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Abstract: The global neuronal workspace (GNW) model has inspired over two 

decades of hypothesis driven research on the neural basis consciousness. However, 

recent studies have reported findings that appear inconsistent with the predictions of 

the model. Further, the macroanatomical focus of current GNW research has limited 

the specificity of predictions afforded by the model. In this paper we present a 

neurocomputational model – based on the active inference framework – that 

captures central architectural elements of the GNW and that can address these 

limitations. The resulting ‘predictive global workspace’ casts neuronal dynamics as 

approximating Bayesian inference, allowing precise, testable predictions at both the 

behavioural and neural levels of description. We report simulations demonstrating 

the model’s ability to reproduce: 1) the electrophysiological and behaviour results 

observed in previous studies of inattentional blindness, and 2) the previously 

described four-way taxonomy predicted by the GNW, which describes the 

relationship between consciousness, attention, and sensory signal strength. We then 

illustrate how our model can reconcile/explain (apparently) conflicting findings, 

extend the GNW taxonomy to include the influence of prior expectations, and inspire 

novel paradigms to test associated behavioural and neural predictions. 
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1. Introduction 

Global workspace theory (GWT) is one of the most widely supported neuroscientific 

theory of consciousness. Indeed, a survey conducted at the 2018 Association for the 

Scientific Study of Consciousness showed that, among experts, GWT is regarded as 

the most promising theory of consciousness (Michel et al., 2018).  

GWT was first proposed by Baars (1988) as a cognitive architecture that 

identifies consciousness with the global availability of information. According to 

GWT, information becomes conscious when it is simultaneously made available to a 

wide range of localized (and individually sub-personal) processes – jointly 

comprising a ‘global workspace’. More recently, Dehaene and colleagues have 

advanced a global neuronal workspace (GNW) model, which identifies the global 

workspace with a large-scale network of excitatory pyramidal neurons with long-

range axonal pathways connecting prefrontal and parietal cortices (Dehaene & 

Changeux, 2011; Dehaene et al., 2011).  

The key working hypothesis of the GNW is that when a stimulus becomes 

conscious there will be a late, non-linear, all-or-nothing “ignition” of prefrontal and 

parietal regions (Dehaene and Changeux, 2011; Dehaene, 2014) corresponding to 

the large-scale influence of selected (otherwise unconscious) representations of 

perceptual features encoded locally within sensory cortices. In contrast, activity 

related to stimuli that is rendered unconscious (e.g., by masking or inattention) will 

fail to attain this global influence and related neuronal activity will only be observable 

locally within sensory cortices. 

Behavioural and neurobiological predictions of the GNW can be broadly 

summarised in terms of a four-way taxonomy describing the relationship between 

consciousness, bottom-up sensory signal strength, and attention-based modulation 
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(Dehaene et al., 2006). Specifically, in the absence of attention the activation caused 

by the presence of a weak stimulus should remain within early extrastriate areas, 

leading to weak priming effects (i.e. only slightly above chance) and unavailability for 

conscious report. When stimulus strength is weak but attention is present, the signal 

should reach deeper levels of extrastriate cortex – leading to noticeable priming 

effects (i.e. above chance) yet still unavailable for report. When stimulus strength is 

increased, but attention is absent, this should allow for deep processing, again 

facilitating noticeable (e.g., semantic) priming effects but activation should remain 

limited to sensory areas and be unavailable for report. Finally, when a strong signal 

has made its way to deep levels of processing and is amplified by top-down 

attention, prefrontal and parietal loops will be recruited to maintain sensory 

information through recurrent activity – thereby making it broadly available to large-

scale networks subserving domain-general (goal-directed) cognition and allowing for 

conscious report (among other adaptive uses).   

These predictions, while by no means uncontroversial, have been largely 

corroborated. In a pioneering fMRI study, Dehaene and colleagues found that 

conscious report of rapidly presented words resulted in the wide-spread activation of 

prefrontal, temporal and parietal regions, whereas activity remained within sensory 

regions when the stimulus was rendered invisible via masking (Dehaene et al, 2001). 

In a meta-contrast masking paradigm combined with electroencephologaphy (EEG), 

DelCul et al (2007) found that early event-related potential (ERP) components did 

not display a significant difference between seen and unseen conditions, while the 

late P3 component showed a significant non-linear increase in amplitude between 

seen and unseen conditions. Importantly, objective task performance was well above 

chance even at the lowest visibility rating. Similarly, using an attentional blink 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 12, 2020. ; https://doi.org/10.1101/2020.02.11.944611doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.11.944611
http://creativecommons.org/licenses/by-nc-nd/4.0/


paradigm, Sergent et al (2005) found that early ERP components either did not vary 

with visibility, or had a linear relationship with visibility. In contrast, late components, 

such as the P3, showed non-linear increases in amplitude when T2 visibility was 

above 50%. Recent work using multivariate decoding in magnetoencephalography 

(MEG) has extended this finding, showing that, in comparison to temporally adjacent 

distractor stimuli, consciously reported target stimuli display a stronger and more 

sustained pattern of activation (Marti & Dehaene, 2017). Most convincingly, when 

recording from intracranial electrodes implanted in epilepsy patients, Gaillard et al 

(2009, p.475) found that conscious word perception had a significant effect on many 

frontal and parietal electrodes, whilst the electrodes showing a significant effect of 

unconscious perception were almost all located in the occipital and temporal lobes.  

 Despite the flood of research supporting the GNW, the theory also has a 

number of limitations. First, it is largely described at the level of gross neuroanatomy, 

leaving the details of cortical architecture unspecified and thereby limiting the 

granularity of predictions. Second, it is agnostic about the implementation of 

expectation, rendering the theory unable to engage with a large body of evidence 

highlighting the role of expectation in visual consciousness (e.g. Chang et al., 2015; 

Denison et al., 2011; Valuch & Kulke, 2019; van Gaal et al., 2015). 

 Of greater concern, as experimental paradigms have become more 

sophisticated, two predictions of the original theory have been falsified. For example, 

in a delay matching task, multivariate decoding showed that the brain represented 

both target presence and target orientation for an entire 800ms delay period across 

visibility levels. In addition, whilst target visibility correlated with decoding accuracy 

for target presence, unseen stimuli still exhibited a stable pattern of activation that 

generalised across time, suggesting that information did not have to be conscious to 
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enter later phases of processing (King et al.,2016). This corroborates the findings of 

Salti and colleagues (Salti et al.,2015) who showed that target position could be 

decoded from superior frontal and superior parietal cortices in both seen and unseen 

conditions. Together these results demonstrate that, contrary to the original 

formulation of the GNW, information is processed and unconsciously maintained (at 

least briefly) by the same structures implicated in conscious processing.  

Another seemingly inconsistent result was found by Pitts et al (2014). Using a 

novel inattentional blindness paradigm, they showed that the P3, which was initially 

thought to discriminate information that did or did not enter the global workspace 

(see Dehaene, 2014, p.180), was driven by task relevance and not conscious 

access. This result was recently replicated in a standard masking paradigm (Cohen, 

et al., 2020) showing unequivocally that the P3 is related to task relevance and is not 

a necessary signature of conscious access. 

 To the credit of GNW theorists, the model has been revised to accommodate 

these findings. First, a revised computational model of subjective report has been 

proposed, which, in addition to frontoparietal activity, requires that a stimulus 

representation can be separated from a noise distribution (King & Dehaene, 2014). 

Second, the claim that the P3 is a specific marker of conscious access (Dehaene et 

al., 2014) is no longer defended. However, the modified computational model of 

subjective report (King & Dehaene, 2014) is too idealised to make neurobiological 

predictions, and the abandonment of the P3 as a signature of conscious access was 

not accompanied by any theoretical revisions and makes no additional behavioural 

or neurobiological predictions. This situates the GNW in a tenuous position, in which 

revision primarily explains away contrary results – a recognized characteristic of 

degenerative research programs (Lakatos, 1970). 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 12, 2020. ; https://doi.org/10.1101/2020.02.11.944611doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.11.944611
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Here we aim to make progress in overcoming these limitations by advancing 

an extension of the global neuronal workspace - the predictive global neuronal 

workspace (PGNW) - that unifies essential aspects of the GNW with the more recent 

(Bayesian) Active Inference approach to understanding brain function. Specifically, 

we present a hierarchical, partially observable Markov decision process (POMDP) 

model of visual consciousness based upon active inference. Importantly, we 

leverage the neural process theory associated with active inference to make explicit 

links between neurobiology and the formal simulations afforded by the model. 

Formalising ideas first developed by Hohwy (2013), Whyte (2019), and Friston 

(2018), we will argue that conscious access or “ignition” is a fundamentally inferential 

process that depends upon a level of processing of sufficient temporal depth to 

contextualise and coordinate lower levels of processing – where this longer 

timescale coordination is seen as necessary for the generation of subjective reports. 

Here, subjective reports stand in as one example of a broader set of temporally 

extended action plans (i.e., extended sequences of actions), the generation of which 

requires integration, maintenance, and manipulation of information over sufficient 

lengths of time – and where that information is sufficiently complex to guide the 

controlled generation of such goal-directed behaviours (e.g., combining conceptual 

contents associated with words such as “I”, “see”, “a”, “red” and “square” requires 

representing contents of much greater abstraction and temporal depth than is 

necessary for representing the perceptual property denoted by the word “red”). 

 To begin, we provide a brief primer on active inference and POMDPs, 

followed by a specification of the specific structure of the generative model we will 

employ, paying close attention to the importance of temporal depth. With the 

groundwork laid out, we show through simulations that the model can both 1) unify 
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seemingly contradictory previous results, and 2) reproduce the essential aspects of 

the four-way taxonomy predicted by the GNW, describing the relationship between 

conscious access, attention, and stimulus strength. Using the same generative 

model architecture, we then reproduce (and offer mechanistic explanations for) the 

electrophysiological and behavioural results of the inattentional blindness paradigm 

introduced by Pitts et al (2014).  

Next, we turn to the role of expectation in visual consciousness and show how 

our model can extend the original four-way taxonomy of GNW theory to encompass 

paradigms that manipulate prior expectations on trial-by-trial basis – highlighting the 

novel predictions that emerge from this extension. We also describe one possible 

novel paradigm that could be used to test distinct model predictions regarding 

dissociable effects of expectation, attention, and stimulus  strength. We end by 

examining the relationship between the PGNW and alternative models, and briefly 

address potential concerns about how phenomenal consciousness could plausibly 

be situated within our model. However, this paper is chiefly concerned with what 

Block (2005) terms “access consciousness” which is defined as the availability of 

information for verbal report, action, and executive processing. For brevity, we will 

use “conscious access” and “consciousness” interchangeably throughout the paper 

unless otherwise indicated.  

 

2. A Primer on Active Inference  

Active inference, a corollary of the free energy principle (FEP), is a first principles 

approach to modelling (approximately) Bayes optimal behaviour (Friston; 2010; 

Friston et al, 2016, 2017a). The FEP starts from the tautology that, in order for a self-
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organising system to maintain the integrity of its internal milieu, it must stay within 

the narrow range of states consistent with its survival. Human body temperature, for 

example, should ideally stay within the range of 36.5 – 37.5 degrees (Celsius). This 

entails that an organism’s phenotype has an attracting set of bodily states. Over long 

timescales, these attractor states have a high probability of being observed in the 

sense that the organism will visit them repeatedly (Friston, 2013). Formally then, all 

self-organising systems must be minimising the (information theoretic) surprise of 

their sensory observations. However, surprise is computationally intractable. Instead, 

according to the FEP, organism’s construct an internal (generative) model of 

environmental dynamics that, when accurate, acts as an upper bound on surprise 

(Buckley et al., 2017). The perception-action cycle is thus cast as an optimisation 

problem. Perception corresponds to the process of inferring the hidden state values 

that maximise the likelihood of observations and create a tight bound on surprise, 

while action is the process of inferring action sequences that either minimise 

uncertainty about hidden states (epistemic value) or bring about preferred 

observations (pragmatic value), thereby minimising surprise more directly (Friston et 

al, 2016, 2017). The former (perception) corresponds to the minimisation of 

variational free energy F, while the latter (action selection) corresponds to the 

minimisation of expected free energy G (see figure 1 for formal descriptions). 

Here we formulate the generative model as a partially observable Markov 

decision process (POMDP; see figure 1). POMDPs model discrete transitions 

between latent variables and the observations they generate. Such models infer 

states and policies based upon the mapping between different hidden state factors 

and distinct observation (or outcome) modalities – given by a set of A matrices (one 

matrix per outcome modality). Transitions between states are determined by the 
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transition probabilities encoded by a set of B matrices (at least one matrix per state 

factor; see description of policy selection below). A set of C matrices describes the 

agent’s prior preferences over observations at each time point (one matrix for each 

outcome modality) and quantifies the degree to which agents prefer, or are averse 

to, particular observations. Finally, prior beliefs about initial states are determined by 

a set of D vectors (one per hidden state factor). A, B, C and D are each categorical 

distributions.  

Such models are equipped with allowable sequences of actions that can be 

chosen (policies; π), where each possible sequence is assigned a value (higher 

policy values relate to lower expected free energies G, defined in relation to the prior 

preferences encoded in C). In the context of this class of models, allowable policies 

are specified as sequences of allowable state transitions, where each allowable 

transition (action) at each time point is encoded by a distinct B matrix for a given 

state factor. Thus, action corresponds to the agent’s direct control of state 

transitions. Observations and hidden states are factorised into separate outcome 

modalities and hidden state factors to allow for interactions between hidden states in 

the likelihood mapping (A). In hierarchical models, such as the model employed in 

this paper, the hidden states at the first level serve as observations at the second 

level (see figure 1). Crucially, hierarchical models also allow for inferences about 

deep temporal structure. An intuitive example of this is reading, in which the first 

level of a model could infer single words while the second level could infer the 

narrative meaning entailed by sequences of words over longer spatiotemporal scales 

(see Friston et al, 2017). Over the timescale of a single trial of a task (for example) 

belief updates are equivalent to (e.g., perceptual) inference, while, over longer 
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timescales, updating gives rise to learning (we refer mathematically interested 

readers to Da Costa et al., 2020a).  
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Figure 1. First. Decomposition of variational free energy (VFE) into relative entropy and model 

evidence. Because the relative entropy term is always greater than or equal to zero when the 

approximate posterior Q(s) approximates the true posterior P(s|o), VFE is equal to the negative model 

evidence. Minimising VFE is, therefore, equivalent to maximising model evidence. For visual simplicity 

we have not included the policy term in the VFE, although it should be noted that states are 

conditioned on policies. Second. Decomposition of expected free energy (G) into epistemic value and 

pragmatic value. Here 𝑸 = 𝑷 𝒐 𝒔 𝑸 𝒔 𝝅 	means that the expectation sums over all current 

observations. To minimise G, agents must select policies that transition them into states that 

maximise the difference between 𝐥𝐧𝑸 𝒔|𝝅 		and 𝐥𝐧 𝑷 𝒔|𝒐, 𝝅 . 		Or, in other words, agents seek out 

states that reduce uncertainty about expected observations. Third. Bayesian network depiction of a 2-

level POMDP. Arrows show the dependences between variables. This first network highlights the 

dependencies between first-level and second-level variables. Observations depend on hidden states 

at the first level. In turn, hidden states at the first level depend on policies and states at the second 

level. Importantly, first-level hidden states function as observations for the second level. Fourth. 

Second Bayesian network depiction of a 2-level POMDP. adapted from (Friston et al., 2017b).  This 

representation of the network highlights the role of the matrices in determining the conditional 

dependencies between variables. Observations are generated by hidden states described by A. The 

B matrix determines state transitions and also functions as an empirical prior. The D vector serves as 

the prior for initial states. When the B matrix is under the control of the agent, state transitions depend 

upon the policy. The probability that a particular policy will be selected is dependent on the expected 

free energy G of the policy which is, in turn, partially dependent on prior preferences specified by C, 

although the dependence of C is not depicted graphically.  

 

 In terms of neurobiological implementation, active inference has a detailed 

process theory that specifies how a family of possible message passing algorithms 

can be used to perform inference, as implemented within neurobiologically plausible 

structural and functional dynamics (Parr & Friston, 2018).  Broadly speaking, the 

firing rates of certain neuronal populations - represented in figure 2 as neuronal 

populations within cortical columns - encode the current estimate of the posterior 
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probability over hidden states. The synaptic inputs to the columns carry the 

conditional probabilities encoded in each of the matrices described above. This 

means that, for example, activity levels in neuronal populations encoding posterior 

probabilities over states are updated by ascending signals (from observations) based 

on synaptic weights encoding the amount of evidence that each possible observation 

provides for each possible hidden state (i.e., entries within the A matrices). 

 Of particular importance for the purposes of this paper are the equations 

describing the expected hidden states and the time derivative of the depolarisation 

variable 𝒗 (see upper left of figure 2) associated with the neural process theory 

linked to active inference. Specifically, the posterior expectation over hidden states is 

a softmax (normalized exponential) function of the depolarisation variable 𝒗 which 

represents the average membrane potential of the neuronal populations responsible 

for encoding the surprise of expected states. The output of the softmax function is 

taken as the average firing rate of the population. The use of the softmax function 

(which is simply a generalisation of the sigmoid function to vector inputs) to simulate 

average firing rate is based on the assumption made in mean-field models of neural 

dynamics that the average firing rate of a population can be treated as a sigmoid 

function of the average membrane potential (see Da Costa et al, 2020b). ERPs and 

local field potentials are modelled as the temporal derivative (rate of change) of this 

depolarisation variable (see figure 2; Friston et al., 2017; Friston et al., 2018; Parr, & 

Friston, 2017a). 
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Figure 2. Neural network implementation of the message passing implied by the Bayesian network in 

figure 1. Top left. Update equations and free energy functionals. Heuristically, state prediction errors 

𝜺	score the evidence that observations provide for each policy (i.e., the difference between outcomes 

expected under each policy and those that are subsequently observed). In contrast, outcome 

prediction errors 𝝇 encode beliefs about the value of each policy (i.e., higher outcome prediction errors 

for a given policy roughly correspond to lower probabilities of observing preferred outcomes under 

that policy, as well as less informative observations expected under that policy). Directly below are 

expressions for variational free energy F and expected free energy G, expressed in terms of the 

above mentioned (state and outcome) prediction errors. Middle left. Update equations for states, 

policies, Bayesian model averages and the depolarisation variable. Bottom left. Action selection and 

update terms for expected precision over policies. Right. Schematic of message passing between cell 

populations. Red units encode Bayesian model averages, cyan units encode expectations over 

hidden states, and pink units encode state and outcome prediction errors.  

 

3. A Deep Temporal Model of Visual Consciousness  

To model the difference between conscious and unconscious perception, we based 

our simulated task on the paradigm introduced by Pitts and colleagues (2012, 2014a, 
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2014b). We chose this task because, with only minor changes in design, the 

paradigm can be used to study both inattentional blindness and phenomenal 

masking – allowing us to model the interaction between attention and sensory signal 

strength in an empirically plausible manner (it also afforded the opportunity to 

reproduce, and provide explanations for, empirical results obtained from this 

paradigm; see below). 

 At the beginning of each trial in our simulated task, the in silico subject - or 

agent - was presented with a stimulus composed of an array of bars surrounded by 

coloured disks. At the 2nd time point, the array of bars was replaced by a square, 

and at the 3rd time point the array changed back to the collection of bars. The agent 

was then required to self-report whether or not they had seen the square or to 

perform a two-alternative forced-choice task. We manipulated attention by requiring 

the agent to monitor the colour of the surrounding circles (either red or black) at the 

expense of the inner array (see figure 3).  

 

 Figure 3. Illustration of the task performed by the agent. On each trial the in silico subject was 

presented with a stimulus composed of an array of bars surrounded by coloured discs. At the 2nd 

time point, the array was replaced by a square, and at the3rd time point the array changed back to the 
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original bar pattern. The agent was then required to either perform a two-alternative forced-choice 

task or report whether they had seen the square. 

 

 To simulate the perceptual categorisation and self-report behaviour described 

above, we specified the task in terms of a generative model which was inverted 

using a variational message passing scheme (for technical details see Parr et al., 

2019a).  To reproduce the recurrent interactions between the frontoparietal network 

identified with the global workspace, and the input it receives from the visual system, 

we employed a two-level deep temporal model (Friston et al., 2017b; Friston et al., 

2018). The first level (see figure 4), which roughly corresponds to processes within 

the visual system, had four hidden state factors; attention allocation, internal stimulus 

(bars/square), surrounding or external stimulus (red/black circles), and a set of 

auditory-verbal states (a number of words that could be put together in different 

sequences to generate verbal reports). The second, higher level, which corresponds 

to the frontoparietal network associated with the global workspace, included three 

hidden state factors: 1) sequence type (encoding beliefs about the sequence of 

internal and external stimuli presented on each trial), 2) time point within the trial 

which, in line with data from non-human primates (Kapoor et al., 2018), encodes the 

current phase of the task, and 3) abstract semantic representations that could be 

unpacked into different verbally reported sequences of words at the lower-level 

(dependent on the chosen policy at the higher level).  

 It is worth emphasising that the temporal depth of this second level is 

essential for simulating the self-report behaviour that defines conscious access. The 

language component of the model is obviously an oversimplified depiction of 

linguistic cognition. Yet, it remains true that, in order to coordinate the selection of a 

specific sequence of words (i.e., to construct a sentence describing the content of 
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perception), where each words is generated over a more rapid time scale, the agent 

must have a level of processing that unfolds over a slow enough time scale to 

abstract away from the moment by moment sensory flux and coordinate lower-level 

language processes to report the outcome of perceptual decision-making in a goal- 

(i.e., preference-) dependant manner. Thus, the higher level is necessary to integrate 

the moment-to-moment sensory flux with the longer-timescale, controlled processes 

capable of generating behaviour plans with greater temporal depth. This feature is at 

the core of our model and we will revisit it in more depth in the discussion.  

 

 

Figure 4. Bayesian network depiction of the generative model, with arrows showing the dependencies 

between hidden state factors and outcome modalities. At the second level, states within the sequence 

type and trial phase hidden state factors determine the internal stimulus and external stimulus hidden 

states at the first level (which function as second-level observations). This was set up such that the 

mapping between second-level hidden states and first-level hidden states was dependent on the time 

point within the trial. The report state factor determined the language processing state at the first 

level. In turn, first-level outcomes were dependent on first-level hidden states. Importantly, there was 
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only a precise mapping between the first-level internal (line/square) stimulus hidden state factor and 

the corresponding outcome modality when the model was in an attentive state.  

 At the first level of the model (see figure 5), the D vectors specified the initial 

state of the four hidden state factors; top-down attention (present, absent), internal 

stimulus (bars/square), external stimulus (red/black circles), and auditory-verbal 

states (single words: “silent”, “I”, “see”, “a”, “square”, “didn’t”, “anything”). The state 

transitions specified by the B matrices were all identity matrices, meaning that the 

hidden states were stable across the course of each trial. The likelihood mapping 

between the hidden states and outcomes, specified by the A matrices, is where we 

implemented the attention and signal strength manipulations. The external stimulus 

and language matrices were both fully precise (identity matrices). In contrast, we 

reduced the precision (denoted by 𝜁	for stimulus strength and Σ for attention) of the 

mapping between the internal state and the outcomes by passing what were initially 

identity matrices through two softmax functions controlled by precision parameters 

representing the effects attention and signal strength (i.e. presentation time). Higher 

values of these parameters made the A matrices more precise. We set up the 

interaction between the A matrices such that the likelihood mapping for the internal 

stimulus factor was more precise when the agent was in an attentive state. In 

contrast, stimulus strength manipulations reduced the precision of the mapping 

between stimuli and hidden states independent of attentional state.  
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Figure 5. 1st-level generative model matrices. All matrices are passed through softmax functions such 

that the columns of each matrix, and the rows of each vector, always sum to one. Each column of the 

D vector represents the probability of a hidden state. Columns of the B matrix correspond to states at 

time t and rows correspond to states at t+1. Here all the B matrices are identity matrices meaning that 

the states were believed to be stable across each trial. Columns of the A matrix correspond to hidden 

states while rows correspond to observations. An identity mapping therefore implies a deterministic 

likelihood mapping between states and observations. To model the effects of attention and stimulus 

strength the A matrix encoding the likelihood mapping for the internal segment of the stimulus was 

passed through a softmax function twice with a precision multiplier representing attention (Σ) which 

could be present or absent, and stimulus strength which could be strong or weak (𝜁). The combined 

effect of the attention and signal strength multipliers determine the final precision of the matrix as 

depicted above. With the exception of the A matrix encoding the likelihood mapping for the internal 

segment of the stimulus, all other first-level A matrices were identity matrices, meaning that the 

mapping was deterministic. Finally, it is important to note that, for visual simplicity, the matrices 

displayed above have not been factorised and appear differently than how they are implemented in 

the code. 

 At the second level (see figure 6) the three hidden state factors specified by 

the D vectors were: sequence type (black disk and square, black disk and bars, red 
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disk and square, red disk and bars), time point within trial (1-8), and report state 

(wait, seen, unseen). We set the initial level of the report state to “wait”. The B matrix 

for sequence type was an identity matrix, meaning that the agent believed a priori 

that the sequence type would not change mid-trial. Trial phase was set up such that 

time point 1 transitioned to time point 2, which transitioned to time point 3 and so on 

until the end of the trial. For time points 1-4, all states in the “report” B matrix 

mapped to “wait”; however, at time point 5 the agent had control over the B matrices 

for the report state, meaning that it could transition to either a “seen” or “unseen” 

state depending on which policy best minimised expected free energy. The A 

matrices were factorised such that the mapping from hidden states to outcomes was 

dependent on the time point in the trial (see the time-in-trial hidden state factor in 

figure 4). At time point 1 both square sequence and bar sequence hidden states 

predicted a bar outcome (recall that second-level outcomes are also first-level 

hidden states). While at the 2nd and 3rd time points the square sequence predicted 

a square outcome and a bar hidden state predicted a bar outcome. At time point 4, 

both the square sequence and bar sequence once again predicted a bar outcome. 

To model the recurrent feedback between hierarchical levels characteristic of 

ignition, the square sequences mapped to the square outcomes for time point 2 and 

3 – allowing the state at the second level to influence belief updating at the first level 

via the second-level A matrix. From time points 1-4 all the states in the “report” factor 

mapped to the “silent” first-level verbal state. However, from time point 5 on, “seen” 

and “unseen” states entailed a different sequence of lower-level word 

representations. The “seen” report state entailed the words (in order) “I” “see” “a” 

“square” at each successive time point, while the “unseen” report state entailed the 

words “I” “didn’t” “see” “anything” in that order. The report state also had a likelihood 
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mapping to a feedback outcome. The agent was “correct” if, at time point 8, they 

reported “seen” after a square sequence or “unseen” after a bar sequence, and 

“incorrect” if they reported “unseen” after a square sequence or “seen” after a bar 

sequence (this preferred feedback was used to motivate honest verbal reporting 

policies; see below). Finally, to account for the diffuse nature of feedback projections 

(Bannister, 2005; Garcia-Cabezas et al., 2019), we lowered the precision of the A 

matrix for the “sequence type” factor (precision = 0.8) providing a plausible threshold 

on ignition events. 

 

Figure 6. 2nd-level generative model matrices. D vectors for sequence type (unless otherwise 

indicated) assigned equal probability to each state. The D vector for the trial phase hidden state factor 

was initialised so that the model would always start each trial with full confidence that it was in the 

state corresponding to time point 1. Similarly, the D vector for the report state was initialised so that 

the model had full confidence in the “wait” state at the start of each trial. The B matrix for sequence 

type was an identity matrix meaning that the agent believed a priori that the sequence of states would 

be stable throughout the trial. We set up the B matrix for the trial phase hidden state factor such that 

each state successively transitioned to the next state (i.e. state 1 transitioned to state 2 and so on). 
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For the controllable B matrices there was one matrix for each possible report state (wait, unseen, and 

seen). From time step 1 - 4 the agent could only select the “wait” matrix but at time step 5 the agent 

could choose (i.e. via policy selection) between the “seen” and unseen “matrices”. The C matrix 

encoded the agents preference for each outcome and had a column for each time point and a row for 

each action (report state). There was one C matrix for each outcome modality. Here we only display 

the C matrix for the ”correct/incorrect feedback” outcome modality associated with the report state, as 

it is the only outcome for which the agent had non-zero preferences.  That is, the agent preferred to 

be “correct” at the end of each trial rather than “incorrect”. Finally, the A matrices were set up such 

that the sequence type hidden state factor had two corresponding outcome modalities, which mapped 

the sequence type hidden states to the internal stimulus and external stimulus hidden states at level 

1. To provide the model with a plausible “ignition threshold,” we lowered the precision of the A matrix 

for the “sequence type” factor by passing it through a softmax function (precision = 0.8) although we 

do not picture this graphically. The report hidden state factor did not map to hidden states at the level 

below, instead it mapped to observations that informed the agent about whether they were “correct” or 

“incorrect” (recall that, because of the C matrix, the agent wanted to receive “correct” observations 

and was averse to “incorrect” observations). Finally, the report hidden state factor mapped to first 

level language processing hidden states so that after time step 5, once the model was in a “seen” or 

“unseen” state, the appropriate sequence of spoken word states would be initiated at the level below 

(i.e. “I” “see” “a” “square”). Again, for visual simplicity the matrices displayed above have not been 

factorised and appear differently to how they are implemented in code. 

 

 We constructed the C matrix so that when the agent received feedback at 

time point 8 they most preferred to be correct and least preferred to be incorrect 

when reporting whether or not they had seen the stimulus (preference values that 

produced sufficient motivation for accurate reporting are depicted in figure 6). To 

model forced-choice behaviour, we ran a separate simulation but reduced the 

preference for being correct versus incorrect, making the agent less conservative 

and more likely to guess under conditions of weaker perceptual signals. Because 
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active inference models are deterministic, we set policy precision (the confidence in 

policy selection denoted by 𝛽), and motor stochasticity (randomness of action 

selection denoted by 𝛼) to 𝛽 = 2 and 𝛼 = 6, thereby allowing for a plausible level of 

behavioural variability reflecting the agent’s relative confidence in some states over 

others. 

 We made the modelling decision to have a more liberal threshold for forced-

choice behaviour than for subjective reports based on the well-replicated finding that 

subject’s display above-chance performance even in the absence of reportability 

(see discussion in King & Dehaene, 2014). However, we acknowledge that this 

finding is largely dependent on the method of report.  Specifically, there is evidence 

suggesting that humans have optimal introspective access to their perceptual 

processes in the sense that betting performance in a 2-interval forced-choice task 

matches that of an ideal Bayesian observer (Peters & Lau, 2015). We do not wish to 

take a stand on this issue here as we consider it an open empirical question. 

Instead, we merely note that the decision was a pragmatic one based on the method 

of report used in the paradigms we were aiming to simulate.  

 

4. Simulating Visual Consciousness 

4.1 Foundational Simulations 

As a proof of principle, we simulated 200 trials, 100 of which were “square-present” 

trials. The model was in an attentive state (Σ= 0.5) and the stimulus also had a high 

stimulus strength (𝜁= 1.5), corresponding to a long presentation time that enabled 

evidence accumulation resulting in a relatively precise hidden state-to-outcome 
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mapping. We found that the model performed with 100% accuracy on the forced-

choice task and when reporting the presence – and absence – of the square. 

 Having established the face validity of the model, we now turn to the 

simulation of minimal contrast paradigms. 

 

Figure 7. Simulated firing rates (darker = higher firing rate) predicted under the process theory 

associated with active inference (Friston et al., 2017). Each row represents the firing rate of the 
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neuronal populations encoding the posterior expectations over each state. Individual squares each 

represent the time point within the trial. Actions (cyan dots = true action chosen; colour represents the 

posterior confidence in the actions chosen at the end of each trial, darker = higher confidence). Self-

report outcomes (cyan dots = actual observations; colour indicates the preference for each 

observation, darker = greater preference, here the colours are all the same which means the agent 

did not have a preference for language outcomes). Top. Simulated results for 100 “square-present” 

trials. Notice the outcome modality associated with the “seen” report state generates the sentence “I 

see a square”. Bottom. Simulated results for 100 “square-absent” trials. Notice that the outcomes 

associated with the “unseen” report state generate the sentence “I didn’t see anything”.  

 

4.2 A Four-Way Taxonomy of the Factors Underlying Conscious Access 

As a field, the neuroscience of consciousness has converged on the use of minimal 

contrast paradigms that, through masking, inattention, or near-threshold 

presentation, render nearly identical stimuli unconscious in one condition and 

conscious in the other. Combined with neuroimaging, this allows for the contrast of 

conscious and non-conscious forms of visual processing. However, early 

neuroimaging research reported conflicting results. Some studies found that 

subjective reports correlated with activation in early visual cortices (Zeki, 2003), 

while others found that subjective reports correlated with the activation of 

frontoparietal areas (for a meta-analysis see Bisenius et al., 2015). Still others 

argued that frontoparietal involvement is due to an attentional confound and does not 

reflect conscious access (Peter et al., 2005).  Based upon simulations of thalamo-

cortical networks (Dehaene et al., 2003), Dehaene and colleagues (Dehaene et al., 

2006) created a taxonomy of factors underlying conscious access with the aim of 

unifying the conflicting results under the theoretical framework of the GNW.  
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 In their exposition of the taxonomy, Dehaene and colleagues (Dehaene et al., 

2006) distinguished between subliminal, preconscious and conscious forms of 

processing. However, for the sake of clarity, we describe the taxonomy in terms of 

the two factors underlying the classifications; attention, which can be present or 

absent, and signal (i.e. stimulus) strength, which can be strong or weak. As 

described in the introduction, the activation caused by a weak stimulus in the 

absence of attention (e.g. an unattended masked stimulus) should remain within 

early extrastriate regions – remaining unavailable for report and only causing weak 

priming effects. When attention is present, but stimulus strength is weak (an 

attended but masked stimulus), the signal should reach deeper levels of extrastriate 

cortex – remaining unavailable for report but leading to stronger priming effects. 

When attention is absent, but stimulus strength is high (i.e. during inattentional 

blindness or motion-induced blindness), there should be deep levels of processing 

within sensory areas – facilitating priming effects but remaining unavailable for 

report. Lastly, when a strong signal reaches a deep level of processing and is 

amplified by top-down attention, recurrent loops in frontoparietal cortices will 

maintain the information over longer timescale and make it available to inform the 

generation of verbal reports.   

 Crucially, different neural correlates are observed when using specific 

paradigms, such as the attentional blink and phenomenal masking, to contrast 

different parts of the taxonomy. Dehaene et al (2006) have leveraged these findings 

to explain a number of seemingly contradictory results.  

 While the theoretical backbone of the taxonomy has been revised, in that the 

activation of frontoparietal regions is no longer considered sufficient for conscious 
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access, it is still a useful starting place – as the interactions between stimulus 

strength and attention described by the taxonomy encompass many, if not most, of 

the minimal contrast paradigms reported in the literature.  

 As described above, we modelled the effects of both attention and signal 

strength on simulated behaviour by altering the precision of the state-outcome 

mapping between the internal stimulus hidden state and internal stimulus outcome at 

the first level. In terms of the task, the “low signal strength (𝜁 = 0.1) + attention 

absent (Σ = 0.1)” condition corresponds to a short presentation time, with the agent 

attending to the external coloured disk at the expense of the internal stimulus. The 

“low signal strength (𝜁 = 0.1) + attention present (Σ = 0.5)” condition corresponds to 

a short presentation time with the agent directing attention to the internal stimulus. 

The “high signal strength (𝜁 = 0.65) + attention absent (Σ = 0.1)” condition 

corresponds to a long presentation time with the agent attending to the external 

coloured disk. Finally, the “high signal strength (𝜁 = 0.65) + attention present (Σ =

0.5)” condition corresponds to a long presentation time with the agent attending to 

the internal stimulus. We settled on the specific parameters shown above by 

searching the parameter space to find consistent values that best reproduced the 

behavioural results reported in the empirical literature, while remaining within 

plausible limits (i.e., as when fitting model parameters to real participant behaviour in 

empirical studies). 
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4.2.1 Four-Way Taxonomy: Simulated Behaviour 

We presented the model with 400 “square present” trials, 100 corresponding to each 

of the four parameter variants described above. When signal strength was low and 

attention absent, the agent displayed chance levels of forced-choice performance 

(51%) and did not report having seen the square on any of the trials. When signal 

strength increased, or when the agent attended to the stimulus, forced choice 

performance improved to well above chance, 70% and 72% respectively, while still 

not reporting ‘seen’ on more than 20% of trials (8% and 16% respectively). When 

stimulus strength was strong, and attention was present, the agent showed near-

ceiling levels of forced-choice performance (99%; i.e., due to the small amounts of 

stochasticity in choice within the model) and accurately reported having seen the 

square on 100% of the trials. Thus, under a consistent set of parameter settings, the 

model accurately reproduced the self-report and forced-choice behaviour commonly 

reported in the literature (see figure 8). This should not be a surprise, as we fine-

tuned the parameter values to capture behaviour reported in the empirical literature. 

However, it is worth noting that it is possible a priori that no consistent set of 

parameter values could be found to reproduce all of these known empirical results – 

which would have shown a clear insufficiency of the model. Thus, the existence of 

this consistent set of parameter values does support the validity of the model. 
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figure 8. Report frequencies, forced choice accuracy, simulated firing rates, and simulated ERPs for 

each quadrant of the four-way taxonomy. Numbers shown on the lower-level firing rate plots illustrate 

the firing rate strengths (between 0 and 1) before and after top-down feedback from the higher level 

(i.e., time steps 2 and 3, respectively). Blue lines on the ERP plots show the temporal derivative of the 

first-level firing rates, while the red lines show the temporal derivative of second-level firing rates.  

 

4.2.2 Four-Way Taxonomy: Simulated Firing Rates 

We next simulated the neural firing rates associated with the different quadrants of 

the taxonomy. The simulated first- and second-level firing rates both accurately 

reproduced a number of otherwise disparate empirical findings (see figure 8, left 

portion of each quadrant). Specifically, in all but the “weak signal + attention absent” 

condition, the model showed an amplification of the first-level firing rate after 

receiving feedback from the second level. In line with the notion of ignition, this top-

down amplification was notably greater when the model reported having seen the 

square. Similarly, at the second level of the model, in all but “weak signal + attention 
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absent” condition the firing rates corresponding to the neuronal population encoding 

the “square present” sequence was amplified by the presentation of the square, even 

in the absence of report. Again, in line with the notion of ignition, the firing rate at the 

second level was further enhanced when the model reported having seen the square 

on all trials.  

 These results mirror the multivariate decoding results reviewed in the 

introduction, which found that, although increased visibility correlated with increased 

decoding accuracy, target orientation could be decoded across visibility levels from 

superior frontal and superior parietal cortices (Salti et al., 2015). What leads the 

agent to report the presence of the square is not simply that the second level has 

greater firing rates for the “square present” sequence, but that the model is 

sufficiently more confident about the “square present” sequence than the “random 

bar” (i.e. “square absent”) sequence. This feature of the model is similar to other 

Bayesian and hierarchical models in the literature that associate subjective report 

with the inference that a stimulus distribution is distinct from a noise distribution (King 

& Dehaene, 2014; Peters and Lau, 2015; Fleming 2019). However, the threshold for 

report in the present model is set by the expected free energy functional, which is 

composed of both an epistemic component (i.e., related to the difference between 

posterior expectations over states with and without an observation expected under 

each policy) and a pragmatic component (i.e., related to the deviation of expected 

and preferred observations under each policy; see Friston et al., 2017). The inclusion 

of the pragmatic component allows the PGNW to, in principle, explain the observed 

role of reward in modulating the content of visual consciousness (e.g. Marx & 

Einhäuser, 2015; Dong et al., 2019). 
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 Importantly, if we were to apply a contrastive methodology and compare any 

of the three unconscious sections of the taxonomy with the conscious section, we 

would find that conscious access is associated with an enhanced firing rate at the 

first and second levels of the model. This mirrors the finding that conscious report 

correlates with the enhanced activation of sensory regions and the seemingly all-or-

nothing activation of frontoparietal cortices originally cited in support of the GNW 

taxonomy (e.g. Dehaene et al, 2001). Based on our model, the (seemingly) 

contradictory finding that superior frontal and superior parietal cortices contain 

decodable information across visibility levels (Salti et al., 2015) can be explained as 

the result of using different methods to analyse the same underlying active inference 

architecture. that is, the use of standard univariate analysis on the one hand, which 

looks for voxels that are more activated by visible stimuli than invisible stimuli (e.g. 

Dehaene et al., 2001), and the more sensitive multivariate pattern analysis on the 

other, which instead looks for patterns of information present across voxels. As was 

noted above, using a standard univariate approach to analyse the simulated firing 

rates shown in figure 8 would show that firing rate is enhanced on conscious 

compared to unconscious trials at both the first and second level. However, this 

ignores the presence of stimulus relevant information in the firing rates; although 

firing rates are higher for conscious compared to unconscious conditions, there is 

still a greater than baseline firing rate in unconscious conditions at both the first- and 

second-level within our simulations that could easily be exploited by a classifier. 

Thus, our model can simulate and explain both (seemingly conflicting) results within 

a single neurocomputational architecture. 
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4.2.3 Four-Way Taxonomy: Simulated Event-Related Potentials 

Finally, we examined the ERPs predicted by our model under different quadrants of 

the taxonomy (figure 8, right portion of each quadrant). Here we found that ERPs at 

the first level of the model – which correspond to early components such as the 

P100 and N100 – are relatively unaffected by changes in visibility. In contrast, ERPs 

at the second level – which correspond to late components, and specifically the P3 – 

appear to be strongly modulated by changes in visibility. This emulates the empirical 

findings described in the introduction, in which early components were relatively 

unaffected by changes in visibility while late components displayed a non-linear 

increase in amplitude as visibility increased (DelCul et al.,2007; Sergent et al., 2005).  

 As described above, ERPs are here modelled as the time derivative of the 

depolarisation variable. When confidence in a state changes rapidly, the derivative of 

the depolarisation variable increases in magnitude. This gives us a new perspective 

on late ERP components in the context of visual consciousness. Since the model 

only reports the presence of the square when it is sufficiently more confident about 

the “square present” sequence than the “random bar” sequence, it makes sense that 

verbal reports are accompanied by late ERPs – as they reflect the rapid change in 

beliefs at the second level of the model when the square is presented.  

 However, it is important to highlight that this is not a necessary feature of 

conscious access. If the model is already sufficiently confident in a state – either 

because of a precise likelihood mapping or because the rate of belief updating is 

slowed (by a lack of precision in the likelihood; e.g., because of inattention) – the 

model may report the presence of a stimulus without an accompanying late ERP. 

This is indeed what we see empirically. Specifically, in the inattentional blindness 
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paradigm that guided development of the particular task structure of our model, Pitts 

and colleagues (2012, 2014a, 2014b) found that the P3 is associated with task 

relevance (i.e. attentional set) and not reportability, which was interpreted as 

evidence against the standard model of the GNW. In other words, the amplitude of 

the P3 changed as a function of attentional set – which affects precision – rather 

than conscious access as such. In the next section we discuss in more detail how 

our model can account for this result and demonstrate how the model can shed light 

on the specific electrophysiological correlates of inattentional blindness more 

generally.  

4.3 Inattentional Blindness 

The simulations reported in the previous section were focused on reproducing the 

findings that characterise minimal contrast paradigms associated with the GNW 

theory’s proposed four-way taxonomy. However, minimal contrast paradigms are not 

without limitations. For example, as Aru and colleagues (2012) have argued, these 

paradigms often confound the neural correlates of consciousness with the 

prerequisites to, and consequences of, consciousness. With these confounds in 

mind, in the study referred to above Pitts and colleagues (2014a, 2014b) created a 

three-phase sustained inattentional blindness paradigm that was designed to 

dissociate the electrophysiological correlates of consciousness from the correlates of 

task relevance.   

  The task used the same stimulus set discussed in the previous two sections. 

In phase one, participants were instructed to monitor the external disks for a change 

in colour. Every 600-800ms the internal section of the stimulus alternated between 

random bars and a square, both of which were presented for 300ms. After phase 
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one, participants completed a debrief and 50% of them reported not being aware of 

the square, replicating the findings of Mack and Rock (1998). The debrief acted as a 

cue alerting the participants to the presence of the stimulus. Phase two was identical 

to phase one except that participants had been alerted to the presence of the 

square. Despite not being task relevant, 100% of participants reported having seen a 

square in the subsequent debrief. In phase three, participants were instructed to 

attend to the inside stimulus while ignoring the external disks. Each phase consisted 

of 600 trials, 240 of which were square trials. Before the beginning of the experiment, 

participants performed 300 practice trials where they were asked to perform the 

same task as in phases one and two. Crucially, during the training session only 

random bar segments were shown, establishing a strong prior expectation for 

random bars (we return to this important factor below).  

 Contra the predictions of the GNW model, the ERP results revealed a 

dissociation between awareness and the P3. As expected, in phase one the P3 was 

absent for inattentionally blind participants. However, the P3 was also absent in 

phase two when all participants were conscious of the stimulus despite it not being 

task relevant. In contrast, when the stimulus was conscious and task relevant (in 

phase three), there was a large P3, showing that task relevance is the primary diver 

of this ERP component.  

 Our aim in simulating this task here is to provide a bridge between established 

experimental findings and the more abstract account of the relationship between the 

P3 and visual consciousness advanced in the previous section.  

 Given the training session that preceded phase one of the experiment, and 

the equivalent attentional demands of the distractor task in phase one and phase 
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two, it seems likely that expectation, in addition to attention, played a crucial role in 

the above results. Therefore, we modelled phase one by increasing the prior 

probability of the random bar segment sequence in the second level D vector so that 

the model was twice as confident a priori that it would only be presented with random 

bars compared to squares (we also verified through simulation that these values can 

be learnt upon repeated presentations of random bar sequences). We then found the 

value of the stimulus strength parameter (𝜁 = 2.12) that led the model to report the 

presence of the square ~50% of the time while in an attention-absent state (Σ = 0.1; 

i.e., to match the empirical setup).  

 To model the effect of the debrief that alerted the participants to the presence 

of the square, in phase two we simply increased the prior probability of the “square-

present” sequence so that the model was equally confident a priori that it would be 

presented with squares versus random bars. Phase three was the same as phase 

two, except that the model was in an attentive state toward the possibility of seeing 

the square.  

 

4.3.1 Inattentional Blindness: Simulated Behaviour and Event Related 

Potentials  

We presented the model with 300 square trials, 100 corresponding to each of the 

three sets of parameter values described above. Through stimulus strength 

calibration, in phase one the model reported the presence of the square 49% of the 

time, mirroring the empirical results. Crucially, however, the electrophysiological 

results of all three phases, and the behavioural results of phase two and phase 

three, reproduced the empirical findings without any further adjustments to 
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parameter values. In phase one, there were only early first-level ERPs (see figure 9). 

In phase two, when the “square present” and “random bar” sequences had equal 

prior probability, the model reported the presence of the square on 99% of trials and, 

in line with empirical results, there were again only large first-level ERPs; no late P3-

like ERPs were generated. Finally, in phase three, when the model was attending to 

the internal stimulus, the square was reported on 100% of trials and there was a 

large and late ERP at the second level resembling the P3. Considering the idealised 

nature of the model, the simulated ERPs displayed in figure 9 bear a striking 

resemblance to the empirically observed ERPs.  

 

Sustained Inattentional Blindness

Phase 1 Phase 3Phase 2Percent seen = 49% Percent seen = 99% Percent seen = 100% 
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Figure 9. Report frequency, simulated ERPs, and associated firing rates predicted for each of the 

three phases of the sustained inattentional blindness task. The empirical ERP plots, taken from the 

original study conducted by Pitts et al (2014), show the amplitude for “random bar” (black) versus 

“square present” (red) trials at electrode CZ. Firing rate plots illustrate how more gradual updates in 

2nd - level beliefs do not produce P3-like ERPs (middle panel, Phase 2) despite self-reported 

experience of the square, while a faster rate of change in 2nd - level beliefs does produce P3-like 

ERPs (right panel, Phase 3) in addition to identical self-reported experience, Note that in Phase 1, 

2nd - level firing rates initially favour the lines over the square, due to prior expectations learned 

during the previous training phase.  

 This result is noteworthy. The dissociation of the P3 and visual consciousness 

emerges naturally out of the belief updating scheme that underwrites the PGNW. 

Further, it leads to a straightforward prediction; visual consciousness will be 

accompanied by a late ERP whenever confidence in a particular state at a high level 

of the hierarchy changes rapidly.  

 Having shown that our model reproduces the minimal contrast results cited in 

support of the original formulation of the GNW, explains away otherwise 

contradictory results in the minimal contrast literature, and accounts for the 

dissociation of the P3 and visual awareness, we now turn to the role of visual 

expectation – and illustrate how our model offers an extension of the previously 

introduced four-way taxonomy of factors underlying conscious report. In addition to 

attention and stimulus strength, our model introduces a third factor: trial-by-trial 

changes in prior visual expectation.  
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4.4 Extended Taxonomy: Expectation and Visual Consciousness  

There is now a large body of evidence showing that expectation plays a fundamental 

role in determining the content of visual consciousness. Specifically, under 

conditions of continuous flash suppression predictive cues accelerate the entry of a 

suppressed stimulus into consciousness (van Gaal et al., 2015). In binocular rivalry 

paradigms, predictive context increases the dominance of stimuli congruent with that 

context (Denison et al., 2011; Valuch & Kulke, 2019). Cross-modal predictions also 

accelerate the re-entry of stimuli into consciousness after a period of motion induced 

blindness (Chang et al., 2015). In the absence of attention, expectations reliably 

induce illusory perception of absent stimuli (Aru et al., 2018). And, when viewing 

ambiguous figures, expectations have been shown to bias the perceived direction of 

rotation. (Sterzer et al., 2008). In light of this, if visual consciousness is to be fully 

understood, it appears essential to extend the taxonomy of factors underlying 

conscious access to include expectation.  

 Expectation is typically manipulated by either exposing subjects to repeated 

instances of a stimulus, or by providing an explicit cue that informs subjects about 

the conditional probability that a stimulus will appear. Within the active inference 

framework manipulating expectation via a history of exposure corresponds to 

learning, while the use of explicit cues corresponds to inference. Trial-by-trial 

inference is reflected in the firing rates of neuronal populations encoding posterior 

beliefs over states and policies, while learning is the result of extended periods of 

belief updating and occurs over a longer time-scale corresponding to the 

modification of synaptic weights (modelled as the accumulation of concentration 

parameters in a Dirichlet distribution).  
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 Here we focus exclusively on inference. Paradigms that involve learning (e.g. 

Mayer et al., 2015), although arguably more ecologically valid (Gordon et al., 2017; 

2019), do not allow stimulus visibility and attention to be dissociated or controlled for 

in as tight a manner as the minimal contrast paradigms around which the taxonomy 

is built – making it difficult to meaningfully compare interactions between factors.  

 To integrate the role of expectation – and the violation of expectation – into 

the taxonomy, we altered the prior probability of the “square present” sequence in 

the second level D vector for each of the four parameter settings used in the four-

way taxonomy, such that the model was twice as confident a priori in either the 

“square present” sequence (consistent prior expectation condition) or the “random 

bar” sequence (inconsistent prior expectation condition). We treated each trial as 

independent, so the manipulation of prior expectations most plausibly corresponds to 

the use of explicit cues.  

 We retained the same generative model architecture used in the previous two 

sections, allowing us to independently manipulate expectation, attention, and 

stimulus strength. We are aware, however, that independently manipulating these 

factors in an experimental setting is far from trivial. In the interest of making our 

model empirically useful, we end this section by proposing a novel Posner cueing 

paradigm aimed at empirically validating the results of our simulations.  

 Finally, it must be highlighted that the behavioural results of the following 

simulations should be interpreted as directional hypotheses, as opposed to precise 

predictions about the percentage of seen vs unseen trials. In contrast to firing rates 

and ERPs, the model’s report behaviour (policy selection) depends on a number of 
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parameters (policy precision and motor stochasticity) that need to be fitted to each 

participant individually and will substantially shift the effect of prior expectation.  

 

4.4.1 Extend Taxonomy: Simulated Behaviour 

Here we presented the model with 800 “square present” trials, 100 corresponding to 

“consistent prior” and “inconsistent prior” conditions, for each of the four parameter 

settings used in the four-way taxonomy. Across all taxonomy conditions, we found 

that consistent prior expectations increased both the accuracy of forced-choice 

behaviour and the percentage of trials where the model reported having seen the 

stimulus (see figure 10). Similarly, inconsistent prior expectations decreased both the 

accuracy and the number of seen trials. The enhancing effect of consistent priors 

was particularly strong for the “weak signal + attention present” and “strong signal + 

attention absent” conditions – increasing the number of trials reported as seen in the 

four-way taxonomy from 8% to 79% and 16% to 87% respectively (compare figure 8 

to figure 10). This result makes intuitive sense; expectations will have the greatest 

enhancing effect on visibility when a stimulus is only marginally below the threshold 

for “ignition”.   

 While these results are consistent with a number of studies showing an 

enhancing effect of consistent prior expectations for both forced-choice performance 

and stimulus detection (Aru et al., 2016; Stein, & Peelen, 2015) there is some 

evidence showing that when expectations are induced by explicit cues, they boost 

subjective visibility but do not alter accuracy (Andersen et al., 2019). Similarly, Lamy 

et al (2017) found that prior experience of a target increased visibility but did not alter 

response priming. Here forced-choice behaviour, like subjective report, depends on 
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policy selection at the second level of the model. However, if forced choice 

behaviour depends upon a distinct neural substrate that operates over a shorter 

timescale than subjective report, it would be better modelled by policy selection at 

the first level of the model (c.f. Maniscalco & Lau, 2016). If this were the case 

increasing the prior probability of a state at the second level (as we have done here) 

would have a marginal effect on forced-choice behaviour. This represents an 

important possible extension of our model architecture that will be addressed in 

future work. 

 

Figure 10. Report frequency, forced choice behaviour, and simulated firing rates predicted for each 

consistent-inconsistent prior combination of the quadrants shown in the four-way taxonomy. Relative 

to the results of the four-way taxonomy, consistent expectations increased forced choice accuracy, 

the percentage of trials reported as “seen”, and boosted the enhancing effect of feedback from the 

higher level. Inconsistent priors had the opposite effect, reducing accuracy, the percentage of “seen” 

trials and first level firing rates.   
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4.4.2 Extending the Taxonomy: Simulated Firing Rates 

Next, we simulated the firing rates associated with consistent and inconsistent priors. 

In all sections of the extended-taxonomy, relative to the four-way taxonomy, 

consistent priors enhanced the amplifying effect of feedback.  Correspondingly, 

inconsistent priors dampened the effect of feedback. Interestingly, in the “strong 

signal + attention present” condition, although inconsistent priors dampened the 

amplifying effect of feedback (i.e., in comparison to the four-way taxonomy and the 

consistent prior condition), the net effect of feedback still raised the firing rate of first 

level neuronal populations. 

  This makes intuitive sense; feedback is driven by posterior confidence at the 

second level, and, in all but the “strong signal + attention present” condition, the 

sensory likelihood mapping is relatively imprecise. As such, posterior confidence at 

the second level is dominated by the effect of prior expectation. Consistent 

expectations increase second-level posterior confidence to a sufficiently large 

degree to shift otherwise unconscious trials over the threshold for “ignition,” thus 

magnifying the feedback to the first level (while inconsistent priors reduce posterior 

confidence and dampen top-down feedback). In contrast, when the first-level 

likelihood mapping is more precise, as is the case in the “strong signal + attention 

present” condition, inconsistent priors carry less influence and second-level posterior 

confidence in the “square-present” sequence is still high enough to enhance top-

down feedback (i.e., despite it being dampened relative to the four-way taxonomy 

and consistent prior condition).  

 This result produces three novel predictions. First, when consistent 

expectations raise posterior confidence past the threshold for ignition, feedback from 
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frontoparietal to sensory regions will be enhanced. Second, when a stimulus is well 

above threshold, inconsistent expectations will reduce the amplification of feedback 

relative to consistent expectations. Third, based on the extrinsic connectivity 

predicted by the neural process theory (see figure 2), feedback from frontoparietal to 

sensory regions will be associated with a specific pattern of effective connectivity. 

Specifically, consistent prior expectations are predicted to disinhibit granular layers in 

the relevant neuronal populations in sensory cortices (via feedback connections 

originating in superficial pyramidal cells in frontoparietal regions), while inconsistent 

priors are predicted to inhibit granular layers in the same lower-level neuronal 

populations. This last prediction, although highly specific, can be readily tested via 

dynamic causal modelling (e.g. Parr et al., 2019b).  

 

4.4.3 Extend Taxonomy: Simulated Event Related Potentials 

Lastly, we simulated the ERPs predicted by our model for all combinations of 

consistent and inconsistent prior expectation conditions (see figure 11). In the “weak 

signal + attention absent” condition, relative to the four-way taxonomy, both 

inconsistent priors and consistent priors increased the amplitude of second level 

ERPs. When the signal was ambiguous in the “weak signal + attention present” and 

“strong signal +attention absent” conditions, consistent priors increased the 

amplitude of 2nd-level ERPs relative to both inconsistent priors and the four-way 

taxonomy. However, the increases in amplitude are small and may not be detectable 

at the level of the scalp.  In contrast, for the “strong signal + attention present” 

condition consistent priors greatly increased the amplitude of the 2nd-level ERPs 
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relative to the four-way taxonomy, while inconsistent expectations decreased the 

amplitude of 2nd-level ERPs.  

 Again, this makes intuitive sense, upon presentation of the critical stimulus 

consistent priors increase the rate of second-level posterior confidence updates 

increasing the amplitude of 2nd-level ERPs, and boosting otherwise unconscious 

trials past the threshold for “ignition”. 

 Importantly, these results lead to another novel prediction. Contingent upon 

sensory input being sufficiently precise, consistent prior expectations induced via an 

explicit cue should increase the amplitude of the P3 (relative to expectation neutral 

conditions), whilst inconsistent prior expectations should decrease the amplitude of 

the P3.  

 Finally, it must be emphasised that this prediction is specific to paradigms that 

involve inference as opposed to learning. In the context of learning, the repeated 

presentation of a stimulus would be expected to cause the second level of the model 

to become increasingly confident in one sequence over another – to the point that 

the presentation of a critical stimulus would result in smaller belief updates, and 

consequently, result in smaller ERPs. Indeed, this is exactly what we see empirically. 

Melloni et al (2011) found that expectations induced via a history of prior exposure 

both increased the proportion of trials reported as seen and decreased the amplitude 

of the P3.  

 We describe this, not to provide a concrete hypothesis, but to distinguish the 

experimental settings appropriate to the predictions of the current model from similar 

but ultimately distinct settings.  
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Figure 11. ERPs predicted for each consistent-inconsistent prior combination of the quadrants of the 

four-way taxonomy. Dotted black lines show the ERPs predicted by the original four-way taxonomy 

without expectation manipulations. Solid lines show the ERPs predicted for the specific consistent and 

inconsistent prior manipulations.  

 

4.4.4 Extend Taxonomy: A Novel Paradigm for Dissecting the Influences of 

Signal Strength, Attention, and Expectation on Conscious Access.  

The structure of our generative model is generic enough to generalise across 

paradigms that involve inference; however, as noted above, in an empirical setting 

independently manipulating expectation, signal strength, and attention poses a 

number of methodological challenges, with expectation often being confounded with 

attention (e.g. Rahnev et al., 2011). In the interest of making the predictions of our 

model as straightforward to test as possible, we here outline a possible extension of 

the Posner cueing paradigm introduced by Kok and colleagues (2012) that would 

allow for the independent manipulation of expectation, signal strength, and attention. 
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The key feature of the design is the orthogonal manipulation of expectation and 

attention (see figure 12). Expectation can be manipulated in a block-wise manner with 

a predictive cue appearing at the beginning of every block consisting of a word (“left”, 

“right” or “neutral”) indicating the likelihood with which the stimulus will appear in a 

particular hemifield on each trial. Attention, in contrast, will be manipulated in a trial-

wise manner, with a cue appearing at the start of every trial indicating the hemifield to 

which the subject should covertly direct their attention. However, the attention cue will 

contain no information about the likelihood of the stimulus’ location. Finally, stimulus 

strength will be manipulated by altering the time between the stimulus and the 

backward mask. Each block would begin with a predictive cue, and each trial would 

begin with the presentation of an attention cue, followed by a briefly presented stimulus 

(a grating in the above figure) that is congruent with the prediction on 75% of trials 

(paired with either a backwards mask or a blank). Subsequent to the presentation of 

the mask (or blank), subjects would be given a forced-choice task and asked to provide 

a subjective report.  

Crucially, since expectation, attention, and stimulus strength are manipulated 

independently of each other, this paradigm could allow all 12 quadrants of the 

extended taxonomy to be studied within one paradigm.  
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Figure 12. A potential extension of Posner cueing paradigm introduced by Kok and colleagues (2012) 

that could allow for the independent manipulation of expectation, stimulus strength, and attention. By 

manipulating expectation in a block-wise manner, and attention and stimulus strength in a trial-wise 

manner, the paradigm would allow all twelve combinations of expectation (consistent, neutral, 

inconsistent) by attention (present, absent) by stimulus strength (strong, weak) to be studied within 

one paradigm. Shown above are predicted/attended and unpredicted/unattended combinations. 

 

5. Discussion 

5.1 The role of deep temporal structure 

 

The defining (measurable) feature of conscious access is subjective report (Baars, 

1988; Dehaene, 2014; Fleming, 2019), which requires the coordination of processing 

between perceptual, motor, and auditory-verbal systems, all of which evolve over a 

rapid temporal scale. The core notion underlying our model is that conscious access 

is a fundamentally inferential process that can only occur at a level of processing that 

is sufficiently temporally deep to integrate information from lower levels of the 
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hierarchy and contextualise processing at these lower levels. To produce subjective 

reports, a system must infer the state of a lower level perceptual system, integrate 

this information into a representation that is not tethered to the moment by moment 

sensory flux, and use this representation to modulate more controlled, slowly 

evolving trajectories of action over time. Put another way, temporally deeper levels 

are necessary to encode patterns of covariance in lower-level sensory and motor 

representations over time under different goal states. Without a sensory 

representation updating predicted patterns of covariance at this higher level (to a 

sufficient degree), the use of that piece of sensory information by the more complex 

cognitive processes carried out at the higher level would be greatly limited (i.e., only 

promoting implicit biases through small changes in higher-level posterior 

distributions).  

 The first major insight afforded by our model is that many previous 

electrophysiological results can be reproduced based only on assuming a simple 2-

level model with deep temporal structure. Self-reported conscious vs. unconscious 

percepts can then be accounted for by specifying the integrative functions of the 

higher level of the model that are plausible based on the known neural correlates of 

consciousness, and how the different hidden state factors (which could perhaps 

correspond to distributed processing hubs within association cortices implicated in 

domain-general cognition i.e. van den Heuvel et al., 2012) operate on those 

contents. The second major insight comes from how our model illustrates the way 

prior expectation can fit seamlessly within this structure – affording a number of 

novel, testable predictions. 
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5.2 Relationship to Other Models 

The PGNW is a formal extension of the GNW and, as such, the models share many 

similarities. However, as should be clear by this point, the PGNW diverges 

substantially from the original GNW model. Ultimately, the point of departure for the 

PGNW is its implementation in an active inference architecture, which, as we have 

shown, has a number of important consequences. Foremost, by leveraging the 

process theory that accompanies active inference, we are able to reproduce/explain 

previous findings and make predictions about the neurobiological implementation of 

the inferential machinery that we argue underlies conscious access. Crucially, this 

also allows the PGNW to make specific predictions about the role of visual 

expectation. In contrast, the inferential machinery cited in support of the standard 

GNW model (i.e. King & Dehaene 2014) remains at the algorithmic level of 

description (in the sense of Marr, 1980). What the PGNW retains is the fundamental 

insight that conscious access makes information widely available to domain-general 

cognitive processes (i.e., represented by the different state factors at the second 

level of our model). It is for this reason that we retain the workspace label. However, 

unlike the initial conceptual account of the PGNW introduced by Whyte (2019) which, 

as Marvan and Tomáš (2020) point out, relies on explanatory machinery external to 

the active inference framework to explain conscious access, here we identify the 

global availability of information with temporally deep processing, and conscious 

access with the posterior confidence threshold required for report (broadly construed 

as goal-directed verbal report, button presses, saccades or any other method of 

goal-directed reporting of subjective content). As such the PGNW explains conscious 

access exclusively in terms of the explanatory tools of active inference.  
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 The model that is most similar to the PGNW is Fleming’s (2019) higher-order 

state-space (HOSS). Both the PGNW and HOSS are implemented in hierarchical 

generative models, and as such they entail similar predictions. However, there are 

two key points of separation. First, HOSS casts conscious access as a 

metacognitive inference about the presence or absence of a stimulus in the content 

of a generative model of perception. This inference relies on an abstract state 

representing presence or absence that is independent of the specific content of a 

stimulus. The function of this metacognitive state is to differentiate stimulus 

representations from noise distributions at lower levels of the model (c.f. Lau, 2007, 

2019). A stimulus representation becomes available for report according to HOSS 

when the model infers that a distribution is different enough from a noise distribution 

to be classified as present.  

 There is a sense in which HOSS is simply a higher-order version of the 

PGNW. In fact, it would be relatively simple to introduce a new hidden state factor 

corresponding to the presence or absence of a stimulus and factorise a generative 

model such that the presence of the stimulus would be independent of the content of 

the stimulus. Computationally, however, this state would have no function. Precision 

estimation is an inbuilt feature of active inference architectures (see Parr & Friston 

2017 for technical details) that modulates the updating process in response to the 

estimated reliability of a bottom-up signal, without needing to posit an additional 

abstract state representing presence and absence.   

 This brings us to a second key difference. According to the HOSS model, 

absence of a stimulus is explicitly represented in addition to all the possible states of 

a stimulus making the state space asymmetric. Fleming (2019) leverages this 
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asymmetry to explain the ignition response that sweeps across frontoparietal 

cortices during conscious access. Because there are many more ways that a 

stimulus can be present than absent, the presence of a stimulus causes larger belief 

updates than when a stimulus is absent. Although this is ultimately an empirical 

question, we regard the explicit representation of the absence of a stimulus in the 

perceptual state space to be a less realistic idealisation. Participants in minimal 

contrast paradigms are fully aware of the background screen and the task 

requirements, and frontoparietal cortices are, of course, active the whole time. The 

wide scale activation of these regions when a stimulus is seen is only apparent 

because we isolate the processes underlying the reportability of the stimulus, while 

holding all of these other variables constant. When participants do not report a 

stimulus, they are not perceiving “absence”; at a minimum the content of perception 

will include the background screen. It may be a mistake, therefore, to explicitly 

represent the absence of a stimulus in a generative model of perception. Instead, as 

we have done in the current model, the state space should consist of sequences of 

stimuli with and without the critical stimulus. The ignition response is then instead 

explained by the update that occurs at temporally deep levels of the model when the 

stimulus is seen as opposed to unseen.   

 

5.3 Brief Note on Phenomenology 

Although not the focus of this paper, it is worth briefly clarifying how phenomenology 

does and does not situate plausibly within our model. Specifically, we would like to 

avoid implicitly conveying that the phenomenological contents of consciousness 

correspond to the contents of second-level states. A major problem with this is that 
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the contents of second-level states appear to operate on timescales that are too slow 

to match the moment-to-moment sensory flux.  

 However, there is also a problem with identifying phenomenological contents 

with the contents of lower-level states. To see why, consider that, as is the case in 

our model, there is no explicit representation of absence at the higher level 

generating reports. The model will always represent and report an experience of 

something (e.g., either lines or a square) based on the posterior distribution over 

second-level states. If this architecture is representative of human cognition, it 

highlights an interesting change in perspective. Specifically, the question about 

phenomenology being separable from access (c.f. Block, 2005) changes to a 

question about the possibility of inconsistencies between phenomenology and what 

was accessed (i.e., the states represented at the second level). For example, if the 

agent reported currently seeing lines (and not a square), and yet a square stimulus 

was present, a strong distinction between phenomenology and access would not 

merely entail that “square” phenomenology was present but not accessed. Instead it 

would mean that the agent’s confident self-reported phenomenology of experiencing 

lines (i.e., what was represented at the second level) was inconsistent with their 

“true” phenomenology (in other words, they would be wrong about what they 

believed they were currently experiencing or had just experienced). Taken to the 

extreme, this would entail that any honestly reported phenomenology could be 

problematically different from true phenomenology (e.g., a person honestly reporting 

experiencing a loud screeching sound could have the “true” phenomenology of a 

hearing a piece of classical music).  
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Another way to highlight this problem formally is by considering that one could 

manipulate the second-level likelihood mapping (A matrix) in our model while leaving 

the first-level likelihood mapping unchanged. If so, first-level states would still reliably 

track presented stimuli (e.g., square stimuli would activate first-level square states), 

but those states could now update the second-level in an entirely different way. For 

example, with the right second-level likelihood mapping, red circle and line 

representations at the first level could be specified so as to activate representations 

of, and promote self-reported phenomenology of, a black circle and a square (which 

would also obviously be problematic for the empirical study of conscious 

experience). 

 To avoid this uncomfortable conclusion, while also keeping sensory 

phenomenology at the correct timescale, we suggest that phenomenology in our 

model is most plausibly situated at the point in which (and based on the manner in 

which) lower-level representations update the content of higher-level states. In other 

words, at the point where the higher level assesses or “decodes” the contents of the 

lower level through the second-level likelihood mapping (A matrix). These updates 

occur at the fast timescales associated with the sensory flux; yet, the nature of each 

fast-timescale update (i.e., the nature of the influence the first level has on the 

second level at each time point) will necessarily be correlated with self-reported 

beliefs about what type of phenomenology was experienced – preventing the 

possibility of strong disagreements between “true” and self-reported beliefs about 

phenomenology (for more on this line of argument see Smith, 2016).  
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5.4 Limitations 

To make the PGNW testable, we have deliberately limited the scope of the model to 

experimental settings where visual consciousness is operationalised via report. We 

follow Baars (1988) in taking report, or rather the availability of information for report, 

as the epistemic foundation of the scientific study of consciousness. However, we 

acknowledge that report paradigms come with methodological difficulties (Tsuchiya 

et al., 2015). By the same token, in limiting the scope of the PGNW to the visual 

modality, we are aware that we are reifying the pervasive bias in consciousness 

science of primarily studying vision. That said, it is crucial to emphasise that the 

model structure is sufficiently general that it can be straightforwardly applied to other 

modalities (e.g., first-level observations could fairly easily be understood as auditory 

as opposed to visual). A somewhat similar 2-level architecture was also recently 

employed to simulate emotional awareness based on interoceptive stimuli (Smith, et 

al., 2019a).  

 In addition to these big picture limitations, our model has a number of more 

specific limitations that apply strictly to the study of visual consciousness. Principally, 

our model only has two levels and we treat the entire visual system as a singular and 

discrete level instead of modelling it for what it is – a continuous and multi-level 

system. The need for multiple levels brings us to the next limitation. As Kouider et al 

(2010) argue, people are often only partially aware of a visual scene in the sense 

that they may be aware of an object’s colour but not its identity. This requires 

information to skip levels of the hierarchy, which is also not possible in the present 

model. A more complete model would therefore allow both shallower and deeper 
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representations to selectively update the workspace (e.g., allowing separable 

awareness of representations of an eye vs. a face vs. a person’s identity).  

 

6. Conclusions and Future Directions 

This paper introduced a formal extension of the global neuronal workspace – the 

predictive global neuronal workspace – implemented within a deep active inference 

architecture. In addition to explaining and unifying otherwise disparate findings in the 

neural correlates of visual consciousness literature, the predictive global neuronal 

workspace generates several predictions and mechanistic explanations about the 

relationship of the P3 to subjective report, the neurobiological implementation of the 

inferential machinery underlying conscious access, and the role of expectation in 

visual consciousness.  

 In future work, we hope to build on the wealth of existing active inference 

models (e.g. Allen et al., 2019; Parr et al., 2019c; Smith et al.,2019a; 2019b), to 

extend the PGNW to other sensory modalities and more sophisticated experimental 

paradigms.  

 

 

 

Software note: The generative model detailed in this paper used a generic belief 

updating scheme (spm_MDP_VB_X.m) implemented in Matlab code using the freely 

available SPM academic software: https://www.fil.ion.ucl.ac.uk/spm/. The scripts 

used to produce the simulations are included in the supplementary material.  
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