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Abstract

Recent work on engineering synthetic cellular circuitry has shown that non-regulatory interactions
brought about through competition for shared gene expression resources, such as RNA polymerase
and ribosomes, can result in degraded performance or even circuit failure. Transcriptional and trans-
lational resource allocation controllers based on orthogonal ‘circuit-specific’ gene expression machiner-
ies have previously been separately designed to enforce modularity and improve circuit performance.
Here we investigate the potential advantages, challenges, and design trade-offs involved in combining
transcriptional and translational resource allocation into one overarching centralised control system.
We design a number of biologically feasible controllers that reduce coupling at both the transcrip-
tional and translational levels simultaneously, and identify some key performance tradeoffs. We apply
tools from robust control theory to rigorously quantify the impact of uncertainty/variability arising
due to experimental implementations on the operation of such controllers. Based on these results,
we identify promising architectures for the construction of robust dual transcriptional–translational
resource allocation controllers.

1 Introduction

Synthetic gene circuits can be designed to perform complex computations and information processing in
living cells with applications in biomedicine, chemistry and environmental sciences [1]. By introducing
synthetic gene circuits into microbial hosts, synthetic biologists and biotechnologists are able to control
cell function. However, often these initial designs fail due to the effect of unforeseen interactions between
the circuit and host cell or due to host constraints [2, 3]. In addition, circuits produced in one strain
can behave both quantitatively and qualitatively differently when transferred to other strains, due to the
subtle impact of changing genetic context [4, 5, 6, 7].

A key cause of context dependent dysfunction of gene circuits is the competition for shared gene expression
resources, such as host RNA polymerases and ribosomes [8, 7, 9, 10]. Two independently characterised
modules, when brought together in a synthetic circuit, interact though the use of common resource pools;
e.g. as one gene is induced it indirectly inhibits other genes by sequestering finite cellular resources. This
impact is greater for protein encoding genes; where the induction of the second gene results in both a
transcriptional and translational disturbance as RNA polymerase molecules are sequestered for mRNA
production and ribosomes are sequestered for protein production. Transcriptional disturbances, caused
by the induction of non-protein encoding small RNAs, can also result in perturbations at translational
levels, due to competition for RNA polymerase. In E. coli, transcriptional coupling often results in more
subtle effects than translation coupling [8, 11], but has been shown to have more significant effects in
mammalian systems [12, 13].

Circuit-specific ‘orthogonal’ gene expression resources which only transcribe/translate circuit genes (and
not host genes) have been proposed to alleviate some aspects of host circuit interactions in E. coli [14].
These systems utilise a bacteriophage RNA polymerase for transcription and synthetic ribosomal RNAs to
render host ribosomes orthogonal. It has been proposed that these orthogonal gene expression resources
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can form a cellular ‘virtual machine’ [15] and allow the decoupling of circuit genes without extensive
re-design [18].

At the transcriptional level, Kushwaha and Salis have previously designed and implemented a ‘universal
bacterial expression resource’ (UBER) to alleviate the impact of species-context dependency, [6]. This
system is based on an RNA polymerase from the T7 bacteriophage, which forms an orthogonal tran-
scriptional resource and is able to transcribe mRNAs in a range of different species (Figure 1A). The
orthogonal RNAP (o-RNAP) transcribes its own mRNA creating a positive feedback loop. However, at
high concentrations, the T7 RNAP is toxic and results in reduced cell growth. Therefore, the o-RNAP
transcription must be tightly controlled using negative feedback, by placing it under the regulation of the
repressor TetR, which itself is transcribed by the o-RNAP . In [16], Segall-Shapiro et al. developed a set
of compatible artificial fragments of T7 RNA polymerase. When co-expressed these fragments bind to
form a functional RNA polymerase. They used these components to develop a ‘transcriptional resource
allocator’ which buffers the impact of different gene copy numbers. The core component of RNA poly-
merase β is constitutively expressed but only becomes functional when bound by the α-fragment which
is co-expressed with the circuit genes (Figure 1D).

To alleviate translational resource competition, we have previously designed and implemented a trans-
lational resource allocation controller in E. coli [17, 18]. The ribosome is a large ribonucleoprotein
complex encoded by multiple rRNA and r-protein genes; therefore, unlike in the case of transcription,
there does not exist a truly orthogonal ribosome which can be co-opted from another species. However,
quasi-orthogonal ribosomes (o-ribosomes) can be created using synthetic 16S rRNAs which target the
ribosome machinery to mRNAs that contain the complementary ribosome binding site (RBS) sequence
(e.g. [14]). The translational controller works by regulating the production of the synthetic 16S rRNA.
This negative feedback controller takes the form of a repressor protein (LacI was used in [17]) which
inhibits 16S rRNA production and itself is translated by the o-ribosome pool. As demand for orthogonal
translation increases, the level of the repressor falls due to resource competition and so o-rRNA, and
hence orthogonal ribosome, production increases (matching demand).

In this paper, we consider how orthogonal transcriptional and translational resource allocation systems
can be combined to function as dual transcription–translation controllers that decouple genes at both
levels of expression. We show that interactions between separately functional transcriptional and trans-
lational controllers can result in instability when they are implemented simultaneously. We design dual
controllers that overcome this problem, and identify some fundamental trade-offs between decoupling
performance and gene expression levels. Finally, we demonstrate how analytical tools from Robust Con-
trol Theory can be used to rigorously quantify the robustness of different controller architectures and
therefore guide selection of designs for future biological implementation.

2 Results

2.1 Modelling resource-mediated coupling at the transcriptional and trans-
lational levels demonstrates the need for combined resource allocation

Initially we developed a simple ordinary differential equation model taking into account transcription
(modelled as RNA polymerase binding/unbinding to/from a promoter and mRNA birth), translation
(ribosome binding/unbinding to/from an mRNA and protein birth) and dilution of all species and in-
termediate complexes. This base model takes account of usage of host gene expression resources and
therefore captures how resource limitations create non-regulatory couplings. For full model details see
Methods (Section 4.1). We next augment the base model with the additional orthogonal gene expression
resource and its respective control system, changing the transcriptional or translational apparatus from
host to orthogonal, as appropriate.

The universal bacterial expression resources developed in [6] decouples co-expressed genes at the tran-
scriptional level with the mRNA of gene 1, m1, showing no disturbance upon the activation of gene 2
(Figure 1B). However, this does not propagate to the translational level due to competition for transla-
tional resources (Figure 1C). The transcriptional controller developed in [16], shows poorer performance
with significant coupling remaining when the transcriptional disturbance is applied: the mRNA of gene
1 falls 25% when gene 2 is induced at 12 h (Figure 1G). This still represents an improvement from a
50% fall in gene 1 in absence of control (Figure S1A). Again this decoupling does not propagate to the
translational level with protein 1 falling 50% upon induction of protein 2. (Figure 1F). Both controller
topologies achieve their transcriptional decoupling action by increasing the effective concentration of free
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RNA polymerase, rather than increasing orthogonal RNA polymerase production to match demand (Fig-
ure S1). In the absence of control, increasing the concentration of RNAP (either host or orthogonal) in
silico results in decreased mRNA coupling (Figure S1E). The poorer performance of the Segall-Shapiro
et al. controller is due to a fall in RNA polymerase concentration due to translational coupling between
the polymerase expression and circuit genes - this moves the system from a regime of low coupling to
moderate coupling (Figure S1E). A significant number of the universal bacterial expression resource con-
trollers (approximately 40%) show decoupling at the transcriptional and translational levels. However,
these controllers have negligible output, with the designs corresponding to those with high expression of
pq. This results in negligible production of the orthogonal RNA polymerase, resulting in low mRNA levels
and reduced translational competition. A small number (8%) of designs with this controller architecture
also showed unstable oscillatory behaviour.

In [18], we fully analysed a resource allocation controller at the translational level (in the absence of
RNAP competition) to derive design guidelines for potential biological implementations. Applying these
findings, we simulated a controller composed of the tightly binding multimeric repressor (here LacI), high
o-rRNA copy number and low transcription factor copy number (Figure 1G). In the presence of RNA
polymerase competition, this controller is not perfect but still reduces the fall in protein 1 when protein
2 is induced to 20% (Figure 1I). Decoupling is not complete (i.e. no fall in p1 upon addition of p2) due to
the presence of coupling at the transcriptional level (Figure 1H). Simulating the response of the controller
to an RNA-only input (that is a transcriptional but not a translational disturbance) demonstrates that
the controller is not able to respond to transcriptional competition; i.e. there is a 10% decrease in p1 even
though there is no ribosomal competition, due to competition for the host RNAP (Fig. S2F).

This preliminary analysis clearly highlights the need to implement resource allocation at both transcrip-
tional and translational levels simultaneously in order to deal with all possible non-regulatory coupling
arising from host-circuit competition for finite cellular resorces.

2.2 Dual transcriptional-translational resource allocation controllers: poten-
tial architectures and design tradeoffs

We now consider the ability of the transcriptional (UBER or FRAG) and translational controllers (OR) to
operate together simultaneously to decouple circuits at both the transcriptional and translational levels,
i.e. to reject both transcriptional disturbances caused by mRNA or sRNA expression and translational
disturbances caused by mRNA expression. This was achieved by setting both gene expression resources
for the circuit genes to their orthogonal counterparts (Figure 2). We name these novel dual control
systems UBER-OR and FRAG-OR based on how the orthogonal RNA polymerase activity is controlled.
Both control systems utilise the same translational resource allocation controller (OR). We do not change
each controller’s own gene expression resource usage and so each controller’s internal topology remains
the same. Combining the putative transcriptional and translational controllers (which function well in
isolation - see Figure 1), into two potential ‘dual’ controllers results in the emergence of instability (Figure
S3A, B) or poor performance at the translational level (Figure S3B, D).

To understand better the operation of these two dual controllers we analysed a number of experimentally
feasible designs. We created a discrete, rather than continuous, design space across a range of experi-
mentally tunable parameters representing promoter and ribosome binding site strengths, controller gene
copy numbers, and transcription factors. The choice of transcription factor impacts αr,x representing the
dissociation constant, ηx the transcription multimeric state and the dissociation constant of the target
promoter (ξf,x) (where x represents the species being regulated). These parameters are not indepen-
dently designable and so we simulate the action of the common repressors tetR, lacI and cI. (Note that
the UBER-OR requires the use of two transcription factors as resource controller proteins which we do
not allow to be the same, i.e. pq 6= pf ).

For each controller architecture and numerical design, we discarded controllers which demonstrate insta-
bility (e.g. oscillatory behaviour) and poor output performance. We define performance in three ways:
(1) mRNA coupling (i.e. the change in m1 when g2 is activated), (2) protein coupling (i.e. the change
in p1 when g2 is induced) and (3) final protein concentration. We collapse metrics (1) and (2) into one.
The ideal dual controller would perfectly decouple genes at the mRNA and protein levels - i.e. m1 and
p1 would not change (equivalent to (0, 0) in a two dimensional performance space). First we scaled each
coupling metric by the maximum absolute coupling and then considered the Euclidean distance for each
pair of (mRNA coupling, protein coupling) values. We refer to this as the 2D score. We identify the best
‘dual’ controllers using this metric (see Methods). Proteins form the main actuators of synthetic gene
circuits and so we also consider final proteins levels as part of our performance assessment.
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This analysis reveals that UBER-OR (Figure 2A) gives superior decoupling with the lowest 2D (Figure
3A) in comparison to FRAG-OR (based on the fragmented RNA polymerase) (Figure 2B). However,
the latter architecture tends to produce controllers with higher protein production levels (Figure 3B),
indicating a tradeoff between these different performance objectives.

In general both controllers give access to the same regions of decoupling performance space (Figure 3C).
The best designs for each potential controller show similar decoupling abilities at both the transcriptional
and translational levels (Figure 3). Note also that some controllers show ‘positive’ coupling i.e. the mRNA
or protein of gene 1 rises upon induction of gene 2.

Analysing the best decoupling (i.e. lowest 2D score) designs for UBER-OR shows that these controllers
can be implemented on various combinations of single and medium (20) multicopy plasmids, with the
orthogonal RNA polymerase, o-rRNA and translational controller protein (pf ) being carried on the
multicopy plasmid and the transcriptional regulator (pq) being carried on the lower copy counterpart
(Figure S4A). The translational controller protein requires a strong RBS (low βf,f ). The orthogonal
RNA polymerase RBS strength (βf,p) takes numerous intermediate values equivalent to dissociation
constants spanning three orders of magnitude (1e4-1e6 nM) with lower values being more common. The
transcriptional regulator (pq) requires a weak ribosome binding site. In nearly all of the best controller
designs the transcriptional regulator (pq) is tetR - a monomeric, relatively weak binding repressor. The
translational regulator (pf ) always takes the form of a multimeric strongly binding repressor (with lacI
giving better performance over cI).

Analysing the best decoupling designs of FRAG-OR shows that these controllers can be implemented on
a single plasmid system with the core RNA polymerase (β) fragment and the translational regulator pf
being carried on a medium or high copy plasmid and the orthogonal rRNA gene chromosomally integrated
(Figure S4B). Some designs require the o-rRNA to be carried on a medium copy plasmid. Note that the
RNA polymerase α-fragment is carried on the circuit plasmid in all cases. In general, the α-fragment has
the weakest RBS of the three protein encoding genes. The β-fragment of the RNA polymerase requires
a strong to medium RBS while the translational regulator requires a strong RBS. In nearly all of the
best performing designs selected the translational regulator (pf ) takes the form of a multimeric strongly
binding repressor (with lacI giving better performance over cI).

2.3 Robustness to uncertainty in experimental implementations

We have shown that it is possible to design dual transcriptional and translational controllers which satisfy
performance criteria in terms of decoupling co-expressed genes and giving satisfactory levels of protein
output. We have also shown that these controllers can be composed of biologically reasonable parameters
corresponding to obtainable promoter copy numbers and transcription factor dynamics. However, at
present the construction of such controllers is complicated by the uncertainty in the kinetic parameters of
the available biological ‘parts’, with large potential variations reported for many parts [19]. Often, precise
measurements of these parameters are only obtainable from in vitro measurements, and how these relate
to in vivo values is usually unknown. Even when a part with a desired set of kinetics exists with small
uncertainty, it is not clear how circuit context effects may impact this level of uncertainty; for example
the surrounding DNA sequence may cause subtle changes in binding rates. The causes of uncertainty in
biological circuit design have been reviewed extensively in [2] and [20]. To take account of these biological
realities, here we assess the robustness of both dual controllers to parametric uncertainty; focusing on the
‘designable’ parameters governing the production rates of the orthogonal RNA polymerase and rRNA
and the production rates and action of the other controller proteins (Table 1).

In engineering, the field of Robust Control Theory is concerned with addressing the stability and perfor-
mance of control systems when parameters cannot be estimated, set or designed precisely. The structured
singular value (µ) provides a method to rigorously compare the robustness of alternative controller designs
[21, 22] in the face of uncertainty in multiple parameters. µ itself represents the inverse of the maximum
level of uncertainty which a feedback control system can tolerate without becoming unstable. Efficient
algorithms exist to estimate upper and lower bounds on µ for problems which can be expressed as linear
fraction transformations (LFTs), i.e. problems for which all known and uncertain parameters can be
separated out and connected via a particular feedback structure. For the controllers considered here,
however, the degree of complexity/nonlinearity of the closed-loop systems, together with the number of
uncertain parameters that impact multiple species and their steady states, makes the generation of LFT
representations impossible. Instead, we apply the ‘LFT-free’ µ estimation algorithm developed in [23]
(and refined in [24]). During this process the system is linearised and then transformed from the time
domain into the frequency domain where the system’s outputs are represented as complex numbers. This
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method reformulates the standard µ analysis problem as a geometric one, and uses a probabilistic algo-
rithm to search for the intersection of the real and imaginary parts of the Laplace transformed system in
n-dimensional uncertainty space (where n is the number of uncertain parameters). This search is repeated
over a range of input frequencies, hence generating upper and lower bounds for µ in the standard fashion.
If, for a given maximum level of uncertainty δmax, the value of µ ≥ 1, then there exists an uncertain
parameter combination that destabilises the system, i.e. it is not robust to that level of uncertainty.

Applying this method to to the best performing dual controller design based on the UBER architecture
(UBER-OR) reveals a poor level of robustness, with a µ estimate of 14.11 < µ < 73.8 for an uncertainty
level of ±20% in all parameters (Figure 4A). This estimate is based on a linearisation of the model,
but the potential instability was confirmed via Monte Carlo simulations of the original non-linear model
which identified a number of parameter sets within the allowed level of uncertainty which show oscillatory
behaviour (Figure 4B). Repeating this analysis for all of the controller designs for this architecture shows
that stability cannot be guaranteed for any biologically reasonable level of uncertainty - the µ-upper
bound is greater than or equal to 1 for all δ > 10% (Figure S5B). In fact, the µ analysis guarantees
instability for uncertainty levels of 10% or greater for 78 of the 100 best controllers (i.e. the lower µ
bound is also more than 1) (Figure S5A).

In contrast, the best performing design of the FRAG-OR controller has high levels of robustness, with µ
estimated to be between 0.20 and 0.43 for an uncertainty level of ±20% in all parameters (Figure 4C).
Monte Carlo simulations of the full non-linear model at this level of uncertainty also failed to find a single
unstable case, and show acceptable variations in performance (Figure 4D). Extending this analysis to the
other designs for this controller architecture shows significantly greater levels of robustness in general;
with only 16 of 100 controllers having an upper estimate of µ of more than 1 at 10% uncertainty (Figure
S5D), and none of the controllers being guaranteed to be unstable for up to 10% uncertaintly (i.e. the
lower estimate of µ is always less than one). This rises to only 4 controller designs with up to 20%
uncertainty (Figure S5C).

3 Discussion

Competition for shared cellular resources results in the emergence of non-regulatory interactions between
circuit genes. By exploiting recent advances in the creation of orthogonal biological components, RNA
polymerase allocation controllers can be used to decouple co-expressed genes at the the transcriptional
level and ribosomal allocation controllers can be used to decouple co-expressed genes at the translational
level. Here, we investigated the hypothesis that by combining these control systems we could decou-
ple genes at both the transcriptional and translational levels simultaneously. Interestingly, we find that
simply combining separately designed (and functioning) transcriptional and translational controllers can
result in an unstable or non-functional dual controller, e.g. implementing the universal bacterial ex-
pression resource transcriptional controller with the orthogonal ribosome controller produced sustained
oscillations in circuit genes, while combining a translational controller with a fragment RNA polymerase
controller abolishes the translational decoupling. From a Control Engineering viewpoint, this is not in
fact surprising, as it is well known that combining several (separately stable) feedback loops into a single
multivariable control system can readily produce instability or significant performance degradation due
to interactions between the different controllers [25].

The standard approach used by control engineers to deal with this problem is to design and analyse
all elements of the overall control system simultaneously using multivariable methods, [26], and this is
the approach we adopted here, evaluating a large number of potential designs based on two alternative
(biologically feasible) dual controller architectures. We find that UBER-OR, based on using the UBER
system for transcriptional resource allocation, shows better (nominal) decoupling performance, whereas
FRAG-OR, based on the fragmented RNA polymerase has higher levels of gene expression, indicating a
tradeoff between these two performance objectives. The translational elements of both dual controllers
show similar design principles to those identified in [18], with the best decoupling provided by higher copy
numbers for the repressor pf gene, which itself should be multimeric and produced from strong ribosome
binding sites. The RNA polymerase component of both controllers should be expressed at moderate
levels and its regulator (pq in the case of the UBER-OR architecture and the α-fragment in the case of
FRAG-OR) expressed with a weaker RBS to reduce competition for ribosomes.

The controllers were designed assuming that all system parameter values are precisely known. However,
in reality biological parameters are rarely accurately known. Biological measurements are reported within
possible error ranges and, even where these are small, introducing parts into new contexts, either DNA
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sequence or host genetic background, can cause unpredictable changes in component dynamics. These
uncertainties can introduce instabilities such as oscillations in circuit genes. We utilised the µ analysis
tool from Robust Control Theory to rigorously quantify the robustness of each design (both controller
architecture and implementation) to parametric uncertainty. µ analysis offers several advantages over
standard Monte Carlo sampling techniques, including a higher likelihood of finding the smallest destabil-
ising level of uncertainty, and faster computation times (µ evaluates a design’s robustness to all potential
uncertainty levels, while Monte Carlo sampling needs to be repeated at each different level of uncertainty).

Our analysis suggests that while controllers with UBER-OR architecture have the potential to deliver
the highest levels of decoupling performance, they have inherently poor robustness (they are prone to
become unstable if multiple parameters are not precisely tuned), thus motivating further research to
explore potential improvements to this controller architecture. We note that the underlying universal
bacterial expression resource shows some instability in its design and this may be due to the presence
of a strong autocatalytic activator (the positive feedback of the orthogonal RNA polymerase) which
produces its own inhibitor (the pq protein). This activation-inhibition motif is known to be prone to
the emergence of oscillations, with designs that are known to be stable rapidly become unstable when
parameters change slightly [27, 28]. In contrast, dual controllers based on the architecture employing
a fragment RNA polymerase controller exhibited lower levels of nominal decoupling performance but
much higher levels of robustness across multiple different potential implementations. Again, this tradeoff
between nominal performance and robust stability is widely observed in engineered control systems [29],
and thus may simply reflect the inherent limitations of biologically realistic schemes for dynamic resource
allocation.

4 Methods

4.1 Circuit model with competition for host cellular resources

The core of the process model represents transcription and translation of a single unregulated gene and
takes account of competition for cellular resources. Each circuit gene’s promoter, gi, is reversibly bound
by the host’s RNA polymerase, Ph, to produce the transcription complex, xi. This produces the mRNA,
mi, at rate τi. Completion of transcription also liberates the free promoter and RNA polymerase:

gi + Ph
ξf,i−−−−−−⇀↽−−−−−−
ξr,i

xi
τi−−−−−→ gi + Ph +mi (1)

The mRNA reversibly binds to host ribosomes, Rh, to produce the intermediate translational complex, ci.
This produces protein, pi, at rate γi. Completion of translation also liberates the mRNA and ribosome:

mi +Rh
βf,i−−−−−−⇀↽−−−−−−
βr,i

ci
γi−−−−−→ mi +Rh + pi (2)

We assume that all species dilute due to growth while mRNAs also decay [30]:

xi
λ−−−−→ ∅

mi
δm,i + λ−−−−−−−−−→ ∅ (3)

ci
λ−−−−→ ∅

pi
λ−−−−→ ∅

By applying the Law of Mass Action we can derive the following dynamics:

ẋi = ξf,i · gi · Ph − (ξr,i + τi) · xi − λ · xi (4)

ṁi = τi · xi − βf,i ·mi ·Rh + (βr,i + γi) · ci − (δm,i + λ) ·mi (5)

ċi = βf,i ·mi ·Rh − (βr,i + γi) · ci − λ · ci (6)

ṗi = γi · ci − λ · pi (7)

Due to their own control mechanisms the copy number of each plasmid and therefore gene gi remains
constant such that a conservation law can be applied. The total number of promoters for each gene is
constant ωi = gi + xi. From this we calculate the concentration of the free promoter:

gi = ωi − xi (8)

6

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 12, 2020. ; https://doi.org/10.1101/2020.02.11.944215doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.11.944215
http://creativecommons.org/licenses/by-nc-nd/4.0/


Similarly, the host’s internal control mechanisms maintain the total number of RNA polymerases and
ribosomes for any given growth rate and as such we can calculate the concentration of free resources:

Ph = Ph,T −
∑
i=1:N

(
xi

)
(9)

Rh = Rh,T −
∑
i=1:N

(
ci

)
(10)

where Ph,T and Rh,T are the total concentrations of the host’s RNA polymerase and ribosomes respec-
tively.

Induction of each circuit module can be simulated by varying the concentration of each promoter ωi.
Note that this allows us to neglect the regulation of each circuit promoter and so simplify the model.

4.2 Resource allocation controller models

4.2.1 Kushwaha and Salis transcriptional resource allocation controller model

The universal bacterial expression resource developed by Kushwaha and Salis utilises an orthogonal RNA
ploymerase, Po, as the new circuit specific transcriptional resource. The RNA polymerase transcribes itself
and a second repressor protein, pQ, which inhibits the o-RNAP promoter, gp, to produce a sequestered
complex kp:

gp + ηq · pq
αf,q−−−−−−⇀↽−−−−−−
αr,q

kp (11)

This species dilutes due to growth as in [30]:

kp
λ−−−−→ ∅ (12)

We assume that the production of the orthogonal RNA polymerase is leaky:

∅ γp,0−−−−−−→ Po (13)

The transcription and translation of Po and pq mirror the chemical reaction networks in Section ??.
Applying the Law of Mass Action yields the following dynamics for the production of the o-RNAP:

k̇p = αf,q · pqηq − αr,q · kp − λ · kp (14)

ẋp = ξf,p · gp · Po − (ξr,p + τp) · xp − λ · xp (15)

ṁp = τp · xp − βf,p ·mp ·Rh + (βr,p + γp) · cp − (δm,p + λ) ·mp (16)

ċp = βf,p ·mp ·Rh − (βr,p + γp) · cp − λ · cp (17)

The dynamics of the orthogonal RNA polymerase which transcribes circuit genes are given by:

Ṗo = γp,0 + γp · cp − λ · Po ... (18)

...− ξf,p · gp · Po + (ξr,p + τp) · xp ...

...− ξf,q · gq · Po + (ξr,q + τq) · xq ...

...+
∑
i=1:N

(
− ξf,i · gi · Po + (ξr,i + τi) · xi

)
The production of the controller protein, pq, follows the dynamics for circuit proteins in (??) to (6) except
that the host RNAP, Ph, is replaced with the o-RNAP, Po. The translational machinery remains the
host ribosome, Rh:

ẋq = ξf,q · gq · Po − (ξr,q + τq) · xq − λ · xq (19)

ṁq = τq · xq − βf,q ·mp ·Rh + (βr,q + γq) · cq − (δm,q + λ) ·mq (20)

ċq = βf,q ·mq ·Rh − (βr,q + γq) · cq − λ · cq (21)

The dynamics of the final protein, including the gp-pq repression interaction, are given by:

ṗq = γq · cq − λ · pq − ηq · αf,q · pqηq − ηq · αr,q · kp (22)
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The concentration of free promoters of the orthogonal RNA polymerase and its regulator pq can be
calculated from their respective total ωp and ωq:

gp = ωp − xp − kp (23)

gq = ωq − xq (24)

This controller utilises its own RNA polymerase for its own expression and for circuit gene transcription,
therefore the host RNA polymerase is not utilised:

Ph = Ph,T (25)

The controller utilises the host translation system for its own expression and expression of circuit genes:

Rh = Rh,T − cp − cq −
∑
i=1:N

(
ci

)
(26)

4.2.2 The Segall-Shapiro et al. transcriptional resource allocation controller model

Segall-Shapiro et al. utilise a RNA polymerase which, rather than being made of up a single protein, is
split into two components. The core β fragment (pc) is constitutively expressed and sets a ‘transcriptional
budget’ which is then targeted by the expression of a ‘synthetic’ σ factor, pa. These two components
bind to create the functional circuit-specific orthogonal RNA polymerase:

pa + pc
θf−−−−−⇀↽−−−−−
θr

Po (27)

Again, we assume that the production of the orthogonal RNA polymerase is leaky:

∅ γp,0−−−−−−→ Po (28)

The production of each protein component follows the same dynamics as for circuit proteins. Applying
the Law of Mass Action, including the production of RNAP in Eq. 27, gives:

ẋc = ξf,c · gc · Ph − (ξr,c + τc) · xc − λ · xc (29)

ṁc = τc · xc − βf,c ·mc ·Rh + (βr,c + γc) · cc − (δm,c + λ) ·mc (30)

ċc = βf,c ·mc ·Rh − (βr,c + γc) · cc − λ · cc (31)

ṗc = γc · pa · pc − λ · pc − θf · pa · pc + θr · Po (32)

ẋa = ξf,a · ga · Ph − (ξr,a + τa) · xa − λ · xa (33)

ṁa = τa · xa − βf,a ·ma ·Rh + (βr,a + γa) · ca − (δm,a + λ) ·ma (34)

ċa = βf,a ·ma ·Rh − (βr,a + γa) · ca − λ · ca (35)

ṗa = γa · pa · pa − λ · pa − θf · pa · pc + θr · Po (36)

The dynamics of the orthogonal RNA polymerase which transcribes circuit genes are given by:

Ṗo = γp,0 + θf · pa · pc − θr · Po − λ · Po +
∑
i=1:N

(
− ξf,i · gi · Po + (ξr,i + τi) · xi

)
(37)

The concentration of free promoters of the core RNA polymerase and its targeting fragment can be
calculated from their repsective total ωc and ωa:

gc = ωc − xc (38)

ga = ωa − xa (39)

As described in [16], the promoters of the targeting fragment of the orthogonal split RNA polymerase are
carried on the circuit plasmids and therefore their total copy number is the sum of the circuit promoters:

ga,T =
∑
i=1:N

(
gi,T

)
(40)
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This controller utilises its own RNA polymerase for circuit gene expression but utilises the host’s for its
own production such that the free host RNA polymerase is given by:

Ph = Ph,T − xc − xa (41)

The controller utilises the host translation system for its own expression and expression of circuit genes:

Rh = Rh,T − ca − cc −
∑
i=1:N

(
ci

)
(42)

4.2.3 Translational resource allocation controller model

We model the conversion of ribosomes between the host and orthogonal ribosome pool by considering
the one step reaction between an orthogonal rRNA, r, and the host ribosome, Rh, to produce orthogonal
ribosomes, Ro:

r +Rh
%f−−−−−⇀↽−−−−−
%r

Ro (43)

The rRNA and orthogonal ribosome are also subject to dilution:

r
δr + λ−−−−−−−−→ ∅ Ro

λ−−−−→ ∅ (44)

In [17], we developed a translational controller which dynamically allocates the distribution between host
and orthogonal ribosomes by placing the o-rRNA gene, gr under the control of a protein, pf , which
itself is translated by the orthogonal ribosome pool. The controller protein, pf , sequesters free rRNA
promoters to an inactive complex, kr:

gr + ηf · pf
αf,f−−−−−−⇀↽−−−−−−
αr,f

kr (45)

As with all other species, this dilutes due to growth as in [30]:

kr
λ−−−−→ ∅ (46)

Applying the Law of Mass Action yields the following dynamics:

k̇r = αf,f · gr · pf ηf − αr,f · kr − λ · kr (47)

ẋr = ξf,r · gr · Ph − (ξr,r + τr) · xr − λ · xr (48)

ṙ = τr · xr − %f · r ·Rh + %r ·Ro − (δr + λ) · r (49)

The dynamics of the orthogonal ribosome pool are given by:

Ṙo = %f · r ·Rh − %r ·Ro − λ ·Ro ... (50)

...− βf,f ·mf ·Ro + (βr,f + γf ) · cf ...

...+
∑
i=1:N

(
− βf,i ·mi ·Ro + (βr,i + γi) · ci

)

The production of the controller protein, pf , follows the same dynamics of circuit proteins, except the
host ribosome, Rh, is replaced with its orthogonal counterpart, Ro:

ẋf = ξf,f · gf · Ph − (ξr,f + τf ) · xf − λ · xf (51)

ṁf = τf · xf − βf,f ·mf ·Ro + (βr,f + γf ) · cf − (δm,f + λ) ·mf (52)

ċf = βf,f ·mf ·Ro − (βr,f + γf ) · cf − λ · cf (53)

The dynamics of the inhibitory protein are:

ṗf = γf · cf − λ · pf − ηf · αf,f · pf ηf − ηf · αr,f · kr (54)
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The concentration of free promoters of the o-rRNA and controller protein can be calculated from their
respective total ωr and ωf :

gr = ωr − xr − kr (55)

gf = ωf − xf (56)

This controller utilises the host RNA polymerase for all transcription:

Ph = Ph,T − xr − xf −
∑
i=1:N

(
xi

)
(57)

As described above the controller co-opts ribosomes from the host such that the free host ribosome pool
is given by:

Rh = Rh,T −Ro − cf −
∑
i=1:N

(
ci

)
(58)

4.3 Dual transcriptional-translational controller models

We combine the two transcriptional controller with the translational controller as follows. In each case
the host cellular resources in circuit (Eq. 4-7) are replaced with their orthogonal counterparts (Ph ⇒ Po
and Rh ⇒ Ro respectively). We also update the equations describing the use of host resources.

Combining the Kushwaha controller with the translational controller results in the following host resource
usage:

Ph = Ph,T − xr − xf (59)

Rh = Rh,T −Ro − cp − cq − cf −
∑
i=1:N

(
ci

)
(60)

The designable parameters of this controller are: ωp, ξf,p, βf,p, ωr, ξf,r, ωf , ξf,q, βf,q, ωq, ξf,f , βf,f , αr,q,
ηq, αr,f , ηf .

Combining the Segall-Shapiro controller with the translational controller results in the following host
resource usage:

Ph = Ph,T − xr − xf − xc − xa (61)

Rh = Rh,T −Ro − cc − ca − cf −
∑
i=1:N

(
ci

)
(62)

The designable parameters of this controller are: ωc, ξf,c, βf,c, ξf,a, βf,a, ωr, ξf,r, ωf , ξf,f , βf,f , αr,f , ηf .

The equations needed to simulate the full models of each controller are shown in Table 1.

4.4 Designing experimentally implementable parameters

As discussed in [18], we set the total concentration of host RNA polymerase and ribosomes to 250 nM
and 2,500 nM respectively assuming a constant growth rate of 1 h−1. The model assumes that each
gene is bound by only one RNA polymerase and each mRNA is bound by one ribosome. However, in
vivo each gene is transcribed by multiple RNA polymerase and each mRNA is translated by multiple
ribosomes. We account for this in our model by increaseing the copy number of each gene and increaseing
the mRNA production rate such that RNA polymerase and ribosome are subject to the the appropriate
level of competition. From [18], take conservative estimates and increase gene copy numbers by 10 and
the mRNA production rates by 20 throughout.

The strengths of promoters, RBS sites and protein DNA binding are often quoted as dissociation con-
stants. Following from the definitions in [8, 11, 18], the RNAP-promoter, ribosome-RBS and transcription
factor dissociation constants are given by kX , kL and µ respectively:

kX = (ξr + τ)/ξf kL = (βr + γ)/βf µ = αr/αf (63)
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Open loop UBER txn FRAG txn OR tln

Circuit 4–7, 8
o-RNAP none 14–22, 23–24 29–37, 38–39 none

o-ribosome none none none 47–54, 55–56
h-RNAP 9 25 41 57

h-ribosome 10 26 42 58
Uncertain parameters none ωp, ξf,p, βf,p,

βf,q, ωq, αr,q, ηq

ωc, βf,c, βf,a ωr, ξf,r, ωf ,
βf,f , αr,f , ηf

UBER-OR dual controller FRAG-OR dual controller

Circuit 4–7, 8
o-RNAP 14–22, 23–24 29–37, 38–40

o-ribosome 47–54, 55–56 47–54, 55–56
h-RNAP 59 61

h-ribosome 60 62
Uncertain parameters ωp, ξf,p, βf,p, ωr, ξf,r, ωf , βf,q, ωq,

βf,f , αr,q, ηq, αr,f , ηf

ωc, βf,c, βf,a, ωr, ξf,r, ωf , βf,f ,
αr,f , ηf

Table 1: Full model equations. The equations required to create the full circuit–controller models.
The uncertain parameters varied in the robustness analysis are listed.

As our model contains resource turnover (as a specific consequence of modelling control of resources) we
do not make the quasi-steady state assumption as in [8, 11, 18] and so the individual binding/unbinding
rate constants remain in their original form in the ODEs. These lumped dissociation constants do not
appear. Therefore, in order to vary kX and kL we vary ξf and βf . From [18], kX ranges from 5 nM to
1,000 nM and assuming that βr + γ ≈ 1100 then ξf varies from 11 and 2200. Similarly, kL ranges from
104 to 107 nM with βr + γ ≈ 106 then βf varies from 0.1 to 100.

We assume that promoters can be carried on a low (10 nM), medium (100 nM) or high (500 nM) copy
number plasmids.

For simplicity we limit the choice of repressors for pf and pq to the commonly used repressors lacI,
cI from bacteriophage λ and tetR. This limits the values of the promoter-RNA polymerase dissocation
constant, transcription factor dissociation constant and multimerisation. Note that we assume that the
transcription factor binding rate (αf ) is 1 and therefore αr is set to the value of the dissociation constant,
µ. The values of these parameters are listed in Table 2. All other parameters are shown in Table 3.

Name kX nM ξf (nM · h)−1 αr (≈ µ) (nM) ηf

lacI 550 20.0 0.02 4
tetR 350 31.4 167 1

cI 100 110.0 22 2

Table 2: Transcription factor parameters. Note that when expressed using the orthogonal RNA
polymerase (such as in the universal bacterial expression resource) we set kX = 200 nM and therefore set
ξf to 55 (nM · h)−1

4.5 Controller design and other numerical methods

We developed a range of experimentally feasible designs based on biologically realisable promoter and
RBS strengths, gene copy numbers, and the common repressors tetR, lacI and cI (as discussed above). We
solved these ODEs for each controller numerically using the inbuilt ordinary differential equation solver
ode23s in MATLAB 2019a. We assess the performance of these controllers by simulating the response
to two sequential large step inputs (i.e. simulating the induction of genes sequentially from a high copy
number plasmid). To determine stability (or otherwise) of the controllers, we numerically calculate the
jacobian and eigvenvalues in each part of the simulation (i.e. before induction, after induction of the
first gene and after the induction of the second gene) and remove controllers which have positive real
eigenvalues. We also remove controllers which inhibit the process output sufficiently to reduce process
output to near zero.

To assess the performance of each controller, we calculate coupling at both the transcriptional and
translational levels by assessing the fall in the first circuit gene (mRNA m1 and protein p1 respectively)
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Parameter Symbol Value Units Notes

Growth rate λ 1 h−1

Host RNA polymerase Ph,T 250 nM
Host ribosome Rh,T 2,500 nM
Gene copy number ω Varied nM Increased 10x for simulations
Transcription factor binding αf 1 (nM · h)−1

Transcription factor unbinding αr Varied h−1

RNAP on rate ξf Varied (30, 55) (nM · h)−1

RNAP off rate ξr 6000 h−1

mRNA transcription rate τ 250 h−1 Increased 20x for simulations

mRNA decay rate δm 20 h−1

Ribosome on rate βf Varied (1e2) (nM · h)−1

Ribosome off rate βr 1e6 h−1

Protein translation rate γ 300 h−1

rRNA transcription rate τr 190 h−1

rRNA decay rate δr 20 h−1

rRNA-ribosome binding ρf 0.9 (nM · h)−1

rRNA-ribosome unbinding ρr 24.8 h−1

o-RNAP leak γp,0 1 h−1

split o-RNAP binding θf 1.62 (nM · h)−1

split o-RNAP unbinding θr 0.72 h−1

Table 3: Parameters common to all models. Note that when genes are expressed using the orthogonal
RNA polymerase (such as in the universal bacterial expression resource) we set kX = 200 nM and therefore
set ξf to 55 (nM · h)−1. When genes are expressed using the host RNA polymerase we set kX = 366 nM
and thefore set ξf to 30 (nM · h)−1.

in response to the induction of the second circuit gene by comparing the values at the time of the second
gene induction tind and the end of the simulate tmax:

∆m =
(
m1(t = tend)−m1(t = tind)

)
/m1(t = tind) (64)

∆p =
(
p1(t = tend)− p1(t = tind)

)
/p1(t = tind) (65)

We scale ∆m and ∆p by the maximum value obtained. To create a single performance metric we consider
the behaviour of the controllers in a two dimensional plane whose axes are the scaled values of ∆m and
∆p. The origin (0, 0) represents perfect decoupling at both the transcriptional and translational levels.
We calculate the Euclidean distance of each point from the origin:

r =

√(
∆m,scaled

2 + ∆p,scaled
2
)

(66)

We sort the controller by r and take the top N = 100 controllers which represent those which show the
best decoupling performance. We call this metric the 2D score. We assess these controllers further in
terms of both decoupling and protein output.

4.6 LFT-free µ analysis

We define the following two vectors containing the variables and dynamics respectively y and ẏ where
both are n × 1 vectors containing the species variables and dynamics as required for each system. We
define ȳ to be the solution to ẏ = 0. Given the nonlinearity of ẏ we find y by solving ẏ numerically as
described above. We define a small perturbation around ȳ as x = y − ȳ and linearise the model around
this point:

ẋ = A(0)|y=ȳ · x (67)

where A(0) is the Jacobian of the certain (‘nominal’) system. The uncertain Jacobian is A(δ) where δ is
a vector containing the n× 1 uncertainties. We represent the uncertain system as:

A∆(δ) := A(δ)−A(0) (68)
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A∆(δ) can be calculated numerically by sampling δ ∈ <n. The linearisation can now be represented as:

ẋ = A(0) · x +A∆(δ) · x (69)

As µ analysis tools have been developed based on the transfer function in the frequency domain we take
the Laplace transform to represent x(t) in the frequency domain X(s):

X(s) = M(s) ·A∆(δ) ·X(s) +M(s) · x(0) (70)

where M(s) = [s · I −A(0)]−1 and x(0) is the initial condition of x(t).

The robustness problem is now formulated as a search for the smallest value of δ which satisfies [21, 22]:

det
(
I −M(jω) ·A∆(δ)

)
= 0 (71)

for all sampled frequencies ω ∈ [0, inf]. This corresponds as the intersection between the functions fR
and fI :

fR(δ) = <
(

det
(
I −M(jω) ·A∆(δ)

))
= 0 (72)

fI(δ) = =
(

det
(
I −M(jω) ·A∆(δ)

))
= 0 (73)

where <(·) and =(·) are the real and imaginary components of the complex number.

By definition for the nominal system A∆(0) = 0, in this case I −M(jω) · A∆(0) = I, i.e. the identify
matrix, and the determinant is 1. Therefore the fR(0) = 1 and fI(0) = 0. Therefore, the in uncertainty
space fI must always pass though the origin and fR must not. The uncertainty space can then be divided
into four sections (Figure S6):

s1 = {fR(δ) > 0 and fI(δ) > 0} (74)

s2 = {fR(δ) > 0 and fI(δ) < 0} (75)

s3 = {fR(δ) < 0 and fI(δ) < 0} (76)

s4 = {fR(δ) > 0 and fI(δ) < 0} (77)

This intersection point can be identified efficiently using the algorithms described in [24]. The algorithm
functions by considering two boxes in uncertainty space - one which must contain all four s points (this
gives the lower bound – i.e. µ must be within the box) and one which much contain only three of the s
points (this gives the upper bound – i.e. µ cannot be within this box) (Figure S6). The inverse of the
size of each box gives the respective µ bound. The algorithm was run with the following settings: the
number of points of each box: 5,000; tolerance: 0.0001; frequencies: 36 evenly spaced (log scale) points
from 10−2 to 103.
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not that standard.” Journal of biological engineering, vol. 9, e17, 2015.

[6] M. Kushwaha and H. M. Salis, “A portable expression resource for engineering cross-species genetic
circuits and pathways,” Nature Communications, vol. 6, e7832, 2015.

[7] F. Ceroni, R. Algar, G.-B. Stan, and T. Ellis, “Quantifying cellular capacity identifies gene expression
designs with reduced burden,” Nature Methods, vol. 12, no. 5, pp. 415–423, 2015.
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[11] Y. Qian, H.-H. Huang, J. Jiménez, and D. Del Vecchio, “Resource competition shapes the response
of genetic circuits,” ACS Synthetic Biology, vol. 6, no. 7, pp. 1263–1272, 2017.

[12] R. D. Jones, Y. Qian, B. Diandreth, V. Siciliano, and J. Huh, “An endoribonuclease-based in-
coherent feedforward loop for decoupling resource-limited genetic modules,” bioXriv pre-print
doi:10.1101/867028, 2019.

[13] T. Frei, F. Cella, F. Tedeschi, J. Gutierrez, G.-B. V. Stan, M. H. Khammash, and V. Siciliano,
“Characterization, modelling and mitigation of gene expression burden in mammalian cells,” bioXriv
pre-print doi:10.1101/867549, 2019.

[14] W. An and J. W. Chin, “Synthesis of orthogonal transcription- translation networks,” Proceedings
of the National Academy of Sciences, vol. 106, no. 21, pp. 8477–8482, 2009.

[15] C. C. Liu, M. C. Jewett, J. W. Chin, and C. A. Voigt, “Towards an orthogonal central dogma,”
Nature Chemical Biology, vol. 14, no. 2, pp. 103–106, 2018.

[16] T. H. Segall-Shapiro, A. J. Meyer, A. D. Ellington, E. D. Sontag, and C. A. Voigt,
“A ‘resource allocator’ for transcription based on a highly fragmented T7 RNA poly-
merase.” Molecular Systems Biology, vol. 10, no. 7, p. 742, 2014. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/25080493
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Figure 1: Gene decoupling by transcriptional and translational controllers. The behaviour of
candidate transcriptional and translational control systems in isolation. We simulated the ability of each
prototype control system to decouple co-expressed genes. We consider the impact on a constitutively
expressed gene (g1) of the induction of a second gene (g2) at 12 h. This results in a transcriptional
disturbance (as promoters compete for RNA polymerase) and a translational disturbance (as mRNAs
compete for ribosomes). (A) Architecture of the universal bacterial expression resource (UBER) which
supplies orthogonal RNA polymerases to the circuit. (B) The UBER controller successfully mitigates
the transcriptional disturbance applied at 12 h. (C) The UBER controller is unable to mitigate the
disturbance at the translational level. (D) Architecture of the fragmented RNA polymerase resource
allocation controller (FRAG) which supplies orthogonal RNA polymerases to the circuit. (E) The frag-
mented RNA polymerase controller is able to mitigate the transcriptional disturbance at 12 h to some
extent with the fall in m1 only being 25% rather than 50%. (F) The FRAG controller is unable to
mitigate the disturbance at the translational level. (G) Architecture of the orthogonal ribosome-based
translational controller (OR) dynamically supplies translational activity to the circuit. (H) The transla-
tional controller has no impact on the transcriptional disturbance with m1 falling by 50% upon activation
of the second protein-encoding gene. (I) The translational controller decouples genes at the translational
level reducing the fall in p1 from 50% to only 20%.
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Figure 2: Architecture of the combined dual transcriptional-translational controllers. (A)
UBER-OR is based on the universal bacterial expression resource developed in [6] and the translational
controller developed in [17]. (B) FRAG-OR is based on the fragmented RNA polymerase resource
allocator developed in [16] and the translational controller developed in [17].

18

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 12, 2020. ; https://doi.org/10.1101/2020.02.11.944215doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.11.944215
http://creativecommons.org/licenses/by-nc-nd/4.0/


A B C

D E F G

Figure 3: Performance of dual transcriptional–translational controllers. Candidate controllers
where simulated as described in the methods. mRNA and protein coupling is calculated as the change
in m1 or p1 (respectively) upon the induction of the second gene at 12 h. The 2D score is a one dimen-
sional representation of the two dimensional mRNA coupling–protein coupling space and is calculated as
outlined in the Methods. (A) The two dimensional score of the best 1,000 controllers for each controller
architecture. (B) Two dimensional score plotted again the final protein concentration for both controller
topologies. (C) The performance of the best 1,000 controllers in terms of transcriptional and transla-
tional coupling and final protein concentration. (D) Change in the mRNA concentration in response to
the induction of gene 2 of the best design (Design 1) of the combined controller UBER-OR. Design 2
represents a controller with improved gene expression but decreased 2D score. (E) Change in the pro-
tein concentration in response to the induction of gene 2 of the best design of the combined UBER-OR
controller. Design 2 represents a controller with improved gene expression but decreased 2D score. (F)
Change in the mRNA concentration in response to the induction of gene 2 of the best design of the
combined FRAG-OR controller. (G) Change in the protein concentration in response to the induction
of gene 2 of the best design of the combined FRAG-OR controller.
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Figure 4: Robustness analysis of the dual control systems. The robustness of the two best
control systems was quantified using an LFT-free µ analysis algorithm. The µ-analysis was carried out
as described in the Methods. The estimates shown are scaled to show the value of µ for a maximum
uncertainity of up to 20%. Monte carlo simulations of the non-linear models where carried out by
simulating the action of perturbed controllers. The nominal controller designed as described in the main
text was perturbed by random values up to 20%. The constitutive gene was initially simulated for a period
before the second gene was induced (shown at 48 h). N = 1, 000 samplings. (A) µ estimate for the best
decoupling design of UBER-OR. (B) Monte Carlo samplings show some controller parametrisations cause
oscillations in process genes. These traces are highlighted in colour while stable results are shown in grey.
N = 1, 000. (C) µ estimate for the best decoupling design of FRAG-OR. (D) Monte Carlo samplings do
not identify any unstable controllers. N = 1, 000.
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