
 1 

 
Mechanical heterogeneity along single cell-cell junctions is driven by 
lateral clustering of cadherins during vertebrate axis elongation 
 
 
 
 
 
Robert J. Huebner1*, Abdul Naseer Malmi-Kakkada2, 3*, Sena Sarikaya1, Shinuo Weng1, D. 
Thirumalai**2, and John B. Wallingford**1 
 
 
 
1.  Department of Molecular Biosciences 
 
2.  Department of Chemistry, University of Texas at Austin. 
 
3.  Dept. of Chemistry and Physics, Augusta University 
 
 
 
 
 
 
 
 
*These authors contributed equally 
 
**Co-corresponding authors: 
 
John Wallingford 
Patterson Labs 
2401 Speedway 
Austin, Texas  
78712 
Wallingford@austin.utexas.edu 
512-232-2784 
 
Dave Thirumalai 
dave.thirumalai@gmail.com 
  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.02.11.944033doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.11.944033


 2 

 
Abstract: 
 
Morphogenesis is governed by the interplay of molecular signals and mechanical forces across 
multiple length scales.  The last decade has seen tremendous advances in our understanding of 
the dynamics of protein localization and turnover at sub-cellular length scales, and at the other 
end of the spectrum, of mechanics at tissue-level length scales.  Integrating the two remains a 
challenge, however, because we lack a detailed understanding of the subcellular patterns of 
mechanical properties of cells within tissues.  Here, in the context of the elongating body axis of 
a vertebrate embryo, we combine tools from cell biology and physics to demonstrate that 
individual cell-cell junctions display finely-patterned local mechanical heterogeneity along their 
length. We show that such local mechanical patterning is essential for the cell movements of 
convergent extension and is imparted by locally patterned clustering of a classical cadherin.  
Finally, the patterning of cadherins and thus local mechanics along cell-cell junctions are 
controlled by Planar Cell Polarity signaling, a key genetic module for CE that is mutated in 
diverse human birth defects.   
 
 
 
 
 
 
 
Introduction: 
 
The establishment and maintenance of animal form involves the control of physical forces by 
molecular systems encoded in the genome, and the elongation of an animal’s head-to-tail body 
axis is a long-studied paradigm for understanding morphogenesis (Guillot and Lecuit, 2013).  
This essential step in the construction of a new embryo is driven by an array of morphogenetic 
engines, including an evolutionarily ancient suite of collective cell behaviors termed convergent 
extension (Fig. 1A; Supp. Fig. 1A)(Huebner and Wallingford, 2018). Critically, failure of axis 
elongation does not simply result in a shorter embryo, but rather has catastrophic 
consequences, and defects in convergent extension in mammals, including humans, results in 
lethal birth defects (Wallingford et al., 2013).   
 
The biomechanics of convergent extension (CE) and axis elongation more generally have been 
studied across diverse length scales, providing several key insights (Davidson, 2017; Mongera 
et al., 2019; Stooke-Vaughan and Campàs, 2018). At the tissue scale, these include quantitative 
descriptions of patterned macroscopic stiffening (Moore et al., 1995; Zhou et al., 2009), tissue-
scale jamming transitions (Mongera et al., 2018; Serwane et al., 2017), and fluid-like 
multicellular flows (Bénazéraf et al., 2010; Lawton et al., 2013).  At smaller length scales, laser 
ablation studies have provided insights into the patterns of junctional tension within these 
tissues (Fernandez-Gonzalez et al., 2009; Rauzi et al., 2008; Shindo and Wallingford, 2014).  
Finally, the mechanics of cell collectives have also been thoroughly explored using theoretical 
models (Alt et al., 2017; Fletcher et al., 2017; Merkel and Manning, 2017; Staddon et al., 2019). 
 
Despite these advances, we know comparatively little about sub-cellular mechanical properties 
in vivo or their molecular basis.  Resolving this disconnect is crucial, because CE in diverse 
systems is known to require complex spatial and temporal patterns of protein localization and 
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dynamics along individual cell-cell junctions during morphogenesis.  For example, the 
localization and turnover of actomyosin and cadherin adhesion proteins have been extensively 
quantified during Drosophila CE (Blankenship et al., 2006; Fernandez-Gonzalez et al., 2009; 
Levayer and Lecuit, 2013; Rauzi et al., 2008)), as have similar patterns for the Planar Cell 
Polarity (PCP) proteins and actomyosin during vertebrate CE (Butler and Wallingford, 2018; Kim 
and Davidson, 2011; Shindo and Wallingford, 2014).  However, the significance of these 
molecular patterns remains unclear because we lack a similarly granular understanding of 
subcellular mechanical properties and their dynamics, which ultimately explain the cell 
behaviors that drive CE.   
 
Here, we combine high-speed super-resolution microscopy with concepts rooted in soft matter 
physics to demonstrate that individual cell-cell junctions in the elongating vertebrate body axis 
display finely-patterned local mechanical heterogeneity along their length. To explore this 
unexpected finding, we developed a new theory for junction remodeling in silico and new tools 
for assessment of very local mechanics in vivo.  Combining these, we show that sub-cellular 
mechanical heterogeneity is essential for CE and is imparted by cadherins via locally patterned 
intracellular (cis-) interactions.  Finally, the local patterns of both cadherin clustering and 
heterogeneous junction mechanics are controlled by PCP signaling, a key regulatory module for 
CE that is mutated in diverse human birth defects.   
 
 
Results: 
 

The dynamics of tricellular junction motion during CE suggest an unexpected 
mechanical heterogeneity at subcellular length scales 
 
The elongating body axis of Xenopus embryos is a long-standing and powerful model system 
for studying PCP-dependent vertebrate CE (Supp. Fig. 1)(Huebner and Wallingford, 2018).  
Xenopus CE can be considered most simply in terms of four-cell neighbor exchanges in which 
mediolaterally-aligned cell-cell junctions (“v-junctions”) shorten, followed by the elongation of 
new, perpendicularly-aligned junctions (“t-junctions”)(Fig. 1A).  To gain deeper insights into this 
process, we used high-speed super-resolution imaging to establish a quantitative physical 
description of the motion of tricellular vertices bounding v-junctions (Fig. 1B).    
 
We found that v-junction shortening was dominated by the movement of a single “active” vertex, 
while the other “passive” vertex moved comparatively less (Fig. 1C, D)(SI, Section 1).  Three 
distinct metrics demonstrated that this asymmetry was not a point-of-reference artifact (Supp. 
Fig. 2).  Such asymmetry has also been observed during Drosophila CE (Vanderleest et al., 
2018) so may represent a fundamental feature.  We therefore explored its physical basis using 
mean squared displacement (MSD), which reveals physical properties of motion (SI Section 2).   
 
Our analysis revealed that active vertices consistently displayed a highly fluidized movement 
(i.e. super-diffusive)(Fig. 1E, F, red).  By contrast, passive vertices displayed the hallmarks of 
more-constrained, glass-like motion (i.e. defined by sub-diffusive movement with an 
intermediate time slowdown, as observed in colloidal systems; (Kegel and van Blaaderen, 2000; 
Weeks et al., 2000) (Fig. 1E, F, blue).  The juxtaposition of liquid- and glass-like motion along a 
single cell-cell junction was interesting, because while fluid-to-glass phase transitions are known 
features at tissue-level length scales (Angelini et al., 2011; Bi et al., 2015; Malmi-Kakkada et al., 
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2018; Sinha et al., 2020), such transitions have not been reported at sub-cellular length scales 
during morphogenesis.  To confirm this surprising result, we applied four additional physical 
metrics, the Van Hove function, the velocity auto-correlation function, the self-overlap 
parameter, and the fourth order susceptibility, 𝜒4(𝑡) (SI sections 2-4).   
 
All four orthogonal approaches confirmed our finding that the active and passive vertices 
bounding individual v-junctions exhibit asymmetric dynamic behaviors, with one vertex 
displaying a fluid-like motion and the other, glass-like (Supp. Fig. 2, 3).  Critically, this 
asymmetric behavior was specific to shortening dynamics of v-junctions, as the two vertices 
bounding non-shortening junctions in the same tissue were consistently symmetrical, both 
resembling passive vertices (Fig. 1E, F, pink, black; Supp. Fig. 2, 3).  
 
This physical analysis provided three important insights: First, glass-like dynamics previously 
observed only at tissue-length scales in morphogenesis also exist at the sub-cellular length 
scale of individual junctions.  Second, the frequently invoked assumption of mechanical 
homogeneity along single cell-cell junctions, which underlies a wide swath of the biophysical 
work on morphogenesis, may not be valid.  And finally, because only shortening junctions 
exhibited local mechanical heterogeneities, this phenomenon may be a specific and essential 
feature of convergent extension.   
 

A new physical model of cell-cell junction remodeling predicts heterogeneous mechanics 
along single junctions is an essential feature of convergent extension  
 
The possibility of mechanical heterogeneity along single cell-cell junctions has important 
implications, as many biophysical approaches and in silico tools for understanding 
morphogenesis (e.g. laser cutting, vertex models) assume that junctions are mechanically 
homogeneous.  We therefore developed a new theoretical framework for junction shortening 
that accommodates the possibility of local mechanical heterogeneity by independently modeling 
the movement of each vertex (Fig. 2A, B)(SI, Section 5-9).  
 
Our model involves (i) a local junction stiffness (or elasticity) modeled using a spring element, 
which is consistent with the pulsatile relaxation of v-junctions observed in Xenopus CE (Shindo 
and Wallingford, 2014); (ii) a dynamic rest length, recently shown to be important for modeling 
CE (Staddon et al., 2019); (iii) a viscoelastic parameter, 𝑘/𝛾, dictated by the spring stiffness, 𝑘, 
and the friction at the vertices, 𝛾; and (iv) a rest length exponent, 𝜓, which describes the time 
dependence of plastic displacement of the vertices modeled with a piston (Fig. 2A, B)(SI, 
Section 5-7).   
 
Using this model, we explored parameter space to find variables in elastic and viscous 
deformation that can support effective shortening of the junction (SI, Sections 8, 9).  As shown 
in the heatmap in Fig 2C, for a given rest length exponent, junctions failed to shorten if the 
viscoelastic parameter was equal and small for both the vertices (Fig. 2C, red box)(SI, 
Sections 8, 9).  When the viscoelastic parameter was asymmetric, junctions shortened 
effectively (Fig. 2C, gold box).  Thus, at the level of binary outcome (i.e. shorten versus fail-to-
shorten), our model suggests that CE requires mechanical heterogeneity along single v-
junctions. 
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For a more stringent test, we compared the temporal dynamics of junction shortening in our 
model to those quantified in vivo from high-speed super-resolution movies (Fig. 2D, E). In time-
lapse data, the relaxation behavior of v-junctions collapsed into a self-similar pattern when 
normalized; relaxation became progressively more efficient over time and could be described by 
a compressed exponential (Fig. 2G, black lines; Supp. Fig. 4A, B)(SI, Sections 10, 11).  
When the viscoelastic parameters in our model were asymmetric, the shortening dynamics 
closely recapitulated this compressed exponential relaxation (Fig. 2G, gray lines, I; expanded 
view in Supp. Fig. 4C).   
 
Finally, we also analyzed junction length dynamics in non-shortening junctions in vivo (Fig. 2D, 
F), which we found above to display symmetrical mechanics along their length (Fig. 1E, black, 
pink).  The length dynamics of non-shortening junctions in vivo displayed wide fluctuations over 
time, did not share a self-similar relaxation pattern, and displayed large deviations from the 
compressed exponential (Fig. 2H, black, I).  Strikingly, when symmetrical parameters for 𝑘/𝛾 
were input into the model, the resulting junction length dynamics displayed wide fluctuations in 
length and deviated substantially from the normal relaxation pattern (Fig. 2H, gray; I). 
 
Thus, by incorporating local mechanical heterogeneity, our new model not only recapitulates 
overall shortening/non-shortening outcomes, but also quantitatively recapitulates the dynamic 
patterns of length change observed in both shortening and non-shortening junctions in vivo.  
Because both modeling and observations suggest a key role for mechanical heterogeneity, we 
next sought to understand the contribution of such local mechanical regimes to cell movement 
during CE.   
 
 
Fluid-like directed motion of active vertices results from restriction of transverse 
fluctuations in motion 
  
Our theory makes a curiously counter-intuitive prediction: that the more fluid-like motion of the 
active vertex occurs in the context of increased local stiffness (i.e. higher viscoelastic 
parameter), while the more glass-like motion of the passive vertex occurs in a relatively 
decreased stiffness regime.  To address this seeming paradox, we considered that vertex 
movement, while highly directional, is not entirely directed (Fig. 3A).  We then reasoned that a 
stiffer mechanical regime might limit transverse fluctuations near active vertices (Fig. 3A, 
green), thereby resulting in more smoothly processive, fluid-like motion in the line of shortening 
as compared to passive vertices (Fig. 3A, orange).  
 
To test our model’s prediction in vivo, we used our time-lapse data to quantify the transverse 
fluctuations of vertices (Fig. 3B, green arrows)(SI, Section 16).  Consistent with our model’s 
prediction, active vertices displayed significantly less transverse fluctuation than did passive 
vertices at the same junctions (Fig. 3B, C, E), indicating a higher local stiffness at active 
vertices (Marmottant et al., 2009).  Analysis of the straightness index independently validated 
this conclusion (Fig. 3E, F)(SI, Section 16).  
 
This analysis of in vivo imaging data validates our physical model’s prediction of an increased 
stiffness regime near active junctions and suggests that the lower stiffness regime of passive 
vertices allows more transverse fluctuation, resulting in less-directed, more glass-like 
movement.  As such, multiple independent lines of observation and theory suggest that local 
mechanical heterogeneity along cell-cell junctions is a fundamental feature of CE.  We next 
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sought to understand the molecular underpinnings of this feature, asking if patterns of protein 
localization during CE might reflect the local mechanical patterns we identified here. 
 

Patterned cis-clustering of cadherins reflects the heterogeneous mechanics along 
shortening junctions  

We turned our attention to cadherin cell adhesion proteins, and specifically Cdh3, which is 
essential for CE in Xenopus (Brieher and Gumbiner, 1994; Fagotto et al., 2013)(Supp. Fig. 5A) 
and was recently implicated in CE cell movements in the mouse skin (Cetera et al., 2018). Like 
all classical cadherins, Cdh3 forms both intercellular trans-dimers and also cis-clusters 
mediated by intracellular interactions (Fig. 4A).  Cis-clustering is a key regulatory nexus for 
cadherin function (Yap et al., 2015), so it is interesting that while the mechanisms governing 
formation of cadherin cis-clusters during CE has been studied, cis-cluster function during CE 
remains unknown (e.g. (Levayer and Lecuit, 2013; Truong Quang et al., 2013).    
 
We used high-speed super-resolution microscopy to image a functional GFP-fusion to Cdh3 and 
used the spatial autocorrelation function for an unbiased quantification of Cdh3-GFP cluster size 
(SI, Section 15).  Using this function, an exponential decay in spatial correlation is expected for 
clusters that are regularly ordered, and this pattern was observed for Cdh3-GFP (Fig.4C).  
Moreover, this decay reached zero at ~1μm (Fig. 4C), consistent with the size reported for cis-
clusters of cadherins in vertebrate cell culture (Yap et al., 2015).   
 
This analysis also revealed that Cdh3 clusters undergo dynamic fluctuations in size (Fig. 4D).  
Moreover, junction shortening is pulsatile (Fig. 4E)(Shindo and Wallingford, 2014) and 
fluctuations in mean Cdh3 cluster size significantly cross-correlated with shortening pulses (Fig. 
4D).  Mean cluster size peaked ~20 seconds prior to the onset of junction shortening pulses 
(Fig. 4E, F)(SI, Section 16), suggesting a functional relationship between Cdh3 clustering and 
junction remodeling.  
  
We then reasoned that mechanical heterogeneity observed along cell-cell junctions during CE 
might be driven by local patterns of Cdh3 clustering, since cadherins can tune the local 
mechanics of free cell membranes in single cultured cells (Strale et al., 2015).  This led us to 
measure Cdh3 cluster size specifically in the 3-micron region abutting vertices of shortening v-
junctions during shortening pulses.  Patterns of Cdh3 clustering were complex and highly 
heterogeneous, consistent with the mechanical heterogeneities we report here (Supp. Fig. 6). 
Nonetheless, the mean size of Cdh3 clusters near active junctions was significantly larger than 
that for clusters near passive vertices (Fig. 4G).  We confirmed this important result using an 
alternative quantification of cluster size involving fits to the exponential decay of the spatial 
autocorrelation (Supp. Fig.5 C,D)(SI, Section 17).  
 
Importantly, asymmetric Cdh3 clustering was specific to shortening v-junctions and was not 
observed along non-shortening junctions in the same tissue.  Rather, all vertices bounding non-
shortening junctions displayed clustering similar to that near passive vertices in shortening 
junctions (Fig. 4G).  Symmetrical clustering in non-shortening reflects the symmetrical dynamics 
of vertices bounding these junctions, described above (Fig. 1E).  Accordingly, these results 
demonstrate that asymmetric cis-clustering of Cdh3 is a specific property of shortening v-
junctions during CE and suggests that such clustering may drive the asymmetric mechanics of 
active and passive vertices that we observed in vivo and predicted in silico.    
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Cdh3 cis-clustering is required for axis elongation but not homeostatic tissue cohesion 
in vivo.  

The patterned, asymmetric cis-clustering of Cdh3 during CE is a significant finding, because as 
mentioned above the function of cis-clustering remains undefined not only for CE, but indeed in 
any in vivo context.  We therefore took advantage of point mutations in Cdh3 that specifically 
disrupt the hydrophobic pocket that mediates cis clustering, without affecting trans dimerization 
(cisMut-Cdh3; Fig. 5A)(Harrison et al., 2011; Strale et al., 2015). To test this mutant in vivo, we 
depleted endogenous Cdh3 as previously described (Supp. Fig. 7)(Ninomiya et al., 2012), and 
then re-expressed either wild-type Cdh3-GFP or cisMutant-Cdh3-GFP.   
 
We first confirmed the cis mutant’s impact on clustering in vivo.  Re-expressed wild-type Cdh3-
GFP clustered normally and displayed the expected exponential decay in spatial autocorrelation 
that indicates regular spatial order and a mean cluster size ~1µm (Fig. 5B, D)(SI, Section 16-
18).  By contrast, when cisMut-Cdh3-GFP was re-expressed, clusters were clearly absent, and 
the signal was diffuse along cell-cell junctions (Fig. 5C).  Moreover, the spatial autocorrelation 
of cisMut-Cdh3-GFP did not decay exponentially (Fig. 5D), consistent with a lack of spatial 
order (SI, Section 16-18).  We confirmed this result using fits to the exponential decay of the 
spatial autocorrelation (Supp. Fig. 8B-G)(SI, Section 16-18). 
 
We next used the same replacement strategy to directly test the function of cis-clustering in 
Xenopus CE.  At neurulation stages, embryos depleted of Cdh3 display severe defects in axis 
elongation (Fig. 5E, F, I, green)(Brieher and Gumbiner, 1994; Lee and Gumbiner, 1995).  At 
later stages, these embryos disassociate to individual cells due to the widespread requirement 
for Cdh3 in cell cohesion (Ninomiya et al., 2012)(Fig. 5J, green). We found that re-expression 
of wild-type Cdh3-GFP rescued both axis elongation and embryo cohesion, as expected (Fig. 
5G, I, J, purple).   
 
Strikingly however, while re-expression of cisMut-Cdh3-GFP significantly rescued overall 
embryo cohesion (Fig. 5J, red), it failed to rescue axis elongation (Fig. 5H, I, red).  These data 
provide the first experimental test of the role of cadherin cis-clustering in vivo, and moreover, 
provide an experimental entry point for testing the role of cis-clustering in the generation of local 
mechanical patterns along cell-cell junctions.   
 
 
Loss of Cdh3 cis-clustering eliminates mechanical heterogeneity and disrupts 
shortening dynamics of cell-cell junctions during CE.  
 
To understand the relationship between Cdh3 clustering (Fig. 4) and the asymmetric mechanics 
and vertex dynamics of shortening v-junctions (Figs. 1-3), we applied our battery of physical 
methods to quantify the motion of vertices in cells with disrupted Cdh3 cis-clustering (i.e. Cdh3 
knockdown + cisMut-Cdh3 re-expression).  We found first that defects in axis elongation in 
cisMut-Cdh3 expressing cells were accompanied by defects in cell polarization (Fig. 6A-C), 
reflecting the phenotype seen when PCP signaling is disrupted (Wallingford et al., 2000).  
Second, v-junctions in cells with disrupted Cdh3 clustering displayed large fluctuations in length 
that deviated significantly from the compressed exponential relaxation pattern observed for 
normal v-junctions (Fig. 6D, E).  The aberrant length dynamics of cisMut-Cdh3 expressing 
junctions resembled those of junctions that lack mechanical heterogeneity (i.e. non-shortening 
junctions in normal embryos in vivo or those modeled in silico (compare Fig. 6D with Fig. 2H).  
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We then asked if cisMut-Cdh3 expression also disrupted the normal mechanical heterogeneity 
of v-junctions by quantifying transverse fluctuations of vertices.  We found that all vertices in 
cells with defective cis-clustering of Cdh3 displayed the elevated transverse fluctuations 
observed only in passive vertices of normal cells (Fig. 6F, G).  These results provide direct 
experimental evidence that Cdh3 cis-clustering restricts transverse movement of vertices, 
thereby facilitating fluid-like shortening of the junction.   
 
PCP is essential for Cdh3 cis-clustering and mechanical heterogeneity at cell-cell 
junctions.  

A key challenge in animal morphogenesis is to understand how ubiquitous cellular machinery 
such as cadherin adhesion is directed by tissue-specific developmental control mechanisms.  
PCP signaling is a central regulator of vertebrate CE  and PCP proteins localize to shortening v-
junctions during Xenopus CE, where they control actomyosin contractility (Butler and 
Wallingford, 2018; Shindo et al., 2019), but how these systems interface with cadherin adhesion 
during CE is poorly defined.  Because cells with disrupted Cdh3 cis-clustering superficially 
resemble those with defective PCP (Fig. 6B, C), we asked if Cdh3 clustering may be under the 
control of PCP signaling.  
    
We disrupted PCP with the well-characterized dominant-negative version of Dvl2, Xdd1, which 
severely disrupted cell intercalation behaviors as expected (Wallingford et al., 2000)(Fig. 6C). 
Strikingly, expression of Xdd1 also elicited a significant disruption of Cdh3 clustering that was 
apparent in both images and in the lack of exponential decay in spatial autocorrelation data 
(Fig. 7B, C).  Finally, Xdd1 expressing junctions also displayed exaggerated length fluctuations, 
significant deviation from the compressed exponential relaxation behavior, and symmetrical, 
elevated transverse fluctuations (Fig. 7D-F), all features associated only with junctions lacking 
local mechanical heterogeneity in vivo or in silico.  
 
These data not only provide an independent experimental confirmation of the link between Cdh3 
cis-clustering, local mechanical heterogeneity of junctions, and asymmetric vertex dynamics 
(Fig. 7G), but also provide a novel mechanistic link between a conserved and essential 
developmental regulatory module (PCP), and the ubiquitous machinery of Cadherin adhesion. 
 
 
 
Discussion: 
 
Here, we combined physical and cell biological approaches to observation, theory, and 
experiment to identify and link two novel features of vertebrate convergent extension, one 
physical, the other molecular.  First, we show that single cell-cell junctions in vivo display 
patterned mechanical heterogeneities along their length.  Second, we show that locally 
patterned cis-clustering of a classical cadherin impart these patterns of mechanical 
heterogeneity under the control of PCP signaling.   
 
These results are fundamentally important, because mechanical homeostasis in tissues is an 
emergent property of forces interacting across a wide range of length scales, yet we still know 
little about the sub-cellular mechanical properties of cells within tissues.  Thus, while previous 
studies describe local heterogeneity in the membranes of single cultured cells (e.g. (Lieber et 
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al., 2015; Shi et al., 2018; Strale et al., 2015)), our demonstration of local mechanical 
heterogeneity along single cell-cell junctions in an intact tissue is a substantial advance.  
Indeed, our data demonstrate that it is not the local heterogeneity per se, but rather its local 
patterning along individual cell-cell junctions that is a specific and essential feature of the 
junctional remodeling that drives CE.  From a physical standpoint, this insight is important 
because it implies that the origin of patterned dynamic heterogeneities observed at tissue length 
scales (e.g. (Angelini et al., 2011; Bi et al., 2015; Malmi-Kakkada et al., 2018)) may reside in 
similarly complex patterns at length scales as small as that of individual cadherin clusters.    
 
Our findings are also important for understanding the unifying suite of CE cell behaviors that is 
deeply conserved across evolution.  V-junction shortening is accomplished by a combination of 
cell crawling via mediolaterally-positioned lamellipodia and active contraction of 
anteroposteriorly-positioned cell-cell junctions (Sun et al., 2017; Williams et al., 2014), a pattern 
that has now been described in animals ranging from nematodes, to insects to vertebrates 
(Huebner and Wallingford, 2018).  While it remains to be determined whether v-junction 
shortening in other tissues and animals also displays the heterogeneity we report here, it is 
nonetheless remarkable that even subtle aspects (e.g. active and passive vertices) are similar in 
tissues as diverse as Drosophila epithelial cells (Vanderleest et al., 2018) and Xenopus 
mesenchymal cells (Fig. 1).  Our data therefore suggest that this deeply evolutionarily 
conserved cell biological process may have a fundamental physical basis. 
 
Finally, our findings also have important implications for cadherin biology.  The lateral cis-
clustering of cadherins was first described decades ago (Yap et al., 1997) and has been 
extensively characterized using structural, biochemical, and cell biological approaches (Chen et 
al., 2015; Fagotto et al., 2013; Hong et al., 2013; Kale et al., 2018; Levayer and Lecuit, 2013; 
Levayer et al., 2011; Truong Quang et al., 2013; Yap et al., 1998). Strikingly, however, the 
functional consequences of defective cis-clustering in intact tissues have not been described,  
so our findings here fill a critical gap. Importantly, the essential role for patterned cis-clustering 
of Cdh3 is likely relevant far beyond the context of Xenopus axis elongation, as mouse Cdh3 
(aka p-cadherin) is also implicated in PCP-mediated CE movements in the mouse skin (Cetera 
et al., 2018).  Given that PCP genes are among the most well-defined genetic risk factors for 
human neural tube defects (Wallingford et al., 2013), our data provide insights that span from 
the fundamental physics of living cells, to the cell and developmental biology of vertebrate 
embryos, to the etiology of human birth defects. 
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Supplemental Experimental methods 
 
Xenopus embryo manipulations:  
 Ovulation was induced by injection of adult female Xenopus with 600 units of human 
chorionic gonadotropin and animals were kept at 16°C overnight. Eggs were acquired the 
following day by squeezing the ovulating females and eggs were fertilized in vitro. Eggs were 
dejellied in 3% cysteine (pH 8) 1.5 hours after fertilization and embryos were reared in 1/3X 
Marc’s modified Ringer’s (MMR) solution. For microinjection, embryos were placed in 2% ficoll 
in 1/3X MMR and then washed in 1/3X MMR after injection. Embryos were injected using a 
Parker’s Picospritizer III with an MK1 manipulator. Embryos were injected in the dorsal 
blastomeres at the 4 cells stage targeting the dorsal marginal zone. Keller explants were 
excised at stage 10.25 in Steinberg’s solution using eyelash hair tools.         
 
Morpholino, plasmids, antibody, and cloning: 
 The Cdh3 morpholino had been previously described (Ninomiya et al. JCS 2012) and 
was ordered from Gene Tools. Cdh3-GFP, (Pfister et al. Development 2016) lifeact-RFP, and 
membrane-BFP were made in pCS105 and Xdd1 was made in CS2myc (Sokol et al. Curr Biol., 
1996). Cdh3 antibody was ordered from Developmental Studies Hybridoma Bank (catalog 
number 6B6). The Cdh3-cis-mutant was generated using the Q5 Site-Directed Mutagenesis Kit  
(NEB, catalog number A13282) and here we changed valine 259 to aspartic acid and isoleucine 
353 to aspartic acid.     
 
Morpholino and mRNA microinjections: 

Capped mRNA was generated using the ThermoFisher SP6 mMessage mMachine kit 
(catalog number AM1340). mRNAs were injected at the following concentrations per 
blastomere, Membrane-BFP (100pg), Cdh3-GFP for imaging (50pg), Cdh3-GFP for rescue 
(300pg), Cdh3-cis-mutant (300pg), lifeact-RFP (100pg), and Xdd1 (1ng). Cdh3 morpholino was 
injected at a concentration of 10ng per blastomere.  
 
Imaging Xenopus explants: 
 Explants were mounted on fibronectin coated glass coverslips in either Steinberg’s 
solution or Danilchik’s for Amy solution. Experiments were repeated in the absence of 
fibronectin to ensure fibronectin did not confound results. Explants were then incubated at room 
temperature for 4 hours or at 16°C overnight before imaging. Standard confocal images were 
acquired with either a Nikon A1R or a Zeiss LSM 700. Super-resolution images were acquired 
with a commercially available instantaneous structured illumination microscope (BioVision 
Technologies).  
 
Measurement of Cdh3 intensity at cell junctions: 
 All image analysis was performed using the open-source image analysis software Fiji 
(Schindelin et al. Nat. Methods 2012). Images were first processed with 50-pixel rolling ball 
radius background subtraction and smoothed with a 3x3-averaging filter, which allowed better 
distinction of individual cadherin clusters. The segmented line tool, with width set to the 
thickness of the junction (~16 pixels), was used to set a line of interest (LOI) across the length 
of the cell junction. Next the multi-plot tool was used to extract cdh3 intensity values across the 
length of the cell and the measure tool was used to collect data such as junction length and 
mean intensity values. The Fiji Time Lapse plugin Line Interpolator Tool was used to make 
successive measurements for movies. Here a segmented line LOI was drawn every 10-30 
frames, the line interpolator tool was then used to fill in the LOIs between the manually drawn 
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LOIs allowing rapid semi-manual segmentation. The multi-plot tool and measure tool were then 
used to extract data for each time-point of the movie.  
 
Cdh3 immunostaining:  
 Samples were prepared by micro-dissection as described above and incubated at room 
temperature for four hours or overnight at 16°C. Samples were then fixed in 1x MEMFA for 1 
hour at room temperature and washed 3 times with PBS to remove fixative. Next samples were 
permeabilized with 0.05% Triton X-100 in PBS for 30 minutes and then blocked in 1% normal 
goat serum (NGS) in PBS for two hours at room temperature. The primary antibody was then 
diluted 1:100 in fresh 0.1% NGS/PBS and samples were incubated with primary antibody at 4°C 
overnight. Samples were then blocked a second time at room temperature for 1 hour and then 
washed twice with fresh blocking solution. Secondary antibody (goat anti-Mouse 488, #A32723) 
was diluted 1:500 and samples were incubated at 4°C overnight. Finally samples were washed 
three times in 1X PBS and imaged.   
 
Embryo length to width measurement:  
 Embryos were injected in the dorsal blastomeres with Cdh3-MO, Cdh3-MO + Cdh3-GFP 
(rescue), Cdh3-MO + Cdh3-cis-mutant (mutant), or left as un-injected controls. Live embryos 
were kept at room temperature for 26 hours post fertilization (~ stage 33). Embryos were then 
fixed with MEMFA in glass vials on and rotated for 1 hour at room temperature. Post fixation 
samples were washed three times in 0.1% Tween-20 in 1X PBS and then images of embryos 
were acquired using a Zeiss AXIO Zoom stereoscope. The embryos anterior-posterior length 
and dorsal-ventral width were then measured using Fiji. Different conditions were statistically 
compared using a one-way non-parametric ANOVA (Kruskal-Wallis test).  
 
Embryo survivability assay: 
 Embryos were injected in the same manner as done for the length to width 
measurement and the number of embryos injected for each condition was recorded. Embryos 
were then kept at room temperature for 20 hours (~ stage 20) and the number of surviving 
embryos was recorded. The percentage of embryos surviving was reported.  
 
Measurement of Cdh3 knockdown efficiency:  
 Embryos were injected at the 4-cell stage in a single blastomere with Cdh3-MO + 
membrane-BFP generating embryos with mosaic knockdown of Cdh3 on one side of the 
embryo. Explants were next dissected from embryos, immuno-stained for Cdh3, and images 
were acquired as described above. The mosaic labeling allowed us to compare wild type and 
Cdh3-KD cells (marked by membrane-BFP) within a single explant. First we used Fiji to 
measure endogenous Cdh3 intensity at cell junctions in wild type and Cdh3-KD cells and used a 
t-test to statistically compare these conditions. Next cellular polarity was assessed for each 
condition by measuring the ratio of the mediolateral length to the anterior-posterior width of 
individual cells. A t-test was then used to show a significant reduction in cellular polarity in cells 
with Cdh3-KD.  
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Figure 1. Vertices bounding shortening v-junctions are physically asymmetric and 
display heterogeneous fluid and glass-like dynamics. 
 
A. A four cell T1 transition with mediolaterally (ML)-aligned “v-junctions” (red) and anterior-
posterior (A/P) aligned t-junctions (orange) indicated.  B. Frames from time-lapse showing 
vertex movements of a v-junction; arrows highlight vertices. C. Schematic of asymmetric vertex 
movements from B; active = red; passive = blue.  D. Vertex motion quantified by the activity 
parameter, as described in SI, Section 1. (N=42 vertices from 20 embryos; t-test p value is 
shown).  E. MSD reveals active vertices’ persistent superdiffusive movement (red); passive 
vertices exhibit intermediate time slowdown (blue).  Pink and black display MSD for left and right 
non-shortening junctions.  F.  MSD from boxed region in E is shown with traces offset  for clarity 
(0.5 for left; 0.65 for right)(N= 20 vertices from 10 embryos).  
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Figure 2.  A new vertex model incorporating local mechanical heterogeneity recapitulates 
the fine-scale dynamics of junction shortening observed in vivo.   
 
A. Sketch of v- junction shortening with elements of the model overlain. Active (red) and passive 
(blue) vertex movements are effected by a piston modulating the dynamic rest length. The 
vertices execute elastic motion due to springs of elasticity, 𝑘𝐿 and 𝑘𝑅. 𝐿, 𝑅 indices indicate left 
and right. The thicker spring indicates a stiffer elasticity constant, 𝑘𝐿. B. Equations of motion for 
active and passive vertex positions, 𝑥𝐿 and 𝑥𝑅. Displacement of the left (right) vertex due to the 
piston  is determined by the forces 𝐹𝐿(𝐹𝑅) whose time dependence is determined by the rest 
length exponent, 𝜓𝐿#𝜓𝑅$. The friction experienced by the left (right) vertices are modeled using 
𝛾𝐿#𝛾𝑅$.  𝜁𝐿 is the colored noise term for the left vertex (SI, Section 5-7). C.  Heatmap indicating 
probability of successful junction shortening (legend at right) in parameter space for the 
viscoelastic parameter near vertices and the rest length exponent, staying within biologically 
reasonable values based on data from Drosophila (Solon et al., 2009)(SI, Section 8).  D. Still 
image from a time-lapse of Xenopus CE.  Insets indicate representative shortening and non-
shortening junctions shown in Panels E and F (vertices indicated by arrowheads). G. 
Normalized change in length, 𝐿𝑛, for shortening junctions in vivo (black lines) and in simulations 
using asymmetric viscoelastic parameters (gray lines) resembling the compressed exponential 
form (red, dashed line) after the time axis is rescaled.  H. Normalized change in length, 𝐿𝑛, for 
non-shortening junctions in vivo (black lines) and in simulations using symmetrical viscoelastic 
parameters (gray lines). I.  Quantification of relaxation behavior deviation from the compressed 
exponential using the residue (SI, Section 9-12).   
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Figure 3. Patterns of transverse vertex fluctuations reveal mechanical heterogeneity of 
active and passive vertices in vivo. 
 
A. Schematic of transverse fluctuations in the vertex position perpendicular to the direction of 
junction shortening; traverse movements are extracted using the transverse “hop” function, 
which is inversely proportional to the local vertex stiffness (SI, Section 14).   B.  X/Y 
coordinates for a representative pair of active and passive vertices color coded for time, with 
transverse (green) and in-line (orange) motion indicated.  C. Mean transverse fluctuation ⟨𝑅𝑇⟩, 
for active and passive vertices. (N=20 vertices; 10 embryos over 386 seconds; t-test P value 
shown).  D. Probability distribution of transverse fluctuations, 𝑅𝑇, (offset for clarity).  E. 
Straightness index quantifying the persistence of vertex motion in terms of directionality (SI, 
Section 14); t-test p value is shown.  F. Probability distribution of the straightness index for 
active (red, offset for clarity) and passive (blue) vertices.  
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Figure 4. Cadherin cis-clustering correlates with vertex movements and mirrors 
asymmetric vertex dynamics. 
 

A.  C-cadherin (Cdh3) cis-clustering; trans-dimers form across opposing cell membranes (gray); 
lateral cis interactions drive clustering.  B.  Frames from time-lapse of Cdh3-GFP; white arrows 
highlight clusters. Dashed lines denote initial vertex positions; yellow arrow indicates junction 
shortening. C. Spatial autocorrelation of Cdh3 intensity fluctuations (SI Section 15)(60 image 
frames, 10 embryos). Autocorrelation decays to zero at ~1µm. Error bars are standard 
deviation. D. Junction length and Cdh3 cluster size fluctuations for an individual cell-cell 
junction. Cadherin cluster size fluctuations peak prior to junction shortening events. E. Trace 
from a single v-junction displaying pulsatile shortening highlighted by gray boxes.  F. Heat map 
showing cross correlation between junction length and Cdh3 cluster size. Color represents the 
value of the correlation coefficient (legend at right). Dashed black line indicates zero lag time.  
(SI, Section 16)(n= 11 junctions and 18 shortening events.) G. Cadherin cluster size as 
extracted from spatial correlation curves (Supp. Fig. 6; SI, Section 17). Cadherin cluster sizes 
are significantly larger near active vertices.  Clusters near vertices of non-shortening junctions 
are not significantly different from those near passive vertices  
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Figure 5. Cdh3 cis-clustering is required for convergent extension but not homeostatic 
tissue cohesion. 
 

A. Mutations used to inhibit cadherin cis-clustering.  B. Cdh3-GFP clustering in a control 
embryo.  C. Cis-clusters absent after re-expression of cisMut-Cdh3-GFP.  D. Mean spatial 
autocorrelation of Cdh3-GFP intensity fluctuations for wild type (60 image frames, from 10 
embryos) and the cis-mutant (56 image frames, 5 embryos) (SI, Section 18).  Gradual, non-
exponential decay for cisMut-Cdh3-GFP indicates a lack of spatial order (i.e. failure to cluster).  
E. Control embryos (~stage 33).  F. Sibling embryos after Cdh3 knockdown. G. Knockdown 
embryos re-expressing wild-type Cdh3-GFP. H. Knockdown embryos re-expressing cisMut-
Cdh3-GFP.  I.  Axis elongation assessed as the ratio of anteroposterior to dorsoventral length at 
the widest point.  J. Embryo cohesion assessed as percent of embryos alive and intact at stage 
23.  
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Figure 6. Cdh3 cis-clustering is required for heterogeneous junction mechanics.  
 

A. Image of polarized, elongated control Xenopus mesoderm cells.  Blue = mediolateral (ML); 
yellow = anterior-posterior (AP).  B. Stage-matched cells after depletion of endogenous Cdh3 
and re-expression of cisMut-Cdh3.  C. Cellular length/width ratio to quantify CE cell behaviors (p 
value indicates ANOVA result).   D.  Normalized junction length dynamics (𝐿𝑛) for cis-mutant 
expressing junctions. Large fluctuations here are similar to those seen normally in non-
shortening junctions (see Fig. 2H). Dashed black line indicates the expected compressed 
exponential.  E. The residue quantifying significant  𝐿𝑛 deviation from the compressed 
exponential function as compared to control junctions.  F. Plots for transverse fluctuations, ⟨𝑅&⟩, 
for control active and passive vertices compared to cis-mutant vertices. (Note: Data for active 
and passive junctions are re-presented from Fig. 3C for comparison.) G . Schematic illustrating 
symmetrical vertex behavior after disruption of cdh3 cis-clustering.  
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Figure 7. PCP is required for cdh3 cis-clustering and heterogeneous junction mechanics.  
 
A. Cartoon of polarized core PCP protein localization.  B. Still image of Cdh3-GFP after 
expression of dominant negative Dvl2 (Xdd1).  C. Spatial autocorrelation of Cdh3 intensity 
fluctuations for Xdd1 (53 image frames, 5 embryos) and control embryos (60 frames, from 10 
embryos), +/- std. dev. The spatial organization of Xdd1 mutant cadherin is similar to cisMut-
Cdh3 expressing embryos.  D. Normalized junction length dynamics for Xdd1 embryos.  Dashed 
black line indicates the normal compressed exponential behavior. E. Residue for the deviation 
from the universal compressed exponential function for Xdd1 junctions.  F. Plots for transverse 
fluctuations at active and passive vertices compared to Xdd1-expressing vertices. (Note: Data 
for active and passive junctions are re-presented from Fig. 3C for comparison to Xdd1.) G. 
Schematic summarizing the primary conclusions. 
 
 
  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.02.11.944033doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.11.944033


Head

Tail

Extension

A

Ectoderm
Mesoderm
Endoderm

12 hours

B

Cut

Sagital view

Ectoderm
Mesoderm
Endoderm

A P
Head-to-tail axis length

Supplemental figure 1

36 hours

CE defect36 hours

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.02.11.944033doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.11.944033


 19 

 
Supplemental Figure 1: Schematics of Xenopus development. 
 
A. Cartoon depiction of Xenopus gastrulation, tadpole axis elongation, and the consequence of 
convergent extension defects. Here the mesoderm in the dorsal marginal zone (DMZ) involutes 
and undergoes convergent extension to establish the animals anterior-posterior (head-to-tail) 
axis. This axis will then continue to elongate during tadpole stages. Disruption of CE results in 
stunted embryos with a classic ‘swayed back’ appearance (lower arrow).  B. Embryological 
techniques were used to excise the DMZ (Keller explant) allowing visualization of CE in real-
time. 
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Supplemental Figure 2: Mean squared displacement measured from multiple frames of 
reference. 
 
A. Mean squared displacements (MSD),𝛥(𝑡)', of 10 distinct individual active (red) and passive 
(blue) vertices. Heterogeneity in individual vertex movements are apparent from the wide 
variation in individual vertex MSDs. See Theory SI Section 1 for details. B. Mean squared 
displacement of a representative pair of active and passive vertices in the “lab” frame of 
reference (i.e. as they appear in raw images).  C. Schematic showing how vertex mean square 
displacement was measured relative to yolk particles that are present in the embryonic Xenopus 
cells. We refer to this as the relative MSD in the “cell” frame of reference, which eliminates the 
effect of translational and rotational motion of the tissue during time-lapse imaging. D. Relative 
mean squared displacement of representative vertices in the cell frame of reference.  E. 
Schematic showing how vertex mean square displacement was measured relative to a 
neighboring vertex from other cells (“nearby vertex” frame of reference). F. Relative mean 
squared displacement of the same pair of active and passive vertices in D (above) in the nearby 
vertex frame of reference. 
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Supplemental Figure 3: Extended analysis of vertex glass-like dynamics. 
 
A. Probability distribution of active (red) and passive (blue) vertex displacements, referred to as 
the van Hove function (SI Section 2), shows distinct non-Gaussian functional form. Inset shows 

deviation of the van Hove function from fits to Gaussian function 𝑃(𝛿𝑟) = 0.14𝑒()
!"#$.&'
$.() *

*

 for the 

active vertex and 𝑃(𝛿𝑟) = 0.18𝑒()
!"#$.+)
$.&, *

*

for the passive vertex. Probability distribution of 
distances moved over a time scale of 𝛿𝑡 = 40𝑠, clearly shows the enhanced distance moved by 
active vertices as compared to passive vertices. Probability distribution is obtained for 20 
individual vertices from 10 embryos.  B. Van Hove distribution of active (red) and passive (blue) 
vertex displacements at 𝛿𝑡 = 4𝑠. Van Hove distribution for both vertices are well-fit by a 
Gaussian distribution, indicating normal diffusive movement at short time scales.  C. Average 
vertex speed distribution for active (red) and passive (blue) vertices at 𝜏 = 4𝑠 (SI, Section 2). 
The speed distribution peaks at low values of average speed and rapidly decays of zero, 
showing similar trends for both active and passive vertices at 𝜏 = 4𝑠.  D. Average vertex speed 
distribution vertices at 𝜏 = 60𝑠. The distribution peaks at intermediate values. The active vertex 
speed distribution decays slower for larger values of the average velocity compared to passive 
vertices, indicating enhanced movement of active vertices.  E. Velocity autocorrelation function 
(VACF) for active (red) and passive (blue) vertices at 𝜏 = 4𝑠 (SI, Section 42). Active and 
passive vertex velocity autocorrelation rapidly decay to zero over a time scale of ~5𝑠. Individual 
vertex correlations are plotted as solid lines. Mean is plotted as dashed lines. Active and vertex 
velocity correlations are similar in time at a short time interval, 𝜏 = 4𝑠. F. Velocity autocorrelation 
function (VACF) for active (red) and passive (blue) vertices at 𝜏 = 60𝑠 (see SI, Section 4). 
Active vertex velocity is more persistent in time at this longer time interval compared to the 
passive vertex velocity. VACF quantifies the emergence of persistent motion of the active vertex 
at 𝜏 = 60𝑠. The persistence time of the velocity correlation is over 50𝑠. G. The overlap of vertex 
positions, as quantified by the self-overlap parameter (SI, Section 3) ⟨𝑄(𝛿𝑡)⟩ decays rapidly to 
zero for active vertices (red). The tail of the self-overlap parameter is well fit by an exponential 
function for active vertices, indicative of fluidized dynamics. For passive vertices, however, the 
decay of the self-overlap order parameter is better fit to a double exponential, indicative of 
glass-like slowdown in the dynamics. 20 individual vertices from 10 embryos are analyzed.  H. 
For non-shortening vertices (magenta, black), the overlap with its initial positions, as quantified 
by ⟨𝑄(𝛿𝑡)⟩ decays slower compared to active vertices (red). The overlap decays to 0 in the time 
interval probed for active vertices. The decay in the self-overlap parameter for passive vertices 
are comparable to non-shortening left and right vertices. I. The four-point susceptibility (SI 
Section 4), 𝜒4(𝛿𝑡) = ⟨𝑄(𝛿𝑡)+⟩ − ⟨𝑄(𝛿𝑡)⟩+, is calculated from the moments of ⟨𝑄(𝛿𝑡)⟩. The time at 
which 𝜒4(𝛿𝑡) peaks correspond to the characteristic lifetime of correlated motion of vertices 
contributing to CE. Red curve is for the active vertex and blue for passive vertex. 20 individual 
vertices from 10 embryos are analyzed. J. The four-point susceptibility, 𝜒4(𝛿𝑡) = ⟨𝑄(𝛿𝑡)+⟩ −
⟨𝑄(𝛿𝑡)⟩+, is calculated from the moments of ⟨𝑄(𝛿𝑡)⟩. The 𝜒4(𝛿𝑡) for non-shortening left (black) 
and right (magenta) vertices do not show a peak in the time frame analyzed.  
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Supplemental Figure 4: Extended analysis comparing in vivo and in silico junction 
dynamics 
 

A. Normalized relative change in length, 𝐿𝑛(𝑡) =
𝐿(𝑡)−𝐿#𝑡𝑓$
𝐿(𝑡𝑜)−𝐿#𝑡𝑓$

, versus time for shortening 
mediolateral cell-cell junctions during CE.  21 individual junctions from 20 embryos are 
analyzed. 𝐿(𝑡.) and 𝐿(𝑡/) are the junction lengths at initial time 𝑡0 and final time 𝑡𝑓 respectively. 
B. Although the normalized lengths vary considerably, the 𝐿𝑛 nearly collapse onto a single 
universal curve (black dashed line) when the time axis is scaled by the relaxation time 𝜏𝑓. The 
relaxation time is defined as 𝐿𝑛#𝑡 = 𝜏𝑓$ = 0.3, suggesting an underlying self-similarity of the cell 
rearrangement process contributing to CE.  C. Comparison between experimental (black) and 
theoretical (grey) normalized junction length vs time for shortening junction shows that the 
model captures experimentally observed features of junction shortening during convergent 
extension. D.  Phase diagram for an alternative model (SI, Section 13) of active versus passive 
vertex contribution to junction shortening. Instead of accelerating vertices, we consider the 
velocity of vertices to be constant.  Active vertex velocity is taken to be larger than the passive 
vertex. Simulations using the alternative model tell us that the viscoelastic parameter controls 
junction shortening. Our conclusion on the importance of the viscoelastic parameter in effecting 
junction shrinking is independent of the details of the vertex dynamics.   
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Supplemental Figure 5: Extended analysis pertaining to Cdh3 clustering 
 
A. Immunostaining for endogenous Cdh3 showing that the endogenous protein forms cadherin 
cis-clusters.  B. Violin plot of Cdh3 cluster sizes next to active vertices (red), passive vertices 
(blue), and non-shortening left and right vertices (black) for all frames including shortening and 
non-shortening events. Statistical significance was assessed using a Kolmogorov-Smirnov test. 
C. An alternative definition of cluster size was used to analyze differences in cadherin clustering 
(SI, Section 17). By fitting an exponential function to the spatial autocorrelation of cadherin 
intensity fluctuation, we extract the characteristic cadherin cluster size. Violin plot shows the 
Cdh3 cluster sizes for active versus passive vertices in shortening junctions. 1538 frames from 
10 embryos were analyzed. Kolmogorov-Smirnov shows significant differences between Cdh3 
clustering near active versus passive vertices (p=0.004).  D. Violin plot of Cdh3 cluster sizes for 
left versus right vertices in non-shortening junctions. 2062 frames from 7 embryos were 
analyzed. Kolmogorov-Smirnov did not indicate significant differences between Cdh3 clustering 
near left versus right vertices (p=0.07). 
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Supplemental Figure 6:  Source data for spatial correlation of Cdh3 intensity fluctuations 
reveal extreme heterogeneity in cluster size. 
 
A-J. Individual (time frame by frame) spatial correlation vs distance curves selecting for 
shortening events from 10 distinct cell-cell junctions that undergo successful junction shortening 
(E-N). Cadherin spatial correlation near active (passive) vertices are shown in red (blue) lines.  
K-Q. Individual (time frame by frame) spatial correlation vs distance curves from 7 distinct cell-
cell junctions that do not successfully shorten (O-U). Cadherin spatial correlation near left (right) 
vertices are shown in magenta (black) lines. 
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Supplemental Figure 7: Cdh3 knockdown. 
 
A. Embryos were injected with Cdh3-MO and membrane-BFP in a single dorsal blastomere at 
the 4-cell stage resulting in mosaic depletion of Cdh3. Here immuno-staining for Cdh3 shows 
that the protein was depleted specifically in cells that received the morpholino, as marked by 
membrane-BFP.  B. Cdh3 immuno-staining intensity was measured in control cells and 
neighboring Cdh3-MO cells from mosaic animals. These data were derived from three replicate 
experiments and statistically analyzed by t-test 
 
  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.02.11.944033doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.11.944033


<C
l(r

)C
l(r

+δ
r)>

1

-0.5
δr(μm)1.3 5.2

Cdh3 Mutant
Xdd1
Peaks

<C
l(r

)C
l(r

+δ
r)>

1

-0.6 δr(μm)1.3 5.2

Cdh3 control
Cdh3 rescue
Peaks

<C
l(r

)C
l(r

+δ
r)>

-0.4

1

<C
l(r

)C
l(r

+δ
r)>

-1.5

1

E

C

F

D

Supplemental figure 8

A

1 2 3 4-0.5

1.0

Distance (μm)

Co
rre

la
tio

n Rescue
Wild type

δr(μm)0 10

1

<C
l(r

)C
l(r

+δ
r)>

1.07 e-2.8δr

1.013 e-3.5δr

B

δr(μm)0
50

1

<C
l(r

)C
l(r

+δ
r)>

25.77δr-0.01-25.4 

0.52δr-0.53-0.2

G
0 5δr(μm)

0 5δr(μm)

Spatial autocorrelation function Mean spatial autocorrelation 
function

Spatial autocorrelation 
function for single junctions

Spatial autocorrelation 
function for multiple junctions

Spatial autocorrelation 
function for single junctions

Spatial autocorrelation 
function for multiple junctions

Mean spatial autocorrelation 
function

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.02.11.944033doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.11.944033


 26 

Supplemental Figure 8: Extended analysis of cadherin clustering for the cis-mutant, 
rescue, and Xdd1. 
 
A. Spatial autocorrelation of Cdh3 intensity fluctuations for wild type (60 frames, obtained from 
10 embryos) and Cdh3-rescue (58 frames, obtained from 4 embryos). The characteristic 
correlation length decays to zero at ~1µm, for both wild type and rescue embryos. Error bar is 
the standard deviation.  B. Mean spatial autocorrelation of Cdh3 intensity fluctuations for wild 
type and rescue with functional fits to the decay behavior. Both spatial correlations can be fit to 
an exponential. This is evidence for a characteristic spatial scale for the correlation in spatial 
Cdh3 intensity fluctuations. C. Single junction spatial autocorrelation of cadherin intensity 
fluctuations in Cdh3 wild type and rescue embryos. Local maxima in the Cdh3 spatial correlation 
are indicated as peaks (SI, Section 18). This shows the well-defined spatial periodicity in Cdh3 
distribution along the cell-cell junction for both wild type and rescue embryos.  D. Spatial 
autocorrelation of cadherin intensity fluctuations in Cdh3 control (solid lines) and Cdh3 rescue 
(dashed lines) embryos along a single junction at 5 different time frames.  E. Single junction 
spatial autocorrelation of cadherin intensity fluctuations in Cdh3 mutant and Xdd1 mutant 
embryos. As compared to wild type and rescue embryos, local maxima in the Cdh3 spatial 
correlation is highly suppressed. The spatial periodicity of Cdh3 distribution along the cell-cell 
junction is not seen.  F. Spatial autocorrelation of cadherin intensity fluctuations in Cdh3 mutant 
(solid lines) and Xdd1 mutant (dashed lines) embryos along a single junction at 5 different time 
frames.  G. Mean spatial autocorrelation of Cdh3 intensity fluctuations for Xdd1(black) and Cdh3 
mutant (magenta) with functional fits to the decay behavior. Both spatial correlations decay to 
zero is better fit to a power law. This is evidence for the lack of characteristic spatial scale for 
the correlation in spatial Cdh3 intensity fluctuations.  
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Huebner, Malmi-Kakkada : Theory Supplement 
 
Section 1. Active versus passive vertex dynamics  
 
We used the Manual Tracking plugin in FIJI to obtain the trajectories of vertex pairs. Individual 
vertex positions were tracked for a time interval of 400 s every 2 s. By obtaining the time-
dependent two-dimensional (2D) vertex co-ordinates (𝑥! , 𝑦!) and (𝑥" , 𝑦") for the left (L) and 
right (R) vertices respectively, the net distance travelled by the left(L) vertex is,   

𝛥𝑟! = )*𝑥!+𝑡#- − 𝑥!(𝑡$)/
%
+ *𝑦!+𝑡#- − 𝑦!(𝑡$)/

%
																							(1), 

where 𝑥!(𝑡#), 𝑥!(𝑡$) are the vertex positions at the final (𝑡#) and initial time (𝑡&) of 
measurement respectively. A similar equation with 𝑥" , 𝑦"  applies for the right vertex. The 
length of the junction is,  

𝐿(𝑡) = )+𝑥"(𝑡) − 𝑥!(𝑡)-
% + +𝑦"(𝑡) − 𝑦!(𝑡)-

%																														(2).  
To determine the weight of the contribution of each vertex to junction shortening, we define an 
activity parameter, 𝐴, as the ratio of net vertex distance moved to the initial junction length i.e. 
𝐴! =

'(!
!(*")

. Similarly, 𝐴" =
'(#
!(*")

, for the right vertex. If  𝐴! > 𝐴", the left vertex is labelled as 

the ‘active’ vertex while the right vertex is the ‘passive’ one, and vice versa if 𝐴" > 𝐴!. Over the 
time frames that we have analyzed the vertex movement, the median value of 
𝐿(𝑡#)/𝐿(𝑡$)~0.30, implying that the junctions have shortened by ∼ 70% as compared to the 
initial junction length.  Both high time resolution (2s per frame) and low time resolution (20s 
per frame) imaging data show the same trend that one of the vertices tend to be active, 
contributing more to junction shortening (Fig 1B-C, Main Text).  We confirm that this 
observation is not due to the overall translation or rotational motion of the cells as detailed 
below (Supp. Fig. 2).  
 
Section 2. Normalized junction length dynamics: 
 
We calculated the normalized cell-cell junction contact lengths to characterize the self-
similarity in the length change underlying cell neighbor exchanges during convergent extension. 
We selected all cell-cell contacts that shorten over time intervals > 100s, and normalized the 
change in length as,  

𝐿,(𝑡) =
!(*)-!.*$/
!(*")-!.*$/

                                                                                (3) ,  

where 𝐿(𝑡#), 𝐿(𝑡$) are the junction lengths at the final and initial time points respectively. The 
normalized junction length dynamics, 𝐿,(𝑡), provides insight into the active processes that 
underlie vertex movement driving CE. Since junction lengths are highly heterogeneous (Supp. 
Fig 4A) relative to, 𝐿(𝑡$), and the time to closure, 𝑡# − 𝑡$, the normalization in Eq. (3) allows us 
to rescale all the length changes to values between 1 and 0. The normalized length curve was 
smoothed (over 10-time frame windows = 20s) to remove higher frequency noise. To 
determine if junction shortening exhibits a self-similar behavior across multiple embryos, we 
rescaled the time axis in 𝐿,(𝑡) by the relaxation time 𝜏#, defined as the time at which 𝐿,(𝑡 =
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𝜏#) =0.3. This corresponds to a 70% reduction in the junction length. Rescaling the time axis by  
𝑡/𝜏# collapses the normalized lengths onto the functional form,  

 𝐿,[𝑡/𝜏#]= 𝑒
-0.2( %&$

)
3.4

                          (4),  
 
which is a single compressed exponential (Supp. Fig. 4B). The extent of the self-similarity is 
striking in comparison to both non-shortening (Fig 2H, Main Text) and cis-mutant normalized 
junction lengths (Fig 6D, Main Text). Notice that for  𝑡 < 𝜏#, change in normalized junction 
length is slower than exponential decay. However, for 𝑡 > 𝜏#, normalized junction length 
significantly shortens faster than would be predicted based on exponential decay. Therefore, 
the compressed exponential behavior for 𝐿, provides evidence that the persistence of junction 
shortening increases with time.  
 
Section 3. Junction length fluctuations  
        
To analyze the instantaneous change in the junction length, we calculated, 𝛿𝐿(𝑡) = (𝐿(𝑡) −
𝐿(𝑡 + 𝛿𝑡)), where 𝛿𝑡 = 2𝑠 and 𝑡 is the time. The unit of the length fluctuations is 𝜇𝑚.When the 
junction shortens, 𝛿𝐿(𝑡) > 0, while extension implies 𝛿𝐿(𝑡) < 0 (Fig. 4E, Main Text).  
 
Section 4. Quantifying the heterogenous dynamics of vertices: Mean Square Displacement 
(MSD), van Hove function and the velocity autocorrelation.  
 
The characteristics of vertex dynamics could provide clues as to the active mechanisms that 
promote or impede vertex movement. An important parameter to quantify vertex dynamics is 
the Mean Square Displacement (MSD), as a function of the lag time t. Time averaged MSD, 
𝛥
-
(𝑡)5 , is calculated using the vertex positions 𝑟

→
5(𝑡′),  

𝛥
-
(𝑡)!,5 =

0
8-* ∫ J𝑟

→
!,5(𝑡′ + 𝑡) − 𝑟

→
!,5(𝑡′)J

8-*
$

%
𝑑𝑡9																															(5),   

where 𝑇 = 400𝑠 and subscript 𝐿  stands for the left vertex. Taking the average over N 
independent vertex trajectories, labelled by the index 𝑖, we obtain the ensemble averaged 
MSD, 𝛥(𝑡)! =

0
:
∑ 𝛥

-
(𝑡)!,5:

5;0 . The same procedure is used to calculate the MSD for the right 
vertex (see Fig 1E, Main Text). In many physical systems the MSD increases with a power law, 
i.e. 𝛥(𝑡)~𝑡<. When the vertex motion is uncorrelated in time and along random directions, the 
dynamics is described as Brownian, and the MSD exponent is unity, a=1. Sub-diffusive, a<1, 
movement occurs when there is a hindrance to motion or the dynamics is highly correlated. For 
example, when a particle in caged by its immediate neighbors, sub-diffusive motion results. 
Super-diffusive MSD, a>1, is seen when the motion is highly directed.  
 
We found substantial heterogeneity in the individual vertex MSD as seen from the plot of 𝛥

-
(𝑡)5  

(Suppl. Fig 2A). Active and passive vertex MSDs span 3 orders of magnitude of time lag. Two 
distinct time regimes are observed for both active and passive vertex movements: (i) at short 
time lags, 𝑡 < 30𝑠, active and passive vertex movements are random, characterized by MSD 
exponent 𝛼~1. (ii) For 𝑡 > 40𝑠, active vertices show strong superdiffusive movement while 
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passive vertices undergo a slowdown followed by a recovery towards superdiffusive motion 
(see Fig 1E, Main Text). These distinct differences between active versus passive vertices are 
observed in the ensemble averaged MSD, 𝛥(𝑡) for 20 vertices from 10 different embryos.  
 
To eliminate the effect of translation and rotational motion of the entire tissue, we tracked 
vertex positions with respect to the center of an egg yolk particle (Suppl. Fig 2C) typically 
present within cells as well as nearby stationary vertices (Suppl. Fig 2E). In this manner, we 
analyzed the relative vertex positions, 𝑟

→
(=>, with respect to a frame of reference within the 

tissue being imaged. By extracting the co-ordinates of the center of an egg yolk within a cell or 
nearby vertices, 𝑟

→
? , we obtain the relative vertex positions, 𝑟

→
(=>,! = 𝑟

→
! − 𝑟

→
? . We then evaluated 

the mean square relative displacements (MSRD) for the left and right vertex pairs using Eq. (5) 
above (Suppl. Fig 2D,F). The distinct differences between active versus passive vertex dynamics 
is conserved in this relative co-ordinate system, indicating that the asymmetry in active versus 
passive vertex movement is not due to translational or rotational motion of the whole tissue 
(see Suppl. Fig 2).   
 
Van Hove Function: Insights into vertex motion may be obtained by analogy to spatially 
heterogenous dynamics in supercooled liquids [1,2]. The distribution of particle displacements 
is expected to be a Gaussian in simple fluids. In supercooled liquids, however, the 
displacements of a subset of particles deviate from the Gaussian distribution [1]. From the 
distance moved by a vertex during the time interval 𝛿𝑡, defined as |𝛿𝑟5(𝛿𝑡)| = |𝑟

→
5(𝑡 + 𝛿𝑡) −

𝑟
→
5(𝑡)|, the van Hove function for vertex displacement (or the probability distribution of vertex 

step size) is,  
𝑃(𝛿𝑟|𝛿𝑡) = ⟨0

:
∑ 𝜃(𝛿𝑟5 −:
5;0 J𝑟

→
5(𝑡 + 𝛿𝑡) − 𝑟

→
5(𝑡)J)⟩                           (6),  

where the average is over N independent vertex trajectories. The van Hove distribution at 𝛿𝑡 =
40𝑠, for active (red) and passive vertices (blue) is shown in Suppl. Fig 3A. The 40𝑠 time interval 
is long enough to clearly observe the differences in the distances moved by active and passive 
vertices. The van Hove distribution at 𝛿𝑡 = 4𝑠 is shown in Suppl. Fig 3B. At this short time 
interval, distances moved by active and passive vertices are similar and is well fit by a Gaussian 
(see inset Suppl. Fig 3B). However, the van Hove distribution deviates significantly from the 
Gaussian distribution at 𝛿𝑡 = 40𝑠 (see inset Suppl. Fig 3A), indicating the growing 
heterogeneity in the vertex displacements.  
 
Average velocity distribution and velocity autocorrelation function (VACF):  
To further quantify the striking differences in the movement of active and passive vertices, we 
calculate the average velocity of the vertices. The average velocity over a time interval 𝜏 is 
defined as,   

𝑣
→
!(𝜏) =

(
→
!(*)-(

→
!(*@A)

A
																																																																															(7)  

 
Replacing 𝑟

→
! by 𝑟

→
"  gives the average velocity of the right vertex. We analyze the average 

velocity over a time interval 𝜏 because experimental data is also an average over the time 
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resolution of the iSIM microscope. We then compare the speed distribution (|𝑣
→
!(𝜏)|) of active 

and passive vertices over both short, 𝜏 = 4𝑠 (Suppl. Fig 3C, blue for passive and red for active 
vertices) and longer time intervals, 𝜏 = 60𝑠 (Suppl. Fig 3D). At the smaller time interval, 𝜏 = 4𝑠, 
the speed distribution of active and passive vertices are similar. This indicates minimal 
differences between active and passive vertex dynamics at short time scales. The difference in 
active and passive speed distribution is, however, pronounced at 𝜏 = 60𝑠. The passive vertex 
speed distribution peaks at a smaller value and decays rapidly for larger speed values, 
compared to active vertices. This illustrates the fluidization in the movement of active vertices 
that develops over a time scale of order 50𝑠 in agreement with other measures such as the 
MSD and the van Hove distribution as reported above.  
 
To probe the time interval over which the average velocity (at fixed 𝜏) is correlated with 
average velocity at a time point separated by 𝛿𝑡, we calculate the velocity autocorrelation 
function (VACF),  

𝐶BA(𝛿𝑡) = Z𝑣
→
(𝑡 + 𝛿𝑡). 𝑣

→
(𝑡)[																																																																			(8),  

where the average is defined as ⟨… ⟩ = 0
8-C* ∫ …8-C*

$ 𝑑𝑡. The VACF is normalized such that 
𝐶BA(𝛿𝑡 = 0) = 1. At the shorter time interval of 𝜏 = 4𝑠, VACF for active and passive vertices 
exhibit a rapid decay to zero (Suppl. Fig 3E, blue for passive and red for active vertices). 
Individual vertex VACF are plotted in transparent colors and the mean as dashed lines (blue-
black dashed line for passive vertices and red-black dashed line for active vertices).  
Analyzing vertex velocities at 𝜏 = 60𝑠 clearly brings out the different dynamics that 
characterize active versus passive vertices (Suppl. Fig 3F, blue for passive and red for active 
vertices). Velocity correlations decay quicker for passive vertices, becoming negative and then 
rebounds. However, active vertex velocity correlations are more persistent with time as evident 
from the longer time to decay.  
 
Section 5. Self-overlap parameter and dynamic heterogeneity 
 
To quantify the highly asymmetric vertex movement that underlies CE, we measured the 
fractional change in vertex positions over a time interval t using the self-overlap order 
parameter, defined as:  

⟨𝑄(𝑡)⟩ =
1
𝑁`𝑤5

:

5

																																																																																			(9), 

where 𝑤5 = 1 if J𝑟
→
5(𝑡′ + 𝑡) − 𝑟

→
5(𝑡′)J < 𝐿?  and 𝑤5 = 0 otherwise. The self-overlap parameter is 

dependent on the length scale that is probed by 𝐿?  and represents the probability that vertices 
have moved by a specified length scale over a time interval, t. We chose 𝐿? = 1.3𝜇𝑚,as this is 
the distance scale over which movement of active and passive vertex become distinct. This is 
evident from the plot of MSD (Fig 1E, Main Text) for active and passive vertices where the 
dynamics begins to differ at a length scale of > 1𝜇𝑚. If a vertex moves less than 𝐿? = 1.3𝜇𝑚 
over the time interval t, the vertex is considered to have 100% overlap with its previous 
position, and hence assigned a value 1. However, if the vertex has moved more than 1.3𝜇𝑚 
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within the time interval 𝑡, we consider this as 0% overlap. The self-overlap function, ⟨𝑄(𝑡)⟩, is 
calculated by averaging over a range of initial times, 𝑡′, followed by ensemble averaging over 
individual vertices (Supp. Fig. 3G-H). The active vertex self-overlap function decays rapidly and 
can be fit to a single exponential decay function, indicating liquid like dynamics. However, 
passive vertex overlap function shows a two-step decay, a signature of glass-like dynamics 
(Supp. Fig. 3G).  
 
Although the MSD and the self-overlap function ⟨𝑄(𝑡)⟩ are useful to quantitatively characterize 
vertex movement, other metrics are needed to gather further insights into the dynamic 
heterogeneity and correlations in vertex movement that emerge temporally during CE. In 
systems approaching the glass transition, the cooperativity of motion increases such that the 
length and time scales characterizing the dynamic heterogeneity are expected to grow sharply. 
In supercooled liquids, the fourth order susceptibility, 𝜒D(𝑡), provides a unique way to 
distinguish the dynamic fluctuations between liquid and frozen states [3]. Therefore, we 
compute the fourth order susceptibility from the variance of the self-overlap parameter,   
𝜒D(𝑡) = ⟨𝑄(𝑡)%⟩ − ⟨𝑄(𝑡)⟩%																																																																			(10).  
Similar to structural glasses, the dynamic heterogeneity, quantified by 𝜒D(𝑡) increases with 
time, peaks at a maximum time interval, 𝑡E and then decays (Supp. Fig. 3I). The dynamic 
heterogeneity is manifested as dramatic variations between individual vertex trajectories in 
both active and passive vertex movements. For active vertices, 𝜒D(𝑡) peaks at 𝑡E~120𝑠 while 
for passive vertices heterogeneity peaks at a longer time interval 𝑡E~170𝑠 (Supp. Fig. 3I). The 
time scale associated with the peak in dynamic heterogeneity is consistent with the viscoelastic 
relaxation time (further discussed below), known to be the characteristic relaxation time for 
vertices connected by the cell cortex under tension [4]. For non-shortening junctions, 𝜒D(𝑡), 
does not show a peak (Suppl. Fig 3J). We anticipate the peak to be at a much longer time scale 
for vertices of non-shortening junctions.  
 
Section 6. Cadherin clustering from the spatial autocorrelation function 
 
To determine the characteristic spatial correlation of cadherin intensity fluctuations, we analyze 
the pixel-by-pixel Cadherin3 (Cdh3) intensity data, 𝐼(𝑟

→
5), along the medio-lateral cell-cell 

interface (v-junction). Here, 𝑟5
→

 is the position of the i-th pixel in the iSIM image. The spatial 
autocorrelation function of the cadherin intensity fluctuations as a function of distance, r, along 
the cell-cell interface is,   

𝐶(𝑟) =`𝜃 *𝑟 − J𝑟
→
5 − 𝑟

→
FJ/ [

5,F

*𝐼 *𝑟
→
5/ − ⟨𝐼⟩/ *𝐼 *𝑟

→
F/ − ⟨𝐼⟩/

⟨𝐼%⟩ − ⟨𝐼⟩% ],									(11) 

where 𝜃(𝑧) = 1 if 𝑧 = 0, 𝜃(𝑧) = 0 for any other value of 𝑧. ⟨𝐼⟩ is the mean cadherin intensity 
over all the pixels along the cell-cell junction. 𝐶(𝑟) is normalized such that 𝐶(𝑟 = 0) = 1. The 
cadherin correlation length is defined as the distance, 𝜉, at which 𝐶(𝑟 = 𝜉) = 0. This provides a 
measure of the distance scale at which the correlation in cadherin intensity fluctuations is lost. 
Equivalently, 𝜉, sets the spatial persistence of cadherin fluctuations along the cell-cell junction, 
providing a quantitative measure of lateral cadherin clustering. We analyzed cadherin clustering 
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patterns along individual cell-cell junctions separately at time intervals of 2s and obtained the 
spatial correlation behavior for individual junctions from 10 embryos. The mean of the cadherin 
spatial correlation (over 100s of time points) for wild type embryos is reported in Fig. 4C, Main 
Text with the error bar denoting the standard deviation. To analyze the dynamic variation in 
cadherin cluster size as a function of time, 𝐶(𝑟), was calculated over a time interval of 320s at 
2s resolution. The fluctuation in cluster size is given by, 𝛿𝜉(𝑡) = 𝜉(𝑡) − ⟨𝜉⟩*, where ⟨𝜉⟩* is the 
mean cluster size over the analyzed time interval (see Fig. 4D Main Text). The cluster size 
fluctuation,𝛿𝜉(𝑡), was smoothed (over 10-time frame windows = 20s) in order to remove high 
frequency noise.   
 
Section 7. Cross-correlation between cadherin cluster size and the junction length 
fluctuations  
 
The normalized cross-correlation between junction length fluctuations, 𝛿𝐿(𝑡), and cadherin 
cluster size fluctuations, 𝛿𝜉(𝑡), was calculated in MATLAB using,  
𝐶C!,CG(𝜏) = ∫ 𝛿𝜉(𝑡) × 𝛿𝐿(𝑡 + 𝜏)𝑑𝑡,																																																					(12)8

$   
where T is the total time of analysis and 𝜏 is the lagtime. We analyzed the cross-correlation for 
18 junction shortening events and show the correlation coefficient as a heatmap in Fig 4F Main 
Text. 
 
Section 8.  Asymmetry in cadherin clustering: 
 
To quantify the asymmetry in Cdh3 clustering in the spatial region near the left and right 
vertices, we calculated the spatial correlation in cadherin intensity fluctuations, 𝐶(𝑟) (see Eq. 
(11)), in a region spanning 3.25𝜇𝑚 adjacent to left and right vertices. The spatial region is 
chosen such that on average it is 3𝑋 larger than typical cadherin cluster size of order 1𝜇𝑚. The 
localized cadherin clustering behavior adjacent to active and passive vertices, quantified by the 
spatial correlation in cadherin intensity fluctuations, is shown in Fig. 4G Main Text. Fig 4G, Main 
Text also compares the local cadherin clustering behavior in non-shortening junctions to 
shortening junctions.  
 
We then wondered if spatial correlation in cadherin expression is stable in time across a single 
cell-cell junction. We computed the spatial cadherin correlation at 2 second time intervals along 
single cell-cell junctions from multiple embryos. Our results indicate that the spatial correlation 
length of cadherin expression is highly heterogeneous in time, with the correlation length varying 
from 0.2 𝜇𝑚 to 1.6 𝜇𝑚, as shown in Supp. Fig. 6. To decipher how the spatial correlation in 
cadherin expression along the cell-cell junction varies with time near active and passive vertices, 
we present the data for spatial autocorrelation of cadherin fluctuations  in Supp. Fig. 6A-J. In each 
panel, individual blue (red) lines correspond to the spatial correlation in cadherin fluctuations 
near passive (active) vertices. The difference in spatial  cadherin correlation between active and 
passive vertices in shortening junctions are shown in Supp. Fig. 6A-J whereas the same data for 
non-shortening junctions are shown in Supp. Fig. 6K-Q. By extracting the length of the spatial 
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correlation as discussed in Section 6 above, the summary of the cadherin spatial correlation data 
is presented in the Main Text Fig. 4G.  
 
We used an alternative definition of C-cadherin cluster size to confirm our results. By fitting the 
decay in the cadherin spatial autocorrelation function to zero by an exponential function, we can 
extract the cluster size. We find that the asymmetry in the local cadherin clustering behavior is 
independent of the definition of the cluster size (Suppl. Fig 5B-D). Hence, we conclude that 
cadherin clustering is enhanced near active vertices as opposed to passive vertices in shortening 
junctions (Fig. 4G Main Text, Supp. Fig. 5C) while it is symmetric near left and right vertices in 
non-shortening junctions (Supp. Fig. 5D).  
 
Section 9.  Theoretical Model 
 
Vertex based models are important for studying the dynamics of confluent cell layers [5]. The 
junction between three or more cells (vertices) are represented as point particles. The 
connecting edge between vertices represent cell-cell interfaces. We developed a theoretical 
model for junction shortening to understand the asymmetric dynamics of vertices. Our model, 
shown in Fig 2A-B Main Text, is a coarse-grained representation of a collection of cells 
intercalating mediolaterally. Each vertex, bounding the v-junction, are connected to Maxwell-
like components with viscous and elastic elements. Elastic properties are modeled by springs 
with stiffness, 𝑘, and actuators characterize the viscous motion of cell vertices (see Fig 2A Main 
Text; 𝛾 is the viscosity). For the purposes of visualization, we depict the spring-actuator element 
as being in the direction away from the cell-cell interface, exerting a compressive force on the 
vertices. This need not be the case as the forces and mechanical factors contributing to junction 
shortening can also be localized within the cell-cell junction. For the purposes of simplicity in 
visualization, we have picked a direction for the spring-actuation element.  
 
We assume that the position of the left vertex, 𝑟

→
!(≝ 𝑥! , 𝑦!), evolves according to the equation 

of motion: 
H(
→
!

H*
= − I

→
!.(
→
!

J!
+ K

→
!
J!
+ 𝜁!																																																																																	(13),  

where 𝑘
→
! is the elasticity of the left (𝐿) vertex, 𝐹

→
! is the contractile force responsible for viscous 

deformation of the vertex and  𝛾! is viscosity coefficient of the vertex. Replacing the subscript 𝐿 
with 𝑅 above gives the equation of motion for the right vertex. The local elasticity near the 

vertices are accounted for by a connected harmonic spring with strength 𝑘
→
!. The spring is 

connected in series with an actuator that supplies the contractile force, 𝐹
→
! . It is likely that the 

noise in a physical or biological system is correlated in time. Consistent with our observation 
that fluctuations in junction length are correlated in time, we model 𝜁! as the colored noise 
experienced by the vertices. The noise, 𝜁!, represents the coupling of the vertices to their 
immediate local environment, satisfying ⟨𝜁!(𝑡)𝜁!(𝑠)⟩ = 𝐴𝑒-|*-M|/A(  with the mean ⟨𝜁!(𝑡)⟩ = 0. 
The coefficient, 𝐴, is the noise strength. For large noise strength, vertex positions show large 
amplitude deviations from the position dictated by the minimum of the elastic force, as 
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constrained by the spring. For small persistence time of the correlated noise, 𝜏,, the vertex 
dynamics is highly uncorrelated in time. At large persistence times, however, the noise induced 
fluctuations in the vertex positions are correlated over the timescale 𝜏,. We set the noise 
correlation time to be the persistence time of junction length fluctuations. The colored noise 
satisfies, HO!

H*
= − O!

A(
+ 0

A(
𝜂(𝑡), where 𝜂(𝑡) is the Gaussian white noise source characterized by 

delta correlation ⟨𝜂(𝑡)𝜂(𝑠)⟩ = 𝛿(𝑡 − 𝑠) and mean ⟨𝜂⟩ = 0.  
 
Since the movement of vertices along the medio-lateral direction is much more persistent as 
opposed to the perpendicular direction, as evident from the closure of junctions, we simplify 
the model to consider only one-dimensional (1D) motion. Henceforth, we drop the vector 
notation and focus on the vertex dynamics along the x-axis.  
By considering the basic vertex equations in the Langevin picture,                                                   
HP!
H*
= − I!

J!
× +𝑥! − 𝑎!𝑡Q!- + 𝜁!																																																																				(14), 

HP#
H*

= − I#
J#
× *𝑥" − +𝐿$ − 𝑎"𝑡Q#-/ + 𝜁" 																																																				(15),                                                          

we model the vertex equations of motion in analogy to particles moving in a translating optical 
trap. The minimum of the left elastic ‘trap’ changes dynamically due to the term 𝑎!𝑡Q!  in Eq. 
(14) (modeled by the left actuator). Similarly, the right elastic ‘trap’ is translated from its initial 
position 𝐿$ by 𝑎"𝑡Q#  in Eq. (15) (modeled by the right actuator). These terms serve as a proxy 
for active contractile forces which viscously deform the cell edges. Hence, we refer to the 
exponents, 𝜓! and 𝜓", as the rest length exponents. The physical implication of the rest length 
exponent is that the rest length of the junction varies dynamically. The contractile force is, 
𝐹!,*&*R> ≝ −𝑉′(𝑥!) in Eq. (13), where 𝑉(𝑥!) is the time dependent ‘trap’ potential of the form 

𝑉! = 0.5𝑘!+𝑥! − 𝑎!𝑡Q!-
%
and 𝑉" = 0.5𝑘" *𝑥" − +𝐿$ − 𝑎"𝑡Q#-/

%
. The stochastic movement of 

the vertices in a translating potential leads to a ratchet-like effect where the vertex dynamics 
has a specified direction. This directionality in the motion of the vertices does not arise, 
however, from the asymmetry in the potential but rather from the asymmetric translation of 
the potential well minimum or the dynamic rest length.  
 
Hence, the active time dependent forces contributing to junction shortening were modeled in 
silico as, 
 𝐹!(𝑡) = 𝑘!𝑎!𝑡Q! 																																																																																																(16), 
𝐹"(𝑡) = 𝑘"(𝐿$ − 𝑎"𝑡Q#)																																																																																		(17),  
where 𝑎!and 𝑎"are the ‘acceleration’ of the left and right vertices respectively, and the 
exponents 𝜓!and 𝜓"  determine the temporal dynamics of the contractile force. We include the 
acceleration term to account for the experimentally observed increase in the persistence of 
junction shortening as a function of time (see Fig 2G Main Text; See also Sec. 2 above). The 
initial condition is set as 𝑥!(𝑡 = 0) = 0, and 𝑥"(𝑡 = 0) = 𝐿$, with 𝐿$ being the initial cell-cell 
junction length. We arbitrarily assign the left side to be active, with the time dependent active 
force rising in proportion to 𝑡Q!(𝜓! > 𝜓"). The right side is assigned to be passive, with force 
increasing with time as ∝ 𝑡Q#. The difference in the rest length exponents, 𝜓! versus 𝜓", 
determines which vertex is active.  
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The equations of motion then become:                                                                                    

  HP!
H*
= − I!

J!
𝑥! +

I!R!*)!

J!
+ 𝜁!																																																																									(18),                                                                    

 HP#
H*

= − I#
J#
𝑥" +

I#(!"-R#*)#)
J#

+ 𝜁" 																																																														(19). 
 
Defining 𝑥

-
! =

P!
P"

, 𝑡
-
= *

A
 and 𝑎

-
! =

R!
R!
", where 𝑥$ = 10𝜇𝑚, 𝜏 = 10%𝑠𝑒𝑐 and 𝑎!$𝜏Q! = 𝑥$, we 

recast the equations of motions into dimensionless forms. Similar normalization with L replaced 
by R applies for the right vertex. The system of equations is scaled with the characteristic length 
and time, 𝑥$ and 𝜏, physiologically relevant for cells undergoing convergent extension. In terms 
of the normalized quantities, the equation of motion is,  
 
HP
*
!

H*
* = − 0

A
*
!
× *𝑥

-
! − 𝑎

-
!𝑡
-
Q!/ + 𝜁

-
!																																																																			(20),  

𝑑𝑥
-
"

𝑑𝑡
- = −

1
𝜏
-
"
× u𝑥

-
" − *𝐿

-
$ − 𝑎

-
"𝑡
-
Q#/v + 𝜁

-
" 																																																(21), 

where the parameter I!
J!
≝ 0

A!
 has the dimension of inverse time 0

M
. When normalized by the 

characteristic timescale 𝜏,  A
A!
= 𝜏 × *I!

J!
/ = 0

A
*
!
, we obtain a dimensionless parameter which we 

refer to as the viscoelastic ratio. 
 
Section 10. Dynamic rest length and colored noise  
 
In vertex-based models for plant cells, the cell-cell interface length is modeled with a spring 
having a characteristic rest length [6]. Any deviation in the length of the cell-cell interface from 
the rest length is energetically unfavorable. In vertex models for animal cells, such a rest length 
is typically not included [5]. In our coarse-grained vertex model, we include a spring term with 
dynamic rest lengths. We show that this model accounts for the asymmetric vertex dynamics 
and quantitative experimental features of the junction shortening behavior. By studying 
actomyosin contractility in combination with theoretical modeling, it has recently been shown 
that epithelial junctions exhibit both elastic and viscous remodeling behavior [7].  
 
The existence of memory effects in junction shortening necessitates the addition of the colored 
noise term. Previous vertex-based models have considered random white noise indicating no 
memory effect. However, by experimentally quantifying the junction length fluctuations, we 
would like to point out that colored noise may be important to consider in modeling biological 
systems.  
 
 
Section 11. Parameter values for elasticity and viscosity:  
 
The viscoelastic ratios, 1/𝜏

-
! and 1/𝜏

-
" ,were varied from 0.05 to 5 equivalent to 5 × 10-D𝑠-0 −

0.05𝑠-0 in dimensional units. Therefore, the viscoelastic relaxation time is in the range of 
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20𝑠 − 2000𝑠. Spring stiffness, 𝑘, in the range between 100𝑝𝑁/𝜇𝑚 and 1𝑛𝑁/𝜇𝑚 [8,9] and the 
viscosity, 𝛾 ~100𝑛𝑁. 𝑠/𝜇𝑚 [10], accounts for the elastic and viscous properties of tissues 
previously reported in the literature. For these values, one obtains the viscoelastic relaxation 
time in the range of 1𝑠 − 100𝑠. Therefore, the viscoelastic ratio used in our model is within an 
order of magnitude of the physiological values for both tissue stiffness and viscosity.  
 
Section 12. Simulation Details:  
 
We consider a wide range of values for both the viscoelastic ratio and the rest length exponent 
for the active vertex, 𝜓!. The time step in the simulation is 𝛥𝑡 = 0.0022 = 0.22𝑠, chosen to be 
smaller than the characteristic viscoelastic relaxation time (of order 10𝑠). We evolve the 
simulation for a total of n=20,000 steps (4,400𝑠 in real units). The equations of motion are 
solved using the Euler method for each vertex. If at any point during the simulation, the left and 
right vertex positions approach one another to a distance less than 0.5𝜇𝑚, we label the 
junction as having successfully completed the shortening. The initial junction length was set to 
be 𝐿$ = 2, equal to 20𝜇𝑚 in real units. The range of rest length exponents we consider is 
limited by the need to ensure that the minima of the potentials do not overlap during a given 
simulation run. To generate the phase diagram for the probability of junction shortening as a 
function of the rest length exponent and the viscoelastic ratio, we consider for the left active 
vertex  0.05 ≤ 0

A
*
!
≤ 5 at intervals of 0.5. Rest length exponents in the range, 1.7 < 𝜓! < 2, 

were simulated at intervals of 0.25 for the active vertex. 𝜓" = 1.3 is fixed for the passive right 
vertex. The acceleration of the potential minima, is set to be 𝑎

-
! = 𝑎

-
" = 0.001. The viscoelastic 

ratio for the right passive vertex is fixed at  0
A
*
#
= 0.1. We simulated 100 junction shortening 

events at each value of the parameters I!
J!

 and 𝜓! . By monitoring the percent of successful 

junction shortening events, we generate the phase diagram in Fig 2C (Main Text). 
 
 
Section 13. Effect of viscoelasticity on the shortening of junctions: 
 
We observe in the phase diagram (Fig 2C, Main Text) that at a fixed value of the rest length  
exponent, modulating the asymmetry of the viscoelastic parameter ((I!

J!
)/(I#

J#
)) leads to a 

transition from non-shortening (failure to shorten) to junction shortening (successful 
shortening) regime. At constant 𝜓! = 1.95, for low values of the active vertex viscoelastic 
parameter, (𝜏

-
"/𝜏

-
!) < 6.9, less than 40% of the junctions shorten. However, at higher values of 

the viscoelastic parameter, 𝜏
-
"/𝜏

-
! > 15, more than 80% of the junctions successfully execute 

shortening. Therefore, the theory predicts that the local viscoelasticity is critical for cells to 
intercalate medially and effect convergent extension. We calculate the normalized length for 
non-shortening junctions and found that the self-similarity in junction length dynamics is 
broken, in agreement with experimental results (Fig. 2H, Main Text). 𝐿, for non-shortening 
junctions is characterized by large fluctuations away from the expected compressed 
exponential behavior, as quantified by the residue (see details below). Simulated junction 
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length dynamics for the non-shortening case (grey curves in Fig 2H Main Text) is obtained for 
parameter values 1/𝜏

-
! = 0.05, 1/𝜏

-
" = 0.05 and 𝜓! = 2, 𝜓" = 1.3. Meanwhile, for the 

shortening phase (grey curves in Fig 2D Main Text), 1/𝜏
-
! = 5, 1/𝜏

-
" = 0.05 and 𝜓! = 2, 𝜓" =

1.3. Therefore, asymmetry in viscoelasticity is critical for junctions to execute shortening. Our 
model points out that the persistent dynamics of active vertices, enabling the efficient 
shortening of the cell-cell interfaces, is a direct consequence of the faster viscoelastic relaxation 
time.  
 
Section 14. Residue  
 
We quantify the deviation of the normalized junction shortening from the expected 
compressed exponential behavior by calculating the rescaled time, 𝑡( =

*
A$

, and 𝜔 =

|𝑒-0.2(*+)
3.4
− 𝐿,|, where 𝜔 is the residue. 𝜏#, is defined as the time at which 𝐿,(𝑡 = 𝜏#) =0.3. 

In Fig 2I (Main Text), non-shortening junctions show strong deviations from the expected 
compressed exponential behavior while shortening junctions closely follow the compressed 
exponential form. 
 
Section 15. Alternative form of the contractile force 
 
To test the robustness of the conclusions obtained using our model, we consider an alternative 
form of the contractile force experienced by the vertices. We model the actuators contributing 
to viscous junction shortening as moving with constant velocities - 𝑣

-
!and 𝑣

-
"- for the left and 

right vertices respectively:                                                                                 
 

 HP
*
!

H*
* = − 0

A
*
!
× *𝑥

-
! − 𝑣

-
!𝑡
-
/ + 𝜁

-
!																																																																		(22),                                                                          

 HP
*
#

H*
* = − 0

A
*
#
× u𝑥

-
" − *𝐿

-
$ − 𝑣

-
"𝑡
-
/v + 𝜁

-
" 																																																		(23), 

 
The ‘trap’ potential in this scenario is of the form, 𝑉! = 𝑘!(𝑥! − 𝑣!𝑡)%and 𝑉" =
𝑘"+𝑥" − (𝐿$ − 𝑣"𝑡)-

%
, moving with constant velocities. Left vertex is defined to be active with  

𝑣
-
! > 𝑣

-
" . The velocity is normalized as 𝑣

-
! = 𝑣!/(

P"
A
). The passive vertex velocity is fixed at 𝑣

-
" =

0.011, which in dimensional units correspond to 0.0011𝜇𝑚/𝑠. The active vertex velocity is 
varied in the range of 0.03 ≤ 𝑣

-
! ≤ 0.034, which in dimensional units is between 0.003𝜇𝑚/𝑠 - 

0.0034𝜇𝑚/𝑠. Experimental vertex shortening velocities in the range of 0.001𝜇𝑚/𝑠 to 
0.021𝜇𝑚/𝑠 was reported by some of us in a previous work [11]. Fixing the passive viscoelastic 
ratio at, 1/𝜏

-
" = 0.1, we varied 0.05 ≤ 1/𝜏

-
! ≤ 5 for the active vertex. Keeping all the other 

parameters the same, we arrive at the same conclusion that local junction viscoelastic response 
is critical to effect junction shortening (Suppl. Fig 4D). Therefore, our conclusions are not 
affected by the specific form of the vertex dynamics. A crucial aspect is that the two potential 
well minima should move asymmetrically in time.  
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Section 16. Transverse fluctuations of the vertices 
 
We quantify the intermittent movement (see Fig 3A Main Text) of the vertices perpendicular to 
the motion that contributes to the junction shortening by calculating the transverse 
fluctuations, 𝑅8. The transverse step size is given by, 𝛿𝑟8(𝑡) = J𝛿𝑟

→
!(𝑡)J 𝑠𝑖𝑛(𝜃), where 𝛿𝑟

→
!(𝑡) =

𝑟
→
!(𝑡) − 𝑟

→
!(𝑡 − 𝛿𝑡) and the angle 𝜃 is the obtained from the dot product, 𝛿𝑟

→
8 . 𝛥𝑟

→
! =

|𝛿𝑟
→
8||𝛥𝑟

→
!|𝑐𝑜𝑠	(𝜃). Here, the net displacement of the Left(L) vertex is given by, 𝛥𝑟

→
! =

*𝑥!+𝑡#- − 𝑥!(𝑡$)/ 𝑥
^
+ *𝑦!+𝑡#- − 𝑦!(𝑡$)/ 𝑦

^
. Similar equation applies for the right vertex with 

𝑥! , 𝑦! replaced by 𝑥" , 𝑦". To better quantify the intermittent dynamics, we compute the 
transverse “hop” function,  
𝑅8(𝑡) = (𝛿𝑟8(𝑡) − ⟨𝛿𝑟8⟩T)%																																																																					(24). 
The angular bracket above ⟨. . ⟩T denote the average over the time window 𝐵 ≝
[𝑡 − 𝛿𝑡, 𝑡 + 𝛿𝑡]. We chose for the hop duration parameter, 𝛿𝑡 = 4𝑠, to probe short time 
transverse fluctuations. The probability distribution of all 𝑅8(𝑡) values are shown in Fig 3D 
Main Text. By averaging the transverse fluctuations over all vertices,  ⟨𝑅8(𝑡)⟩ =

0
:
∑ 𝑅8(𝑡)5:
5;0 , 

we obtain the mean transverse fluctuation for active and passive vertices (Fig 3C Main Text). 
⟨𝑅8(𝑡)⟩ for Cis-mutant and Xdd1 vertices are shown in Fig. 6F and Fig. 7F of the Main Text 
respectively. 
Straightness Index 
The directionality of the vertex trajectories were assessed using the straightness index. This is 
defined as the ratio of the net distance moved by a vertex between initial and final time points 
to the total distance moved by a vertex:  
 

𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠	𝐼𝑛𝑑𝑒𝑥 =
J𝑟
→
+𝑡#- − 𝑟

→
(𝑡&)J

𝛴* J𝑟
→
(𝑡 + 𝛿𝑡) − 𝑟

→
(𝑡)J

																																				(25). 

Higher the value of the straightness index, the more directed the movement is with the value of 
straightness index = 1 indicating perfectly straight line motion (see Fig. 3E, Main Text).  
 
Section 17.  Perturbation of Cadherin clustering in individual junctions and its spatial 
periodicity 
 
We calculate the spatial autocorrelation of the cadherin intensity fluctuations (𝐶(𝑟) see Section 
6, 𝐸𝑞. (11) ) for four different embryo development scenarios, (i) wild type Cdh3 (see Fig. 4C, 
Main Text), (ii) Cdh3 rescue (Cdh3-GFP) (see Suppl. Fig 8A), (iii) Cdh3 cis-mutant (cisMut-Cdh3-
GFP) (Fig. 5D, Main Text), and (iv) Xdd1 (Fig. 7C, Main Text). The mean spatial correlation in 
cadherin fluctuations for wild type Cdh3 and Cdh3-GFP junctions show similar behavior with the 
decay to zero characterized by an exponential form (Suppl. Fig 7B). The exponential spatial 
dependence is evidence for the existence of a characteristic spatial scale for correlations in 
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cadherin spatial distribution. The local peak in the cadherin autocorrelation function is 
identified using the findpeaks algorithm in MATLAB. Local peak in a data array is identified 
when a data point is larger than its two neighboring data points or equal to infinity. The 
prominence of the peak is set to 0.1, identifying the peak amplitudes that stands out relative to 
other peaks. Wild type and rescue embryo cell-cell junctions are characterized by well-defined 
spatial periodicity in cadherin clustering, as observed from the secondary peaks in the spatial 
correlation (see black triangles, Suppl. Fig 7C). Therefore, cadherin spatial organization in wild-
type Cdh3 and Cdh3-cis-mutant rescue embryos is in a crystal-like phase (Suppl. Fig 7C), with 
regularly repeating spatial patterning. Cadherin spatial correlation for individual frames (with 
no averaging) is shown for control (solid lines in Suppl. Fig 7D) and cadherin rescue embryos 
(dashed lines, Suppl. Fig 7D). However, cadherin spatial correlation in Xdd1 and cisMut-Cdh3 
embryos show diffuse spatial organization, with little to no secondary peak structures visible in 
the spatial autocorrelation (see Suppl. Fig 7E). This is indicative of disrupted periodicity in 
cadherin clustering. Therefore, cadherin spatial organization in cisMut-Cdh3 and Xdd1 embryos 
is in a gas-like phase. Individual frame cadherin spatial correlation for cisMut-Cdh3 (solid lines 
Suppl. Fig 7F) and Xdd1 is shown as dashed lines in Suppl. Fig 7F. For Xdd1 and cisMut-Cdh3-
GFP junctions, the decay in the spatial correlation is better fit by a power law, indicating the 
lack of existence of a coherent length scale associated with fluctuations in cadherin expression 
(Suppl. Fig 7G).  
 
Section 18. Statistics  
The statistical test used and other relevant details such as the number of embryos/image 
frames analyzed are described in the figure legends.  
 
References  
[1] D. Thirumalai and R.D. Mountain. Activated dynamics, loss of ergodicity, and transport in 
supercooled liquids. Phys. Rev. E, 47(1):479 (1993). 
[2] J-L Barrat, J-N Roux, and J-P Hansen. Diffusion, viscosity and structural slowing down in soft 
sphere alloys near the kinetic glass transition. Chem Phys, 149(1-2):197--208, (1990).  
[3] T. Kirkpatrick, D. Thirumalai, Comparison between dynamical theories and metastable states 
in regular and glassy mean-field spin models with underlying first-order-like phase transitions. 
Physical Review A 37, 4439 (1988). 
[4] J. Solon, A. Kaya-Copur, J. Colombelli, D. Brunner, Pulsed forces timed by a ratchet-like 
mechanism drive directed tissue movement during dorsal closure. Cell 137, 1331-1342 (2009). 
[5] A.G. Fletcher, M. Osterfield, R.E. Baker, and S.Y. Shvartsman. "Vertex models of epithelial 
morphogenesis." Biophysical journal 106, no. 11 (2014): 2291-2304. 
[6] R.M.H Merks, M. Guravage, D. Inzé, and G.T.S Beemster. VirtualLeaf: an open-source 
framework for cell-based modeling of plant tissue growth and development. Plant physiology 
155, no. 2 (2011): 656-666. 
[7] M.F. Staddon, K.E. Cavanaugh, E.M. Munro, M.L. Gardel, S. Banerjee. Mechanosensitive 
junction remodelling promotes robust epithelial morphogenesis. Biophysical Journal, 117, 1-12 
(2019).  
[8] T. Bittig, O. Wartlick, A. Kicheva, M. González-Gaitán, and F. Jülicher. "Dynamics of 
anisotropic tissue growth." New Journal of Physics 10, no. 6 (2008): 063001. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.02.11.944033doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.11.944033


 

 

[9] P. Girard, E.A. Cavalcanti-Adam, R. Kemkemer, and J.P. Spatz. "Cellular chemomechanics at 
interfaces: sensing, integration and response." Soft Matter 3, no. 3 (2007): 307-326. 
[10] G. Forgacs, R.A. Foty, Y. Shafrir, and M.S. Steinberg. "Viscoelastic properties of living 
embryonic tissues: a quantitative study." Biophysical journal 74, no. 5 (1998): 2227-2234. 
[11] A. Shindo, and J.B. Wallingford. "PCP and septins compartmentalize cortical actomyosin to 
direct collective cell movement." Science 343, no. 6171 (2014): 649-652. 
 
 
 
 
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.02.11.944033doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.11.944033



