individuals of Caucasian origin compiled in GWAS Catalog5. 581 

Logistic regression models were computed assuming an additive mode of inheritance for 582 

the SNPs, adjusted for age at PC diagnosis or at control recruitment, sex, the area of 583 

residence [Northern Europe (Germany and Sweden), European islands (UK and Ireland), 584 
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and Southern Europe (Italy and Spain)], and the first 5 principal components (PCs) 585 

calculated with prcomp R function based on the genotypes of 32,651 independent SNPs, 586 

(J Tyrer, personal communication) to control for potential population substructure.  587 

 588 

Validation of the novel GWAS hits. To replicate the top 20 associations identified in 589 

the Discovery phase, we performed a meta-analysis using risk estimates obtained in 590 

previous GWAS studies from the Pancreatic Cancer Cohort Consortium (PanScan: 591 

https://epi.grants.cancer.gov/PanScan/) and the Pancreatic Cancer Case-Control 592 

Consortium (PanC4: http://www.panc4.org/), based on 16 cohort and 13 case-control 593 

studies. Details on individual studies, namely PanScan I, PanScan II, PanScan III and 594 

PanC4, have been described elsewhere6-9. Genotyping for PanScan studies was performed 595 

at the Cancer Genomic Research Laboratory (CGR) of the National Cancer Institute 596 

(NCI) using HumanHap550v3.0, and Human 610-Quad genotyping platforms for 597 

PanScan I and II, respectively, and the Illumina Omni series arrays for PanScan III. 598 

Genotyping for PanC4 was performed at the Johns Hopkins Center for Inherited Disease 599 

Research using the Illumina HumanOmniExpressExome-8v1 array. PanScan I/II datasets 600 

were imputed together using the 1000 G (Phase3, v1) reference data set17 and IMPUTE263 601 

and adjusting for study (PanScan I and II), geographical region (for PanScan III), age, 602 

sex, and PCA of population substructure (5 PC’s for PanScan I+II, 6 for PanScan III) for 603 

PanScan models, and for study, age, sex and 7 PCA population substructure for PanC4 604 

models. Summary statistics from PanScanI/II, PanScan III and PanC4 were used for a 605 

meta-analysis using a random-effects model based on effect estimates and standard errors 606 

with the metafor R package65. 607 

 608 

Post-GWAS functional in silico analysis. An exhaustive in-silico analysis was 609 

conducted for associations with p-values<1×10−4 in the PanGenEU GWAS (Figure S3). 610 
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Bioinformatics assessments included evidence of functional impact66,67, annotation in 611 

overlapping genes and pathways66, methylation quantitative trait locus in leukocyte DNA 612 

from a subset of the PanGenEU controls (mQTLs), expression QTL (eQTLs) in normal 613 

and tumoral pancreas (GTEx and TCGA, respectively)68,69, annotation in PC-associated 614 

long non-coding RNA (lncRNAs)19, protein quantitative trait locus analysis in plasma 615 

(pQTLs)70, overlap with regulatory chromatin marks in pancreatic tissue obtained from 616 

ENCODE71, association with relevant human diseases72, and annotation in differentially 617 

open chromatin regions (DORs) in human pancreatic cells41. We also investigated 618 

whether prioritized variants had been previously associated with PC comorbidities or 619 

other types of cancers5. Furthermore, we used HOMER to map SNPs to significant 3D 620 

chromatin interaction (CI) in healthy pancreas tissue26. Then, we annotated those SNPs 621 

in significant interaction regions with the chromatin states73.  622 

In addition to the functional analyses at the variant level, we conducted 623 

enrichment analyses at the gene level using the FUMAGWAS web tool72 and investigated 624 

whether our prioritized set of genes appeared altered at the tumor level in a collection of 625 

pancreatic tumor samples74. Methodological details of all bioinformatics analyses 626 

conducted are described in detail in Supplementary Material. 627 

 628 

2D Approach: Local Moran Index. 629 

Local Moran’s Index calculation. The LMI was obtained for each SNP considered in the 630 

GWAS (n=317,270) using the summary statistics resulting from the association analyses 631 

as follows. First, the OR of each SNP was referred to its risk-increasing allele (i.e., OR>1) 632 

and the distribution of ORs was transformed to the inverse of the normal distribution. 633 

Second, each SNP was matched by MAF with surrounding common SNPs (i.e., SNPs 634 

with MAF>=1% in the 85 European individuals of the 1000G, Phase 1, version 3), 635 

considering a window of +/- 500kb to ensure that haplotypes were matched. Linkage 636 
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disequilibrium (r2) was used as a proxy for the distance between each SNP and each of 637 

its neighboring SNPs. Next, the LMI for i-th SNP was calculated as: 638 

𝐿𝑀𝐼$ = 𝑧$ ∗ ∑
)*∗+,,*

.

∑+,,*
. , 639 

where 𝐿𝑀𝐼$ is the LMI value for the i-th SNP; 	𝑧$ is the OR value for the i-th SNP, 640 

obtained from the inverse of the normal distribution of ORs for all SNPs; 𝑧1 is the OR for 641 

the j-th SNP within the physical distance and MAF-matched defined bounds; and 𝑟$,13  is 642 

the LD value, measured by r2, between the i-th SNP and the j-th SNP. 643 

After LMI calculation for the full set of SNPs, we discarded the SNPs that: (1) 644 

had a negative LMI, meaning either that surrounding SNPs and target SNP have largely 645 

different ORs or that they are in linkage equilibrium and, therefore, do not pertain to the 646 

same cluster; or (2) had a positive LMI, i.e. target and surrounding SNPs have similar 647 

ORs, but the SNP came from the bottom 50% tail of the distribution of the ordered 648 

transformed OR distribution. This generated a total final set of 102,146 SNPs, out of 649 

which we selected the top 0.5%, at a threshold of LMI value = 5.1071 (n=510). 650 

To assess the usefulness of the LMI score for SNP prioritization, we ran two tests 651 

using SNPs known to be associated with PC in European populations [GWAS Catalog, 652 

n=405]. Before performing this benchmarking test, we corrected the 40 signals by LD 653 

using a custom made “greedy” algorithm. First, we calculated all pairwise LD values (r2) 654 

for all the SNPs on the same chromosome. Then, we reviewed the list of SNPs ordered 655 

by ascending position chromosome-wise and considered as a cluster all the SNPs that had 656 

r2>0.2 with the SNP under consideration. We considered this set of SNPs as a unique 657 

genomic signal, filtered out the SNPs assigned to the cluster from the ranked list, and then 658 

proceeded to the next SNP. This resulted in a total of 30 independent clusters of >1 SNPs. 659 

When more than one SNP was included within the same cluster, the SNP with the highest 660 
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LMI was selected. The same procedure was applied to identify the independent loci in 661 

the GWAS-selected SNPs (n=143) and the set of LMI-selected SNPs (n=624).  662 

For the first benchmarking test, we first evaluated whether the GWAS Catalog 663 

PC-associated SNPs had a LMI value higher than expected. Then, we ranked the LMI 664 

value for the 102,146 LMI-selected SNPs from highest to lowest, assigning position 665 

number “1” to the SNP with the highest LMI (LMI=18.23) and position number 666 

“102,146” to the one with the lowest LMI (LMI=0.000001). Out of the 30 signals derived 667 

from the GWAS Catalog, 22 were present in our 102,146 selected set. The observed 668 

median rank position in this list for the 22 PC signals was 22,640. This average position 669 

was significantly higher than 10,000 randomly selected sets of the same size (one tail p-670 

value=0.0013) (Figure S6). Loci annotated in the GWAS Catalog as associated with PC 671 

tend to score higher LMI than expected by chance. Finally, for the benchmark based on 672 

replication of loci, out of the 30 independent signals, 21 clusters of more than one SNP 673 

were considered as replicated signals and 9 SNPs that were found by only one study were 674 

not replicated. 675 

 676 

Biological annotation and functional in-silico analysis. LMI-selected variants were 677 

annotated to genes using annotatePeaks.pl script in HOMER26 and their functionality was 678 

predicted using CADD38 online software.  679 

 680 

3D Approach: Hi-C pancreas interaction maps and interaction selection.  681 

The 3D Hi-C interaction maps for both healthy pancreas tissue (Schmitt et al. 2016) and 682 

for a pancreatic cancer cell line (PANC-1) were generated using TADbit as previously 683 

described75. Briefly, Hi-C FASTQ files for 7 replicas of healthy pancreas tissue were 684 

downloaded from GEO repository (Accession number: GSE87112; Sequence Read 685 

Archive Run IDs: SRR4272011, SRR4272012, SRR4272013, SRR4272014, 686 
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SRR4272015, SRR4272016, SRR4272017) and for PANC-1 FASTQ, files were 687 

available from ENCODE (Accession number: ENCSR440CTR). For further analysis, all 688 

7 healthy samples were merged. Next, the FASTQ files were mapped against the human 689 

reference genome hg19, parsed and filtered with TADbit to get the final number of valid 690 

interacting read pairs. Total numbers of 99,074,082 and 287,201,883 valid interaction 691 

pairs were obtained for the healthy and PANC-1 datasets, respectively. Valid pairs were 692 

next binned at 40 kb resolution to obtain chromosome-wide interaction matrices. Next, 693 

the HOMER package26 was used to detect significant interactions between two bins of 694 

40kb within a window of 4Mb using the –center and --maxDist 2000000 parameters. 695 

Using HOMER’s default parameters (significant interactions at p-value=0.001), the final 696 

number of nominally significant interactions was 41,833 for the healthy dataset and 697 

357,749 for the PANC-1 dataset. To further filter the interactions, we assessed the number 698 

of possible unique bin combinations within 2Mb of a bin (that is, 4,950 combinations of 699 

any two bins) and calculated those interactions that passed a Bonferroni corrected 700 

threshold p-value=10-5. The sub-selected set of interactions was reduced to 6,761 for the 701 

healthy sample (that is, 16.2% top interactions from those originally selected by HOMER 702 

default parameters). Next, we sub-sampled the top 16% interactions for PANC-1 list, 703 

resulting in 57,813 significant interactions.  704 
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MAIN FIGURE AND LEGENDS 753 

Figure 1. Overview of the approaches adopted in this study to identify new pancreatic 754 

cancer susceptibility regions.  755 

 756 

Figure 2. Zoom plot of the 8q24.21 CASC8 (cancer Susceptibility 8) region and linkage 757 

disequilibrium pattern of the PanGenEU GWAS prioritized variants. 758 

 759 

Figure 3. Network of traits in GWAS catalog enriched with the genes prioritized in the 760 

PanGenEU GWAS. 761 

 762 

Figure 4. Scatterplot of the local Moran’s index (LMI) obtained in the 2D approach and 763 

the –log10 p-value obtained in the GWAS analysis (1D approach). 764 

 765 

Figure 5. Scatterplots of the –log10 p-values, local Moran’s index (LMI) values and odds 766 

ratios (OR) for three genomic regions prioritized based on their LMI value. Highlighted 767 

regions show the hits identified in the 2D, but not in the 1D approach. 768 

 769 

Figure 6. Three-dimensional genome organization in healthy and PANC-1 cells and 770 

association results corresponding to the genomic region around XBP1 using the standard 771 

GWAS and 2D approaches. A) Coverage-normalized Hi-C maps of healthy samples and 772 

PANC-1 cells at 40Kb resolution. Green ellipses highlight the interaction between the 773 

region harboring four Local Moran’s Index (LMI)-selected SNPs and the XBP1 promoter. 774 

B) Tracks of the ChromHMM Chromatin for 8 states in healthy pancreas, PANC-1 cells, 775 

and a Pancreatic Intraepithelial Neoplasia 1B. Promoters are colored in light purple, 776 

strong enhancers in dark green and weak enhancers in yellow. Note that the strong 777 

enhancer in the target region is lost in the PANC-1 and PanIN-1B samples, compared to 778 
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the healthy samples. C) UCSC tracks of H3K27ac, an enhancer-associated mark, and arcs 779 

linking significant interactions called by Homer. Interactions in healthy pancreas samples 780 

are in green and those in PANC-1 and in the PanIN-1B sample are in purple. Red arc 781 

represents the interaction between LMI-prioritized SNPs and the XBP1 promoter 782 

(highlighted region in Hi-C map in A). D) Scatterplots of SNPs in region 783 

chr22:28,400,000-29,600,000 (hg19) and their –log10 (p-value), LMI and odds ratio. Bait 784 

and target chromatin interaction regions are highlighted in yellow and blue, respectively. 785 
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Figure 1
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Figure 2
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Figure 3
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preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 12, 2020. ; https://doi.org/10.1101/2020.02.11.941351doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.11.941351


Figure 5
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Figure 6
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