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Abstract. Two-sample summary data Mendelian randomisation is a popular method for assessing
causality in epidemiology, by using genetic variants as instrumental variables. If genes exert pleiotropic
effects on the outcome not entirely through the exposure of interest, this can lead to heterogeneous
and (potentially) biased estimates of causal effect. We investigate the use of Bayesian model aver-
aging to preferentially search the space of models with the highest posterior likelihood. We develop
a Metropolis-Hasting algorithm to perform the search using the recently developed Robust Adjusted
Profile Likelihood of Zhao et al as the basis for defining a posterior distribution that efficiently accounts
for pleiotropic and weak instrument bias. We demonstrate how our general modelling approach can be
extended from a standard one-parameter causal model to a two-parameter model, which allows a large
proportion of SNPs to violate the Instrument Strength Independent of Direct Effect assumption. We
use Monte Carlo simulations to illustrate our methods and compare it to several related approaches.
We finish by applying our approach in practice to investigate the causal role of cholesterol on the
development age-related macular degeneration.

Keywords: Two-sample summary data Mendelian randomization ·
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1 Introduction

The capacity of traditional observational epidemiology to reliably infer whether a health exposure causally
influences a disease rests on its ability to appropriately measure and adjust for factors which jointly predict
(or confound) the exposure-outcome relationship. Mendelian randomization (MR) [1] avoids bias from un-
measured confounding by using genetic variants as instrumental variables (IVs) [2]. For the approach to be
valid for testing causality, each specific IV must be robustly associated with the exposure (assumption IV1),
independent of any confounders of the exposure and outcome (IV2) and be independent of the outcome given
the exposure and the confounders (IV3), as illustrated by Figure 1a.

Two-sample summary data MR is a design that derives causal effect estimates with summary statistics
obtained from two separate samples - one supplying the Single Nucleotide Polymorphism (SNP)-exposure
associations and the other supplying the SNP-outcome associations [3–6] - a SNP being the most common
type of genetic variation in the genome. If the chosen SNPs are valid IVs, and the causal effect of a unit
increase inX on the mean value or risk of Y is approximately linear in the local region ofX predicted by these
variants [7] then a simple inverse-variance weighted (IVW) meta-analysis of SNP-specific causal estimates
provides an approximately unbiased estimate of this average causal effect. If sufficient heterogeneity exists
between the MR estimates across a set of variants, this suggests evidence for violation of the IV assumptions.
This could be due to assumption IV1 being only weakly satisfied by the genetic variants (i.e. weak instrument
bias) [8, 9]. It is however more problematic when the heterogeneity is caused by violations of assumptions
IV2 and IV3 [10, 7]. The latter violation is commonly known as "horizontal pleiotropy" [11], and hereafter
referred to as pleiotropy for simplicity. Pleiotropy does not necessarily lead to biased causal effect estimates
if it is balanced, in the sense that the average pleiotropic bias across SNPs is zero and the weight each SNP
receives in the analysis is also independent of its pleiotropic effect. This latter condition is referred to as the
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Instrument Strength Independent of Direct Effect (InSIDE) assumption [12, 13]. However, this assumption
is itself unverifiable.

Methods have been developed that are naturally robust to pleiotropy and InSIDE violation. For example,
the weighted median estimator [14] provides a consistent estimate if 50% of the SNPs are valid IVs (or not
pleiotropic). Similarly, mode-based estimation strategies focus on identifying the largest subset of variants
yielding a homogeneous causal estimate, and are consistent when this set is made up of valid IVs [15, 16].
These approaches do not make any assumptions about the nature of the pleiotropy for invalid SNPs - they
could violate InSIDE or not. Other approaches, such as MR-PRESSO [17] and Radial MR [8] attempt to
detect and remove SNPs that are deemed responsible for bias and heterogeneity in an MR-analysis, however
they assume the remaining SNPs satisfy InSIDE. Finally, the Robust Adjusted Profile Score (MR-RAPS)
[9] uses an adjusted profile likelihood, which penalizes outlying (and hence likely pleiotropic) SNPs using a
robust loss function.

In this paper we develop a method for pleiotropy robust MR analysis with two-sample summary data
using the general framework of Bayesian Model Averaging (BMA) [18]. We adapt this general approach to
the summary data setting where the SNPs are uncorrelated but potentially pleiotropic. Our approach uses
the profile likelihood of MR-RAPS [9] as a basis for efficiently modelling the summary data in the presence
of weak instrument bias and pleiotropy, but with the addition of an indicator function to denote whether an
individual SNP is included or disregarded in the model. We develop a Metropolis-Hastings BMA algorithm to
intelligently search the space models defined by all possible SNP subsets (i.e ≈ 2L in the case of L SNPs) in
order to decide which SNPs to include in the identified set of valid IVs within a given iteration of the markov
chain. The derived posterior distribution is therefore averaged across all selected SNP combinations. We call
our method BayEsian Set IDEntification Mendelian randomization (BESIDE-MR). BESIDE-MR aims to
find the largest set of variants that furnish consistent, homogeneous estimates of causal effect, but accounts
for model uncertainty, due to the selection of different instrument sets, which we will show is important for
preserving the coverage of resulting MR estimates. Our one parameter BESIDE-MR model is robust to a
small proportion of invalid SNPs, but is inadequate when a large proportion of SNPs are invalid. To address
this case we extend MR-BESIDE to a two parameter model.

In Section 2 we introduce the methodology behind our one parameter model and in Section 3 assess
its performance in Monte-Carlo simulations. In Section 4, we introduce and assess the performance of the
two-parameter model extension. In Section 5, we apply both approaches to investigate the causal role of high
density lipoprotein cholesterol (XL.HDL.C) on the risk of age related macular degeneration (AMD) using
data from the 2019 MR Data Challenge [19]. We conclude with a discussion and point to further research.

2 Method

2.1 Description of the general model

Suppose that we have data from an MR study consisting of N individuals, where for each subject k we
measure L independent genetic variants (Gk1 . . . GkL), an exposure (Xk) and an outcome (Yk). Uk represents
the shared residual error betweenX and Y due to confounding, which we wish to overcome using IV methods.
To estimate the average causal effect, we assume the following linear structural models [20] for U , X and Y
consistent with Figure 1b:

Uk|Gk =
L∑
j=1

ψjGkj + εUk ,

Xk|Uk, Gk =
L∑
j=1

δjGkj + κxUk + εXk ,

Yk|Xk, Uk, Gk =
L∑
j=1

υjGkj + βXk + κyUk + εYk ,

where εUk , ε
X
k and εYk are mean zero independent error terms for U , X and Y respectively. See Appendix A.1

for summary of assumption required for the estimation of the average causal effect. From these structural
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models we can derive the approximate reduced form models for the G-X and G-Y associations for SNP j :

Xk|Gkj ≈ (δj + κxψj)Gkj + ε′Xk , (1)

Yk|Gkj ≈
[
υj + κyψj + β(δj + κxψj)

]
Gkj + ε′Yk . (2)

We use ‘approximate’ here because the error terms ε′Xk and ε′Yk not strictly constant or mutually independent
- the jth residual error term in fact contains common contributions from all other genetic variants not equal
to j. This approximation is very accurate in most settings because the genetic variants combined make a
very small contribution to the total residual error in each model (e.g. typically of the order of 1-2%) and the
marginal coefficients are estimated from genome-wide association studies (GWAS) that usually have sample
size of hundreds of thousands ([21]). Under this assumption the following models can then be justified for
summary data estimates of the G-X (γ̂j) and G-Y (Γ̂j) associations gleaned from fitting (1) and (2):

γ̂j ∼ N(γj , σ
2
Xj), Γ̂j |αj , γj ∼ N(αj + βγj , σ

2
Y j), (3)

Here, αj = υj + κyψj , and γj = δj + κxψj . Under Model (16) it is assumed that the first study provides γ̂j
and standard errors σXj , and a second study, independent from the first, provides Γ̂j and standard errors
σY j . Both the standard errors are assumed to be fixed and known. As the two studies are independent, we
assume that the uncertainty in γ̂j is independent of the uncertainty in Γ̂j . Model (16) also implies that SNPs
are independent, independent SNPs can be found by performing linkage disequilibrium (LD) clumping in
publicly available tools such as PLINK [22] and MR-BASE [23]. The two-sample design implicitly assumes
that SNP j associations have identical associations in both studies as they are sampled from the same
population. See Appendix A for formalised and further justification of the underlying assumptions made to
estimate the average causal effect via two-sample approach.

U
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βδ

X

X

(a) General causal diagram

U

X YG
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βδ

υ

ψ

(b) Violations to IV assumptions

Fig. 1: Causal diagrams representing the hypothesized relationship between genetic instrument (G), exposure
(X), outcome (Y) and all unmeasured variables (U) which confound X and Y . β is the causal effect of X on Y.
(a) δ is the genetic effect on X. Dashed lines and crosses indicate violations of the standard IV assumptions
which can lead to bias. (b) Genetic instruments have a direct effect on Y (υ), a phenomenon known as
horizontal pleiotropy and a violation of IV3. Genetic instruments have a direct effect on U (ψ), violation of
IV2 and an example of horizontal pleiotropy that violates the InSIDE assumption.

The individual Wald ratio estimand for SNP j from Model (16) is then

βj =
Γj
γj

= β +
αj
γj

= β +
υj + κyψj
δj + κxψj

From this we see that to reduce the bias of βj of SNP j, γj , the instrument strength needs to be large.
And/or αj , the amount of pleiotropic effect, either from SNP’s direct effect on Y (υj) or through U (κyψj),
is close to zero. Under Model (16), invalid SNPs can be put into two classes:

– InSIDE respecting pleiotropy, υj 6= 0 but ψj = 0
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– InSIDE violating pleiotropy, υj 6= 0 and ψj 6= 0.

InSIDE violation occurs in the last case because instrument strength and pleiotropic effects are functionally
related due to a shared ψj component, so that the sample covariance Ĉov(αj , γj) 6= 0. For the case of
InSIDE respecting pleiotropy we are able to assume the sample covariance is approximately zero for a
sufficient number of instruments, since υj and δj are imagined to be themselves generated via independent
processes [7]. In Appendix B, we show, under the simplifying assumption that the SNP-outcome standard
errors are approximately constantand κx = κy = 1, when Γ̂j → Γj and γ̂j → γj as N →∞, the approximate
bias term for IVW estimator is,

E[ β̂IVW ] ≈
E
[∑L

j=1 Γ̂j γ̂j

]
E
[∑L

j=1 γ̂
2
j

] → β +
E
[∑L

j=1 αjγj

]
E
[∑L

j=1 γ
2
j

] = β +
Ĉov(αj , γj) + ᾱγ̄

V̂ ar(γj) + γ̄2︸ ︷︷ ︸
bias term

. (4)

If all SNPs are pleiotropic, but have mean zero (ᾱ=0) and satisfy the InSIDE assumption (Ĉov(αj , γj) =
0), then the standard IVW provides an unbiased estimate of β. MR-Egger regression is an extension of IVW
that can work under the InSIDE assumption even if ᾱ 6= 0, which is referred to as ‘directional’ pleiotropy.
It does this by estimating an intercept parameter in addition to the causal slope parameter. However, its
estimates are generally very imprecise and it is not invariant to allele recoding [24]. Lastly, it can not separate
directional pleiotropy satisfying InSIDE from balanced pleiotropy violating InSIDE, as the intercept reflects
the numerator of the bias term, which is a combination of both. This motivates the use of methods that can
attempt to detect and down-weight a small number of variants that may be responsible for either InSIDE
violation or directional pleiotropy so that, for the remainder of SNPs left, Model (16) holds with only InSIDE
respecting balanced pleiotropy. This approach we will initially pursue for BESIDE-MR, which also have been
taken by others [9, 17]. Another further advantage by not estimating an intercept term, BESIDE-MR will be
invariant to allele recoding, as opposed to MR-Egger.

2.2 Bayesian Model Averaging over the summary data model

We are interested in searching over the space of all possible models defined by each of the 2L subsets in
the entire summary data. Let I = (I1, . . . , IL) be the L-length indicator vector denoting whether SNP Gj
is included (Ij = 1) or not (Ij = 0) in the model. We want to ‘force’ our data to conform to Model (16)
with the additional assumption that αj ∼ N(0, τ2). The parameters of interest are then θ = (β, τ2, I) and
with data, D, that consists of γ̂j and Γ̂j , with their standard errors σXj and σY j respectively. Then the joint
posterior is

P (θ|D) ∝ P (D|θ)P (θ)

where P (D|θ) is the likelihood and P (θ) is user specified prior for each of the parameters. We use a random
walk Metropolis-Hastings (M-H) algorithm for updating the model parameter values, for the specific details
see Appendix C. For a given iteration of the markov chain, the selection of instruments is conditional on the
likelihood of the data and the given priors. After the markov chain has been sufficiently explored, we can
obtain posterior distributions for the model parameters and the posterior probability that each individual
SNP is valid. This method has been found in individual-level data to reduce bias from many weak instruments
[25, 26] and highly correlated instruments [27]. It has been previously shown that using a small number of
SNPs for two-sample MR can lead to large violations of the InSIDE assumption by chance (see Figure A.1 in
[7]). Small SNP numbers also make estimation of the pleiotropy variance very imprecise. Therefore, we have
restricted the M-H algorithm to explore models that have at least 5 instruments. Given that the BESIDE-
MR model is weak-instrument robust, it will almost always be possible to include a sufficient number of
instruments because it is not necessary to select only ‘genome-wide significant’ SNPs - a weaker selection
threshold can be used.

The profile score likelihood For P (D|θ), we use the profile log-likelihood score derived by [9].
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Specifically this is the likelihood for (β, τ2) given the data (γ̂, Γ̂ ) profiled over the parameters γ1, ..., γL .
After the incorporation of our indicator vector I, the log-likelihood is modified to

l(β, τ2, I|γ̂, Γ̂ ) ≈−
∑L
j=1 Ij

2
log(2π)

− 1

2

L∑
j=1

Ij

{
log(σ2

Y j + τ2) +

(
(Γ̂j − βγ̂j)2

β2σ2
Xj + σ2

Y j + τ2

)}
(5)

As shown by the derivation in Appendix D, this likelihood allows for heterogeneity due to pleiotropy
via τ2, and weak instruments, via σ2

Xj . If we consider that the existing set of instruments have a small τ2,
then the likelihood will increase if introducing a new instrument does not lead to a sufficiently large increase
the pleiotropy variance, in which case it may decrease. Hence, our BMA algorithm will naturally give more
weight to I-vectors that include large sets of instruments with homogeneous causal effect estimates. This
property is reminiscent of the ZEro Modal Pleiotropy Assumption (ZEMPA) [15] or the plurality rule that
defines the two-stage hard thresholding (TSHT) approach of Guo et al. [28]. However, the TSHT approach
explicitly aims to isolate the largest set of ‘valid’ instruments and base all inference on this single set, which
is equivalent to giving a single I-vector a weight of 1 and all other vectors a weight of zero. BESIDE-MR
is less aggressive, allowing as many distinct I-vectors as are supported by the data to be given weight in
the analysis. This feature properly accounts for model uncertainty. Indeed, as subsequent simulations will
demonstrate, this yields causal estimates and standard errors that are less prone to under-coverage than
methods which incorporate instrument selection or penalization.

One such method of penalization, also proposed by Zhao et al. [9], is MR-RAPS. Instead of being based
on likelihood function (5) which uses standard least squares (or L2 loss) plus the addition of our indicator
function, it uses a robust L1 function such as Huber or Tukey loss. This enable the contribution of large
outliers to be penalized (i.e. reduced) compared to L2 loss. Our use of the standard profile likelihood can
be viewed as an alternative way to achieving the robustness of MR-RAPS, by averaging over multiple
instruments sets and where more weight is given to homogeneous SNP sets. For this very reason, convergence
is an essential part of BESIDE-MR implementation to ensure that all plausible models have been explored.
The profile likelihood is particularly well suited to a Bayesian implementation because it enables heterogeneity
due to weak instrument bias and pleiotropy to be accounted for, whilst only having to update three parameters
(β, τ and I). Generally, a standard Bayesian formulations requires an additional L parameters (γ1, . . . , γL)
to be updated, (e.g. see Thompson et al. [29]).

BMA implementations tends to favour parsimonious models, i.e. models with fewer variables [18], there-
fore, to explore the sensitivity of our BMA procedure to the average number of SNPs included in the model,
we include a penalization term within likelihood function (5);

l(β, τ2, I|γ̂, Γ̂ ) +
L∑
J=1

Ij
2
η (6)

η will dictate which size models BMA should explored the most; setting a large positive η, the likelihood
will increase with number of instruments, then BMA will favour models with many instruments. And hence
for negative η, BMA will favour models with fewer instruments. We will assume η to be zero throughout the
simulations, but explore ranges of η as sensitivity analysis for the real data example in Section 5.1.

2.3 Choice of priors

In general we encourage the construction of priors to be based on previous epidemiological study or biological
knowledge. For the purpose of elucidating our approach, we will use priors that ensure efficient mixing and
rapid convergence. For the causal effect parameter β, we use a zero centered normal prior P (β). For the
pleiotropy variance (τ2) we use a gamma prior P (Prec) for the precision, where Prec = 1/τ2. For the
indicator function prior, we will assume an uninformative Bernoulli prior P (I) with probability 1

2 for all Ij .
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2.4 An alternative implementation

It is well known that the estimation of τ2 is challenging, even within a classical framework, as its maximum
likelihood estimate is not consistent, see Section 4 of Zhao et al. [9] for further discussion. Therefore, we
propose an alternative implementation of our M-H algorithm in which a plug-in estimate for τ2 is substituted
at each iteration. For simplicity, we chose to use the closed-form DerSimonian-Laird estimate for τ2 [30].
In Appendix C, we describe how the M-H algorithm is modified to implement this alternative approach.
Hereafter, we will refer to the first method as the ‘full Bayesian’ approach and this latter method as the
DerSimonian-Laird (DL) approach.

3 Monte Carlo simulation

3.1 Simulation strategy

We simulate two-sample summary MR data sets with L=50 instruments from Model (16). Motivated by
recent genetic studies [31, 32], four scenarios are considered;

1. all instruments are strong and invalid instruments have balanced pleiotropy,
2. all instruments are weak and invalid instruments have balanced pleiotropy,
3. all instruments are strong and invalid instruments have directional pleiotropy,
4. all instruments are weak and invalid instruments have directional pleiotropy.

The strength of the instruments is determined by mean F-statistic (F̄ ) over all instruments. The pleiotropic
effect of invalid instruments, αj , is simulated from a normal N(µα, σα) distribution, where zero and non-zero
µα gives balanced and directional pleiotropy respectively, as shown in Table 1. Note that, whilst scenarios
3 and 4 are referred to as directional pleiotropy, this could equally be thought of as InSIDE violating
pleiotropy, as illustrated in Equation (4). Within each scenario, 0% to 100% (at 20% intervals) of the L
SNPs are simulated as invalid instruments. We first compare our approach with the standard IVW method,
MR-APS and MR-RAPS. The latter two are the classical counterparts that our approach sits between.
Specifically, MR-APS is the MR-RAPS with a standard L2 loss function as opposed to Huber or Tukey loss.
We monitor the mean bias of the causal parameter estimate and the coverage (for BESIDE-MR the bias
is taken with respect to the mean of the posterior distribution of β and the coverage is calculated from its
credible interval). For BESIDE-MR only, we also give the average difference in the posterior probability of
inclusion, ∆(PPI), to show how often each SNP can be correctly assigned to its true set. We also report the
weak instrument bias corrected exact Q-statistic [8] to measure the amount of heterogeneity in our simulated
data. See details of the simulation strategy in Appendix E.

From the convergence test, our algorithm functions effectively with 50,000 iterations with 10,000 burn-ins.
For each simulated dataset of 50 instruments, DL and fully Bayesian implementation took 5 and 7 seconds to
converge respectively on a standard desktop computer, however number of iterations needs to increase with
more instruments to ensure convergence, as it takes longer for BESIDE-MR to explore all feasible models
out of a potential 2L. In rare occasions, we removed results simulations where the BESIDE-MR model had
failed to converge after the set number of iterations (see results from the convergence test in Appendix E.2).

Table 1: Summary of simulation scenarios.
Scenario Type of pleiotropy F̄ pleiotropic effect (αj)

of invalid instruments
1 Balanced 100 N(0, 0.04)
2 Balanced 10 N(0, 0.04)
3 Directional 100 N(0.05, 0.04)
4 Directional 10 N(0.05, 0.04)
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3.2 Results

Table 2 shows the results. Under Scenario 1, all methods deliver approximately unbiased estimates. The
IVW, MR-APS and MR-RAPS estimators achieve nominal coverage when there are no pleiotropic instru-
ments. However, as the proportion of pleiotropic instruments (and hence the heterogeneity) increases, their
coverages can drop substantially, with the MR-APS and MR-RAPS estimators most affected. BESIDE-MR
has conservative coverage under no heterogeneity (due to the absence of invalid instruments) but maintains
far better coverage when this increases. The general pattern remains the same for weaker instruments (Sce-
nario 2), even with many more weak instruments (L=100, results shown in Appendix E.4). In Scenarios 3,
all the approaches deteriorate with increasing number of invalid instruments, but BMA has consistently the
least bias and best coverage throughout. In Scenario 4, the IVW estimator is seemingly least biased, due to
weak instrument bias cancelling out some of the pleiotropic bias. With 40% and 60% invalid instruments,
full Bayesian BESIDE-MR struggled to converge within 50,000 iterations in a small number of cases.

∆(PPI) in Figure 2 demonstrates BESIDE-MR’s ability to distinguish valid instruments in the presence
of invalid instruments for Scenarios 1 and 3. For valid SNPs to be correctly identified we want ∆(PPI)
to be large and positive. This difference should of course be zero when there are no invalid instruments.
Under Scenario 1 this difference is maximised (i.e. we get the best discrimination) when there are 20%
invalid instruments, this difference steadily decreases to half its value as the number of invalid instruments
increases further. Under Scenario 3 we see a smaller and more constant difference across different proportions
of invalid instruments, indicating that BESIDE-MR generally struggles to deal with directional/InSIDE
violating pleiotropy across a substantial proportion of invalid SNPs. There is still a difference in PPI between
valid and invalid instruments, however the discrimination is worse for weak instruments.

Additional simulations were performed to investigate the effect of different patterns of heterogeneity, on
∆(PPI). We find that the discrimination is best with small numbers of highly pleiotropic SNPs, and the
worst with large numbers of weakly pleiotropic SNPs. However, the algorithm maintains its reliability even
in this case. For further details see Appendix E.5 for the results.
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No. Invalid instruments

∆(
P

P
I)

Sc.1: DL est.

Sc.1: Full Bayes.

Sc.3: DL est.

Sc.3: Full Bayes.

Fig. 2: The difference in posterior probabilities of inclusion (∆(PPI)) between valid and invalid instruments
for balanced and directional pleiotropy (Scenario 1 and 3 respectively). On the x-axis is the number of
invalid/pleiotropic instruments, and the y-axis is the average difference in PPI in valid and invalid instruments
set, ∆(PPI), over 1,000 simulations. As shown by legend within plot, the lines denotes results from different
implementation of BESIDE-MR within each scenario.

4 An extended two-parameter BMA model for InSIDE violation

The one (causal) parameter BESIDE-MR model introduced thus far assumed that most SNPs were valid
under the InSIDE assumption, but a small proportion could be invalid under InSIDE. We now consider
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Table 2: Evaluation criteria for different types of pleiotropy and instrument strength (Table 1. 50 instruments
in total. True β is 0.05. No. inv., Number of invalid instrument(s); Q, Q-statistics with exact weights; DL
est., DL estimate; Full Bayes., full Bayesian; Bias, mean bias; Cover., coverage. ).
No. inv. Q IVW DL est. Full Bayes. MR-APS MR-RAPS

Bias Cover. Bias Cover. Bias Cover. Bias Cover. Bias Cover.
Scenario 1

0 49.0 -0.001 96.40 -0.000 97.50 0.000 98.10 -0.000 94.40 -0.000 94.00
10 57.9 -0.001 93.20 0.000 97.50 0.000 97.70 -0.000 89.50 -0.000 92.10
20 66.4 -0.001 90.80 -0.000 95.40 -0.000 94.60 -0.000 83.90 -0.000 87.30
30 75.5 -0.000 88.30 0.001 94.20 0.001 92.00 0.001 77.30 0.001 80.80
40 84.0 -0.001 86.80 -0.000 95.80 -0.000 90.70 0.001 76.60 0.001 77.60
50 91.9 0.000 85.40 0.000 94.80 0.001 86.60 0.002 70.40 0.001 72.90

Scenario 2
0 48.7 -0.018 33.40 -0.001 97.10 0.002 96.10 -0.000 93.90 -0.000 92.90
10 54.4 -0.019 37.50 -0.000 97.10 0.005 93.70 0.003 91.80 0.003 92.10
20 59.2 -0.018 41.70 0.001 96.70 0.008 90.50 0.006 88.00 0.006 89.10
30 64.0 -0.018 44.60 0.001 96.70 0.011 87.80 0.009 83.20 0.008 84.90
40 68.8 -0.018 46.50 0.001 95.60 0.014 80.20 0.012 72.50 0.011 75.70
50 73.9 -0.019 47.80 0.002 94.60 0.017 73.40 0.015 68.80 0.015 70.10

Scenario 3
0 49.0 -0.001 96.40 -0.000 97.50 0.000 98.10 -0.000 94.40 -0.000 94.00
10 69.0 0.011 75.60 0.007 92.80 0.007 92.70 0.013 61.30 0.009 75.80
20 84.1 0.024 35.20 0.018 71.90 0.016 70.00 0.027 20.20 0.021 33.60
30 92.0 0.037 11.80 0.032 38.20 0.031 36.10 0.039 4.70 0.035 7.90
40 96.1 0.051 1.40 0.049 9.30 0.049 9.70 0.054 0.10 0.052 0.40
50 95.2 0.064 0.30 0.066 1.50 0.067 1.50 0.068 0.00 0.067 0.00

Scenario 4
0 48.7 -0.018 33.40 -0.001 97.10 0.002 96.10 -0.000 93.90 -0.000 92.90
10 58.8 -0.011 69.77 0.007 95.60 0.015 79.00 0.018 66.30 0.016 71.70
20 64.5 -0.003 84.70 0.017 84.60 0.028 46.20 0.035 23.70 0.034 29.60
30 66.5 0.006 82.60 0.028 64.60 0.040 21.70 0.050 5.10 0.048 7.00
40 66.2 0.014 70.10 0.040 35.60 0.049 9.90 0.064 0.40 0.063 0.60
50 65.3 0.022 53.90 0.050 18.90 0.057 5.20 0.075 0.10 0.074 0.10

the use of an extended model to account for the more extreme case where a large proportion of SNPs may
be pleiotropic, and in violation of InSIDE (Figure 1b). In this case, the standard one parameter BESIDE-
MR model cannot easily identify and remove the invalid SNPs, they must instead be formally modelled
with an additional slope parameter. To motivate this approach we use the same underlying data generating
Model (16). Suppose that we have two different groups of invalid instruments: in the first group, S1, the
SNPs exhibit balanced pleiotropy under the InSIDE assumption, but still collectively identify the true causal
effect, β. For illustrative purposes, suppose now that all of the remaining instruments are in a set S2, where
the InSIDE assumption is perfectly violated (that is, the correlation between the SNP-exposure association
and the pleiotropic effect is 1). Using the bias formulae in Equation (4), the set of SNPs in S2 identify a
distinct, biased version of the causal effect (β+1). This data generating model would give rise to two clusters
or slopes in the data, which motivates our extended two-parameter version of BESIDE-MR.

4.1 A modified BMA algorithm

Under the data generating Model (16), we further assume that the pleiotropic effects for valid SNPs in S1 are
generated from a N(0, τ21 ) distribution and the invalid SNPs in S2 are from a N(0, τ22 ) distribution. Allowing
these SNPs to violate InSIDE, and therefore identify a different slope parameter, our total parameter space
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Table 3: Summary of InSIDE simulation scenarios
Scenario F̄ of S1 : S2 Type of pleiotropy S1 S2

5 100:100 Balanced

ψj = 0, ψj ∼ U(0.34, 1.1),
υj ∼ N(0, 0.04), υj = 0,
δj ∼ U(0.34, 1.1), δj = 0,
σXj ∼ U(0.06, 0.095), σXj ∼ U(0.06, 0.095),
β1 = β β2 = β + 1

6 25:25 Balanced

ψj = 0, ψj ∼ U(0.34, 1.1),
υj ∼ N(0, 0.04), υj = 0,
δj ∼ U(0.34, 1.1), δj = 0,
σXj ∼ U(0.06, 0.4), σXj ∼ U(0.06, 0.4),
β1 = β β2 = β + 1

is modified to θ = (β1, τ
2
1 , β2, τ

2
2 , I1, I2), with likelihood:

l(θ|γ̂, Γ̂ ) =Maxγ l(β1, τ21 , β2, τ
2
2 |γ̂, Γ̂ )

= log f(γ̂, Γ̂ |β1, τ21 , β2, τ22 )

≈−
∑L
j=1 I1j

2
log(2π)

− 1

2

L∑
j=1

I1j

{
log(σ2

Y j + τ21 ) +

(
(Γ̂j − β1γ̂j)2

β2
1σ

2
Xj + σ2

Y j + τ21

)}

−
∑L
j=1 I2j

2
log(2π)

− 1

2

L∑
j=1

I2j

{
log(σ2

Y j + τ22 ) +

(
(Γ̂j − β2γ̂j)2

β2
2σ

2
Xj + σ2

Y j + τ22

)}
(7)

where the indicator functions I1j and I2j denote whether a SNP j is included in S1 or S2. We impose the
condition that I1j + I2j ≤ 1, which means that, at a given iteration of our BMA algorithm a SNP is either
in S1 (I1j = 1, I2j = 0), S2 (I1j = 0, I2j = 1) or in neither S1 or S2 (I1j = I2j = 0), which we give the
label S0. This gives the model the flexibility to assign a SNP to either S1 or S2, or remove it from the model
completely by assigning it to S0. In Appendix F, we give further details on the M-H algorithm to update
the parameter space of this extended model.

The log-likelihood with the addition of two model complexity penalisation terms is then;

l(θ|γ̂, Γ̂ ) +
L∑
j=1

I1j
2
η1 +

L∑
j=1

I2j
2
η2. (8)

Same as in Section 2.2, we set η1 = η2 = 0 for the simulations, but vary the values as sensitivity in the
applied example.

4.2 Simulation study

Two-sample summary data are simulated with 50 SNPs under balanced pleiotropy but with progressively
larger proportion of SNPs maximally violating the InSIDE assumption. This changes the proportion of SNPs
that are in set S1 and S2. These data are simulated under a strong instrument scenario (F̄ = 100, Scenario 5)
and a weaker instrument scenario (F̄ = 25, Scenario 6). For precise details of the simulation parameters see
Table 3. We also explore the performance of our two-parameter model under balanced pleiotropy with weak
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and strong instruments when there is no InSIDE violation. That is, under Scenario’s 1 and 2. This means
that all SNPs are effectively in set S1 and the data can be explained with a single causal slope parameter, not
two. The full results are shown in Table 4 where we report the bias, coverage and mean Q-statistic with exact
weights of all approaches across 1,000 simulations, as before. For BESIDE-MR, ∆(PPI) = PPIS1

− PPIS2

is also reported for SNPs truly in S1 and S2.

4.3 Results

For data generated under Scenario 1 and 2, and so in the complete absence of InSIDE-violating SNPs in set
S2, our two slope model correctly identifies β and does not try to estimate a second effect, i.e. β1 = β2. When
the data are generated under Scenario 5 we see that, when S1 and S2 have a similar number of instruments,
both β1 and β2 can be estimated by the DL implementation of our two-parameter model. If the proportion of
SNPs in either set is too small, then our algorithm tends to remove them completely and focus on estimating
just one slope. The full Bayesian implementation returns mean posterior estimates that are median unbiased
but not mean unbiased. This demonstrates a lack of convergence for some of simulated data, and indicates
that longer iterations and a more sophisticated procedure for deciding on the tuning parameter may be
required to properly fit the model.

When the data are generated with weaker instruments (Scenario 6), we see a degrading in the performance
of all approaches. In particular, see that the effect is worst for β2. This is because, in our specific simulation, β2
is larger in magnitude than β1, which increases both the heterogeneity as measured by the exact Q statistic
(see Equation 9 in Appendix E.4) and the absolute magnitude of weak instrument bias relative to that
experienced when estimating β1. This adversely affected the coverage of the estimates. This heterogeneity is
further exaggerated with weaker instruments (F̄ = 10), leading to our approach not being able to correctly
assign instruments to either S1 or S2 (Appendix G.1). If this case is encountered in practice, we recommend
use of the single slope model instead.

When applying the full Bayesian implementation of BESIDE-MR in Scenario 6, we noticed an important
feature most prominent when there was a large imbalance in the relative sizes of S1 and S2. In this case,
the M-H algorithm can switch from estimating the posterior for β1 to estimating the posterior for β2. This
problem is referred to as "label switching" [33]. In our applied analysis in Section 5 we discuss this issue in
more detail, and our proposal for addressing it.

Figure 3a gives further insight into how well the DL and full Bayesian implementations can correctly
partition the SNPs into clusters. The x-axis shows the true ratio of SNPs in S1 and S2 and the y-axis shows
∆(PPI). For example, with instrument ratio 1:1, ∆(PPI) is positive for SNPs truly in S1 and negative for
SNPs truly in S2. The DL estimate show that at ratio of 4:1∆(PPI) is similar for SNPs truly in S1 or S2, this
is because as explained above, the DL approach more aggressively prefers to estimate 1 parameter only, and
treating minority SNPs as outliers (e.g. assign to S0). By contrast, ∆(PPI) for the full Bayesian approach
is much more constant across all ratios and are also consistently lower. When the S1:S2 ratio is balanced,
both implementations correctly identified S1 and S2 instruments. However, due to "label switching", both
implementations struggles to identify S1 and S2 SNPs with weak instruments and larger proportion of S2

SNPs.
If a SNP increases the overall heterogeneity (τ2) in either cluster, BESIDE-MR increasingly classes it as

belonging to S0 (neither S1 or S2). Using a simulated example, Appendix Figure A.7, demonstrates that the
further the SNP is from either of the slope line, the higher (darker in colour) the probability it belongs to
neither clusters.

5 Applied example: Age-related macular degeneration and cholesterol

Age-related macular degeneration (AMD) is a painless eye-disease that eventually leads to vision loss. Recent
GWAS have identified several rare and common variants located in gene regions that are associated with lipid
levels [34], fuelling speculation as to whether the relationship is causal [35, 36]. To this end, a multivariable
MR analysis was performed by Burgess et al. [37], which provided evidence to support a causal relationship
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Table 4: Evaluation criteria for estimating two causal parameter. 50 instruments in total. The true β is 0.05.
S1 and S2 are InSIDE respecting and violating set respectively. Est., estimator; Inst., instrument(s); Q, exact
Q-statistics; DL est., DL estimate; Full Bayes., Full Bayesian.
Est. Inst. S1 : S2 Q mean bias median bias coverage

S1 S2 β1 β2 β1 β2 β1 β2
Scenario 1 (β1 = β2 = β)

DL est. 50:0 60.2 - 0.001 0.001 0.001 0.001 100.0 99.8
Full Bayes. 50:0 60.2 - 0.001 0.001 0.001 0.001 99.7 99.5

Scenario 5 (β1 = β, β2 = β + 1)

DL est.

40:10 73.5 10.9 0.007 -0.876 0.001 -0.995 99.4 14.6
30:20 55.1 23.8 0.003 -0.079 0.001 -0.013 95.9 92.3
25:25 43.9 30.3 0.005 -0.009 0.001 -0.008 93.9 96.7
20:30 35.3 36.9 0.053 -0.006 0.004 -0.006 91.0 95.6
10:40 16.5 49.1 0.906 -0.008 0.988 -0.005 11.1 85.5

Full Bayes.

40:10 73.5 10.9 0.076 -0.287 0.003 -0.027 84.0 69.0
30:20 55.1 23.8 0.230 -0.218 0.008 -0.009 69.4 76.2
25:25 43.9 30.3 0.248 -0.182 0.011 -0.008 67.9 79.7
20:30 35.3 36.9 0.254 -0.122 0.013 -0.002 66.8 86.1
10:40 16.5 49.1 0.225 -0.041 0.017 0.003 62.4 95.4

Scenario 2 (β1 = β2 = β)
DL est. 50:0 58.3 - 0.002 0.002 0.002 0.002 100.0 100.0
Full Bayes. 50:0 58.3 - 0.004 0.004 0.004 0.003 99.9 99.9

Scenario 6 (β1 = β, β2 = β + 1)

DL est.

40:10 67.6 30.2 0.003 -0.985 0.002 -0.997 99.0 1.4
30:20 50.3 65.7 0.035 -0.474 0.009 -0.391 97.5 60.1
25:25 41.3 85.0 0.012 -0.099 0.006 -0.060 94.1 93.3
20:30 32.8 102.6 0.007 -0.037 0.005 -0.033 94.6 96.8
10:40 14.8 140.6 0.651 -0.072 0.766 -0.062 41.4 93.8

Full Bayes.

40:10 67.6 30.2 0.001 -0.337 0.003 -0.104 89.8 63.2
30:20 50.3 65.7 0.022 -0.179 0.008 0.016 84.7 78.5
25:25 41.3 85.0 0.036 -0.233 0.011 0.013 72.8 80.9
20:30 32.8 102.6 0.002 -0.332 0.011 0.016 64.3 77.5
10:40 14.8 140.6 0.364 -1.349 0.987 -0.379 22.3 52.8

between AMD and HDL cholesterol but not with LDL cholesterol and triglycerides. In follow up work, Zuber
et al. [38] fitted a multivariable MR model using Bayesian model averaging, with a total of 30 separate lipid
fraction metabolites acting as the intermediate exposures. Out of the 30, large particle HDL cholesterol
(XL.HDL.C) had the highest inclusion probability as a risk factor for AMD.

Although multivariable MR approaches can remove bias due to pleiotropy via known pleiotropic pathways
(in this case, other lipid fractions), they can be much more challenging to fit, especially when the correlation
between the included exposures is high. For this reason we now revisit this data and use our univariate MR
approaches to probe the causal relationship between XL.HDL.C and AMD.

To avoid selection bias, we selected 27 genetic variants as instruments from a separate sample, the
METSIM study [39]. These variants were chosen based on their individual F-statistics with XL.HDL.C to
be greater than 3 and across all instruments this gave a mean F-statistic of 10. The summary scatter plot
for these data is shown in Figure 4. Then for the MR analyses, the summary statistics for G-X and G-Y
association are extracted from 2 other independent studies [40, 34] respectively; the results for our various
data analyses are given in Table 5.

When one-parameter causal models are fitted to the data, all methods estimate a positive causal asso-
ciation, with BESIDE-MR giving the largest effects and the IVW method giving the smallest effect. This
is not surprising because the IVW estimate is known to be vulnerable to weak instrument bias towards
zero in the two sample setting. Figure 5 shows the inclusion probability for each instrument, using our two
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Fig. 3: Identifying S1 and S2 instruments; their difference in inclusion probability (∆(PPI)) for Scenario 5
(a) and Scenario 6 (b). The x-axis is the true ratio for number of instruments in each cluster (S1:S2), and
the y-axis is ∆(PPI), averaged over 1,000 simulations. As shown by the legend within plot, the horizontal
and dashed lines denotes S1 and S2 are BESIDE-MR classed S1 and S2 instruments respectively. The the
purple and red colour denotes results from the 2 estimation approaches of BESIDE-MR.
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Fig. 4: AMD and HDL: Scatter plot of the relationship between SNP-outcome and SNP-exposure association.
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implementations. The DL approach is seen to more aggressively select or de-select instruments than the full
Bayesian approach.

Next, we fit our two-parameter causal model, which offers robustness to over 50% of the SNPs violating
the InSIDE assumption. Interestingly, we see that this estimates two distinct causal effects of opposite sign
(Table 5). For the DL approach, approximately 6 SNPs have evidence for inclusion (PPI > 0.75) to each
of the 2 clusters, see Figure 6a. For the full Bayesian approach, 4 instruments have evidence of inclusion in
the set identifying a positive relationship and only SNP rs903319 for the negative relationship (hence 0 is
within the credible interval for this smaller set), see Figure 6b. Appendix Figure A.8 show PPI for each
instrument.

Our tentative conclusion here is that a small proportion of InSIDE-violating SNPs act to reduce the
apparent causal effect of XL.HDL.C on AMD detectable by a one-parameter model. Once this set has
been accounted for within a two-parameter model, this increases the evidence in favour of a causal role of
XL.HDL.C on AMD further. Our results are consistent with Zuber et al. [38] who also found subsets of SNPs
which suggested qualitatively different conclusions about the causal role of XL.HDL.C on AMD.

Table 5: Estimates for the causal effect of a unit increase in XL.HDL.C on the risk of AMD using a range of
methods.

Parameters Estimator Mean 95% Lower Interval 95% Upper Interval
Standard one-parameter approaches

β
IVW 0.0251 -0.3493 0.3995
MR-APS 0.0672 -0.2997 0.4341
MR-RAPS 0.4567 0.1350 0.7785

BESIDE-MR: one-parameter model

β
DL estimate 0.8331 0.5332 1.2679
Full Bayesian 0.8149 0.5050 1.2105

τ2 × 10−4 DL estimate 0.0024 0.0000 0.0000
Full Bayesian 0.3773 0.0833 1.4330

BESIDE-MR: two-parameter model

β1
DL estimate 1.0219 0.6229 1.6596
Full Bayesian 0.9027 0.4998 1.4966

β2
DL estimate -0.8212 -1.2022 -0.4983
Full Bayesian -0.5948 -1.2456 1.0716

τ21 × 10−4 DL estimate 0.0033 0.0000 0.0000
Full Bayesian 0.3435 0.0807 1.2606

τ22 × 10−4 DL estimate 0.0061 0.0000 0.0000
Full Bayesian 0.3735 0.0823 1.4568

5.1 Sensitivity with penalisation for model complexity

In the simulations, the penalisation parameter for model complexity, η is zero, here we vary η between -5
to 5 for the one-parameter BESIDE-MR. Large negative η would force BESIDE-MR to favour models with
fewer instruments and large positive η would favour many instruments (Table 6 and Appendix Table A.8
for η 2 to 5). Furthermore, shown by the heat map of η and PPI, Figure 7, the PPI for each instruments
decreases with η, however there are a few instruments that have consistently higher probability for inclusion
in comparison to the rest and rs261342 is never chosen. The overall β did not change with η, but with fewer
instruments BESIDE-MR becomes more uncertain of its estimation, i.e. wider credible interval. Similar
patterns were found for the two parameter model, see Appendix Table A.9. The similarity in β estimates
between ranges of η demonstrates that our applied example exhibits large heterogeneity and therefore only
a handful of SNPs strongly influencing the results.
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Fig. 5: AMD and HDL: Inclusion probability (PPI) for each instrument for DL estimate (a) and full Bayesian
approach (b).

0.00 0.05 0.10 0.15 0.20

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

SNP−XL.HDL assoc.

S
N

P
−

A
M

D
 a

ss
oc

.

(a) DL estimate

0.00 0.05 0.10 0.15 0.20

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

SNP−XL.HDL assoc.

S
N

P
−

A
M

D
 a

ss
oc

.

(b) Full Bayesian

Fig. 6: AMD and HDL: Scatter plot of the relationship between SNP-outcome and SNP-exposure association,
where the coloured SNPs had PPI > 0.75, for DL estimate (a) and full Bayesian approach (b), assuming
InSIDE violation. Colour blue and red is instrument that had strong evidence for cluster I2 that estimates
β2 and I1 for β1 respectively. The solid lines are the estimated β1 and β2.
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In the simulations, two-parameter BESIDE-MR tends focus on estimating one β when there is an im-
balance of instruments in clusters. However, in this sensitivity analysis, BESIDE-MR consistently estimates
two separate slopes over all choices of the model complexity penalization terms. This gives us confidence
that the clusters are both real and robustly identified.
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Fig. 7: AMD and HDL η sensitivity: Inclusion probability for each instrument for DL estimate (a) and full
Bayesian approach (b).

5.2 Detecting and adjusting for label switching in the full Bayesian model

The trace plots in Figure 8a and 8b show that the DL implementation consistently identifies two separate
distributions for β1 and β2, which are centered around 1.02 and -0.82 respectively. This is not the case,
however, under the full Bayesian implementation. Trace plots 8c and 8d show that the chains for β1 and β2
jumping between two distinct values. This is commonly known as ‘label switching’. It has been recommended
that, instead of adjusting the MCMC algorithm itself, one can simply re-allocate iteration labels from the
output instead [33]. To this end we performed a K-means clustering analysis [41] on the MCMC output.
Before K-means correction, the mean posterior distribution of β1 and β2 gave 0.13 and 0.18 respectively. K-
means analysis clustered 181,186 iterations centred at 0.90 and the second cluster contains 218,815 iterations
with mean of -0.59. We re-assigned the estimates (to β1 and β2) accordingly (see Figure 8e) which gave
new posterior distribution with mean and credible interval shown in Table 5. This issue further emphasizes
the importance of carefully implementing the fully Bayesian approach, and for checking MCMC output for
convergence issue. As an initial investigation, we added an order restriction to M-H so that β1 > β2 (we
thank a reviewer for this suggestion), however, this lead to poor mixing in the MCMC run which we could
not adequately address.
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(a) DL estimate: β1 (b) DL estimate: β2

(c) full Bayesian: β1 (d) full Bayesian: β2

(e) full Bayesian: β1 and β2

Fig. 8: AMD and HDL: Trace plots for β1 and β2 from the full Bayesian (a,b) and DL implementations (c,d).
And combined β1 and β2 for full Bayesian (e).
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6 Discussion

In this paper we propose a Bayesian Model Averaging approach for two-sample summary data MR that
offers robustness to pleiotropy and weak instruments. Our approach can be viewed as a Bayesian extension
of the classical MR-RAPS approach. Rather than assuming, as MR-RAPS does, the InSIDE violating SNPs
are small in number and can be effectively penalized in the analysis. Our one- and two-parameter Bayesian
models go beyond this. We were able to demonstrate the potential utility of this extended model in our applied
example to uncover sub-signals in the data that would be missed by conventional methods. We explored two
implementations of BESIDE-MR, namely the full Bayesian and the simplified DL implementation. Our
simulations showed that the DL implementation generally performed well, and led to a more aggressive
selection of SNPs as either in or out of the model than the full Bayesian approach. It was also much more
straightforward to fit and achieve convergence. Despite the fully Bayesian implementation requiring more
computational time and careful consideration of the MCMC output, it is far better at detecting small effects
and consistently identifying outlying instruments. In future work we will attempt to improve the reliability
of the full Bayesian approach. Specifically, we plan to create a label switching algorithm [42] for BESIDE-
MR output and specify a more sophisticated procedure for optimising the tuning parameter for each model
parameter separately. In the meantime, we urge users of the full Bayesian approach to manually adapt the
tuning parameters and carefully monitor the mixing and convergence of the MCMC chains, which are the
essential aspects of the analysis. We also remind the reader that the number of iterations to reach convergence
increases with the number of instruments. As seen in Appendix E.2, diagnostic tools such as performing
multiple chains with different initial values and trace plots are useful in this regard. For a comprehensive
tutorial see Albert et al. and Lunn et al. [43, 44].

A useful additional output from our BMA approach compared to classical approaches is the inclusion
probability for each SNP. This of course necessitates the specification of a prior probability of inclusion,
which we fixed at a constant value of 1

2 . Ideally, one should use informative priors where possible. Indeed,
there are multiple sources of external information, e.g. epigenetic databases and bioinformatic webtools that
could be used to achieve this. For example, a genetic variant that is located in a protein coding gene relevant
to the pathway between exposure and outcome of interest can be given a higher inclusion prior probability.
Conversely, we might give a much lower inclusion prior probability if the variant is located in a gene that is
expressed in multiple tissues. This is again a topic for future research.

It is important to note that, like other instrument selection and penalization methods, the one-parameter
BESIDE-MR model assumes that the largest sets of instruments with homogeneous MR estimate consistently
identify the true causal effect. However, there could be cases where this does not hold and consequently
BESIDE-MR is biased. This motivated the development of our two-parameter model. The two-parameter
model allows BESIDE-MR to estimate a second slope for an (approximately) equally sized instrument set of
homogeneous MR estimate; as shown by the bias formulae of Equation (4), this second slope could potentially
be in the form of InSIDE violation, directional pleiotropy or even represent true causal effect heterogeneity.
That is, different SNPs perturb the exposure in a distinct ways that gives rise to two true causal effects.
This possibility is explored in recent work by Iong et al. [45]. In future work we plan to explore the utility
of BESIDE-MR in this alternative setting as well.

Zuber et al. [38] have proposed a BMA implementation of multivariable MR [37, 46]. Our model can in
principle be extended to multivariable MR too. For a model with 10 exposure traits, this would necessitate
the estimation of 11 causal parameters to account for InSIDE violation via unmeasured pathways. This is a
potential topic for future research. BESIDE-MR could also be extended to correlated SNPs and 2 dependent
samples, both will require additional weights to account for correlation between SNPs for the former, and
correlations between the SNP-exposure and SNP-outcome association estimates for the latter.

Software

Software in the form of R code is available on corresponding author’s Github
(https://github.com/CYShapland/BESIDEMR).
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A Assumptions for two-sample MR analyses

Table A.1 gives the summary of the assumptions made, which closely follows Table 1 in Bowden et al.[7]
with exception to NO Measurement Error (NOME) assumption, as the measurement error is computed in
our profile likelihood. For the estimation of local average causal effect, additional structural assumption is
required, that is the model is linear and additive without interactions. The structural assumption could be
violated in number of situations [47], in most MR applications scenarios of, binary outcomes and interaction
between X and G, is plausible. The former we will discuss in Section 7, and for violation from the latter,
approximation of local average causal effect using the linear structural model will still hold in many cases as
most of the SNPs effect on X is usually very small [31]. Variation in Instrument Strength (VIS) is reasonable
as we assume some sampling error would exist and SNPs used are uncorrelated.
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Table A.1: Summary of assumptions for two-sample MR analyses. G is the genetic instrument, X is the
exposure, Y is the outcome and Z is the unmeasured confounding.

Assumptions Description
Instrumental variable (IV) specific
IV1 G is associated with X, not through U (γj > 0).
IV2 G is not associated with U (ψj = 0).
IV3 No direct effect between G and Y (αj = 0).
Structural Model (2.1) and (2.2) are linear and without interaction.

Two-sample Analyses (TSA) specific
TSA1 Model (2.1) and (2.2) holds for sample 1 and 2.
TSA2 ε′Yk and ε′Yk in Model (2.1) and (2.2) respectively are independent from

each other and other variables.
TSA3 σ2

Xj and σ2
Y j in Model (2.3) are independent and known.

Instrument Strength Independent of Direct Effect (InSIDE), under IV2
General InSIDE Ĉov(αj , γj)→ 0 as L→∞.
Perfect InSIDE Ĉov(αj , γj) = 0 for analysed sample.

Variation in Instrument Strength (VIS), under IV2
VIS γj 6= γi from Gi and Gj on X.

One parameter BESIDE-MR
ZEro Modal Pleiotropy largest set of instruments with homogeneous causal effect estimates.
Assumption (ZEMPA)
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B Bias from violation of InSIDE assumption

Suppose we are estimating the causal parameter from instruments that violate the InSIDE assumption using
the IVW approach. Its estimand will equal:

β̂IVW =

L∑
j=1

Γ̂j γ̂j

L∑
j=1

γ̂2j

as the N → ∞, Γ̂j → Γj and γ̂j → γj , so that asymptotically, the expectation of IVW estimate tends
towards the following

E[ β̂IVW ] ≈
E
[∑L

j=1 Γ̂j γ̂j

]
E
[∑L

j=1 γ̂
2
j

]
→ Ĉov(Γj , γj) + Γ̄ γ̄

V̂ ar(γj) + γ̄2

=
Ĉov(αj + βγj , γj) + (ᾱ+ βγ̄)γ̄

V̂ ar(γj) + γ̄2

=
Ĉov(αj , γj) + βV̂ ar(γj) + ᾱγ̄ + βγ̄2

V̂ ar(γj) + γ̄2

= β +
Ĉov(αj , γj) + ᾱγ̄

V̂ ar(γj) + γ̄2︸ ︷︷ ︸
bias term

When InSIDE is perfectly violated (αj=γj) the numerator and denominator of the bias term are equal.
Therefore, βIVW =β+1
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C Metropolis-Hastings algorithm for the one-parameter causal model

For updating the model parameter values, instead of using the standard Gibbs sampling, where it requires
conditional posterior distribution, we used a random walk M-H algorithm to give a proposal distribution for
each parameter. Let θi = (βi, τ2i , Ii) be the current ith value of the parameter vector θ. θi is updated to θi+1

one parameter at a time, by simulating a candidate value θ∗ from proposal density, until it is accepted. Note
that if the proposal density C() for a given parameter is ‘symmetric’ - that is if C(θi|θi+1) = C(θi+1|θi) then
the proposal density can be omitted from the calculation of the acceptance probability. This is the case for
β and I, but not τ2.

C.1 The full Bayesian implementation

– Update β
1. Sample β∗ ∼ βi + hβN(0, 1), where hβ is a user defined tuning constant.
2. Accept βi+1 = β∗ with probability:

prob = min
{

1,
P (β∗, P reci, Ii)

P (βi, P reci, Ii)

}
otherwise set βi+1 = βi, where P (, ) is the posterior density.

– Update Prec (τ2 = 1/Prec)
1. Sample

Prec∗ ∼ U(LBPrec∗ ,UBPrec∗)
LBPrec∗ = max(LL, P reci − hPrec)
UBPrec∗ = min(UL, P reci + hPrec)

where U(, ) is the proposal density in the form of a uniform distribution. LL and UL is user defined
lower and upper limit for Prec respectively, and hPrec is a user defined tuning constant.

2. Accept Preci+1 = Prec∗ with probability:

prob = min
{

1,
U(LBPreci ,UBPreci)P (βi+1, P rec

∗, Ii)

U(LBPrec∗ ,UBPrec∗)P (βi+1, P reci, Ii)

}
Otherwise set Preci+1 = Preci, where P (, ) is the posterior density.

– Update I
1. Generate a random number between 1 and L from P (IL), define it as I∗q , which is the qth element

of I∗.
2. Set I∗d = Iid for all d 6= q.
3. Set I∗q = (Iiq − 1)2 (this defines the proposed and current model to differ by one instrument).
4. If

∑L
j=1 Ij ≥ 5 is true, continue to the next step, otherwise repeat step 1 (ensures there is enough

IVs for estimation).
5. Accept Ii+1 = I∗ with probability:

prob = min
{

1,
P (βi+1, P reci+1, I

∗)

P (βi+1, P reci+1, Ii)

}
otherwise set Ii+1 = Ii, , where P (, ) is the posterior density.

The hβ and hPrec acts as tuning parameters for the acceptance rate. That is, the proportion of iterations
that θ∗ is accepted as θi+1. Acceptance rates are recommended to be between 0.25 and 0.45 for the random
walk M-H algorithm [43]. We follow this guidance in our implementation of the approach in simulations and
applied data settings.
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C.2 The DL implementation

τ̂2 is calculated from DerSimonian-Laird estimate [30] and estimated from every proposed value of β and L;

τ̂2 = max(0, (Q− (
L∑
j=1

Ij − 1))/W ) (9)

where

Q =
L∑
j=1

Ijwj(β̂j − βIVW )2, βIVW =

∑L
j=1 Ijwj β̂j∑L
j=1 Ijwj

, W =
L∑
j=1

Ijwj −
∑L
j=1 Ijw

2
j∑L

j=1 Ijwj

and wj = 1/V ar(β̂j) respectively. Note that Ij should not be confused with Higgin’s I2 statistic used to
quantify heterogeneity in meta-analysis.

– Update β
1. Sample β∗ ∼ βi + hβN(0, 1), where hβ is a user defined tuning constant.
2. Accept βi+1 = β∗ with probability:

prob = min
{

1,
P (β∗, τ̂2i , Ii)

P (βi, τ̂2i , Ii)

}
Otherwise set βi+1 = βi, P (, ) is the posterior density.

– Update L
1. Generate a random number between 1 and L from P (IL), define it as I∗q , which is the qth element

of I∗.
2. Set I∗d = Iid for all d 6= q.
3. Set I∗q = (Iiq − 1)2.
4. If

∑L
j=1 Ij ≥ 5 is true, continue to the next step, otherwise repeat step 1 (ensures there is enough

IVs for estimation).
5. Accept Ii+1 = I∗ with probability:

prob = min
{

1,
P (βi+1, τ̂

2∗, I∗)

P (βi+1, τ̂2i , Ii)

}
where τ̂2 and τ̂2∗ is calculated with Ii and I∗ respectively. Otherwise set Ii+1 = Ii, where P (, ) is
the posterior density.
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D Derivation of integrated likelihood

Based on the model shown in Equation (3), and the instruments included and excluded have:

αj ∼ N(0, τ2) if Ij = 1, (10)
αj unrestricted if Ij = 0. (11)

then the likelihood function for summary data of the G−X and G− Y can be given by as:

L(β, τ2,γ,α1−I |I) =
L∏
j=1

 1√
2πσXj

e
−

(γ̂j − γj)2

2σ2
Xj

1
√

2π
√
σ2
Y j + τ2

e
−

(Γ̂j − γjβ)2

2(σ2
Y j + τ2)


Ij

×

 1√
2πσXj

e
−

(γ̂j − γj)2

2σ2
Xj

1√
2πσY j

e
−

(Γ̂j − γjβ − αj)2

2σ2
Y j


(1−Ij)

(12)

The integrated likelihood of β and τ2 is then defined as:

L̄(β, τ2|I) =

∫
L(β, τ2,γ,α1−I |I) dπ(γ,α)

for some distribution on (γ,α). We can approximate the integrated likelihood by using Laplace method:∫ b

a

eMf(x) dx ≈

√
2π

M |f ′′(x̂)|
eMf(x̂), x̂ = argmax

x
f(x)

Let θ = (γ,α1−I) and assume it is flat, then

L̄(β, τ2|I) =

∫
el(β,τ

2,θ) dπ(γ,α)

≈
∫

el(β,τ
2,θ̂)−1/2(θ−θ̂)T Iθ(θ−θ̂) dθ

≈ el(β,τ
2,θ̂) 2π

‖θ‖0/2

|Iθ|1/2
, (13)

where ‖θ‖0 = 2L−
L∑
j=1

Ij and Iθ = diag(Iθ1, · · · , IθL).

We can profile out θ̂ from l(β, τ2, θ̂) to give the profile likelihood of (β, τ2):

l(β, τ2) = max
θ

l(β, τ2, θ̂) =−
∑L
j=1 Ij

2
log(2π)

− 1

2

L∑
j=1

Ij

{
log(σ2

Y j + τ2) +

(
(Γ̂j − βγ̂j)2

β2σ2
Xj + σ2

Y j + τ2

)}

−
∑L
j=1(1− Ij)

2
log(2π)

− 1

2

L∑
j=1

(1− Ij) log(σ2
Y j)

Then our integrated likelihood is:

2L̄(β, τ2|I) = 2l(β, τ2) + ‖θ‖0 log(2π)− log |Iθ|. (14)
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Iθ is the Fisher information matrix for

θ =

{
γj if Ij = 1,

(γj , αj) if Ij = 0

so that

Iθj =



−E

(
∂2 logL

∂γ2j

)
if Ij = 1,

−E


∂2 logL

∂γ2j

∂2 logL

∂γj∂αj

∂2 logL

∂αj∂γj

∂2 logL

∂α2
j

 if Ij = 0

=



1

σ2
Xj

+
β2

σ2
Y j + τ2

if Ij = 1,


1

σ2
Xj

+
β2

σ2
Y j

β

σ2
Y j

β

σ2
Y j

1

σ2
Y j

 if Ij = 0

therefore the sum of the log determinant of the information matrix is:

log|Iθ| =
L∑
j=1

Ij log(
1

σ2
Xj

+
β2

σ2
Y j + τ2

) + (1− Ij) log(
1

σ2
Xj

1

σ2
Y j

) (15)

if β ≈ 0, then

log|Iθ| ≈
L∑
j=1

Ij log(
1

σ2
Xj

) + (1− Ij) log(
1

σ2
Xj

1

σ2
Y j

)

=
L∑
j=1

(1− Ij) log(
1

σ2
Y j

).

With this, Equation 14 approximates to,

2L̄(β, τ2|I) ≈ 2l(β, τ2) + (2L−
L∑
j=1

Ij) log(2π) +
L∑
j=1

(1− Ij) log(σ2
Y j)

= −
L∑
j=1

Ij log(2π)−
L∑
j=1

Ij

{
log(σ2

Y j + τ2) +

(
(Γ̂j − βγ̂j)2

β2σ2
Xj + σ2

Y j + τ2

)}

−
L∑
j=1

(1− Ij) log(2π) + (2L−
L∑
j=1

Ij) log(2π)

=
L∑
j=1

(1− Ij) log(2π)−
L∑
j=1

Ij

{
log(σ2

Y j + τ2) +

(
(Γ̂j − βγ̂j)2

β2σ2
Xj + σ2

Y j + τ2

)}
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E Simulations under the one-parameter model

This section is specifically for one-parameter BESIDE-MR, that covers Monte Carlo simulation method, and
results for convergence, weaker instruments (L=50 and mean F-statistics of 10), many weak instruments
(L=100, mean F-statistics of 5 and 10) and sensitivity to strengths of heterogeneity (varied Q-statistics).

E.1 Simulation Method

We simulate two-sample summary MR data sets with L=50 instruments from model;

γ̂j ∼ N(γj , σ
2
Xj), Γ̂j |αj , γj ∼ N(αj + βγj , σ

2
Y j), (16)

The parameters γj were generated from a Uniform U(0.34, 1.1) distribution, σXj was generated from a
Uniform U(0.06, UB) and σY j was generated from a Uniform U(0.015, 0.11) distribution. The upper bound
on the G-X association standard error UB was used to determine mean instrument strength - with 0.095 ≤
UB ≤ 1 giving mean F-statistics between 10 and 100 respectively. In this setting, the F-statistic for a single
SNP can be approximated as γ̂2j /σ2

Xj . We defined invalid instruments as SNPs that have non-zero αj , as
there is a direct effect from SNP to outcome, i.e. violation to IV3.

αj for invalid instruments is simulated from normal N(µα, 0.04) distribution, with the parameter µα
being used to determine the mean bias induced by including the invalid instruments in the model. The task
of BESIDE-MR in the presence of a non-zero µα is to give large weight to models which include SNPs for
which µα ≈ 0. As summarised by Table 1 in the main manuscript, µα = 0 for the instruments that have
balanced pleiotropic effect, and µα = 0.05 for directional pleiotropic effect. Apart from a potential non-zero
mean bias, the simulated pleiotropic effects satisfy the InSIDE assumption.

For evaluation criteria, we monitor the following quantities across our simulations:

– Mean bias of the causal parameter estimate. For BESIDE-MR we use the mean of the posterior distri-
bution of β to assess this;

– Coverage: For IVW, MR-APS and MR-RAPS this is based on 95% symmetric confidence intervals as-
suming normality. For BESIDE-MR this is based on a 95% credibility interval;

– The difference in inclusion probability between valid and invalid SNPs set (BESIDE-MR only):∆(PPI) =
1

A

∑
PPIvalid −

1

B

∑
PPIinvalid, where A and B is total number of valid and invalid instruments re-

spectively, and hence A+B = L.

We also report the exact Q-statistic [8]:

Q =
L∑
j=1

wj(β)(β̂j − β)2 (17)

where wj = 1/V ar(β̂j). Note that only invalid SNPs which have a non-zero pleiotropic effect make a non-
nominal contribution, so that, for a fixed set of pleiotropy parameters α1, . . . , αL:

E[Q] =
∑
αj 6=0

α2
j

β2σ2
Xj + σ2

Y j

+ (L− 1) (18)

from knowing that [8];

V ar(βj) =
β2σ2

xj + σ2
yj

γ̂2j
and β̂j = β +

αj + εj
γj

.

E.2 Convergence

Convergence is an important aspect to Bayesian analysis when implemented using MCMC methods, as it is
an iterative process, different possible values are explored at each iteration. To investigate convergence, we
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run 5 short chains, each with random starting values, 50,000 iterations and 10,000 burn-ins. We also run one
long chain with 500,000 iterations and 100,000 burn-ins.

We tested convergence on 3 different types of instruments; (1) Scenario 1 and (2) Scenario 2 without
invalid instruments, and (3) Scenario 1 with 30% invalid instruments.

Table A.2 demonstrates evidence for convergence with 50,000 iterations and 10,000 burn in. The mean,
standard deviation and 95% credible interval of the posterior distribution for β are similar between long and
shorts chains, in all 3 scenarios. The difference shown between long and short chains are the standard error
and the time-series standard error (adjusted for auto-correlation). This is expected as the accuracy for the
posterior mean of β increases with number of iterations. The trace plot is another diagnostic tool; it is a
continuous line that shows the values a parameter has against the iteration number. A "catepillar" shaped
trace plot, and similarities between long and short chains, supports evidence for convergence (Figure A.1
and A.2). Table A.3 gives the PPI of the 10 SNPs from long and short chain. These 10 SNPs were selected
because they had the highest PPI in the long chain. The similarity in inclusion probability between the
short and long chains for all the 10 instruments and across scenarios (Table A.3) demonstrates evidence for
convergence in PPI.
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(a) Strong and valid: short (b) Strong and valid: long

(c) Weak and valid: short (d) Weak and valid: long

(e) Strong with 30% invalid: short (f) Strong with 30% invalid: long

Fig.A.1: Trace plot of the causal effect estimate (β) from DL approach with 3 different instrument scenarios;
(a, b) strong valid, (c, d) weak valid instruments only and (e, f) strong with 30% invalid instruments. Short
and long chain consist of 50,000 and 500,000 iterations with 10,000 and 100,000 burn-in respectively.
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Table A.2: Convergence diagnostic of Scenario 1 and 2 without invalid, and with 30% invalid instruments
by comparing a long and 5 short chains. Each short chain have 50,000 iterations with 5,000 burn-ins and
the long chain have 500,000 iterations and 100,000 burn-ins. True β is 0.05. SD, standard deviation; SE,
standard error; CI, credible interval; inst., instrument(s).

Inst. chain mean β SD SE Time-series Lower Upper
scenario SE 95% CI 95% CI

Strong
and valid

DL estimate
1 0.0485 0.0080 0.00004 0.00014 0.0332 0.0640
2 0.0488 0.0081 0.00004 0.00014 0.0330 0.0643
3 0.0485 0.0079 0.00004 0.00014 0.0333 0.0643
4 0.0484 0.0081 0.00004 0.00014 0.0324 0.0645
5 0.0485 0.0081 0.00004 0.00014 0.0325 0.0642
Long 0.0485 0.0081 0.00001 0.00005 0.0327 0.0645
Full Bayesian
1 0.0486 0.0082 0.00004 0.00014 0.0323 0.0647
2 0.0489 0.0080 0.00004 0.00013 0.0331 0.0646
3 0.0487 0.0082 0.00004 0.00014 0.0324 0.0647
4 0.0487 0.0083 0.00004 0.00013 0.0327 0.0650
5 0.0491 0.0083 0.00004 0.00015 0.0325 0.0653
Long 0.0488 0.0083 0.00001 0.00005 0.0326 0.0652

Weak
and valid

DL estimate
1 0.0485 0.0083 0.00004 0.00016 0.0328 0.0652
2 0.0482 0.0083 0.00004 0.00015 0.0323 0.0648
3 0.0480 0.0083 0.00004 0.00015 0.0324 0.0649
4 0.0484 0.0083 0.00004 0.00014 0.0329 0.0652
5 0.0484 0.0083 0.00004 0.00016 0.0329 0.0648
Long 0.0482 0.0083 0.00001 0.00005 0.0323 0.0650
Full Bayesian
1 0.0483 0.0084 0.00004 0.00014 0.0319 0.0653
2 0.0481 0.0085 0.00004 0.00015 0.0320 0.0656
3 0.0485 0.0083 0.00004 0.00015 0.0324 0.0652
4 0.0485 0.0084 0.00004 0.00016 0.0330 0.0657
5 0.0480 0.0086 0.00004 0.00015 0.0318 0.0655
Long 0.0484 0.0085 0.00001 0.00005 0.0322 0.0658

Strong
with
30%
invalid

DL estimate
1 0.0578 0.0094 0.00005 0.00020 0.0397 0.0768
2 0.0580 0.0097 0.00005 0.00024 0.0396 0.0776
3 0.0575 0.0094 0.00005 0.00020 0.0389 0.0767
4 0.0573 0.0094 0.00005 0.00024 0.0395 0.0767
5 0.0584 0.0098 0.00005 0.00026 0.0401 0.0789
Long 0.0576 0.0095 0.00002 0.00008 0.0391 0.0766
Full Bayesian
1 0.0574 0.0097 0.00005 0.00023 0.0384 0.0768
2 0.0580 0.0096 0.00005 0.00022 0.0394 0.0769
3 0.0574 0.0097 0.00005 0.00021 0.0385 0.0767
4 0.0576 0.0096 0.00005 0.00023 0.0394 0.0768
5 0.0574 0.0096 0.00005 0.00021 0.0384 0.0765
Long 0.0576 0.0095 0.00001 0.00007 0.0392 0.0764
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Table A.3: PPI of the 10 SNPs from short and long chains to diagnose the convergence of instrument
probability. Note that the SNPs shown are the ones with the highest PPI in the long chain and for each
scenario these SNPs differs. Each short chain have 50,000 iterations with 5,000 burn-ins and the long chain
have 500,000 iterations and 100,000 burn-ins. inst., instrument(s).
Inst. chain SNP1 SNP2 SNP3 SNP4 SNP5 SNP6 SNP7 SNP8 SNP9 SNP10
scenario

Strong
and valid

DL estimate
1 0.96 0.97 0.95 0.93 0.91 0.92 0.93 0.90 0.91 0.92
2 0.98 0.96 0.93 0.92 0.92 0.92 0.93 0.93 0.91 0.93
3 0.97 0.96 0.94 0.94 0.92 0.92 0.92 0.93 0.91 0.91
4 0.97 0.95 0.92 0.92 0.92 0.91 0.93 0.92 0.92 0.90
5 0.97 0.95 0.94 0.94 0.93 0.91 0.94 0.92 0.91 0.88
Long 0.96 0.96 0.94 0.93 0.92 0.91 0.92 0.92 0.92 0.92
Full Bayesian
1 0.96 0.96 0.93 0.92 0.92 0.92 0.93 0.91 0.93 0.91
2 0.95 0.96 0.94 0.94 0.91 0.91 0.91 0.93 0.92 0.91
3 0.97 0.95 0.93 0.94 0.93 0.92 0.92 0.93 0.90 0.91
4 0.94 0.96 0.95 0.91 0.91 0.90 0.90 0.88 0.93 0.92
5 0.96 0.95 0.94 0.91 0.93 0.92 0.94 0.92 0.91 0.91
Long 0.96 0.96 0.94 0.93 0.92 0.92 0.92 0.92 0.92 0.91

Weak
and valid

DL estimate
1 0.96 0.95 0.94 0.92 0.90 0.91 0.92 0.90 0.90 0.89
2 0.94 0.96 0.96 0.93 0.92 0.92 0.92 0.91 0.93 0.90
3 0.96 0.97 0.94 0.95 0.92 0.93 0.91 0.92 0.92 0.91
4 0.96 0.97 0.92 0.93 0.92 0.92 0.92 0.92 0.91 0.90
5 0.95 0.96 0.94 0.95 0.93 0.91 0.92 0.90 0.92 0.93
Long 0.96 0.95 0.94 0.94 0.91 0.92 0.91 0.92 0.92 0.91
Full Bayesian
1 0.96 0.97 0.95 0.92 0.90 0.91 0.90 0.91 0.90 0.93
2 0.94 0.97 0.94 0.93 0.92 0.92 0.92 0.93 0.90 0.93
3 0.96 0.96 0.94 0.95 0.91 0.89 0.92 0.90 0.92 0.92
4 0.95 0.97 0.94 0.93 0.90 0.90 0.90 0.91 0.90 0.88
5 0.95 0.96 0.94 0.94 0.94 0.92 0.92 0.95 0.91 0.93
Long 0.96 0.96 0.94 0.93 0.92 0.92 0.92 0.91 0.91 0.91

Strong
with
30%
invalid

DL estimate
1 0.96 0.97 0.95 0.92 0.94 0.93 0.92 0.88 0.90 0.88
2 0.94 0.96 0.93 0.93 0.93 0.93 0.93 0.91 0.90 0.91
3 0.97 0.96 0.93 0.92 0.96 0.93 0.94 0.92 0.93 0.90
4 0.94 0.95 0.93 0.94 0.94 0.94 0.93 0.91 0.93 0.90
5 0.96 0.96 0.93 0.93 0.94 0.94 0.95 0.89 0.91 0.89
Long 0.95 0.95 0.94 0.94 0.93 0.93 0.93 0.92 0.92 0.90
Full Bayesian
1 0.94 0.94 0.94 0.94 0.94 0.93 0.95 0.92 0.93 0.90
2 0.94 0.95 0.93 0.92 0.95 0.95 0.92 0.93 0.87 0.91
3 0.95 0.95 0.93 0.94 0.95 0.92 0.93 0.91 0.93 0.90
4 0.97 0.94 0.94 0.93 0.92 0.93 0.90 0.90 0.89 0.91
5 0.94 0.96 0.94 0.96 0.94 0.94 0.91 0.92 0.92 0.88
Long 0.96 0.96 0.93 0.93 0.93 0.93 0.93 0.92 0.91 0.90

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2021. ; https://doi.org/10.1101/2020.02.11.943712doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.11.943712
http://creativecommons.org/licenses/by/4.0/


34 C.Y. Shapland et al.

(a) Strong and valid: short (b) Strong and valid: long

(c) Weak and valid: short (d) Weak and valid: long

(e) Strong with 30% invalid: short (f) Strong with 30% invalid: long

Fig.A.2: Trace plot of the causal effect estimate (β) from full Bayesian approach with 3 different instru-
ment scenarios; (a, b) strong valid, (c, d) weak valid instruments only and (e, f) strong with 30% invalid
instruments. Short and long chain consist of 50,000 and 500,000 iterations with 10,000 and 100,000 burn-in
respectively.
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E.3 Weaker instruments
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Sc.2: DL est.

Sc.2: Full Bayes.

Sc.4: DL est.

Sc.4: Full Bayes.

Fig.A.3: The difference in posterior probabilities of inclusion (PPI) between valid and invalid instruments
for balanced and directional pleiotropy (Scenario 2 and 4 respectively). On the x-axis is the number of
invalid/pleiotropic instruments, and the y-axis is the average difference in PPI in valid and invalid instruments
set, ∆(PPI), over 1,000 simulations. As shown by legend within plot, the lines denotes results from different
implementation of BESIDE-MR within each scenario.
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E.4 Many weak instruments

Many weak instruments were simulated under scenario 1, but with 100 instruments. We experimented with 2
different mean F-statistics; 5 and 10. Table A.4 gives the bias and coverage. Figure A.4 shows the difference
in mean inclusion probability between valid and invalid instruments.

Table A.4: Evaluation criteria with many weak instruments. 100 instruments in total. True β is 0.05. No.
inv., Number of invalid instrument(s); Q, Q-statistics with exact weights; bias, mean bias; Cover., coverage;
DL est., DL estimate; Full Bayes., Full Bayesian; F̄ , mean F-statistics.
No. inv. Q IVW DL est. Full Bayes. MR-APS MR-RAPS

Bias Cover. Bias Cover. Bias Cover. Bias Cover. Bias Cover.
F̄ = 10
0 98.0 -0.019 9.30 -0.001 96.40 0.000 94.90 -0.000 93.70 0.000 93.10
20 109.3 -0.019 13.80 -0.001 96.30 0.003 92.90 0.003 90.10 0.002 91.50
40 120.2 -0.019 14.10 -0.000 96.70 0.006 89.50 0.007 84.10 0.006 85.90
60 131.0 -0.019 21.20 0.000 95.90 0.008 81.40 0.009 72.00 0.009 74.20
80 139.5 -0.019 21.10 0.000 96.40 0.012 73.20 0.012 62.10 0.011 65.10
100 149.4 -0.019 29.10 0.002 94.10 0.016 62.40 0.016 49.70 0.016 50.00
F̄ = 5
0 97.8 -0.038 0.00 -0.006 94.30 0.001 90.40 0.000 93.20 0.000 93.10
20 104.8 -0.039 0.00 -0.005 95.40 0.004 87.80 0.003 92.40 0.003 92.30
40 110.7 -0.038 0.00 -0.004 94.60 0.009 83.00 0.009 87.40 0.008 89.30
60 116.8 -0.038 0.00 -0.001 97.60 0.012 74.20 0.013 80.00 0.013 81.80
80 121.2 -0.038 0.00 0.001 96.30 0.016 68.90 0.015 74.50 0.016 74.40
100 125.7 -0.038 0.00 0.003 97.10 0.021 55.20 0.022 59.30 0.022 59.90

0 20 40 60 80 100

0.
00
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0.
04

0.
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08

0.
10

No. invalid instruments
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P
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F=5: DL est.

F=5: Full Bayes.

F=10: DL est.

F=10: Full Bayes.

Fig.A.4: The difference in mean ∆(PPI) between valid and invalid instruments for many weak instruments.
As shown by the legend: solid and short dashed lines are when instruments have mean F-statistics (F̄ ) of 5
for DL estimate and full Bayesian respectively. Dotted and long dashed lines are F̄ of 10 for DL estimate
and full Bayesian respectively.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2021. ; https://doi.org/10.1101/2020.02.11.943712doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.11.943712
http://creativecommons.org/licenses/by/4.0/


BMA for two-sample summary MR 37

E.5 Sensitivity to strengths of heterogeneity

We can use Q-statistics to monitor the heterogeneity between the causal effect estimate from each of the
instruments [8]. This section investigates our approaches’ sensitivity to the change in Q-statistics. Using
Equation (18) and the χ2 distribution for L − 1 degrees of freedom, we could fix α2

j to give p-values for
different levels of heterogeneity. We considered 2 forms of Q-statistics; (1) the true Q-statistics in total for
20% invalid instruments are 85, 75, 66 and 62 to give p-value of 0.001, 0.01, 0.05 and 0.1 respectively. (2)
Each invalid instruments have true Q-statistics of 11, 7, 4 and 3 to give p-value of 0.001, 0.01, 0.05 and 0.1
respectively. But in total, it is borderline evidence for heterogeneity (Q-statistic p-value=0.05), hence, the
number of invalid instruments increases with the Q-statistics. See Table A.5 for a summary.

Table A.5: Summary of Q-statistics (Q) simulation. The p-value for overall and individual Q is from χ2

distribution of L−1 and 1 degrees of freedom respectively. Total number of instruments is 50. Ind., individual.

Scenario No. invalid Overall Q (p-value) Individual Q (p-value)

Sum Q

10 85 (0.001) 8.5 (0.01)
10 75 (0.01) 7.5 (0.01)
10 66 (0.05) 6.6 (0.01)
10 62 (0.1) 6.2 (0.01)

Ind. Q

6 66 (0.05) 11 (0.001)
10 66 (0.05) 7 (0.01)
17 66 (0.05) 4 (0.05)
25 66 (0.05) 3 (0.1)

Our results demonstrate three facts:

1. Increasing heterogeneity with same number of invalid instruments does not affect the overall perfor-
mance of the estimators, but only the inclusion probability of the instruments.

2. Increasing the number of invalid instruments whilst fixing the total heterogeneity does not affect the
overall performance of the estimators.

3. When the pleiotropy parameters are small and exchangeable, the probability of inclusion is approximately
constant across SNPs

Table A.6: Evaluation criteria for varying Q-statistics. 50 instruments with mean F-statistics of 100. True β
is 0.05. No. inv., Number of invalid instrument(s); Q exact, estimated Q-statistics for all instruments with
exact weights; Cover., coverage; Ind., individual.
Scenario No. inv. Overall Q Ind. Q Q exact DL est. Full Bayes.

Bias Cover. Bias Cover.

Sum Q

10 85 8.5 134.5 0.001 94.90 0.001 92.30
10 75 7.5 124.2 0.000 97.00 0.000 94.40
10 66 6.6 115.3 0.001 96.10 0.001 93.60
10 62 6.2 111.0 0.000 96.60 0.001 94.90

Ind. Q

6 66 11 113.8 0.000 96.80 0.000 95.90
10 66 7 115.4 0.001 96.60 0.001 94.00
17 66 4 113.7 -0.001 95.90 0.000 91.70
25 66 3 116.7 -0.001 96.00 0.000 87.60
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Fig.A.5: The difference in mean ∆(PPI) for (a) sum Q of all invalid instruments (b) when the fixed amount
of heterogeneity (Q=66) is due to many weakly pleiotropic or a small number of highly pleiotropic SNPs.
As shown by legend: solid and short dashed lines are DL estimate and full Bayesian respectively.
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F Modified Metropolis-Hastings algorithm for InSIDE violating pleiotropy

The updating algorithm for β1, β2, τ21 and τ22 is the same as β and τ2 in the one-parameter model respectively
(Appendix C).

– Update I1
1. Generate a random number between 1 and L, define it as I∗1q from P (IL), which is the qth element

of I∗1
2. Set I∗1d = Ii1d for all d 6= q, if Ii2q 6= 1, otherwise repeat step 1.
3. Set I∗1q = (Ii1q − 1)2.
4. If

∑L
j=1 I1j ≥ 5 is true, proceed to next step, otherwise repeat step 1.

5. Accept I1i+1 = I∗1 with probability:

prob = min
{

1,
P (β1i+1, τ

2
1i+1, β2i+1, τ

2
2i+1, I

∗
1 , I2i)

P (β1i+1, τ21i+1, β2i+1, τ22i+1, I1i, I2i)

}
otherwise set I1i+1 = I1i.

– Update I2
1. Generate a random number between 1 and L, define it as I∗2q from P (IL), which is the qth element

of I∗2
2. Set I∗2d = Ii2d for all d 6= q, if Ii1q 6= 1, otherwise repeat step 1.
3. Set I∗2q = (Ii2q − 1)2.
4. If

∑L
j=1 I2j ≥ 5 is true, proceed to next step, otherwise repeat step 1.

5. Accept I2i+1 = I∗2 with probability:

prob = min
{

1,
P (β1i+1, τ

2
1i+1, β2i+1, τ

2
2i+1, I1i+1, I

∗
2 )

P (β1i+1, τ21i+1, β2i+1, τ22i+1, I1i+1, I2i)

}
otherwise set I2i+1 = I2i.

Step 2 in Update I1 and Update I2 restricts the new jump to be conditional on I2 and I1 respectively,
this will stop the case of (I1j = 1, I2j = 1). Model space including both (I1j = 1, I2j = 1) and (I1j = 0, I2j =
0) is equivalent to giving model that consists of outlying instruments higher probability then models where
instruments have to be designated to either I1 or I2.
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G Simulations under the two-parameter model

This section is for two-parameter BESIDE-MR, that covers Monte Carlo simulation method, results for
weaker instruments (L=50 and mean F-statistics of 10), and simulated example to demonstrate when a SNP
belongs to S0 (neither I1 or I2 clusters).

G.1 Simulation Method

Using the same underlying data generating Model 16, suppose that we have two different groups of invalid
instruments: in the first group, S1 we have ψj = 0 for all SNPs and ῡ = ᾱ = 0, shown in Appendix E.
That is, the SNPs in S1 exhibit balanced pleiotropy under the InSIDE assumption. For illustrative purposes,
suppose now that the remaining instruments are in a set S2, defined by δj = 0, υj = 0 and κx = κy = 1,
but ψj 6= 0 have Uniform U(0.34, 1.1) distribution. This means that that αj = γj = ψj , so that the InSIDE
assumption is perfectly violated. Using the bias formulae, Equation (2.4) in the main manuscript, it follows
that

For j ∈ S1 : Γ̂j = αj + βγj + σY jεj

For j ∈ S2 : Γ̂j = αj + β∗γj + σY jεj

where β∗ = β + 1. The set of SNPs in S2 therefore identify a distinct, biased version of the causal effect. In
the general case where the SNPs could be classified into an InSIDE-respecting set and an InSIDE-violating
set, it would be more reasonable to assume that αj , γj and υj could all be non-zero. Although InSIDE would
not then be maximally violated in S2 we would still see two clusters in the data, albeit with a less defined
separation.

The same evaluation criteria is used as for the one-parameter model but now ∆(PPI) is probability of
inclusion for S1 and S2 SNPs, where their numbers add up to L.

G.2 Weak instruments

We reduced the strength of instrument of scenario 6 to have mean F-statistics of 10; σXj are generated from
a Uniform U(0.06, 1) distribution for both S1 and S2. Table A.7 gives the bias and coverage. Figure A.6
shows the difference in mean probability of inclusion between S1 and S2 instruments.

G.3 Simulated example for S0

Table A.7: Evaluation criteria for estimating two causal parameter from instruments with mean F-statistic
of 10. 50 instruments in total. The true β is 0.05. Est., estimator; Inst., instrument(s); Q, exact Q-statistics;
DL est., DL estimate; Full Bayes., Full Bayesian. β1 is estimating β and β2 for β + 1.

Est. Inst. Q mean bias median bias coverage
S1 : S2 S1 S2 β1 β2 β1 β2 β1 β2

DL est.

40:10 58.8 51.2 -0.004 -0.988 -0.003 -0.990 98.7 0.2
30:20 43.5 118.9 0.026 -0.870 0.014 -0.974 98.4 18.3
25:25 35.4 153.2 0.051 -0.532 0.020 -0.511 95.9 60.4
20:30 28.0 205.5 0.027 -0.252 0.012 -0.185 94.8 86.8
10:40 12.8 278.5 0.252 -0.143 0.178 -0.118 75.3 93.9

Full Bayes.

40:10 58.8 51.2 -0.236 -0.478 -0.002 -0.050 81.4 70.3
30:20 43.5 118.9 -0.395 -0.364 -0.009 0.064 65.9 69.8
25:25 35.4 153.2 0.551 -1.420 0.973 -1.025 30.1 41.4
20:30 28.0 205.5 0.500 -1.566 1.062 -1.816 19.0 42.4
10:40 12.8 278.5 0.258 -2.332 1.087 -3.133 1.9 27.2
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Fig.A.6: Mean difference in the ∆(PPI) between S1 and S2 as a function of the true ratio S1:S2 for weak
instruments (mean F-statistic of 10).
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Fig.A.7: An association plot of a simulated example to demonstrate when a SNP is in S0 (neither S1 or
S2). The simulated S1:S2 ratio is 50:50 for strong instruments (mean F-statistic of 100). The 2 solid lines
are the DL estimated effect sizes for the 2 clusters. As shown by legend; the colour gradient is the PPI for
a instrument belonging to S0, i.e. the darker the colour the higher the probability that the SNP belongs to
S0.
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H Applied example

This section gives the PPI from two-parameter BESIDE-MR for each SNP. And results from sensitivity
analysis for both one- and two-parameter BESIDE-MR.
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Fig.A.8: AMD and HDL: PPI for DL estimate (a) and full Bayesian approach (b), assuming InSIDE
violation. As shown by legend; colour red, green and blue is for instrument in neither (0:0), instrument
estimating β2 (0:1) and β1 (1:0) respectively.
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Table A.8: Sensitivity analysis for one-parameter BESIDE-MR with non-zero penalisation term, η. Med.,
LCI and UCI are the median of the posterior distribution with 95% upper and lower credible intervals
respectively. Q̂ is instrument normalised Q-statistics,

∑
Qj/Ij.

∑
Ij is the number of instruments included.

The Q-statistic for 27 Instruments is 115.99.
η 2 3 4 5
Para. Est. Med. LCI UCI Med. LCI UCI Med. LCI UCI Med. LCI UCI

β
DL 0.78 0.53 1.08 0.79 0.53 1.08 0.78 0.53 1.07 0.78 0.53 1.07
Bayes 0.77 0.50 1.08 0.77 0.50 1.07 0.77 0.50 1.07 0.76 0.49 1.07

τ2 × 10−4 DL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Bayes 0.28 0.09 1.77 0.29 0.09 1.83 0.29 0.09 1.86 0.29 0.09 1.87

Q̂
DL 0.98 0.89 0.99 0.98 0.93 0.99 0.99 0.94 0.99 0.99 0.94 0.99
Bayes 1.86 1.51 1.94 1.86 1.57 1.90 1.86 1.57 1.86 1.86 1.86 1.86

∑
Ij

DL 20 19 20 20 19 20 20 20 20 20 19 20
Bayes 26 24 26 26 25 26 26 25 26 26 25 26
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