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Addressing anthropogenic impacts on aquatic ecosystems is a focus of lake management. Controlling 10 
phosphorus and nitrogen can mitigate these impacts, but determining management effectiveness requires 11 
long-term datasets. Recent analysis of the LAke multi-scaled GeOSpatial and temporal database for the 12 
Northeast (LAGOSNE) United States found stable water quality in the northeastern and midwestern United 13 
States, however, sub-regional trends may be obscured. We analyze a sub-regional (i.e., 3000 km2) trend with 14 
the University of Rhode Island’s Watershed Watch Volunteer Monitoring Program (URIWW) dataset. URIWW 15 
has collected water quality data on Rhode Island lakes and reservoirs for over 25 years. The LAGOSNE and 16 
URIWW datasets allow for comparison of water quality trends at regional and sub-regional extents, 17 
respectively. We assess regional (LAGOSNE) and state (URIWW) trends with yearly mean anomalies 18 
calculated on a per-station basis. Sub-regionally, temperature and chlorophyll a increased from 1993 to 2016. 19 
Total nitrogen shows a weak increase driven by low years in the early 1990s. Total phosphorus and the 20 
nitrogen:phosphorus ratio (N:P) were stable. At the regional scale, the LAGOSNE dataset shows similar trends 21 
to prior studies of the LAGOSNE with chlorophyll a, total nitrogen, total phosphorus, and N:P all stable over 22 
time. In short, algal biomass, as measured by chlorophyll a in Rhode Island lakes and reservoirs is increasing, 23 
despite stability in total nitrogen, total phosphorus, and the nitrogen to phosphorus ratio. This analysis 24 
suggests an association between lake temperature and primary production. Additionally, we demonstrate 25 
both the value of long-term monitoring programs, like URIWW, for identifying trends in environmental 26 
condition, and the utility of site-specific anomalies for analyzing for long-term water quality trends. 27 

1 Introduction 28 

Aquatic ecosystems have been altered as the result of human activities modifying nutrient 29 

cycling on a global scale (Vitousek et al. 1997, Filippelli 2008, Finlay et al. 2013). Because of 30 

their position in the landscape, lakes can function as integrators and sentinels for these 31 

anthropogenic effects (Williamson et al. 2008, Schindler 2009). Increasing nutrient inputs, 32 

particularly of nitrogen (N) and phosphorus (P), derived from intensive agriculture and 33 

densely populated urban areas have contributed to the eutrophication of many lakes 34 
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(Carpenter et al. 1998, Smith 2003). This eutrophication often leads to an increase in the 35 

frequency and severity of harmful algal blooms, greater risks for human and animal health, 36 

and potential economic costs associated with eutrophic waters (Dodds et al. 2008, Paerl 37 

and Huisman 2009, Kosten et al. 2012, Michalak et al. 2013, Taranu et al. 2015, Brooks et al. 38 

2016). To address these problems, management strategies have historically focused on 39 

reducing P inputs to lakes, but research also suggests that reducing N inputs may be more 40 

effective in certain situations (Schindler et al. 2008, Paerl et al. 2016). These studies 41 

indicate that relationships between N, P, and chlorophyll a exist and these relationships are 42 

spatially and temporally complex. Thus, long-term data are needed to identify trends at 43 

local, regional, and national scales. 44 

Lake datasets that cover longer time periods and broader spatial scales are now becoming 45 

available. Programs such as the US Environmental Protection Agency’s National Lakes 46 

Assessment (NLA) provide data that allow for continental-scale water quality analysis. 47 

These data allow for analyses that can be useful for managing water resources by 48 

developing water quality criteria for N, P, and chlorophyll a (Herlihy et al. 2013, Yuan et al. 49 

2014). Studying temporal trends across large spatial scales can illustrate the effects of 50 

eutrophication such as the degradation of oligotrophic systems as P increases (Stoddard et 51 

al. 2016). Broad-scale data can also be used for water quality modeling across a range of 52 

spatial scales including for predicting lake trophic state, which is indicative of ecosystem 53 

condition (Hollister et al. 2016, Nojavan et al. 2019). These trophic state models indicate 54 

that landscape variables (e.g., ecoregion, elevation, and latitude) are important and that 55 

regional trends exist. Lake-specific drivers have also been shown to be important for 56 

predicting continental-scale water quality which adds an additional layer of complexity 57 

(Read et al. 2015). Despite these challenges, it is important to study lakes at multiple 58 

spatial scales because emergent trends on regional or continental scales may or may not be 59 

present in individual lakes (Cheruvelil et al. 2013, Lottig et al. 2014). 60 

Previous studies using regional data from the northeastern and midwestern United States 61 

(US) have investigated spatial and temporal water quality trends and have shown 62 

differences based on scale. Macro-scale (i.e., subcontinental) drivers of water quality trends 63 

are complex and may vary temporally (Lottig et al. 2017). This complexity can cause 64 
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nutrient (N and P) trends to have different drivers than ratios of the nutrients (Collins et al. 65 

2017). On a regional scale, trends of N, P, and chlorophyll a differ as factors such as land 66 

use and climate vary between regions, particularly when comparing the northeastern and 67 

midwestern US (Filstrup et al. 2014, 2018). Thus, it was surprising when little change in 68 

nutrients and chlorophyll a was reported over a 25 year period for these regions (Oliver et 69 

al. 2017). Given what is known about long-term trends in water quality within the broader 70 

region of the northeastern United States (US), we were curious if the lack of trends was also 71 

present in water quality at a sub-regional scale, using data on the 3,000 km2 area that 72 

encompasses a number of Rhode Island lakes and reservoirs. 73 

Examining long-term trends in Rhode Island lakes is possible because of the data gathered 74 

by University of Rhode Island’s Watershed Watch (URIWW). URIWW is a scientist-led 75 

citizen science program founded in the late 1980s that has built a robust collaboration 76 

between URI scientists and a vast network of volunteer monitors. Volunteer monitors are 77 

trained and then collect in situ data as well as whole water samples during the growing 78 

season (e.g., May through October). The entire effort follows rigorous quality 79 

control/quality assurance protocols. These types of citizen science efforts allow for the 80 

collection of reliable data that in turn lead to crucial and frequently unexpected insights 81 

(Dickinson et al. 2012, Kosmala et al. 2016, Oliver et al. 2017). URIWW data contributed to 82 

the larger regional study by Oliver et al. (2017), and, also allowed us to examine the long-83 

term trends specifically in Rhode Island. 84 

The goals of this study were to examine ~25 years of lake and reservoir data in Rhode 85 

Island and answer two questions. First, are there state-wide trends in total nitrogen (TN), 86 

total phosphorus (TP), total nitrogen to total phosphorus ratio (TN:TP), chlorophyll a, and 87 

lake temperature? Second, are water quality trends in Rhode Island similar to regional 88 

trends in the northeastern United states? Another objective of this paper was to apply 89 

existing methods for examining long-term climate records (e.g., Jones and Hulme 1996) to 90 

water quality data in order to examine long-term trends. We conducted this analysis using 91 

open data from the URI Watershed Watch program and the LAke multi-scaled GeOSpatial 92 

and temporal database for the Northeast (LAGOSNE) project and the analysis in its entirety 93 

is available for independent reproduction at https://github.com/usepa/ri_wq_trends and 94 
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is archived at https://doi.org/10.5281/zenodo.3662828 (Soranno et al. 2017, Stachelek 95 

and Oliver 2017, Hollister et al. 2019). 96 

2 Methods 97 

For this study, we combined a long-term dataset on water quality of lakes in Rhode Island 98 

with a trend analysis based on water quality anomalies (i.e., measured values with the long 99 

term mean subtracted) to find increasing or decreasing annual water quality trends. Details 100 

are outlined below. 101 

2.1 Study Area and Data 102 

The study area for this analysis includes lakes and reservoirs in the state of Rhode Island 103 

where data were collected by the University of Rhode Island’s Watershed Watch program 104 

(Figure 1). The URIWW program began in 1988, monitoring 14 lakes and has now grown to 105 

include over 250 monitoring sites on over 120 waterbodies, including rivers/streams, and 106 

estuaries, with more than 400 trained volunteers. URIWW now provides more than 90% of 107 

Rhode Island’s lake baseline data and is an integral part of the state’s environmental data 108 

collection strategy. Data quality assurance and control is treated with paramount 109 

importance; volunteers are trained both in the classroom and the field, regular quality 110 

checks occur, and volunteers are provided with all the necessary equipment and supplies, 111 

along with scheduled collection dates. For freshwater lakes and reservoirs, weekly secchi 112 

depth and water temperature are recorded, along with bi-weekly chlorophyll a and in deep 113 

lakes (greater than 5 meters) dissolved oxygen. Water samples are collected three times 114 

per season (May through October) to be analyzed for nutrients and bacteria. 115 
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 116 

Figure 1: Map of URI Watershed Watch lake and reservoir sampling sites 117 
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For this analysis, we were interested in trends in lake temperature, TN, TP, TN:TP, and 118 

chlorophyll a. In particular, we selected URIWW data that matched the following criteria: 119 

1) were sampled between 1993 and 2016, 2) were sampled in May to October, 3) and were 120 

sampled at a depth of 2 meters or less. As not all sites have data for all selected years, we 121 

further filtered the data to select sites that had at least 10 years of data for a given 122 

parameter within the 1993 to 2016 time frame. The final dataset used in our analysis 123 

included 69 lakes and reservoirs. Of these sites, our filtered dataset had approximately 67 124 

sites measured for temperature, 67 sites measured for chlorophyll a, 69 sites measured for 125 

TN, and 69 sites measured for TP. Of the 69 sampling sites, 66 had data for all 5 126 

parameters. The N:P ratio was calculated by dividing the mass concentrations of total 127 

nitrogen and total phosphorus and then converting to a molar ratio by multiplying by 2.21 128 

(e.g., atomic weight of P 30.974/atomic weight of N 14.007). 129 

Field and analytical methods are detailed on the URIWW website at 130 

https://web.uri.edu/watershedwatch/uri-watershed-watch-monitoring-manuals/ and 131 

https://web.uri.edu/watershedwatch/uri-watershed-watch-quality-assurance-project-132 

plans-qapps/, respectively. These methods, approved by both the state of Rhode Island and 133 

the US Environmental Protection Agency, have remained fairly consistent, although over 134 

the nearly 30 years changes did occur. When new methods were introduced, comparisons 135 

between old and new methods were conducted and in all cases no statistically significant 136 

differences were found with the new methods. Furthermore, the new methods did at times 137 

improve the limits of detection; however, this impacted a very small number (less than 1%) 138 

of measurements in this study. We did run our analyses (see Water Quality Trend 139 

Analysis section) with all data and with only those data greater than the detection limit. 140 

There was no change in the trend analysis and thus, the results we report are for all data as 141 

originally reported in the URIWW dataset. Given these results, we assume the data to be 142 

consistent across the reported time period and appropriate for a long term assessment of 143 

trends. 144 

Prior studies have modeled water quality trends across a larger region of the northeastern 145 

US that included 17 states including Minnesota, Wisconsin, Iowa, Missouri, Illinois, Indiana, 146 

Michigan, Ohio, Pennsylvania, New York, New Jersey, Connecticut, Massachusetts, Rhode 147 
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Island, Vermont, New Hampshire, and Maine (Soranno et al. 2015, Oliver et al. 2017). We 148 

repeated our analysis (see Water Quality Trend Analysis section) with the same dataset 149 

used by Oliver et al. (2017), the LAGOSNE dataset (Soranno et al. 2015, 2017, Stachelek and 150 

Oliver 2017). Temperature data were not available, thus we examined trends, using our 151 

analytical methods, for TN, TP, TN:TP, and chlorophyll a from the LAGOSNE dataset. We 152 

used the same selction criteria on the LAGOSNE dataset as was applied to the URIWW data. 153 

2.2 Water Quality Trend Analysis 154 

There are many different methods for analyzing time series data for trends. Environmental 155 

data are notoriously “noisy” and one of the difficulties that is encountered with multiple 156 

sampling locations is how to identify a trend while there is variation within a sampling site 157 

as well as variation introduced by differing start years for sampling among the many sites. 158 

For instance, if long-term data on water quality were collected more frequently in early 159 

years from more pristine waterbodies, then a simple comparison of raw values over time 160 

might show a decrease in water quality, which could be misleading if later sampling 161 

occurred on both pristine and more eutrophic water bodies. Thus, it is necessary to account 162 

for this type of within-site and among-site variation, using methods similar to those used to 163 

analyze long-term temperature trends using temperature anomalies (e.g., Jones and Hulme 164 

1996). The general approach we used calculates site-specific deviations from a long-term 165 

mean over a pre-determined reference period. This allowed all sites to be shifted to a 166 

common baseline and the deviations, or anomalies, indicate change over the specified 167 

reference period. We refer to this method as “site-specific anomalies”. 168 

2.2.1 Summarizing site-specific anomalies 169 

Methods for calculating the site-specific anomalies and the yearly means are as follows and 170 

are presented graphically in Figure 2. Additionally, an example R script, 171 

schematic_anomaly.R and example dataset, schematic.csv to recreate and demonstrate 172 

the calculations in Figure 2 is available from at https://github.com/usepa/ri_wq_trends 173 

and is archived at https://doi.org/10.5281/zenodo.3662828 (Hollister et al. 2019). 174 
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 175 

Figure 2: Example calculation of the site-specific anomalies and yearly mean anomalies. 176 

The general steps, outlined in Figure 2 and listed below, are repeated for each of the water 177 

quality parameters. 178 

1. For each site, calculate the annual means, producing a single mean value for each site 179 

and year. This step prevents bias from pseudoreplication of multiple measurements of 180 

the same site in a given year (Hurlbert 1984). The per site means across years are 181 

assumed to be independent. 182 

2. Calculate the long-term reference mean for each site. This results in a single long-term 183 

mean for each of the sites. 184 

3. Calculate the anomaly for each annual mean at each site by subtracting the annual and 185 

reference means. 186 

4. Summarize by calculating the mean anomaly per year for the entire group of sites. The 187 

resultant values are analyzed for a trend over time. 188 
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2.2.2 Linear regression on annual mean anomalies 189 

Testing for a regression slope being different than zero can be used to test for monotonic 190 

trends in water quality data (Helsel and Hirsch 2002). We used these standard procedures 191 

to test for positive or negative trends in lake temperature, chlorophyll a, TN, TP and TN:TP. 192 

For each parameter, we fit a regression line to the anomalies as a function of year and 193 

tested the null hypothesis that no trend existed (e.g., 𝛽1 = 0). The slope of this line provides 194 

information on the mean yearly change of that paramter over the time period studied. 195 

Traditionally, trends would be determined by assessing “significance” but recent guidelines 196 

suggest not using arbitrary p-value cut-offs to assesses significance (Wasserstein et al. 197 

2016). Our interpretation of the trends attempts to follow this advice and we assess trends 198 

with the information provided by the magnitude of the slopes, the p-values, and our 199 

understanding of the processes involved. 200 

2.2.3 Comparison of Rhode Island to the region 201 

Oliver et al. (2017) used hierarchical linear models and showed relatively stable water 202 

quality in the lakes of the northeastern United States. While the University of Rhode 203 

Island’s Watershed Watch data were included in this regional study, we hypothesized that 204 

in the case of Rhode Island regional trends were masking sub-regional trends. Therefore, 205 

we decided to reanalyze the LAGOSNE data to compare the trends at the regional scale to 206 

the trends at the Rhode Island state scale using the site-specific anomaly and trend analysis 207 

approach outlined above. 208 

3 Results 209 

During the period of 1993 to 2016, Rhode Island lakes and reservoirs in our dataset had a 210 

mean lake temperature of 21.9 °C, mean TN of 600 µg/l, mean TP of 24 µg/l, mean TN:TP 211 

ratio of 84.17 molar, and mean chlorophyll a of 10.1 µg/l (Table 1). 212 

  213 
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Parameter Units Mean Median Max Std. Dev 

Temperature °C 21.9 22.2 29 1.9 

Total Nitrogen µg/l 600 475 4670 425 

Total Phosphorus µg/l 24 15 325 30 

N:P molar 84.17 71.08 827.2 57.9 

Chlorophyll µg/l 10.1 4.5 666.2 22.1 

Table 1: Summary statistics for URI Watershed Watch data from 1993 to 2016. 215 

For lakes and reservoirs in the larger region represented by the LAGOSNE States, mean TN 216 

was 855 µg/l, mean TP was 32 µg/l, mean TN:TP ratio was 90.37 molar, and mean 217 

chlorophyll a was 16.8 µg/l (Table 2). 218 

Parameter Units Mean Median Max Std. Dev 

Total Nitrogen µg/l 855 560 16780 1205 

Total Phosphorus µg/l 32 16 1200 54 

N:P molar 90.37 59.18 88474 1029 

Chlorophyll µg/l 16.8 6.2 696 30.4 

Table 2: Summary statistics for LAGOSNE data from 1993 to 2016. 219 

3.1 State-wide trends in water quality 220 

Mean annual temperature anomalies in lakes and reservoirs appears to be increasing 221 

(slope = 0.053 , p = 0.0062) with the majority of years with mean temperature greater than 222 

the long-term mean occurring in recent years (Figure 3). Chlorophyll a is also showing an 223 

increasing trend over time (slope = 0.29 , p = 0.0000008) and with the exception of a 224 

slightly above-average year in 2003, the above-average years have all occurred in the most 225 

recent years (Figure 4A.). 226 
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Mean annual trends for nutrients were weaker or showed no trend over time. The data 227 

suggest a positive trend in TN (slope = 3.8 , p = 0.00022); however, that perceived trend is 228 

driven by the lower than mean TN values in 1993 and 1994 (Figure 5A.). Since 1995, the 229 

yearly trend shows a lower increase over time (slope = 2.5, p = 0.0067). TP does not show a 230 

trend over time in the yearly anomalies (slope = 0.11 , p = 0.062) and years that are over or 231 

under the mean are more evenly distributed over the years (Figure 6A.). The pattern is the 232 

same for the TN:TP ratio (slope = 0.18, p = 0.71) with little evidence suggesting a change in 233 

the concentrations of TN relative to the concentrations of TP (Figure 7A.). Data for all 234 

figures are available as a comma-separated values file, yearly_average_anomaly.csv from 235 

at https://github.com/usepa/ri_wq_trends and is archived at 236 

https://doi.org/10.5281/zenodo.3662828 (Hollister et al. 2019). 237 

  238 
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 240 

Figure 3: Yearly trend over 20+ years of lake temperature (mean anomaly) in Rhode Island 241 
lakes and reservoirs. Points are means of site-specific anomalies and ranges are standard 242 
deviations of site-specific anomalies. Blue indicates yearly site-specific anomalies that were, 243 
on average, below the site-specific long-term means. Red indicates yearly site-specific 244 
anomalies that were, on average, above the site-specific long-term means. 245 
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 246 

Figure 4: Yearly trend over 20+ years of chlorphyll a (mean anomaly). Panel A. Yearly mean 247 
chlorophyll a anomalies from the URI Watershed Watch data. Panel B. Yearly mean 248 
chlorophyll a anomalies from the LAGOSNE dataset. Points are means of site-specific 249 
anomalies and ranges are standard deviations of site-specific anomalies. Blue indicates yearly 250 
site-specific anomalies that were, on average, below the site-specific long-term means. Red 251 
indicates yearly site-specific anomalies that were, on average, above the site-specific long-252 
term means. 253 
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Figure 5: Yearly trend over 20+ years of TN (mean anomaly). Panel A. Yearly mean TN 255 
anomalies from the URI Watershed Watch dataset. Panel B. Yearly mean TN anomalies from 256 
the LAGOSNE dataset. Points are means of site-specific anomalies and ranges are standard 257 
deviations of site-specific anomalies. Blue indicates yearly site-specific anomalies that were, 258 
on average, below the site-specific long-term means. Red indicates yearly site-specific 259 
anomalies that were, on average, above the site-specific long-term means. 260 
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 261 

Figure 6: Yearly trend over 20+ years of TP (mean anomaly). Panel A. Yearly mean TP 262 
anomalies from the URI Watershed Watch dataset. Panel B. Yearly mean TP anomalies from 263 
the LAGOSNE dataset. Points are means of site-specific anomalies and ranges are standard 264 
deviations of site-specific anomalies. Blue indicates yearly site-specific anomalies that were, 265 
on average, below the site-specific long-term means. Red indicates yearly site-specific 266 
anomalies that were, on average, above the site-specific long-term means. 267 
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 268 

Figure 7: Yearly trend over 20+ years of the TN:TP ratio (mean anomaly). Panel A. Yearly 269 
mean TN:TP ratio anomalies from the URI Watershed Watch dataset. Panel B. Yearly mean 270 
TN:TP ratio anomalies from the LAGOSNE dataset. Points are means of site-specific anomalies 271 
and ranges are standard deviations of site-specific anomalies. Blue indicates yearly site-272 
specific anomalies that were, on average, below the site-specific long-term means. Red 273 
indicates yearly site-specific anomalies that were, on average, above the site-specific long-274 
term means. 275 
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3.2 Regional trends in water quality 276 

In general, there was little evidence to suggest broad regional changes. Chlorophyll a 277 

showed a very weak positive trend (slope = 0.027, p = 0.58, Figure 4B.), TP showed a slight 278 

decreasing trend (slope = -0.027, p = 0.32, Figure 6B.), TN showed a slight positive trend 279 

(slope = 2.9, p = 0.17, Figure 5B.) and the TN:TP showed little change (slope = 0.086, p = 280 

0.74, Figure 7B.) 281 

4 Discussion and conclusions 282 

Our sub-regional analysis indicates that even when nutrient regimes exhibit relative 283 

stability (i.e., neither increasing nor decreasing over time), increases in primary 284 

production, as measured by chlorophyll a, can occur. Over the same period we also 285 

demonstrate long-term warming of Rhode Island lakes and reservoirs. Chlorophyll has 286 

increased, on average, 0.29 μg/L per year over the 23 years of our analysis, while 287 

temperature has increased 0.053 °C per year over the same period. This suggests that the 288 

observed increase in productivity, as measured by chlorophyll a, may be a result of 289 

warming waters and not a response to changes in nutrient condition. Also, geographic 290 

extent does indeed matter when trying to identify long-term water quality trends. Similar 291 

to the results of Oliver et al. (2017) our analysis shows little increasing trend in chlorophyll 292 

a at the regional scale (e.g., northeastern and mid-western United States). However, at the 293 

local scale of the state of Rhode Island, there is a clear increasing trend in chlorophyll a. 294 

4.1 Trends 295 

As previously mentioned, both temperature and chlorophyll a show increasing trends from 296 

1993 to 2016 in Rhode Island lakes and reservoirs; while total nutrients and the TN:TP 297 

ratio are all relatively stable. While TN showed a weak positive trend, that trend was 298 

largely driven by the unusually low years for TN in 1993 and 1994. With those removed the 299 

positive trends weakens considerably. The general picture in Rhode Island appears to be 300 

one of little to no change in phosphorus, a very weak positive trend in nitrogen and little to 301 

no change in the TN:TP ratio. Furthermore, it has been shown that productivity in 302 

freshwater systems is likely a function of both phosphorus and nitrogen (Paerl et al. 2016). 303 
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Thus, the increasing chlorophyll a in the face of stable TN:TP ratio suggests that the 304 

increase is being driven by something other than nutrients. We interpret these results as 305 

relative stability in nutrients in Rhode Island lakes and reservoirs. 306 

Stable nutrient regimes may be partly explained by efforts to curb nutrient loadings, for 307 

example through voluntary and state wide mandatory bans on phosphates in laundry 308 

detergent which were implemented in Rhode Island in 1995 (Rhode Island State 309 

Legislature 1995, Litke 1999). However, in many lakes there are still likely sufficient 310 

nutrients present to allow for increases in chlorophyll a. Additionally, these results point to 311 

the fact that chlorophyll a and algal biomass is driven by processes operating at different 312 

scales. For instance, nutrient management is largely a local to watershed scale effort, but 313 

may also be regional as atmospheric nitrogen deposition can be a significant source of 314 

nitrogen (Boyer et al. 2002). Similarly, warming lakes are driven by broader climate 315 

patterns, yet waterbody-specific factors such as the percent of a catchment that is 316 

impervious surface and lake morphology can also impact temperature (Nelson and Palmer 317 

2007). In short, differences in regional and state level trends are driven by complex and 318 

multi-scale processes. 319 

In addition to the annualized trends of the five variables we address with this study, there 320 

are other trends that may be of interest. For example, trends for water quality at finer 321 

temporal scales such as monthly or seasonal trends may be different than the annual 322 

trends we analyzed. Anecdotal evidence in Rhode Island points to warmer temperature 323 

earlier and later in the year and suggests a lengthening of the growing season. 324 

Furthermore, preliminary analysis of the URIWW data back this up with mean temperature 325 

for May 1993 to May 1995 cooler by nearly a degree than mean temperature for May 2014 326 

through May 2016. Additionally, it may be possible that the current trophic state of a given 327 

waterbody may partly explain the chlorophyll a changes in that lake. For instance, are 328 

oligotrophic lakes showing stronger trends than eutrophic lakes or are all lakes showing 329 

similar trends regardless of current trophic status? Lastly, changes in rainfall, extreme 330 

weather events, or other climate mediated factors can also be playing a role in increasing 331 

chlorophyll in Rhode Island lakes and reservoirs. These questions are beyond the scope of 332 

this study, but all warrant further, careful investigation. 333 
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4.2 Management implications 334 

There are several broader management implications from the results of our analysis and of 335 

examining long-term water quality trends in general. In particular, this analysis provides 336 

much needed information about the long-term effects of current nutrient control efforts at 337 

lake-specific and sub-regional scales and identifies areas where additional information is 338 

required or a change in management approaches may be needed. First, as more long-term 339 

datasets become available, it is important for managers and stakeholders to receive 340 

feedback on long-term water quality trends at multiple spatial scales. Specifically for this 341 

study, the results provide feedback to long time volunteer monitors, highlighting the 342 

importance of volunteer monitoring programs. Second, with information on long-term 343 

trends, it is possible to adapt management approaches to address areas of concern. Our 344 

results show increasing chlorophyll a even though the general long-term nutrient trends 345 

have been stable. This suggests the need to further reduce nutrients to compensate for 346 

warmer water temperatures and possible longer growing seasons. 347 

There are several possible approaches to further reduce nutrient loads (Yang and Lusk 348 

2018). First, nutrient load reductions may be possible through source controls and 349 

enhanced entrainment and treatment of ground and surface waters transporting nutrients 350 

to receiving waters (Kellogg et al. 2010). Green infrastructure approaches are one way to 351 

possibly achieve both goals (Pennino et al. 2016, Reisinger et al. 2019). Additionally, there 352 

is potential for within-lake approaches such as the restoration of freshwater mussels to 353 

waterbodies that historically had those species. Some studies using freshwater mussels 354 

have shown reductions in both nutrients and algal biomass (Kreeger et al. 2018). 355 

4.3 Data analysis approach 356 

The analysis approach we used here, site-specific anomalies, is not a novel method and 357 

does have a long history in the analysis of trends in climate (Jones and Hulme 1996, Jones 358 

et al. 1999, Hansen et al. 2006, 2010). However, using it to examine water quality trends is 359 

a new application of the technique, as we could find little evidence of using it specifically 360 

for water quality trends. We built on these methods and adapted them for use with long-361 

term water quality trends. While other methods are valid and robust (e.g., Oliver et al. 362 
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2017), we chose mean site-specific anomalies as they can provide readily interpretable 363 

results, especially for communicating to general audiences. For instance, reporting the 364 

changes in anomalies allows us to look at changes in the original units. With our analysis, 365 

the slope of the regression line for temperature suggests a mean yearly increase of 0.053 °C 366 

and the slope of the regression line for chlorophyll a shows a mean yearly increase of 0.29 367 

µg/l. Additionally, the site-specific anomalies are robust to variations in sampling effort 368 

and in the timing of inclusion of given sampling locations (e.g., added later in a time period 369 

or removed). Lastly, this analysis is only possible because of the availability of sound, long-370 

term data on water quality in Rhode Island. Without the URIWW data and the commitment 371 

and participation of more than 2500 volunteers over the years, our analyses would have 372 

been impossible. Going forward, it is important to appreciate the role that volunteer 373 

monitoring and citizen science programs can play in capturing and better understanding 374 

long term environmental trends. 375 
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