1 Structural insights into secretory immunoglobulin A and its interaction with a

2 pneumococcal adhesin

- 3
- 4 Running title: Cryo-EM structures of Fcα-J-SC and Fcα-J-SC-SpsA
- 5
- 6 Yuxin Wang^{1,3,4}†, Guopeng Wang³†, Yaxin Li^{1,3,4}†, Hao Shen^{1,3,4}, Huarui Chu^{1,3,4}, Ning Gao^{2,3,4}, Junyu
- 7 Xiao^{1,3,4}*
- 8
- 9 ¹State Key Laboratory of Protein and Plant Gene Research, ²State Key Laboratory of Membrane Biology,
- 10 ³School of Life Sciences, ⁴Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China,
- **11** 100871
- 12
- 13 [†]These authors contributed equally to this work
- 14
- 15 *Correspondence and requests for materials should be addressed to J.X. (junyuxiao@pku.edu.cn)

16 Abstract

17	Secretory Immunoglobulin A (SIgA) is the most abundant antibody at the mucosal surface. SIgA
18	possesses two additional subunits besides IgA: the joining chain (J-chain) and secretory component (SC). SC
19	is the ectodomain of the polymeric immunoglobulin receptor (pIgR), which functions to transport IgA to the
20	mucosa. The underlying mechanism of how the J-chain and pIgR/SC facilitates the assembly and secretion
21	of SIgA remains to be understood. During the infection of Streptococcus pneumoniae, a pneumococcal
22	adhesin SpsA hijacks SIgA and unliganded pIgR/SC to evade host defense and gain entry to human cells.
23	How SpsA specifically targets SIgA and pIgR/SC also remains unclear. Here we report a cryo-electron
24	microscopy structure of the Fc region of human IgA1 (Fc α) in complex with J-chain and SC (Fc α -J-SC),
25	which reveals the organization principle of SIgA. We also present the structure of Fc α -J-SC in complex with
26	SpsA, which uncovers the specific interaction between SpsA and human pIgR/SC. These results advance the
27	molecular understanding of SIgA and shed light on the pathogenesis of S. pneumoniae.

28 Introduction

29	The mucous membrane covers $\sim 400 \text{ m}^2$ surface of internal organs in the human body.
30	Immunoglobulin A (IgA) is the most predominant antibody present at the mucosa ¹ . In contrast to IgA in
31	serum that is mostly monomeric, mucosal IgA are mainly present as dimers (dIgA), in which two IgA
32	molecules are linked together by another protein designated the joining chain (J-chain) ² . The J-chain is also
33	present in the IgM pentamer (pIgM) and facilitates its assembly ³ . The heavy chains of IgA and IgM contain
34	unique C-terminal extensions known as the tailpieces, which are essential for their oligomerization and
35	covalent linkage to the J-chain ⁴⁻⁶ . Furthermore, an additional polypeptide called the secretory component
36	(SC) is present in mucosal IgA and IgM, and such IgA and IgM complexes are often referred to as secretory
37	IgA and IgM (SIgA and SIgM). SC is the ectodomain of the polymeric immunoglobulin receptor (pIgR),
38	which functions to transport dIgA and pIgM through the mucosal epithelial cells ⁷⁻¹⁰ . SIgA forms a critical
39	first line of defense against pathogens at the mucosal surface, and also likely plays an important role in
40	regulating the homeostasis of microbiota ^{11,12} . SIgA in breast milk is important for protecting the newborn
41	babies until their own immune systems have developed. Despite the fact that the composition of SIgA and
42	certain details of its assembly process have long been established, the three-dimensional structure of SIgA
43	has remained elusive.
44	Due to the critical function of SIgA in immune defenses, various pathogens have developed
45	strategies to disrupt its function. Streptococcus pneumoniae, also known as pneumococcus, is a Gram-
46	positive bacterium that causes millions of deaths worldwide ^{13,14} . It is an opportunistic pathogen residing in
47	the upper respiratory tract of many people especially young children. In individuals with a weak immune
48	system, the bacterium can invade a wide range of organs including the brain, causing severe diseases such as
49	pneumonia, sepsis, and meningitis. <u>S. pneumoniae SIgA</u> binding protein (SpsA; also known as CbpA, PspC)

50	is a pneumococcal adhesin that binds to SIgA ¹⁵ . The binding is mediated by SC, and may impair the
51	bacterial clearance function of SIgA. Furthermore, SpsA also interacts with unliganded SC and pIgR, and the
52	interaction with pIgR may enhance bacterial adherence and importantly, facilitate its cellular invasion ¹⁶ .
53	How SpsA selectively recognizes human pIgR/SC remains to be characterized.
54	Here we report a cryo-electron microscopy (cryo-EM) structure of the human Fc α -J-SC complex at
55	3.2 Å resolution. Comparison of this structure with that of Fc μ -J-SC ¹⁷ reveals a more complete structure of
56	the J-chain and distinctive features for the interactions between Fca, J-chain, and SC. We also investigated
57	the interaction between SIgA and the S. pneumoniae adhesin SpsA, and determined a cryo-EM structure of
58	human Fc α -J-SC in complex with the N-terminal domain of SpsA, which shows how human pIgR/SC is
59	specifically exploited by SpsA to promote S. pneumoniae pathogenesis.
60	
61	Results
62	Overall structure of the Fcα-J-SC complex
63	We co-expressed human IgA1-Fc (Fc α) with J-chain in HEK293F cells and isolated the complex
64	containing the dimeric Fc α . SC was individually expressed and purified, and then incubated with the Fc α -J
65	sample to form the Fc α -J-SC tripartite complex. We then determined its structure at 3.2 Å resolution (as
66	judged by the FSC 0.143 criterion) by the single particle cryo-EM method (Fig. 1 and Supplementary
67	information, Fig. S1). Most regions of the EM map exhibited atomic resolutions, allowing unambiguous
68	structural assignment and analyses (Supplementary information, Fig. S1e and Fig. S2). The statistics for
69	cryo-EM data collection and processing, as well as structural refinement and validation, are summarized in
70	Supplementary information, Table S1.

71	The two IgA molecules in SIgA are linked via Cys471-mediated disulfide bonds between each other
72	and to the J-chain. Earlier EM analyses show that dIgA displays a double-Y-like shape ¹⁸ . Solution scattering
73	studies suggest that the two Fc regions do not dock to each other in a straight manner in the IgA dimer, but
74	adopt a slightly bent end-to-end arrangement ¹⁹ . Consistently, our structure shows that the Fc α dimer has a
75	boomerang-like shape (Fig. 2a) and resembles a portion of the pIgM structure we determined recently ¹⁷ (Fig.
76	2b). Each tailpiece of Fc α contains a β -strand, like that of Fc μ in IgM, and the four tailpiece strands bundle
77	together to mediate the interactions between the two Fc α molecules. The dimeric structure is further
78	stabilized by the J-chain.
79	
80	Interaction between IgA and the J-chain
81	Compared to the J-chain in the Fcµ-J complex, a more complete structure of the J-chain is present in
82	Fc α -J, due to more extensive interactions between the J-chain and the Fc α dimer. Residues 70-92, disordered
83	in the Fc μ -J-SC structure, form a β -hairpin (β 5- β 6 hairpin) that interacts with Fc α 2 (Fig. 2a and Fig. 3a).
84	Three intrachain disulfide bridges are present within the J-chain (Cys12 ^J -Cys100 ^J , Cys71 ^J -Cys91 ^J , and
85	Cys108 ^J -Cys133 ^J ; superscript J indicates J-chain residues), consistent with previous analyses ^{20,21} . Cys14 ^J
86	and Cys68 ^J form a disulfide bond with Cys471 ^{$Fc\alpha 2B$} and Cys471 ^{$Fc\alpha 1A$} , respectively.
87	The central region of the J-chain contains four β -strands (β 1- β 4) that interact with the Fc α tailpieces
88	(Fig. 3a). Strands β 1- β 3 pack onto the two tailpiece strands of Fc α 2 to assemble into a β -sheet, with
89	hydrogen bonds formed between main chain atoms of adjacent strands; whereas $\beta4$ packs onto the tailpiece
90	strands of Fc α 1. Robust hydrophobic interactions are present between the two β -sheets, mediated by
91	Fcα residues Val460, Val462, Met464 and J-chain residues Ile37 ^J , Ile39 ^J , Val41 ^J , Phe60 ^J , Tyr62 ^J (Fig. 3b).
92	The $\beta 2$ - $\beta 3$ loop, $\beta 3$ - $\beta 4$ loop, $\beta 5$ - $\beta 6$ hairpin, and the long C-terminal hairpin of the J-chain function as four

93	lassos that assist to further interact with Fc α 1 and Fc α 2. The β 2- β 3 loop interacts with the C α 3-tailpiece
94	junction of Fc α 2B (Supplementary information, Fig. S3a). Ile21 ^J and Val33 ^J , together with Ile5 ^J and Leu7 ^J in
95	the N-terminal region of the J-chain, form a hydrophobic pocket to accommodate Leu $451^{Fc\alpha_{2B}}$. Asp 31^{J} forms
96	a salt bridge with Arg450 ^{$Fc\alpha_{2B}$} . The β_{3} - β_{4} loop contacts the C α_{3} -tailpiece junction of Fc α_{1A} (Supplementary
97	information, Fig. S3b). Arg46 ^J forms an ion pair with Asp449 ^{Fcα1A} . Leu56 ^J packs on Leu451 ^{Fcα1A} . More
98	prominent interactions with Fc α are mediated by the β 5- β 6 and C-terminal hairpins of the J-chain. The β 5-
99	β 6 hairpin forms extensive interactions with the Ca2-Ca3 junction of Fca2B via two hydrophobic centers
100	(Fig. 3c). The first is formed between J-chain residues Val76 ^J , Leu78 ^J , Val83 ^J , and Fca2B residues
101	Leu258 ^{Fca2B} , Arg382 ^{Fca2B} aliphatic side chain, Leu384 ^{Fca2B} , Met433 ^{Fca2B} , Phe443 ^{Fca2B} . The second
102	hydrophobic center focuses on Thr86 ^J , which is surrounded by Leu439 ^{Fcα2B} , Pro440 ^{Fcα2B} , and Leu441 ^{Fcα2B} .
103	Several hydrogen bonds are also formed between the J-chain and $Fc\alpha 2B$ at this region, involving Asp79 ^J ,
104	Thr86 ^J , Asn89 ^{Fca2B} , Val349 ^{Fca2B} , Glu389 ^{Fca2B} , and Phe443 ^{Fca2B} . The C-terminal hairpin targets almost the
105	same region in Fca1A (Fig. 3d). Val113 ^J , Leu115 ^J , Tyr117 ^J , Val124 ^J , and Thr126 ^J mingle with Leu258 ^{Fca1A} ,
106	Arg382 ^{Fca1A} , Leu384 ^{Fca1A} , Met433 ^{Fca1A} , and Phe443 ^{Fca1A} . Ala127 ^J , Cys133 ^J , Tyr134 ^J , and Pro135 ^J encircle
107	Pro440 ^{Fcα1A} and Leu441 ^{Fcα1A} . The way that the C-terminal hairpin is attached to Fc α 1A highly resembles
108	how it binds to Fcµ1 in IgM (Fig. 2a, 2b).

109

110 Interaction between dIgA and SC

111 The interaction between dIgA and pIgR/SC has been extensively studied by biochemical and

112 biophysical studies ²²⁻²⁸. pIgR/SC forms a bidentate interaction with dIgA, with both its D1 and D5 domain

- 113 involved. The D1 domain of pIgR/SC binds to Fcα-J using its three CDR (complementarity determining
- regions) loops, and the molecular interactions are in many ways similar to the interactions seen in the Fcµ-J-

115	SC complex ¹⁷ . CDR1 mainly contacts the J-chain (Fig. 4a). Val29 ^{SC} (superscript SC indicates pIgR/SC
116	residues) is positioned in a pocket formed by J-chain residues Arg105 ^J , Asn106 ^J , and A132 ^J to mediate
117	hydrophobic/van der Waals interactions. Asn30 ^{sc} coordinates Arg105 ^J . Arg31 ^{sc} interacts with Asp136 ^J .
118	His32 ^{SC} packs against Tyr134 ^J . Besides these interactions with the J-chain, pIgR/SC also directly interacts
119	with IgA at several places (Fig. 4b). For example, $Arg34^{SC}$ in CDR1 forms a salt bridge with $Glu363^{Fc\alpha_{1B}}$, the
120	aliphatic side chain of which also packs on Tyr55 ^{SC} in CDR2. The main chain carbonyl of Cys46 ^{SC} forms a
121	hydrogen bond with Asn362 ^{Fcα1B} . Glu53 ^{SC} interacts with Arg346 ^{Fcα1A} . Gly54 ^{SC} is covered by Phe345 ^{Fcα1A} and
122	Thr408 $^{Fc\alpha_{1A}}$. Arg99 ^{SC} and Leu101 ^{SC} in CDR3 encloses Tyr472 $^{Fc\alpha_{2B}}$, the terminal residue of Fc α_{2B} , together
123	with Arg105 ^J (Fig. 4a). Two SC mutants, V29N/R31S and R99N/L101T, which display greatly reduced
124	interactions with the Fc μ -J complex ¹⁷ , also failed to bind Fc α -J (Fig. 4c).
125	The interaction between dIgA and pIgR/SC also uniquely involves the D5 domain of pIgR/SC, and a
126	disulfide bond is formed between Cys468 ^{SC} and Cys311 in the C α 2 domain IgA ²³ . Indeed, although in the
127	two determined structures of IgA ^{29,30} , Cys311 is present in a hydrophobic pocket and not exposed,
128	Cys311 ^{$Fc\alpha^{2B}$} flips out in the Fc α -J-SC complex and is located in close proximity to Cys468 ^{SC} (Fig. 4d). A
129	disulfide bridge can be readily formed between them. Nevertheless, mutation of C468 ^{SC} only slightly
130	decreased the binding between Fca-J and SC in solution (Fig. 4c). This is consistent with previous analyses
131	showing that the initial and primary association of dIgA with pIgR is mediated by interactions at the pIgR-
132	D1 domain. Disulfide formation between dIgA and Cys468 ^{SC} is a late event during transcytosis, and is likely
133	facilitated by the protein disulfide isomerases in secretory vesicles ³¹ . The main function of this disulfide
134	bond is to increase the stability of SIgA in the harsh environment of mucosal surfaces and external fluids.
135	

136 Interaction between SC and *S. pneumoniae* SpsA

137	SpsA comprises a C-terminal phosphorylcholine-binding domain that interacts with pneumococcal
138	cell wall to function in bacterial colonization, and an N-terminal domain (NTD) that recruits host proteins
139	including pIgR/SC ^{15,32} . SpsA ^{NTD} contains repeats of the leucine zipper motifs termed R1 and R2, each
140	adopting a three-helix bundle structure ³³ . The YRNYPT hexapeptide motif involved in binding to pIgR/SC
141	is located in the loop between helices $\alpha 1$ and $\alpha 2$ in the R1 motif. To reveal the molecular mechanism
142	underlying the specific recognition of SIgA by SpsA, we reconstituted a Fc α -J-SC-SpsA ^{NTD} quadruple
143	complex and determined the cryo-EM structure at an overall resolution of 3.3 Å (Supplementary
144	information, Figs. S1 and S4, Table S1). The α 1- α 2 loop of SpsA ^{NTD} , especially the YRNYPT hexapeptide
145	motif, displays high-quality densities and can be clearly resolved (Supplementary information, Fig. S4b).
146	SpsA ^{NTD} specifically interacts with the D3-D4 domains of human pIgR/SC ^{34,35} . In the cryo-EM
147	structure, the α 1- α 2 loop of SpsA ^{NTD} docks into a pocket at the D3-D4 junction (Fig. 5a), formed by the DE
148	loop of D3 and the C-C' strands of D4. Notably, this pocket is only present in the ligand-bound conformation
149	of SC ¹⁷ . Tyr198, the first residue in the YRNYPT motif, forms a hydrogen bond with Tyr365 ^{SC} (Fig. 5b).
150	Arg199 packs on Trp386 ^{SC} , and form a salt bridge with Asp382 ^{SC} . Asn200 forms a hydrogen bond with
151	Arg376 ^{SC} . Tyr201 packs on Pro283 ^{SC} . Pro202 is surrounded by hydrophobic residues including Tyr365 ^{SC} ,
152	Cys367 ^{SC} , Cys377 ^{SC} , Leu379 ^{SC} , and Leu424 ^{SC} . Substitution of Tyr201 with an Asp or Pro202 with a Glu
153	abolished the binding of SpsA to SIgA ³⁶ . Thr203 interacts with Asn282 ^{SC} . Notably, most of the SC residues
154	described here are not conserved in pIgR/SC from other species (Supplementary information, Fig. S5),
155	explaining the fact that SpsA only binds to human SIgA and pIgR/SC ³⁶ . Besides the interactions mediated
156	by residues in the YRNYPT motif, Tyr206 forms a hydrogen bond with the main chain carbonyl group of
157	Pro283 ^{SC} , and Arg265 in helix α 3 appears to hydrogen bond with the main chain carbonyl of Asp285 ^{SC} (Fig.
158	5b). These interactions further strengthen the binding between SpsA and SC.

159

160 Discussion

161	SIgA is of paramount importance to mucosal immunity. In adults, the daily synthesis of IgA is
162	greater than all other types of antibody combined, and most of these IgA molecules are present in mucosal
163	secretions in the form of dimeric SIgA. Despite the long history of SIgA research, its structure has remained
164	elusive until only recently. During the preparation of this manuscript, the cryo-EM structures of SIgA have
165	been published by Genentech ³⁷ . Our independent work reveals an architecture very similar to the dimeric
166	SIgA core reported in this study, corroborating the reliability of these structures. IgA can induce immune
167	signaling by binding to the IgA-specific receptor Fc α RI/CD89 ^{38,39} . It is not entirely clear whether
168	monomeric IgA and SIgA can elicit similar immune responses. Crystal structure study reveals a 2:1
169	Fc α RI:Fc α complex ²⁹ (Fig. 6a). In secretory IgA, when the J-chain is present, only one side of the Fc α RI-
170	binding site would be exposed in each Fca (Fig. 6b). The other side is occupied by the J-chain and not
171	available for binding. From a structural point of view, there is no apparent reason to think that SIgA would
172	not bind to $Fc\alpha RI$; nevertheless, it would have to bind membrane-bound $Fc\alpha RI$ molecules in a different
173	arrangement. Whether this altered mode of binding may account for the different immune responses elicited
174	by monomeric IgA and SIgA remains to be investigated ⁴⁰ . Recently, human Fc receptor-like 3 (FCRL3) has
175	been identified as a SIgA-specific receptor ⁴¹ . It is likely that the J-chain and SC are involved in the
176	interaction between SIgA and FCRL3, thereby contributing to the signaling function of SIgA.
177	S. pneumoniae is an important human pathogen. SpsA/CbpA/PspC is a major adhesin of S.
178	pneumoniae and plays a role during its infection. Despite the fact that the DNA region encoding SpsA is
179	highly polymorphic, the YRNYPT hexapeptide involved in binding to pIgR/SC is highly conserved, present
180	in one or two copies in more than 70% strains of <i>S. pneumoniae</i> ^{15,42} . In tissue culture models, SpsA-deficient

181	<i>S. pneumoniae</i> showed greatly reduced ability to adhere to, and abolished activity to invade human cells ^{16,32} .
182	Notably, SpsA evolves to bind to human pIgR/SC specifically, since it does not interact with SIgA and SC
183	from common laboratory animals including mouse, rat, rabbit, and guinea pig ³⁶ . Indeed, residues in pIgR/SC
184	that participate in the interaction with SpsA are not conserved in these animals (Supplementary information,
185	Fig. S5). These differences underscore the fact that <i>S. pneumoniae</i> is a human-specific pathogen and should
186	be taken into consideration for the study of S. pneumoniae pathogenesis. On the other hand, the unique
187	property of SpsA to bind human SC with high selectivity and affinity may allow the development of

188 recombinant SpsA protein as a tool for efficient isolation and purification of human SIgA and SIgM.

189 Materials and Methods

190 Protein expression and purification

191 The DNA fragment encoding IgA1-Fc (residues 241-472) was cloned into a modified pcDNA vector with a N-terminal IL-2 signal peptide followed by a twin-strep tag. The DNA fragments encoding the full-length J-192 chain and SC were previously described ¹⁷. HEK293F cells were cultured in SMM 293T-I medium (Sino 193 194 Biological Inc.) at 37 °C, with 5% CO₂ and 55% humidity. The two plasmids expressing IgA1-Fc and J-chain were co-transfected into the cells using polyethylenimine (Polysciences). Four days after transfection, the 195 196 conditioned media were collected by centrifugation, concentrated using a Hydrosart Ultrafilter (Sartorius), and 197 exchanged into the binding buffer (25 mM Tris-HCl, pH 7.4, 150 mM NaCl). The recombinant proteins were 198 isolated using Ni-NTA affinity purification and eluted with the binding buffer supplemented with 500 mM imidazole. The Fc α -J complex was further purified using a Superdex 200 increase column (GE Healthcare) 199 200 and eluted using the binding buffer. SC was expressed and purified as previously described ¹⁷. To obtain the 201 Fcα-J-SC tripartite complex, purified Fcα-J and SC were mixed in an 1:2 molar ratio and incubated on ice for 202 1 h. The complex was then further purified on a Superdex 200 increase column and eluted using the binding 203 buffer.

The DNA fragment encoding SpsA^{NTD} (residues 38-324) was synthesized by Synbio Technologies and cloned into a modified pQlink vector with a N-terminal 8×His tag. SpsA^{NTD} was expressed in BL21(DE3)pLysS *E. coli*. The *E. coli* culture was grown in the Luria-Bertani medium at 37 °C to an OD₆₀₀ of 0.8, and then induced with 0.5 mM isopropyl β -D-1-thiogalactopyranoside at 18 °C overnight for protein expression. The cells were collected by centrifugation, resuspended in the lysis buffer (50 mM Tris-HCl, pH 8.0, 300 mM NaCl, 1 mM phenylmethylsulfonyl fluoride), and then disrupted by sonication. The insoluble debris was removed by centrifugation. The recombinant protein was isolated using Ni-NTA affinity

211	purification following standard procedure and eluted with 50 mM Tris-HCl, pH 8.0, 300 mM NaCl, and 500
212	mM imidazole. SpsA ^{NTD} was then further purified by gel filtration chromatography using a Superdex 200
213	increase column (GE Healthcare) and eluted using the binding buffer. To obtain the $Fc\alpha$ -J-SC-SpsA ^{NTD}
214	quadruple complex, purified Fc α -J-SC and SpsA ^{NTD} were mixed in an 1:2 molar ratio and incubated on ice for
215	1 h. The complex was then purified again on a Superdex 200 increase column and eluted using the binding
216	buffer.
217	
218	Negative-staining and cryo-electron microscopy
219	The samples for EM study were prepared as previously described ¹⁷ . All EM grids were evacuated for 2
220	minutes and glow-discharged for 30 seconds using a plasma cleaner (Harrick PDC-32G-2). For the negative-
221	staining study, four-microliter aliquots of the Fca-J-SC complex at 0.03 mg/ml were applied to glow-
222	discharged carbon-coated copper grids (Zhong Jing Ke Yi, Beijing). After ~40 s, excessive liquid was removed
223	using a filter paper (Whatman No. 1). The grid was then immediately stained using 2% uranyl acetate for 10 s
224	and air dried. The grids were examined on a Tecnai G2 20 Twin electron microscope (FEI) operated at 120
225	kV. Images were recorded using a 4k \times 4k CCD camera (Eagle, FEI). The Fc α -J-SC-SpsA ^{NTD} sample was
226	stained and examined similarly.
227	To prepare the sample for cryo-EM analyses, four-microliter aliquots of Fc α -J-SC (0.3 mg/ml) or
228	Fcα-J-SC-SpsA ^{NTD} (0.2 mg/ml) were applied to glow-discharged holy-carbon gold grids (Quantifoil,
229	R1.2/1.3), blotted with filter paper at 4 °C and 100% humidity, and plunged into the liquid ethane using a
230	Vitrobot Mark IV (FEI). Grids screening was performed using a Talos Arctica microscope equipped with
231	Ceta camera (FEI). Data collection was carried out using a Titan Krios electron microscope (FEI) operated at

232 300 kV. Movies were recorded on a K2 Summit direct electron detector (Gatan) in a super resolution mode

233	using the SerialEM software ⁴³ . A nominal magnification of 165,000X was used, and the exposure rate was
234	11.668 electrons per $Å^2$ per second. The slit width of the energy filter was set to 20 eV. The defocus range
235	was set from –0.8 to –1.6 μ m. The micrographs were dose-fractioned into 32 frames with a total exposure
236	time of 5.12 s and a total electron exposure of 60 electrons per Å ² . Statistics for data collection are
237	summarized in Supplementary information, Table S1.
238	
239	Imaging processing
240	For 3D reconstruction of the Fc α -J-SC complex, a total of 16,264 movie stacks were recorded. Raw
241	movies frames were aligned and averaged into motion-corrected summed images with a pixel size of 0.828 Å
242	by MotionCor2 ⁴⁴ . The contrast transfer function (CTF) parameters of each motion-corrected image were
243	estimated by the Gctf program (v1.06) 45 . Relion (v3.07) was used for all the following data processing 46 .
244	Manual screening was performed to remove low-quality images. A set of 475 particles were manually picked
245	and subjected to 2D classification to generate templates for automatic particle picking. A total of 6,875,153
246	particles were then auto-picked, which were subjected to another round of 2D classification, resulting in
247	5,051,275 particles that were kept for the subsequent 3D classifications. Initial model was generated using
248	Relion and used as a reference for 3D classification. Three of the six classes (665,589 particles) from the
249	final round of 3D classification were selected and combined for refinement, resulting in a map with a 3.23 \AA
250	overall resolution after mask-based post-processing. Finally, Bayesian Polishing and CTF Refinement were
251	applied, which yielded a density map at a resolution of 3.15 Å, based on the gold-standard FSC 0.143
252	criteria. The local resolution map was analyzed using ResMap ⁴⁷ and displayed using UCSF Chimera ⁴⁸ .
253	Similar data processing strategies were used for the Fca-J-SC-SpsA complex. The workflows of data
254	processing are illustrated in Supplementary information, Figure S1.

255

256 Model building and structure refinement

257	The structure of Fc α (PDB ID: 10W0), as well as the structures of the J-chain and SC from the Fc μ -
258	J-SC complex (PDB ID: 6KXS), was docked into the EM map using Phenix ⁴⁹ and then manually adjusted
259	using Coot ⁵⁰ . The β 5- β 6 hairpin of the J-chain, which is disordered in the Fcµ-J-SC structure, was built de
260	novo. The SpsA ^{NTD} structure was also built de novo, using the previously determined solution structure of
261	the R2 domain (PDB ID: 1W9R) as a reference. Residues in helices $\alpha 1-\alpha 2$ of SpsA ^{NTD} can be
262	unambiguously assigned. The amino acid registrations in helix α 3 are not entirely reliable, since this helix is
263	only loosely attached to SC and displays poor densities due to structural flexibility. Refinement was
264	performed using the real-space refinement in Phenix. Figures were prepared with Pymol (Schrödinger) and
265	UCSF Chimera.
266	
267	StrepTactin pull-down assay
268	WT and mutant SC proteins were purified using the Ni-NTA affinity method as previously described ¹⁷ .
269	For the pull-down experiments, they were first incubated with purified Fc α -J complex on ice for 1 h. The
270	mixture was then incubated with the StrepTactin beads (Smart Lifesciences) in the binding buffer at 4 °C for
271	another hour. A twin-strep tag is present on $Fc\alpha$. The beads were spun down and then washed three times with
272	the binding buffer. The bound proteins were eluted off the beads using the binding buffer supplemented with
273	10 mM desthiobiotin. The results were analyzed by SDS-PAGE and visualized by Coomassie staining.
274	

275 Acknowledgments

276	We thank the Core Facilities at the School of Life Sciences, Peking University for help with negative-
277	staining EM; the Cryo-EM Platform of Peking University for help with data collection; the High-
278	performance Computing Platform of Peking University for help with computation; the National Center for
279	Protein Sciences at Peking University for assistance with Amersham Imager; and Guilan Li for help with
280	cDNA library. The work was supported by the National Key Research and Development Program of China
281	(2017YFA0505200, 2016YFC0906000 to J.X.; 2019YFA0508904 to N.G.), the National Science
282	Foundation of China (31570735, 31822014 to J.X.; 31725007, 31630087 to N.G.), the Qidong-SLS
283	Innovation Fund to J.X. and N.G.; and the Clinical Medicine Plus X Project of Peking University to J.X.
284	
285	Author contributions: Y.W. and Y.L. performed protein purification and biochemical experiments. Y.W.
286	and G.W. prepared the cryo-EM sample and collected data. G.W. processed the cryo-EM data, under the
287	supervision of N.G. J.X. built the structural model and wrote the manuscript, with inputs from all authors.
288	
289	Conflict of Interests: The authors declare no competing financial interests.
290	
291	Data availability: The cryo-EM maps and atomic coordinates of the Fc α -J-SC and Fc α -J-SC-SpsA
292	complexes will be deposited in the EMDB and PDB, respectively.
293	

294 Reference:

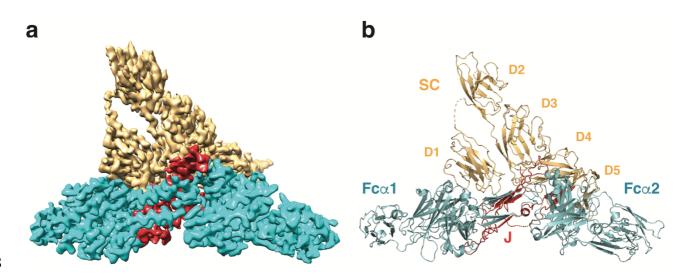
- 295 1 Chodirker, W. B. & Tomasi, T. B., Jr. Gamma-Globulins: Quantitative Relationships in Human
- 296 Serum and Nonvascular Fluids. *Science* **142**, 1080-1081, doi:10.1126/science.142.3595.1080 (1963).
- 297 2 Halpern, M. S. & Koshland, M. E. Noval subunit in secretory IgA. *Nature* 228, 1276-1278,
- **298** doi:10.1038/2281276a0 (1970).
- 299 3 Mestecky, J., Zikan, J. & Butler, W. T. Immunoglobulin M and secretory immunoglobulin A:
- presence of a common polypeptide chain different from light chains. *Science* **171**, 1163-1165,
- **301** doi:10.1126/science.171.3976.1163 (1971).
- 302 4 Koshland, M. E. The coming of age of the immunoglobulin J chain. *Annu Rev Immunol* **3**, 425-453,
- **303** doi:10.1146/annurev.iy.03.040185.002233 (1985).
- Tomasi, T. B. The discovery of secretory IgA and the mucosal immune system. *Immunol Today* 13,
 416-418, doi:10.1016/0167-5699(92)90093-M (1992).
- 306 6 Woof, J. M. & Mestecky, J. Mucosal immunoglobulins. *Immunol Rev* 206, 64-82,
- **307** doi:10.1111/j.0105-2896.2005.00290.x (2005).
- 308 7 Mostov, K. E., Kraehenbuhl, J. P. & Blobel, G. Receptor-mediated transcellular transport of
- immunoglobulin: synthesis of secretory component as multiple and larger transmembrane forms.

310 *Proc Natl Acad Sci U S A* **77**, 7257-7261, doi:10.1073/pnas.77.12.7257 (1980).

- 8 Brandtzaeg, P. & Prydz, H. Direct evidence for an integrated function of J chain and secretory
- 312 component in epithelial transport of immunoglobulins. *Nature* **311**, 71-73, doi:10.1038/311071a0

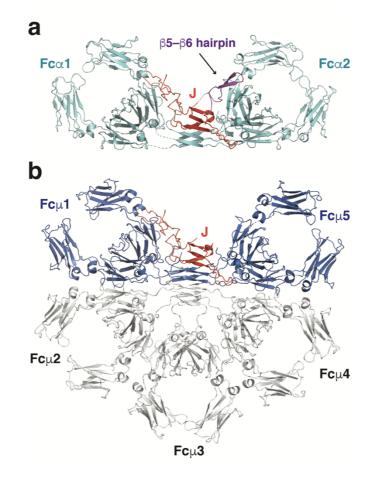
313 (1984).

- 314 9 Norderhaug, I. N., Johansen, F. E., Schjerven, H. & Brandtzaeg, P. Regulation of the formation and
- external transport of secretory immunoglobulins. *Crit Rev Immunol* **19**, 481-508 (1999).


- 316 10 Kaetzel, C. S. The polymeric immunoglobulin receptor: bridging innate and adaptive immune
- 317 responses at mucosal surfaces. *Immunol Rev* 206, 83-99, doi:10.1111/j.0105-2896.2005.00278.x
 318 (2005).
- 319 11 Pabst, O., Cerovic, V. & Hornef, M. Secretory IgA in the Coordination of Establishment and
- 320 Maintenance of the Microbiota. *Trends Immunol* 37, 287-296, doi:10.1016/j.it.2016.03.002 (2016).
- 321 12 Macpherson, A. J., Yilmaz, B., Limenitakis, J. P. & Ganal-Vonarburg, S. C. IgA Function in
- 322 Relation to the Intestinal Microbiota. Annu Rev Immunol 36, 359-381, doi:10.1146/annurev-
- **323** immunol-042617-053238 (2018).
- Weiser, J. N., Ferreira, D. M. & Paton, J. C. Streptococcus pneumoniae: transmission, colonization
 and invasion. *Nat Rev Microbiol* 16, 355-367, doi:10.1038/s41579-018-0001-8 (2018).
- 326 14 Brooks, L. R. K. & Mias, G. I. Streptococcus pneumoniae's Virulence and Host Immunity: Aging,
- **327** Diagnostics, and Prevention. *Front Immunol* **9**, 1366, doi:10.3389/fimmu.2018.01366 (2018).
- 328 15 Hammerschmidt, S., Talay, S. R., Brandtzaeg, P. & Chhatwal, G. S. SpsA, a novel pneumococcal
- 329 surface protein with specific binding to secretory immunoglobulin A and secretory component. *Mol*
- 330 *Microbiol* 25, 1113-1124, doi:10.1046/j.1365-2958.1997.5391899.x (1997).
- 331 16 Zhang, J. R. *et al.* The polymeric immunoglobulin receptor translocates pneumococci across human
 332 nasopharyngeal epithelial cells. *Cell* 102, 827-837, doi:10.1016/s0092-8674(00)00071-4 (2000).
- 333 17 Li, Y. *et al.* Structural insights into immunoglobulin M. *Science*, doi:10.1126/science.aaz5425
- **334** (2020).
- 33518Dourmashkin, R. R., Virella, G. & Parkhouse, R. M. Electron microscopy of human and mouse
- 336 myeloma serum IgA. *J Mol Biol* 56, 207-208, doi:10.1016/0022-2836(71)90097-0 (1971).

- 337 19 Bonner, A., Furtado, P. B., Almogren, A., Kerr, M. A. & Perkins, S. J. Implications of the near-
- 338 planar solution structure of human myeloma dimeric IgA1 for mucosal immunity and IgA
- 339 nephropathy. *J Immunol* **180**, 1008-1018, doi:10.4049/jimmunol.180.2.1008 (2008).
- 340 20 Bastian, A., Kratzin, H., Eckart, K. & Hilschmann, N. Intra- and interchain disulfide bridges of the
- human J chain in secretory immunoglobulin A. *Biol Chem Hoppe Seyler* **373**, 1255-1263,
- doi:10.1515/bchm3.1992.373.2.1255 (1992).
- 343 21 Frutiger, S., Hughes, G. J., Paquet, N., Luthy, R. & Jaton, J. C. Disulfide bond assignment in human
- J chain and its covalent pairing with immunoglobulin M. *Biochemistry* **31**, 12643-12647,
- doi:10.1021/bi00165a014 (1992).
- 346 22 Frutiger, S., Hughes, G. J., Hanly, W. C., Kingzette, M. & Jaton, J. C. The amino-terminal domain of
- 347 rabbit secretory component is responsible for noncovalent binding to immunoglobulin A dimers. J
- 348 *Biol Chem* 261, 16673-16681 (1986).
- 349 23 Fallgreen-Gebauer, E. *et al.* The covalent linkage of secretory component to IgA. Structure of sIgA.
- **350** *Biol Chem Hoppe Seyler* **374**, 1023-1028 (1993).
- 24 Coyne, R. S., Siebrecht, M., Peitsch, M. C. & Casanova, J. E. Mutational analysis of polymeric
- 352 immunoglobulin receptor/ligand interactions. Evidence for the involvement of multiple
- 353 complementarity determining region (CDR)-like loops in receptor domain I. *J Biol Chem* 269,
- **354 31620-31625 (1994)**.
- 355 25 Hexham, J. M. *et al.* A human immunoglobulin (Ig)A calpha3 domain motif directs polymeric Ig
- 356 receptor-mediated secretion. *J Exp Med* **189**, 747-752, doi:10.1084/jem.189.4.747 (1999).

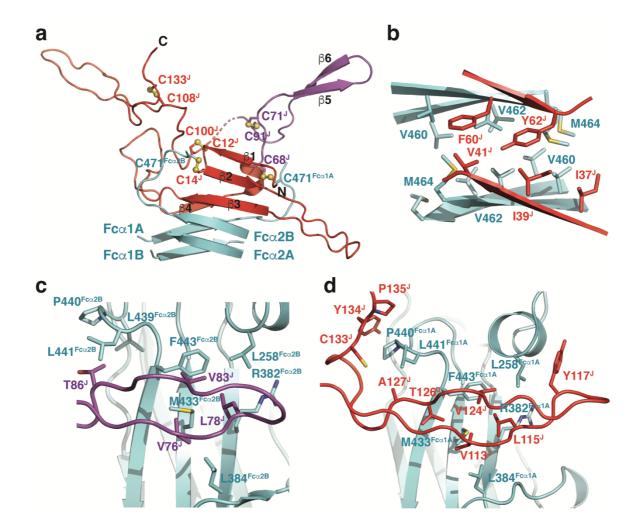
- 357 26 Hamburger, A. E., West, A. P., Jr. & Bjorkman, P. J. Crystal structure of a polymeric
- immunoglobulin binding fragment of the human polymeric immunoglobulin receptor. *Structure* 12,
- 359 1925-1935, doi:10.1016/j.str.2004.09.006 (2004).
- 27 Lewis, M. J., Pleass, R. J., Batten, M. R., Atkin, J. D. & Woof, J. M. Structural requirements for the
- interaction of human IgA with the human polymeric Ig receptor. *J Immunol* **175**, 6694-6701,
- doi:10.4049/jimmunol.175.10.6694 (2005).
- 363 28 Stadtmueller, B. M. *et al.* The structure and dynamics of secretory component and its interactions
- 364 with polymeric immunoglobulins. *Elife* 5, doi:10.7554/eLife.10640 (2016).
- 36529Herr, A. B., Ballister, E. R. & Bjorkman, P. J. Insights into IgA-mediated immune responses from
- the crystal structures of human FcalphaRI and its complex with IgA1-Fc. *Nature* **423**, 614-620,
- doi:10.1038/nature01685 (2003).
- 368 30 Ramsland, P. A. et al. Structural basis for evasion of IgA immunity by Staphylococcus aureus
- revealed in the complex of SSL7 with Fc of human IgA1. Proc Natl Acad Sci US A 104, 15051-
- **370** 15056, doi:10.1073/pnas.0706028104 (2007).
- 371 31 Chintalacharuvu, K. R. et al. Disulfide bond formation between dimeric immunoglobulin A and the
- polymeric immunoglobulin receptor during hepatic transcytosis. *Hepatology* **19**, 162-173 (1994).
- 373 32 Rosenow, C. *et al.* Contribution of novel choline-binding proteins to adherence, colonization and
- 374 immunogenicity of Streptococcus pneumoniae. *Mol Microbiol* 25, 819-829, doi:10.1111/j.1365-
- **375** 2958.1997.mmi494.x (1997).
- 376 33 Luo, R. *et al.* Solution structure of choline binding protein A, the major adhesin of Streptococcus
 377 pneumoniae. *EMBO J* 24, 34-43, doi:10.1038/sj.emboj.7600490 (2005).


- 378 34 Lu, L., Lamm, M. E., Li, H., Corthesy, B. & Zhang, J. R. The human polymeric immunoglobulin
- 379 receptor binds to Streptococcus pneumoniae via domains 3 and 4. *J Biol Chem* 278, 48178-48187,
 380 doi:10.1074/jbc.M306906200 (2003).
- 381 35 Elm, C. et al. Ectodomains 3 and 4 of human polymeric Immunoglobulin receptor (hpIgR) mediate
- invasion of Streptococcus pneumoniae into the epithelium. *J Biol Chem* **279**, 6296-6304,
- 383 doi:10.1074/jbc.M310528200 (2004).
- 384 36 Hammerschmidt, S., Tillig, M. P., Wolff, S., Vaerman, J. P. & Chhatwal, G. S. Species-specific
- 385 binding of human secretory component to SpsA protein of Streptococcus pneumoniae via a
- 386 hexapeptide motif. *Mol Microbiol* **36**, 726-736, doi:10.1046/j.1365-2958.2000.01897.x (2000).
- 387 37 Kumar, N., Arthur, C. P., Ciferri, C. & Matsumoto, M. L. Structure of the secretory immunoglobulin
 388 A core. *Science*, doi:10.1126/science.aaz5807 (2020).
- 389 38 van Egmond, M. et al. IgA and the IgA Fc receptor. Trends Immunol 22, 205-211,
- **390** doi:10.1016/s1471-4906(01)01873-7 (2001).
- 391 39 Monteiro, R. C. & Van De Winkel, J. G. IgA Fc receptors. Annu Rev Immunol 21, 177-204,
- **392** doi:10.1146/annurev.immunol.21.120601.141011 (2003).
- **393** 40 van Egmond, M. *et al.* FcalphaRI-positive liver Kupffer cells: reappraisal of the function of
- 394 immunoglobulin A in immunity. *Nat Med* 6, 680-685, doi:10.1038/76261 (2000).
- 395 41 Agarwal, S. *et al.* Human Fc Receptor-like 3 Inhibits Regulatory T Cell Function and Binds
- **396** Secretory IgA. *Cell Rep* **30**, 1292-1299 e1293, doi:10.1016/j.celrep.2019.12.099 (2020).
- 397 42 Iannelli, F., Oggioni, M. R. & Pozzi, G. Allelic variation in the highly polymorphic locus pspC of
- **398** Streptococcus pneumoniae. *Gene* **284**, 63-71, doi:10.1016/s0378-1119(01)00896-4 (2002).

- 399 43 Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen
- 400 movements. *J Struct Biol* **152**, 36-51, doi:10.1016/j.jsb.2005.07.007 (2005).
- 401 44 Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-
- 402 electron microscopy. *Nat Methods* 14, 331-332, doi:10.1038/nmeth.4193 (2017).
- 403 45 Zhang, K. Gctf: Real-time CTF determination and correction. J Struct Biol 193, 1-12,
- 404 doi:10.1016/j.jsb.2015.11.003 (2016).
- 405 46 Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in
- 406 RELION-3. *Elife* 7, doi:10.7554/eLife.42166 (2018).
- 407 47 Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density
- 408 maps. Nat Methods 11, 63-65, doi:10.1038/nmeth.2727 (2014).
- 409 48 Pettersen, E. F. *et al.* UCSF Chimera—A Visualization System for Exploratory Research and
- 410 Analysis. *J Comput Chem* **25**, 1605-1612, doi:10.1002/jcc.20084 (2004).
- 411 49 Adams, P. D. et al. PHENIX: A comprehensive Python-based system for macromolecular structure
- 412 solution. *Acta Crystallographica Section D: Biological Crystallography* **66**, 213-221,
- 413 doi:10.1107/S0907444909052925 (2010).
- 414 50 Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta
- 415 *Crystallographica Section D: Biological Crystallography* **66**, 486-501,
- 416 doi:10.1107/S0907444910007493 (2010).

418

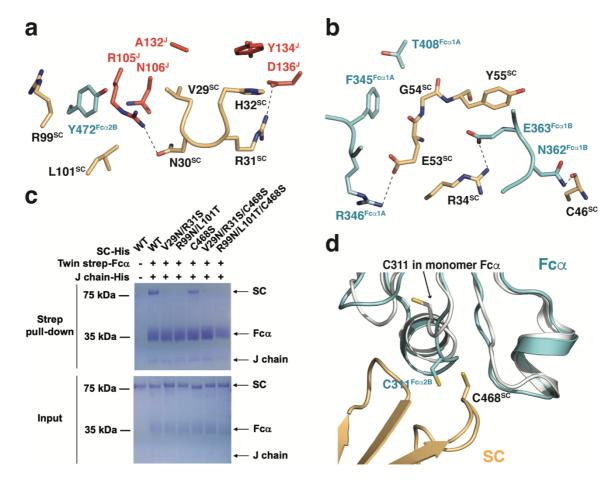
- 419 Figure 1. Cryo-EM structure of the human Fcα-J-SC complex.
- 420 a. The cryo-EM density map of Fc α -J-SC reconstructed at 3.15 Å resolution. The regions corresponding to
- 421 Fcα, J-chain, and SC are shown in cyan, red, and gold, respectively. The same color scheme is used in all
- 422 figures unless otherwise indicated.
- 423 **b**. The structural model of Fc α -J-SC. The five immunoglobulin-like domains in SC are indicated as D1-D5.



425

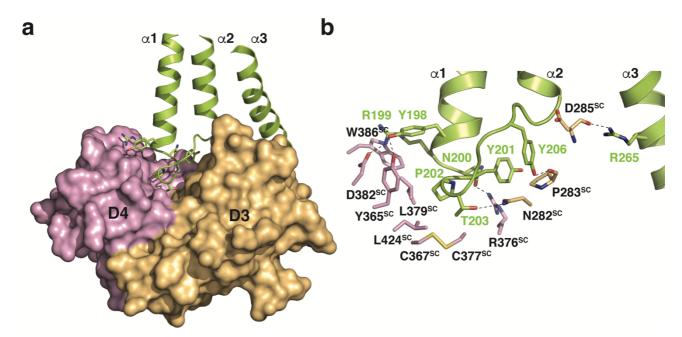
426

427 Figure 2. Structure of dIgA core and its comparison with pIgM.


- 428 **a.** Overall structure of the dimeric Fc α in complex with the J-chain. The β 5- β 6 hairpin of the J-chain that is
- 429 disordered in the Fcµ-J structure is highlighted in magenta.
- 430 b. Structure of the pentameric Fcµ in complex with the J-chain. Fcµ1 and Fcµ5 are shown in blue, whereas
- 431 Fc μ 2-4 are shown in white.

433

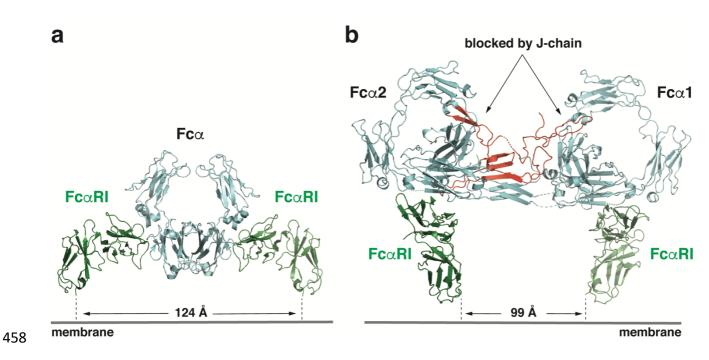
434 Figure 3. The interactions between the J-chain and Fcα.


- 435 a. Overall structure of the J-chain. The sulfur atoms in the Cys residues that form disulfide bonds are
- 436 depicted in orange spheres. The β -strands in the J-chain and Fc α tailpieces are indicated.
- 437 **b**. Interactions between two J-chain strands and the Fc α tailpieces.
- 438 c. Interactions between the β 5- β 6 hairpin of the J-chain and the C α 2-C α 3 junction of Fc α 2B.
- **439 d**. Interactions between the C-terminal hairpin of the J-chain and the C α 2-C α 3 junction of Fc α 1A.

441

442 Figure 4. Interaction between dIgA and SC.

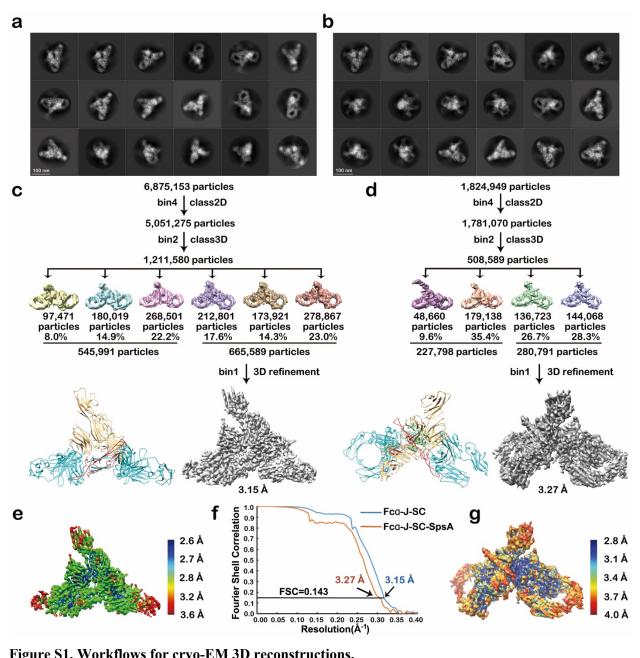
- 443 a. Interactions between Fcα-J and SC at the CDR1 and CDR3 regions. Polar interactions are indicated by
- 444 dashed lines.
- 445 **b**. Direct interactions between Fc α and SC.
- 446 c. SC mutants display reduced interactions with Fc α -J.
- 447 d. The structure of the Fcα monomer (PDB ID: 2QEJ), shown in white, is overlaid onto Fcα2B in the Fcα-J-
- 448 SC structure. Compared to Cys311 in the Fc α monomer, Cys311^{Fc α 2B} flips out and can readily form a
- disulfide bond with Cys468^{SC}.


452 Figure 5. Interaction between SC and SpsA.

453 a. Overall structure of the D3-D4 domains of SC in complex SpsA^{NTD}. The D3-D4 domains of SC are shown

454 in a surface representation, with D3 and D4 in gold and purple, respectively. SpsA^{NTD} is shown in lemon, and

455 the side chains of the YRNYPT hexapeptide are depicted.


b. Detailed interactions between SC and SpsA.

459

460 Figure 6. A hypothetical model of the dIgA-FcαRI complex.

- 461 a. Crystal structure of the 2:1 FcαRI:Fcα complex (PDB ID: 10W0). FcαRI is shown in green. The distance
- 462 between the C-terminal ends of the two $Fc\alpha RI$ molecules is indicated.
- 463 b. In the Fc α -J structure, only one side of the Fc α RI-binding site would be available. The other side is
- 464 occupied by the J-chain and therefore not exposed for interacting with $Fc\alpha RI$.

Figure S1. Workflows for cryo-EM 3D reconstructions.

- **a**. Representative 2D classes for the $Fc\alpha$ -J-SC complex.
- **b**. Representative 2D classes for the Fc α -J-SC-SpsA complex.
- c. Flow chart of data processing for the Fc α -J-SC complex.
- d. Flow chart of data processing for the Fc α -J-SC-SpsA complex.
- e. Local resolution estimation of the final map of Fc α -J-SC analyzed by ResMap.
- f. Gold standard Fourier shell correlation (FSC) curves with estimated resolutions.
- g. Local resolution estimation of the final map of $Fc\alpha$ -J-SC-SpsA.

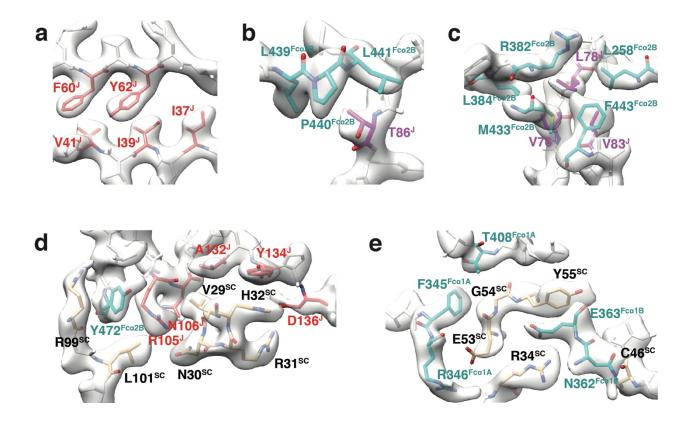
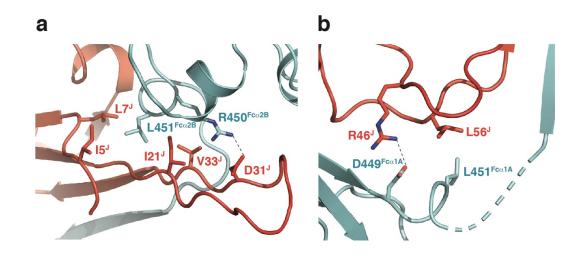



Figure S2. Density maps of selected regions in Fcα-J-SC.

Figure S3. Interactions between the J-chain and Fca.

a. Interactions between the J-chain β 2- β 3 loop and the Fc α 2B C α 3-tailpiece junction.

b. Interactions between the J-chain β 3- β 4 loop and the Fc α 1A C α 3-tailpiece junction.

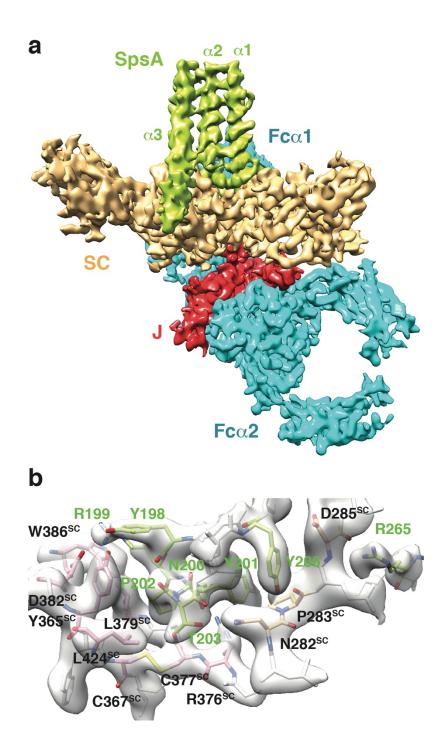
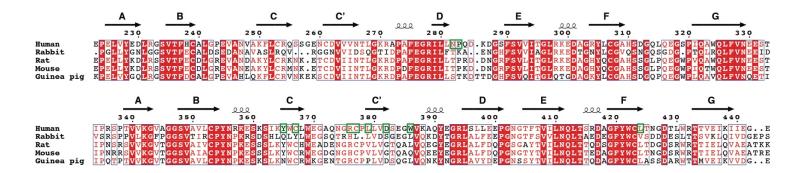



Figure S4. Cryo-EM structure of the Fcα-J-SC-SpsA complex.

- **a.** The cryo-EM density map of $Fc\alpha$ -J-SC-SpsA.
- **b.** Density maps of the SC-SpsA interface.

Figure S5. Sequence alignment of the D3-D4 domains of pIgR/SC from human and common laboratory animals.

Residues in human pIgR/SC that are involved in binding to SpsA are highlighted in green boxes.

	Fca-J-SC	Fcα-J-SC-SpsA
Data collection and processing		
Voltage (kV)	300	300
Microscope	FEI Titan Krios G3	FEI Titan Krios G3
Camera	K2 Summit (Gatan)	K2 Summit (Gatan)
Magnification (calibrated)	165,000X	165,000X
Electron exposure $(e^{-}/Å^2)$	59.74	59.74
Exposure rate $(e^{-}/Å^2/s)$	11.668	11.668
Number of frames collected per micrograph	32	32
Energy filter slit width (eV)	20	20
Automation software	SerialEM	SerialEM
Defocus range (µm)	-0.8 to -1.6	-0.8 to -1.6
Pixel size (Å)	0.828	0.828
Micrographs used	13,929	7,177
Estimated accuracy of translation/rotations	0.816 pixels/1.723°	0.821 pixels/1.553°
Symmetry imposed	C1	C1
Initial particle images	6,875,153	1,824,949
Final particle images	665,589	280,791
Resolution at 0.143 FSC of masked reconstruction (Å)	3.15	3.27
Resolution at 0.5 FSC of masked reconstruction (Å)	3.52	3.76
Resolution range due to anisotropy (directional FSC $\pm 1\sigma$, Å)	2.9-3.2	3.0-3.7
Map sharpening B factor (Å ²)	-98	-85
Refinement		
Initial model used (PDB code)	10W0, 6KXS	10W0, 6KXS, 1W9R
Refinement package	Phenix (Real-space refinement at 3.15 Å)	Phenix (Real-space refinement at 3.27 Å)
Map-model CC		
CC_mask	0.84	0.81
CC_box	0.72	0.75
CC_peaks	0.69	0.68
CC_volume	0.80	0.78
Model composition		
Non-hydrogen atoms	11,802	12,299
Protein residues	1,535	1,595
<i>B</i> factors (Å ²)	54.86	40.76
R.m.s. deviations		
Bond lengths (Å)	0.006	0.014
Bond angles (°)	0.853	1.221
Validation		

Table S1. Cryo-EM data collection, processing and validation statistics

MolProbity score	2.51	2.88	
Clashscore	4.61	7.04	
Poor rotamers (%)	9.61	14.04	
Ramachandran plot			
Favored (%)	90.66	86.90	
Allowed (%)	9.34	13.04	
Disallowed (%)	0.00	0.06	
Cβ outliers (%)	0.00	0.00	
CaBLAM outliers (%)	5.87	7.43	