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Abstract. Two-sample summary data Mendelian randomisation (MR)
is a popular method for assessing causality in epidemiology, by using
genetic variants as instrumental variables. If genes exert pleiotropic ef-
fects on the outcome not through the exposure of interest, this can lead
to heterogeneous and (potentially) biased estimates of causal effect. We
investigate the use of Bayesian model averaging (BMA) to preferentially
search the space of models with the highest posterior likelihood. We
develop a bespoke Metropolis-Hasting algorithm to perform the search
using the recently developed Robust Adjusted Profile Likelihood (MR-
RAPS) of Zhao et al as the basis for defining a posterior distribution
that efficiently accounts for pleiotropic and weak instrument bias. We
demonstrate how our general modelling approach can be extended from
a standard one-parameter causal model to a two-parameter model, to
allow a large proportion of SNPs to violate the Instrument Strength In-
dependent of Direct Effect (InSIDE) assumption. We use Monte Carlo
simulations to illustrate our methods and compare it to several related
approaches. We finish by applying our approach in practice to investigate
the changes in causal effect of their resulting high risk metabolite on the
development age-related macular degeneration.

Keywords: Two-sample summary data Mendelian randomization ·
Bayesian Model Averaging, weak instruments, horizontal pleiotropy, In-
SIDE violation.

1 Introduction

The capacity of traditional observational epidemiology to reliably infer whether
a health exposure causally influences a disease rests on its ability to appropri-
ately measure and adjust for factors which jointly predict (or confound) the
exposure-outcome relationship. Mendelian randomization (MR) [1] avoids bias
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from unmeasured confounding by using genetic variants as instrumental vari-
ables (IVs) [2]. In order for the approach to be valid for testing causality, each
specific IV must be robustly associated with the exposure (assumption IV1),
independent of any confounders of the exposure and outcome (IV2) and be in-
dependent of the outcome given the exposure and the confounders (IV3). This
is illustrated by the causal diagram in Figure 1a.
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Fig. 1: Causal diagrams representing the hypothesized relationship between ge-
netic instrument (G), exposure (X), outcome (Y) and all unmeasured variables
(U) which confound X and Y . β is the causal effect of X on Y. (a) δ is the ge-
netic effect on X. Dashed lines and crosses indicate violations of the standard IV
assumptions which can lead to bias. (b) Genetic instruments have a direct effect
on Y (∆), a phenomenon known as horizontal pleiotropy. Genetic instruments
have a direct effect on U (ψ), an example of horizontal pleiotropy that violates
the InSIDE assumption.

The recent boom of genome-wide association studies (GWAS) [3] has triggered
the development of MR approaches that utilise this widely available summary
data source. Specifically, ‘two-sample summary data’ MR is a design that de-
rives causal effect estimates with summary statistics obtained from two separate
GWAS - one supplying the Single Nucleotide Polymorphism (SNP)-exposure as-
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BMA for two-sample summary MR 3

sociations and the other supplying the SNP-outcome associations [4–7] - a SNP
being the most common type of genetic variation in the genome. If the chosen
SNPs are valid IVs, and the causal effect of a unit increase in X on the mean
value or risk of Y is approximately linear in the local region of X predicted by
these variants [8] then a simple inverse-variance weighted (IVW) meta-analysis
of SNP-specific causal estimates provides an approximately unbiased estimate
of this causal effect. If sufficient heterogeneity exists between the MR estimates
across a set of variants, this suggests that some of the SNPs may in fact violate
the IV assumptions. This could be due to assumption IV1 being only weakly
satisfied by the genetic variants (i.e. weak instrument bias), which can easily
be accounted for [9, 8]. It is however more problematic when the heterogeneity
is caused by violations of assumptions IV2 and IV3 [10, 11]. The latter viola-
tion is commonly known as ”horizontal pleiotropy” [12], and hereafter referred
to as pleiotropy for simplicity. Pleiotropy does not necessarily lead to biased
causal estimation if it is balanced, in the sense that the average pleiotropic bias
across SNPs is zero and the weight each SNP receives in the analysis is also
independent of this bias. This latter condition is referred to as the Instrument
Strength Independent of Direct Effect (InSIDE) assumption [13, 14]. However,
this assumption is itself unverifiable.

Methods have been developed that are naturally robust to pleiotropy and In-
SIDE violation. For example, the weighted median estimator [15] provides a
consistent estimate under the assumption that 50% of the SNPs are valid IVs
(or not pleiotropic). Similarly, mode-based estimation strategies focus on identi-
fying the largest subset of variants yielding a homogeneous causal estimate, and
are consistent when this set is made up of valid IVs [16, 17]. These approaches
do not make any assumptions the nature of the pleiotropy for invalid SNPs - it
could violate InSIDE or not. Other approaches, such as MR-PRESSO [18] and
Radial MR [9] attempt to detect and remove SNPs that are deemed responsible
for bias and heterogeneity in an MR-analysis. They can in theory provide consis-
tent estimates for the causal effect if the SNPs responsible for InSIDE violation
can be removed from the analysis so that only balanced pleiotropy remains. Fi-
nally, the Robust Adjusted Profile Score (MR-RAPS) [8] takes a subtly different
approach. It accounts for weak instruments and balanced pleiotropy using an
adjusted profile likelihood, which penalizes outlying SNPs that may induce bias
in the analysis using a robust loss function.

In this paper we develop a method for pleiotropy robust MR analysis with two-
sample summary data using the general framework of Bayesian Model Averaging
(BMA) [19]. BMA incorporates uncertainty about the effects of pleiotropy and
weak instruments into MR estimate by pooling the causal effect estimates from
all possible combinations of the genetic instruments with appropriate weights.
In this paper, we adapt this general approach to the summary data setting
where the SNPs are uncorrelated but potentially pleiotropic. Our approach uses
the profile likelihood of MR-RAPS [8] as a basis for efficiently modelling the
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summary data in the presence of weak instrument bias (IV1 violation) and
pleiotropy (IV2-3 violation), but with the addition of an indicator function to
denote whether an individual SNP is included or disregarded in the model. We
develop a bespoke Metropolis-Hastings BMA algorithm to intelligently search
the space models defined by all possible SNP subsets (i.e ≈ 2L in the case of L
SNPs) in order to decide which SNPs to include in the identified set of valid IVs
within a given iteration of the markov chain. For this reason, we call our method
BayEsian Set IDE Mendelian randomization (BESIDE-MR). BESIDE-MR nat-
urally up-weights large sets of variants that furnish consistent, homogeneous
estimates of causal effect, and down-weights sets of variants that provide het-
erogeneous estimates of causal effect. It also naturally accounts for uncertainty
introduced by SNP selection across models, which we will show is important for
preserving the coverage of resulting MR estimates.

In Section 2.1 and 2.2 we introduce the methodology behind our basic approach
and in Section 3 assess its performance in Monte-Carlo simulations. In Section 4
we show how the basic one-parameter causal model can be extended to account
for the case where a substantial proportion of the SNPs exhibit pleiotropy vio-
lating the InSIDE assumption. In Section 5 we apply our approach to investigate
the causal role of high density lipoprotein cholestorol (XL.HDL.C) on the risk
of age related macular degeneration (AMD) using data from the 2019 MR Data
Challenge [20]. We conclude with a discussion and point to further research.

2 Motivation and Method

2.1 Description of the general model

Suppose that we have data from an MR study consisting of N individuals, where
for each subject k we measure L independent genetic variants (Gk1 . . . GkL), an
exposure (Xk) and an outcome (Yk). Uk represents the shared residual error
between X and Y due to confounding, which we wish to overcome using IV
methods. We assume the following linear structural models [21] for U , X and Y
consistent with Figure 1b:

Uk|Gk =
L∑
j=1

ψjGkj + εUk ,

Xk|Uk, Gk =
L∑
j=1

δjGkj + κxUk + εXk ,

Yk|Xk, Uk, Gk =
L∑
j=1

∆jGkj + βXk + κyUk + εYk ,

where εUk , εXk and εYk are independent error terms for U , X and Y respectively.
From this we can derive the approximate reduced form models for the G-X and
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G-Y associations for SNP j :

Xk|Gkj ≈ (δj + κxψj)Gkj + ε′Xk , (1)

Yk|Gkj ≈
[
∆j + κyψj + β(δj + κxψj)

]
Gkj + ε′Yk . (2)

We use ‘approximate’ here because the error terms ε′Xk and ε′Yk not strictly con-
stant or mutually independent - the jth residual error term in fact contains
common contributions from all other genetic variants not equal to j. This ap-
proximation is very accurate in most settings because the genetic variants com-
bined make a very small contribution to the total residual error in each model
(e.g. typically of the order of 1-2%). For further justification see Zhao et al. [8].
Under this assumption the following models can then be justified for summary
data estimates of the G-X and G-Y associations gleaned from fitting (1) and
(2):

γ̂j ∼ N(γj , σ
2
Xj), Γ̂j |αj , γj ∼ N(αj + βγj , σ

2
Y j), (3)

Here, αj = ∆j + κyψj , and γj = δj + κxψj . Model (3) is typically applied in
the two-sample summary data setting. Under this design it is assumed that the
first study provides the G-X associations γ̂j and standard errors σXj , and the

second study provides the G-Y associations Γ̂j and standard errors σY j . Both
the standard errors are assumed to be fixed and known. The two-sample design
implicitly assumes that SNP j has an identical association with the outcome in
studies 1 and 2. Since the two studies are independent, it is also assumed that
the uncertainty in γ̂j is independent of the uncertainty in Γ̂j . For a detailed de-
scription of all the assumptions underlying the two-sample approach see Bowden
et al. [11] and Zhao et al. [22].

The individual Wald ratio estimand for SNP j from model 3 is then

βj =
Γj
γj

= β +
αj
γj

= β +
∆j + κyψj
δj + κxψj

From this we see that:

– A SNP is invalid due to pleiotropy if αj 6= 0

– A SNP is invalid due to InSIDE respecting pleiotropy if αj 6= 0 but ψj = 0

– A SNP is invalid due to InSIDE violating pleiotropy if αj 6= 0 and ψj 6= 0.

InSIDE violation occurs in the last case because instrument strength and
pleiotropic effects are functionally related due to a shared ψj component, so

that the sample covariance Ĉov(αj , γj) 6= 0. For the case of InSIDE respecting
pleiotropy we are able to assume the sample covariance is approximately zero for
a sufficient number of instruments, since ∆j and δj are imagined to be themselves
generated via independent processes [11]. In Appendix 1, we show, under the
simplifying assumption that the SNP-outcome standard errors are approximately
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constant, that IVW estimator for the causal effect

β̂IVW =

L∑
j=1

Γ̂j γ̂j

L∑
j=1

γ̂2j

→ β +
Ĉov(αj , γj) + ᾱγ̄

V̂ ar(γj) + γ̄2︸ ︷︷ ︸
bias term

(4)

as the sample size grows large. If all SNPs are pleiotropic, but satisfy the InSIDE
assumption (Ĉov(αj , γj) = 0) and have mean of zero (ᾱ=0), then numerator of
the bias term is zero and the standard IVW estimate provides a reliable way
of estimating β. MR-Egger regression is an extension of the method that can
work under the InSIDE assumption even if ᾱ 6= 0, which is referred to as ‘direc-
tional’ pleiotropy. It does this by estimating an intercept parameter in addition
to the causal slope parameter. However, this approach has several downsides; its
estimates are generally very imprecise and it is not invariant to allele recoding
[23]. Lastly, it can not separate non-zero mean pleiotropy satisfying the InSIDE
assumption from zero mean pleiotropy violating the InSIDE assumption. Its in-
tercept reflects the numerator of the bias term, which is a combination of both.
This motivates the use of methods that can attempt to detect and down-weight
a small number of variants that may be responsible for either InSIDE viola-
tion or directional pleiotropy so that, for the remainder of SNPs left, model (3)
holds with only InSIDE respecting balanced pleiotropy remaining. This is the
approach taken by Zhao et al. [8] and Verbanck et al. [18], and is the approach
we will initially pursue using BESIDE-MR.

2.2 Bayesian Model Averaging over the summary data model

We are interested searching over the space of all possible models defined by each
of the 2L subsets in the entire summary data. Let I = (I1, . . . , IL) be the L-
length indicator vector denoting whether SNP Gj is included (Ij = 1) or not
(Ij = 0) in the model. The model we want to ‘force’ our data to conform to is
model (3) with the additional assumption that

αj ∼ N(0, τ2)

The parameters of interest are then θ = (β, τ2, I) and with data, D, that consists
of γ̂j and Γ̂j , and their standard errors σXj and σY j respectively. Then the joint
posterior is

P (θ|D) ∝ P (D|θ)P (θ)

where P (D|θ) is the likelihood and P (θ) is user specified prior for each of the
parameters.

As we rarely know the identity of the pleiotropic instruments, BMA offers the
uncertainty about their identity and gives the inclusion posterior probability to
quantify how likely an instrument is invalid. BMA achieves this by considering
all possible models, where the models are different combinations of the potential
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set of genetic instruments and averages the resulting causal effect estimate with
appropriate weights (in the form of posterior probability of how often the instru-
ment is included during MCMC). The selection of instruments is conditional on
the likelihood of the data and the given priors. The prior in Bayesian analysis
reduces the effect of weak instrument bias, even with noninformative prior. How-
ever, we must advice against this, as reasons discussed by Thompson et al. [24].
This method is particularly attractive as it has also been found to reduce bias
from many weak instruments in econometric [25, 26] and in one-sample MR with
highly valid but highly correlated genetic instruments [27]. For a comprehensive
tutorial of BMA see Hoeting et al. [19].

2.3 The profile score likelihood

For P (D|θ), we use the profile log-likelihood score derived by Zhao et al. [8].
Specifically this is the likelihood for (β, τ2) given the data (γ̂, Γ̂ ) profiled over
the parameters γ1, ..., γL . After the incorporation of our indicator vector I, the
likelihood is modified to

l(β, τ2, I|γ̂, Γ̂ ) =−
∑L
j=1 Ij

2
log(2π)

− 1

2

L∑
j=1

Ij

{
log(σ2

Y j + τ2) +

(
(Γ̂j − βγ̂j)2

β2σ2
Xj + σ2

Y j + τ2

)}
(5)

This likelihood allows for heterogeneity due to pleiotropy via τ2, and weak in-
struments, via σ2

Xj . Failure to account for weak instrument bias can lead to bias
in the standard IVW estimate and inflation in related heterogeneity tests even
under balanced pleiotropy [23]. Note that this likelihood is an increasing func-
tion of number of instruments included and decreasing function of τ2. Hence, our
BMA algorithm will naturally give more weight to I-vectors that include large
sets of instruments with homogeneous causal effect estimates. This property is
reminiscent of ZEro Modal Pleiotropy Assumption (ZEMPA) [16] or plurality
rule that defines the two-stage hard thresholding (TSHT) approach of Guo et al.
[28]. However, there is an important distinction. The TSHT approach explicitly
aims to isolate the largest set of ‘valid’ instruments and base all inference on
this single set, which is equivalent to giving a single I-vector a weight of 1 and
all other vectors a weight of zero. Our approach is less aggressive, allowing as
many distinct I-vectors as are supported by the data to be given weight in the
analysis. This feature properly accounts for model uncertainty. Indeed, as sub-
sequent simulations will demonstrate, this yields causal estimates and standard
errors that are less prone to under-coverage than methods which incorporate
instrument selection or penalization.

One such method of penalization, also proposed by Zhao et al. [8], is MR-
RAPS. Instead of being based on likelihood function (5) which uses standard
least squares or L2 loss plus the addition of our indicator function, it uses a
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robust L1 function such as Huber or Tukey loss. They enable the contribution
of large outliers to be penalized (i.e. reduced) compared to L2 loss. Our BMA
indicator function implemention of the standard profile likelihood can be viewed
as an alternative way to achieving the robustness of MR-RAPS, because it will
give more weight to model choices in which outliers are removed.

The profile likelihood is particularly well suited to a Bayesian implementation
because it enables heterogeneity due to weak instrument bias and pleiotropy
to be accounted for, whilst only having to update three parameters, (β, τ and
I). Weak instrument bias is traditionally addressed using standard (non-profile)
likelihood formulae (e.g. see Thompson et al. [24]), but this would require the
posterior distribution of an additional L parameters (γ1, . . . , γL) to be estimated,
and is far more computationally intensive.

2.4 Choice of priors

In general we encourage the construction of priors to be based on previous epi-
demiological study or biological knowledge. For the purpose of elucidating our
approach, we will use priors that ensure efficient mixing and rapid convergence.
For the causal effect parameter β, we use a zero centered normal prior P (β). For
the pleiotropy variance we use a gamma prior P (Prec) for the precision, where
Prec = 1/τ2. For the indicator function prior, we will assume an uninformative
Bernoulli prior P (I) with probability 1

2 for all Ij .

2.5 Metropolis-Hastings algorithm

We use a random walk Metropolis-Hastings (M-H) algorithm for updating the
model parameter values. Unlike Gibbs sampling, the M-H algorithm does not
directly sample from the conditional posterior distribution, but instead requires
a proposal distribution for each parameter. Let θi = (βi, τ

2
i , Ii) be the current ith

value of the parameter vector θ. θi is updated to θi+1 one parameter at a time,
by simulating a candidate value θ∗ from proposal density, until it is accepted.
Note that if the proposal density C() for a given parameter is ‘symmetric’ - that
is if C(θi|θi+1) = C(θi+1|θi) then the proposal density can be omitted from the
calculation of the acceptance probability. This is the case for β and I, but not
τ2. In Appendix 2, we give the specific details of the M-H algorithm.

2.6 An alternative implementation

It is well known that the estimation of τ2 is challenging, even within a classical
framework, see Zhao et al. [8] for further discussion. Therefore, we propose an
alternative implementation of our M-H algorithm in which a plug-in estimate for
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τ2 is substituted at each iteration. For simplicity, we chose to use the closed-form
DerSimonian-Laird estimate for τ2 [29];

τ̂2 = max(0, (Q− (
L∑
j=1

Ij − 1))/W ) (6)

where

Q =
L∑
j=1

Ijwj(β̂j−βIVW )2, βIVW =

∑L
j=1 Ijwj β̂j∑L
j=1 Ijwj

, W =
L∑
j=1

Ijwj−
∑L
j=1 Ijw

2
j∑L

j=1 Ijwj

and wj = 1/V ar(β̂j) respectively. Note that Ij should not be confused with Hig-
gin’s I2 statistic used to quantify heterogeneity in Meta-analysis. In Appendix
2, we describe how the M-H algorithm is modified to implement this alterna-
tive approach. Hereafter, we will refer to the first method as the ‘full Bayesian’
approach and this latter method as the DerSimonian-Laird (DL) approach.

3 Monte Carlo simulation

3.1 Simulation strategy

In order to assess the performance of our BMA algorithm we simulate two-
sample summary MR data sets with L=50 instruments from model (3). The
parameters γj were generated from a Uniform U(0.34, 1.1) distribution, σXj was
generated from a Uniform U(0.06, UB) and σY j was generated from a Uniform
U(0.015, 0.11) distribution. The upper bound on the G-X association standard
error UB was used to determine mean instrument strength - with 0.095 ≤ UB ≤
1 giving mean F-statistics between 10 and 100 respectively. In this setting, the
F-statistic for a single SNP can be approximated as γ̂2j /σ

2
Xj .

We generated pleiotropic effects from a N(µα, τ
2) distribution, with the pa-

rameter µα being used to determine the mean bias induced by including the
invalid instruments in the model. The task of our BMA algorithm in the pres-
ence of a non-zero µα is to give large weight to models which include SNPs
for which µα ≈ 0. Apart from a potential non-zero mean bias, the simulated
pleiotropic effects satisfy the InSIDE assumption.

Convergence We test the convergence of our algorithm in different scenarios.
From this we determined that it was necessary to use 50,000 iterations with
10,000 burn-ins for our algorithm to function effectively. Except for rare oc-
casions, we removed results from data where number of iterations chosen was
not sufficient for convergence. See details in Appendix 3 of the SM available at
Biostatistics online.
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A comparison with IVW, MR-APS and MR-RAPS We first compare our
approach with the standard IVW method, MR-APS and MR-RAPS. The latter
two are the classical counterpart that our approach sits between. We monitor
the following quantities across our simulations:

– Mean bias of the causal parameter estimate. For our BMA algorithm we use
the mean of the posterior distribution of β to assess this;

– Coverage: For IVW, MR-APS and MR-RAPS this is based on 95% symmet-
ric confidence intervals assuming normality. For BESIDE-MR this is based
on a 95% credibility interval;

– The inclusion probability for each SNP (BESIDE-MR only).

Four scenarios are considered; (1) balanced pleiotropy with strong instru-
ments, (2) balanced pleiotropy with weak instruments, (3) directional pleiotropy
with strong instruments and (4) directional pleiotropy with weak instruments
(see Table 1 for a summary). Within each scenario, four sub-scenarios are con-
sidered where 0% to 100% of the SNPs are simulated as invalid/pleiotropic in-
struments. In order capture the amount of heterogeneity present in the data, we
report the exact Q-statistic [9]:

Q =
L∑
j=1

wj(β)(β̂j − β)2 (7)

Note that only invalid SNPs which have a non-zero pleiotropic effect make a non-
nominal contribution, so that, for a fixed set of pleiotropy parameters α1, . . . , αL:

E[Q] =
∑
αj 6=0

α2
j

β2σ2
Xj + σ2

Y j

+ (L− 1) (8)

Table 2 shows the results.

Table 1: Summary of simulation scenarios
Scenario Type of pleiotropy F̄ pleiotropic effect

of invalid
instruments

1 Balanced 100 N(0, 0.04)
2 Balanced 10 N(0, 0.04)
3 Directional 100 N(0.05, 0.04)
4 Directional 10 N(0.05, 0.04)

3.2 Results

bias and coverage Under scenario 1, all methods deliver approximately unbi-
ased estimates. The IVW, MR-APS and MR-RAPS estimators achieve nominal
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coverage when there are no pleiotropic instruments. However, as the proportion
of pleiotropic instruments (and hence the heterogeneity) increases, their cover-
ages can drop substantially, with the MR-APS and MR-RAPS estimators most
affected. BESIDE-MR approach has conservative coverage under no heterogene-
ity but maintains far better coverage when this increases. Scenario 2 is the same
as Scenario 1, except the SNPs are now weaker. The general pattern is the same,
except the coverage of IVW is lower and its estimate is negatively biased. This is
as expected because it uses inverse variance weights that assume σ2

Xj=0 for all
SNPs [9]. The results remains the same with further simulation of many weak
instruments (L=100), see Appendix 3.

In scenarios 3 and 4, all the approaches deteriorate with increasing num-
ber of invalid instruments, but BMA has consistently the least bias and best
coverage throughout. In Scenario 4, the IVW estimator is least biased, due to
weak instrument bias cancelling out some of the pleiotropic bias. With 40%
and 60% invalid instruments, full Bayesian BESIDE-MR struggled to converge
within 50,000 iterations in a small number of cases.

SNP inclusion Figure 2a shows the difference between the mean probability
of including valid (non-pleiotropic) SNPs and the mean probability of including
invalid (pleiotropic) SNPs in our BMA likelihood for Scenarios 1 and 3. This
difference is zero when there are no invalid instruments. Under Scenario 1 this
difference is maximised (i.e. we get the best discrimination) when there are
20% invalid instruments, this difference steadily decreases to half its value as
the number of invalid instruments increases further. Under Scenario 3 we see
a smaller and more constant difference across different proportions of invalid
instruments, indicating that the BMA likelihood generally struggles to deal with
directional pleiotropy. There is still difference in inclusion posterior probability
between valid and invalid instruments, however not in the same magnitude for
weaker and many weak instruments, see Appendix 3.

Additional simulations were performed to investigate the effect of different
patterns of heterogeneity, but a fixed and borderline amount total heterogeneity,
on the difference in inclusion probabilities of valid and invalid SNPs. Specifically,
we generate summary data under balanced pleiotropy with Q fixed at 66, but
varying the source of of this heterogeneity from 25 weakly pleiotropic SNPs
(with individual Q contributions ≈ 3), to 11 strongly pleiotropic SNPs (with
individual Q contributions ≈ 6). Figure 2b shows the results. As expected, the
discrimination is best with small numbers of highly pleiotropic SNPs, and the
worst with large numbers of weakly pleiotropic SNPs. However, the algorithm
maintains its reliability in even in this case. For further results see Appendix 3.
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Table 2: Evaluation criteria for different types of pleiotropy and instrument
strength (Table 1). 50 instruments in total. True β is 0.05. No. inv., Number of
invalid instrument(s); Q, Q-statistics with exact weights; DL est., DL estimate;
Full Bayes., Full Bayesian; bias, mean bias
No.
inv.

Q IVW DL est. Full Bayes. MR-APS MR-RAPS

Scenario 1
bias(i); coverage(ii) i ii i ii i ii i ii i ii

0 49.0 -0.001 96.40 -0.000 97.50 0.000 98.10 -0.000 94.40 -0.000 94.00

10 57.9 -0.001 93.20 0.000 97.50 0.000 97.70 -0.000 89.50 -0.000 92.10

20 66.4 -0.001 90.80 -0.000 95.40 -0.000 94.60 -0.000 83.90 -0.000 87.30

30 75.5 -0.000 88.30 0.001 94.20 0.001 92.00 0.001 77.30 0.001 80.80

40 84.0 -0.001 86.80 -0.000 95.80 -0.000 90.70 0.001 76.60 0.001 77.60

50 91.9 0.000 85.40 0.000 94.80 0.001 86.60 0.002 70.40 0.001 72.90
Scenario 2

0 48.7 -0.018 33.40 -0.001 97.10 0.002 96.10 -0.000 93.90 -0.000 92.90

10 54.4 -0.019 37.50 -0.000 97.10 0.005 93.70 0.003 91.80 0.003 92.10

20 59.2 -0.018 41.70 0.001 96.70 0.008 90.50 0.006 88.00 0.006 89.10

30 64.0 -0.018 44.60 0.001 96.70 0.011 87.80 0.009 83.20 0.008 84.90

40 68.8 -0.018 46.50 0.001 95.60 0.014 80.20 0.012 72.50 0.011 75.70

50 73.9 -0.019 47.80 0.002 94.60 0.017 73.40 0.015 68.80 0.015 70.10
Scenario 3

i ii i ii i ii i ii i ii

0 49.0 -0.001 96.40 -0.000 97.50 0.000 98.10 -0.000 94.40 -0.000 94.00

10 69.0 0.011 75.60 0.007 92.80 0.007 92.70 0.013 61.30 0.009 75.80

20 84.1 0.024 35.20 0.018 71.90 0.016 70.00 0.027 20.20 0.021 33.60

30 92.0 0.037 11.80 0.032 38.20 0.031 36.10 0.039 4.70 0.035 7.90

40 96.1 0.051 1.40 0.049 9.30 0.049 9.70 0.054 0.10 0.052 0.40

50 95.2 0.064 0.30 0.066 1.50 0.067 1.50 0.068 0.00 0.067 0.00
Scenario 4

i ii i ii i ii i ii i ii

0 48.7 -0.018 33.40 -0.001 97.10 0.002 96.10 -0.000 93.90 -0.000 92.90

10 58.8 -0.011 69.77 0.007 95.60 0.015 79.00 0.018 66.30 0.016 71.70

20 64.5 -0.003 84.70 0.017 84.60 0.028 46.20 0.035 23.70 0.034 29.60

30 66.5 0.006 82.60 0.028 64.60 0.040 21.70 0.050 5.10 0.048 7.00

40 66.2 0.014 70.10 0.040 35.60 0.049 9.90 0.064 0.40 0.063 0.60

50 65.3 0.022 53.90 0.050 18.90 0.057 5.20 0.075 0.10 0.074 0.10
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Fig. 2: (a) The difference in mean inclusion probability between valid and invalid
instruments for balanced and directional pleiotropy (scenario 1 and 3 respec-
tively). (b) The difference in mean inclusion probability when a fixed amount of
heterogeneity (Q=66) is due to many weakly pleiotropic or a small number of
highly pleiotropic SNPs.
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4 An extended two parameter BMA model for
substantial InSIDE violation

In Section 2.2 we introduced the BMA framework for summary data MR and ap-
plied it directly using the MR-APS likelihood of [8]. This method assumed that
most SNPs were valid, but a small proportion could be invalid and directionally
pleiotropic under the InSIDE assumption. The simulations in Section 3 showed
that it performed well when this was the case, but like all other approaches, it
suffered when a large number of SNPs were directionally pleiotropic, thus induc-
ing both heterogeneity and bias into the results. We now consider the use of an
extended BMA model to account for the extreme case where large numbers of
SNPs may be invalid and in addition, violate the InSIDE assumption (Figure 1b).

Using the same underlying data generating model 3, suppose that we have two
different groups of invalid instruments: in the first group, S1 we have ψj = 0
for all SNPs and ∆̄ = ᾱ = 0, shown in Section 3.1. That is, the SNPs in S1

exhibit balanced pleiotropy under the InSIDE assumption. For illustrative pur-
poses, suppose now that the remaining instruments are in a set S2, defined by
δj = 0, ∆j = 0 and κx = κy = 1, but ψj have Uniform U(0.34, 1.1) distribution.
This means that that αj = γj = ψj , so that the InSIDE assumption is perfectly
violated. Using the bias formulae in equation (4), it follows that

For j ∈ S1 : Γ̂j = αj + βγj + σY jεj

For j ∈ S2 : Γ̂j = αj + β∗γj + σY jεj

where β∗ = β + 1. The set of SNPs in S2 therefore identify a distinct, biased
version of the causal effect. In the general case where the SNPs could be classified
into an InSIDE-respecting set and an InSIDE-violating set, it would be more
reasonable to assume that αj , γj and ∆j could all be non-zero. Although InSIDE
would not then be maximally violated in S2 we would still see two clusters in the
data, albeit with a less defined separation. This motivates the development of
an extended two-parameter version of our BMA algorithm to look for evidence
of two clusters or slopes in the data.

4.1 A modified BMA algorithm

Under the generating model in (3), we further assume that the pleiotropic effects
for valid SNPs in S1 are generated from a N(0, τ21 ) distribution and the set of
invalid SNPs in S2 are generated from a N(0, τ22 ) distribution. Allowing these
SNPs to violate InSIDE, and therefore identify a different slope parameter, our
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total parameter space is modified to θ = (β1, τ
2
1 , β2, τ

2
2 , I1, I2), with likelihood:

l(θ|γ̂, Γ̂ ) =Maxγ l(β1, τ
2
1 , β2, τ

2
2 |γ̂, Γ̂ )

= log f(γ̂, Γ̂ |β1, τ21 , β2, τ22 )

=−
∑L
j=1 I1j

2
log(2π)

− 1

2

L∑
j=1

I1j

{
log(σ2

Y j + τ21 ) +

(
(Γ̂j − β1γ̂j)2

β2
1σ

2
Xj + σ2

Y j + τ21

)}

−
∑L
j=1 I2j

2
log(2π)

− 1

2

L∑
j=1

I2j

{
log(σ2

Y j + τ22 ) +

(
(Γ̂j − β2γ̂j)2

β2
2σ

2
Xj + σ2

Y j + τ22

)}
(9)

Where the indicator functions I1j and I2j denote whether a SNP j is included
in S1 or S2. We impose the condition that I1j + I2j ≤ 1, which means that, at
a given iteration of our BMA algorithm a SNP is either

– In S1: (I1j = 1, I2j = 0)
– In S2: (I1j = 0, I2j = 1)
– In neither S1 or S2 : (I1j = I2j = 0)

This gives the model the flexibility to assign a SNP to either set, or remove it
from the model completely. In Appendix 4, we give further details on the M-H
algorithm to update the parameter space of this extended model.

As with our one-parameter causal model, we propose a simplified implemen-
tation of the two-parameter model in which the variance component parameters
τ21 and τ22 are replaced with plug-in data derived estimates using the DL formula.

4.2 Simulation study

We conduct a simulation study to test the ability of our new two-parameter
model to correctly estimate causal effects allowing for InSIDE violation. Two-
sample summary data are simulated with 50 SNPs under balanced pleiotropy
but with progressively larger proportion of SNPs maximally violating the InSIDE
assumption. This changes the proportion of SNPs that are in set S1 and S2. These
data are simulated under a strong instrument scenario (F̄ = 100, Scenario 5)
and a weak instrument scenario (F̄ = 25, Scenario 6). For precise details of the
simulation parameters see Table 3. We also explore the performance of our two-
parameter model under balanced pleiotropy with weak and strong instruments
when there is no InSIDE violation. That is, under Scenario 1 and 2. This means
that all SNPs are effectively in set S1 the data can be described with a single
causal slope parameter, not two. The full results are shown in Table 4 where we
report the bias, root mean squared error, coverage and mean Q statistic of all
approaches across 1000 simulations.
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Table 3: Summary of InSIDE simulation scenarios

Scenario F̄ of S1 : S2
Type of

pleiotropy
S1 S2

5 100:100 Balanced

ψj = 0,

∆j ∼ N(0, 0.04),

δj ∼ U(0.34, 1.1),

σXj ∼ U(0.06, 0.095),

β1 = β

ψj ∼ U(0.34, 1.1),

∆j = 0,

δj = 0,

σXj ∼ U(0.06, 0.095),

β2 = β + 1

6 25:25 Balanced

ψj = 0,

∆j ∼ N(0, 0.04),

δj ∼ U(0.34, 1.1),

σXj ∼ U(0.06, 0.4),

β1 = β

ψj ∼ U(0.34, 1.1),

∆j = 0,

δj = 0,

σXj ∼ U(0.06, 0.4),

β2 = β + 1

4.3 Results

For data generated under Scenario 1 and 2, and so in the complete absence of
InSIDE-violating SNPs in set S2, our two slope model correctly identifies β and
does not try to estimate a second effect, i.e. β1 = β2.

When the data are generated under Scenario 5 we see that, when S1 and S2

have a similar number of instruments, both β1 and β2 can be estimated by the
DL implementation of our two-parameter model. If the proportion of SNPs in
either set is too small, then our algorithm tends to remove them completely and
focus on estimating just one slope.

The full Bayesian implementation of our two slope model is shown to be more
challenging to fit. It returns mean posterior estimates that are median unbiased
but not mean unbiased. This demonstrates a lack of convergence, and indicates
that longer iterations and a more sophisticated procedure for deciding on the
tuning parameter may be required to properly fit the model.

When the data are generated with weaker instruments (Scenario 6), we see de-
grading in the performance of all approaches. In particular, see that the effect
is worst for β2. This is because, in our specific simulation, β2 is larger in magni-
tude than β1, which increases both the heterogeneity (as measured by Q) and the
absolute magnitude of weak instrument bias relative to that experienced when
estimating β1. This in turn effected the coverage of the estimates. We further
reduced the strength of the instruments, to have mean F-statistics of 10, our
approach no longer assigns instruments to either set as the heterogeneity from
the β2 is too large to be pooled to a particular effect estimate, see Appendix 5.

When applying the full Bayesian approach in Scenario 6, we noticed an impor-
tant feature most prominent when there was a large imbalance in the relative
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sizes of S1 and S2. In this case, the M-H algorithm can switch from estimating
the posterior for β1 to estimating the posterior for β2. This problem is referred
to as ”label switching” [30]. In our applied analysis in Section 5, we discuss this
issue in more detail, and our proposal for addressing it.

Figure 3a (left and right) gives further insight into how well the DL and full
Bayesian implementations can correctly partition the SNPs into their correct
sets. The x-axis shows the true ratio of SNPs in S1 and S2 and the y-axis shows
the difference in the mean probability of each SNP being assigned to S1 and
S2. For the DL implementation, this probability is reassuringly high when the
ratio is between 4:1 or 1:4, and is maximised when the ratio is 1:1. By contrast,
the difference in mean inclusion probabilities for the full Bayesian approach are
much more constant across all ratios and are also consistently lower.
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Fig. 3: Mean difference in inclusion probability between S1 and S2 as a function
of the true ratio S1:S2 for Scenario 5 (a) and Scenario 6 (b).
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Table 4: Evaluation criteria for estimating 2 causal parameter. 50 instruments
in total. The true β is 0.05. Est., estimator; Inst., instrument(s); Q, exact Q-
statistics; RMSE, root-mean-squared error.; DL est., DL estimate; Full Bayes.,
Full Bayesian

Est.
Inst.
S1 : S2

Q mean bias median bias RMSE coverage

S1 S2 β1 β2 β1 β2 β1 β2 β1 β2

Scenario 1 (β1 = β2 = β)

DL est. 50:0 60.2 - 0.001 0.001 0.001 0.001 0.011 0.011 100.0 99.8
Full Bayes. 50:0 60.2 - 0.001 0.001 0.001 0.001 0.012 0.012 99.7 99.5

Scenario 5 (β1 = β, β2 = β + 1)

DL est.

40:10 73.5 10.9 0.007 -0.876 0.001 -0.995 0.044 0.932 99.4 14.6

30:20 55.1 23.8 0.003 -0.080 0.001 -0.013 0.040 0.264 95.9 92.2

25:25 43.9 30.3 0.005 -0.009 0.001 -0.008 0.060 0.072 93.9 96.7

20:30 35.3 36.9 0.053 -0.007 0.004 -0.007 0.211 0.051 90.9 95.5

10:40 16.5 49.1 0.907 -0.009 0.988 -0.006 0.950 0.077 10.8 85.5

Full Bayes.

40:10 73.5 10.9 0.076 -0.287 0.003 -0.027 0.269 0.541 84.0 69.0

30:20 55.1 23.8 0.230 -0.218 0.008 -0.009 0.481 0.471 69.4 76.2

25:25 43.9 30.3 0.248 -0.182 0.011 -0.008 0.499 0.436 67.9 79.7

20:30 35.3 36.9 0.254 -0.122 0.013 -0.002 0.519 0.360 66.8 86.1

10:40 16.5 49.1 0.225 -0.041 0.017 0.003 0.738 0.283 62.4 95.4

Scenario 2 (β1 = β2 = β)

DL est. 50:0 58.3 - 0.002 0.002 0.002 0.002 0.013 0.013 100.0 100.0
Full Bayes. 50:0 58.3 - 0.004 0.004 0.004 0.003 0.014 0.014 99.9 99.9

Scenario 6 (β1 = β, β2 = β + 1)

DL est.

40:10 67.6 30.2 0.003 -0.985 0.002 -0.997 0.024 0.990 99.0 1.4

30:20 50.3 65.7 0.038 -0.477 0.009 -0.391 0.111 0.643 97.5 59.4

25:25 41.3 85.0 0.012 -0.099 0.006 -0.060 0.053 0.229 94.1 93.3

20:30 32.8 102.6 0.007 -0.037 0.005 -0.033 0.034 0.120 94.6 96.8

10:40 14.8 140.6 0.658 -0.080 0.785 -0.064 0.757 0.170 40.2 93.4

Full Bayes.

40:10 67.6 30.2 0.000 -0.336 0.003 -0.104 0.137 0.615 89.9 63.4

30:20 50.3 65.7 0.023 -0.180 0.008 0.016 0.446 0.661 84.7 78.4

25:25 41.3 85.0 0.035 -0.232 0.011 0.016 0.667 0.820 73.1 80.7

20:30 32.8 102.6 0.006 -0.336 0.011 0.017 0.877 1.036 64.9 76.9

10:40 14.8 140.6 -0.394 -0.591 0.003 0.012 1.548 1.461 32.7 76.2
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5 Applied example: Age-related macular degeneration
and cholesterol

Age-related macular degeneration (AMD) is a painless eye-disease that eventu-
ally leads to vision loss. Recent GWAS have identified several rare and common
variants located in gene regions that are associated with lipid levels [31], fu-
elling speculation as to whether the relationship was causal [32, 33]. To this
end, a multivariable MR analysis provided evidence to support a causal rela-
tionship between AMD and HDL cholesterol but not with LDL cholesterol and
triglycerides [34]. In follow up work, Zuber et al. [35] fitted a multivariable MR
model using Bayesian model averaging, with a total of 30 separate lipid fraction
metabolites acting as the intermediate exposures. Out of the 30, large particle
HDL cholesterol (XL.HDL.C) had the highest inclusion posterior probability as
a risk factor for AMD.

Although multivariable MR approaches can remove bias due to pleiotropy via
known pleiotropic pathways (in this case, other lipid fractions), they can be much
more challenging to fit, especially when the correlation between the included ex-
posures is high. For this reason we now revisit this data and use our univariate
MR approaches to probe the causal relationship between XL.HDL.C and AMD.

We selected 54 genetic variants from Kettunen et al. [36] as instruments, due
to having individual F-statistics for their association with XL.HDL.C greater
than 2. Across all instruments this gave a mean F-statistic of 10. The summary
scatter plot for these data is shown in Figure 4. The results for our various data
analyses are given in Table 5.
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Fig. 4: AMD and HDL: Scatter plot of the relationship between SNP-outcome
and SNP-exposure association.
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Table 5: Estimates for the causal effect of a unit increase in XL.HDL.C on the
risk of AMD using a range of methods.

Parameters Estimator Mean 95% Lower
Interval

95% Upper
Interval

Standard one-parameter approaches

β
IVW 0.1576 -0.1003 0.4155
MR-APS 0.2610 -0.0242 0.5462
MR-RAPS 0.4705 0.2223 0.7187

BESIDE-MR: one-parameter model

β
DL estimate 0.1908 -0.1661 0.6036
Full Bayesian 0.6208 0.3595 0.8689

BESIDE-MR: two-parameter model

β1
DL estimate 0.8930 0.6123 1.2685
Full Bayesian 0.8768 0.5318 1.2367

β2
DL estimate -0.6616 -0.9543 -0.2012
Full Bayesian -0.5135 -0.9355 0.5926

When one-parameter causal models are fitted to the data, all methods es-
timate a positive causal association, with full Bayesian BESIDE-MR and the
MR-RAPS estimators giving the largest effects and the IVW method giving the
smallest effect. This is not surprising because the IVW estimate is known to
be vulnerable to weak instrument bias. Figure 5 shows the inclusion probabil-
ity for each instrument, using our two implementations. The DL approach is
seen to more aggressively select or de-select instruments than the full Bayesian
approach.
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Fig. 5: AMD and HDL: Inclusion probability for each instrument for DL estimate
(a) and full Bayesian approach (b).

Next, we fit our two-parameter causal model, which offers robustness to a
substantial portion of the SNPs violating the InSIDE assumption. Interestingly,
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we see that this estimates two distinct causal effects of opposite sign (Table 5).
For the DL approach, approximately 17 SNPs have a strong inclusion probability
(> 0.8) to each of the 2 clusters, with 1 SNP (rs103294) belonging to neither,
(see Figure 6). For the full Bayesian approach, 12 instruments have a strong
inclusion probability in the set identifying a positive relationship and only 2 in-
struments for the negative relationship (hence 0 is within the credible interval
for this smaller set). SNP rs103294 also have low probability of being in either
set. (Figure 7).

Our tentative conclusion here is that a small proportion of InSIDE-violating
SNPs act to reduce the apparent causal effect of XL.HDL.C on AMD detectable
by a one-parameter model. Once this set has been accounted for within a two-
parameter model, this increases the evidence in favour of a causal role of XL.HDL.C
on AMD further. Our results are consistent with Zuber et al. [35] who also found
subsets of SNPs which suggested qualitatively different conclusions about the
causal role of XL.HDL.C on AMD.

5.1 Detecting and adjusting for label switching in the full Bayesian
model

The trace plots in Figure 8a and 8b show that the DL implementation consis-
tently identifies two separate distributions for β1 and β2, which are centered
around 0.89 and -0.66 respectively. This is not the case, however, under the full
Bayesian implementation. Trace plots 8c and 8d show that the chains for β1 and
β2 jumping between two distinct values pattern. This is commonly known as ‘la-
bel switching’. It has been recommended that, instead of adjusting the MCMC
algorithm itself, one can simply re-allocate iteration labels from the output [30]
instead. To this end we performed a K-means clustering analysis [37] on the
MCMC output. Before K-means correction, the mean posterior distribution of
β1 and β2 gave 0.21 and 0.16 respectively. K-means analysis clustered 214,882
iterations centred at 0.88 and the second cluster contains 185,119 iterations with
mean of -0.56. We re-assigned the estimates (to β1 and β2) accordingly (see Fig-
ure 8e) which gave new posterior distribution with mean and credible interval
shown in Table 5. This issue further emphasizes the importance of carefully im-
plementing the fully Bayesian approach, and for checking MCMC output for
convergence issue.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.11.943712doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.11.943712
http://creativecommons.org/licenses/by/4.0/


22 C.Y. Shapland et al.

0.00

0.25

0.50

0.75

1.00

rs
10

51
36

88

rs
10

83
29

62

rs
12

13
35

76

rs
12

52
51

63

rs
14

82
85

2

rs
15

15
11

0

rs
16

83
12

43

rs
16

89
79

7

rs
17

45
32

rs
17

78
89

30

rs
17

78
92

18

rs
21

73
86

rs
22

55
14

1

rs
22

87
62

3

rs
25

87
53

4

rs
26

02
83

6

rs
35

58
38

rs
39

96
35

2

rs
68

60
30

rs
70

24
85

rs
78

97
37

9

rs
89

42
10

rs
90

33
19

rs
94

91
69

6

rs
96

86
66

1

rs
96

93
85

7

rs
97

05
48

SNP id

In
cl

. p
ro

b.

0.00

0.25

0.50

0.75

1.00

rs
10

32
94

rs
10

77
31

05

rs
10

86
16

61

rs
11

04
51

63

rs
11

22
04

62

rs
11

66
04

68

rs
16

94
28

87

rs
17

69
52

24

rs
18

00
96

1

rs
18

13
62

rs
22

41
21

0

rs
22

78
23

6

rs
22

88
00

2

rs
24

12
71

0

rs
26

13
42

rs
44

65
83

0

rs
47

91
64

1

rs
49

83
55

9

rs
49

99
74

rs
58

80

rs
60

16
38

1

rs
60

34
46

rs
72

25
70

0

rs
73

18
39

rs
80

17
37

7

rs
80

77
88

9

rs
93

19
92

SNP id

In
cl

. p
ro

b.

Incl. prob. β1 : β2 0:0 0:1 1:0

Fig. 6: AMD and HDL: Inclusion probability for DL estimate, assuming InSIDE
violation. As shown by legend; colour red, green and blue is for instrument in
neither (0:0), instrument estimating β2 (0:1) and β1 (1:0) respectively.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.11.943712doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.11.943712
http://creativecommons.org/licenses/by/4.0/


BMA for two-sample summary MR 23

0.00

0.25

0.50

0.75

1.00

rs
10

51
36

88

rs
10

83
29

62

rs
12

13
35

76

rs
12

52
51

63

rs
14

82
85

2

rs
15

15
11

0

rs
16

83
12

43

rs
16

89
79

7

rs
17

45
32

rs
17

78
89

30

rs
17

78
92

18

rs
21

73
86

rs
22

55
14

1

rs
22

87
62

3

rs
25

87
53

4

rs
26

02
83

6

rs
35

58
38

rs
39

96
35

2

rs
68

60
30

rs
70

24
85

rs
78

97
37

9

rs
89

42
10

rs
90

33
19

rs
94

91
69

6

rs
96

86
66

1

rs
96

93
85

7

rs
97

05
48

SNP id

In
cl

. p
ro

b.

0.00

0.25

0.50

0.75

1.00

rs
10

32
94

rs
10

77
31

05

rs
10

86
16

61

rs
11

04
51

63

rs
11

22
04

62

rs
11

66
04

68

rs
16

94
28

87

rs
17

69
52

24

rs
18

00
96

1

rs
18

13
62

rs
22

41
21

0

rs
22

78
23

6

rs
22

88
00

2

rs
24

12
71

0

rs
26

13
42

rs
44

65
83

0

rs
47

91
64

1

rs
49

83
55

9

rs
49

99
74

rs
58

80

rs
60

16
38

1

rs
60

34
46

rs
72

25
70

0

rs
73

18
39

rs
80

17
37

7

rs
80

77
88

9

rs
93

19
92

SNP id

In
cl

. p
ro

b.

Incl. prob. β1 : β2 0:0 0:1 1:0

Fig. 7: AMD and HDL: Inclusion probability for full Bayesian, assuming InSIDE
violation. As shown by legend; colour red, green and blue is for instrument in
neither (0:0), instrument estimating β2 (0:1) and β1 (1:0) respectively.
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(a) DL estimate: β1 (b) DL estimate: β2

(c) full Bayesian: β1 (d) full Bayesian: β2

(e) full Bayesian: β1 and β2

Fig. 8: AMD and HDL: Trace plots for β1 and β2 from the fully Bayesian and
DL implementations of our algorithm.
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6 Discussion

In this paper we propose a Bayesian Model Averaging approach that offers ro-
bustness pleiotropy and weak instruments. Our approach can be viewed as a
Bayesian extension of the classical MR-RAPS approach, but with two advan-
tages. The first is that SNPs deemed to be pleiotropic can be effectively down-
weighted, without dramatically affecting the coverage of the causal estimate. The
second is robustness to large proportion of SNPs violating the InSIDE assump-
tion. Rather than assuming the InSIDE violating SNPs are small in number and
can be effectively penalized in the analysis, they can instead include be included
using our two-parameter model. We were able to demonstrate the potential util-
ity of this extended model in our applied example to uncover sub-signals in the
data that would be missed by conventional methods. We explored two imple-
mentations of BESIDE-MR, namely the full Bayesian and the simplified DL
implementation. Our simulations showed that the DL implementation generally
performed well, and led to a more decisive selection of SNPs as either in or out
of the model (or into set S1 or S2 in the two slope case) than the full Bayesian
approach. It was also much more straightforward to fit and achieve convergence.
Despite the fully Bayesian implementation requiring more computational time
and careful consideration of the MCMC output, it is far better at detecting small
effects and consistently identifying outlying instruments. We will attempt to im-
prove the reliability of the full Bayesian approach. One aspect of this will be to
create a label switching algorithm [38] for the output from full Bayesian model.
Another would be to specify a more sophisticated procedure for optimising the
tuning parameter for each model parameter separately. In the meantime, we urge
users of the full Bayesian approach to manually adapt the tuning parameters and
carefully monitor the mixing and convergence of the MCMC chains (especially
for the latter approach), which are essential aspects of the analysis. As seen in
Appendix 3, diagnostic tools such as performing multiple chains with different
initial values and trace plots can be used in this regard. For a comprehensive
tutorial see Albert [39] and Lunn et al. [40]. For our two-parameter model, it
is also important to note that in the presence of weak instruments, the results
from our approach must be interpreted with care and even more so when most
instruments aren’t assigned to either clusters.

A useful additional output from our BMA approach compared to classical ap-
proaches is the inclusion probability for each SNP. This of course necessitates
the specification of a prior probability of inclusion, which we fixed at a constant
value of 1

2 . Ideally, one should use informative priors where possible. Indeed,
there are multiple sources of external information, e.g. epigenetic databases and
bioinformatic webtools that could be used to achieve this. For example, a genetic
variant that is located in a protein coding gene that is relevant to the pathway
between exposure and outcome of interest can be given a higher inclusion prior
probability. Conversely, we might give a much lower inclusion prior probability
if the variant is located in a gene that is expressed in multiple tissues. This is
again a topic for future research.
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For individual-level data MR analyses, Berzuini et al. [41] have recently sug-
gested a Bayesian approach that uses a horseshoe shrinkage prior on the pos-
sible pleiotropic effect of each instrument. When the pleiotropic effect is small,
it is shrunk toward zero, thereby increasing the instrument’s influence on the
causal effect estimate. Their simulation showed their prior is reasonably robust
to directional pleiotropy. Our approach is currently not robust to pure direc-
tional pleiotropy, although it is robust to apparent directional pleiotropy caused
by violation of the InSIDE. As future work we intend to explore extending our
approach to model pure directional pleiotropy using modifications to MR Egger
regression Bowden et al. [13]. However, for the aforementioned reasons, the re-
sulting estimator is likely to be imprecise and useful only in a limited number of
circumstances.

We introduced our two-parameter BMA model for a univariate MR analysis.
Zuber et al. [35] have already proposed a BMA implementation of multivariable
MR [34, 42], which includes an algorithm for selecting both SNPs and exposure
traits. Our model can in principle be extended to multivariable MR too. For a
model with 10 exposure traits, this would necessitate the estimation of 20 causal
parameters to account for InSIDE violation via unmeasured pathways. This is
another topic for future research.
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