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Abstract: The global neuronal workspace (GNW) model has inspired over two 

decades of hypothesis driven research on the neural basis consciousness. However, 

recent studies have reported findings that are at odds with empirical predictions of 

the model. Further, the macro-anatomical focus of current GNW research has limited 

the specificity of predictions afforded by the model. In this paper we present a 

neurocomputational model – based on Active Inference – that captures central 

architectural elements of the GNW and is able to address these limitations. The 

resulting ‘predictive global workspace’ casts neuronal dynamics as approximating 

Bayesian inference, allowing precise, testable predictions at both the behavioural 

and neural levels of description. We report simulations demonstrating the model’s 

ability to reproduce: 1) the electrophysiological and behaviour results observed in 

previous studies of inattentional blindness; and 2) the previously introduced four-way 

taxonomy predicted by the GNW, which describes the relationship between 

consciousness, attention, and sensory signal strength. We then illustrate how our 

model can reconcile/explain (apparently) conflicting findings, extend the GNW 

taxonomy to include the influence of prior expectations, and inspire novel paradigms 

to test associated behavioural and neural predictions. 
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1. Introduction 

Global workspace theory (GWT) is one of the most widely supported neuroscientific 

theories of consciousness (Michel et al., 2018). GWT was first proposed by Baars 

(1988) as a cognitive architecture that identifies consciousness with the global 

availability of information. According to GWT, information becomes conscious when 

it is simultaneously made available to a wide range of localized (and individually sub-

personal) processes – jointly comprising a ‘global workspace’. More recently, 

Dehaene and colleagues have advanced a global neuronal workspace (GNW) 

model, which identifies the global workspace with a large-scale network of excitatory 

pyramidal neurons with long-range axonal pathways connecting prefrontal and 

parietal cortices (Dehaene & Changeux, 2011; Dehaene et al., 2011; Mashour, 

Roelfsema, Changeux, & Dehaene, 2020). The key working hypothesis of the GNW 

is that when a stimulus becomes conscious there will be a late, non-linear, all-or-

nothing “ignition” of prefrontal and parietal regions (Dehaene and Changeux, 2011; 

Dehaene, 2014; Mashour et al., 2020) corresponding to the large-scale influence of 

selected (otherwise unconscious) representations of perceptual features encoded 

locally within sensory cortices. In contrast, activity related to stimuli that is rendered 

unconscious (e.g., by masking or inattention) will fail to attain this global influence 

and related neuronal activity will only be observable locally within sensory cortices. 

Behavioural and neurobiological predictions of the GNW can be broadly 

summarised in terms of a four-way taxonomy describing the relationship between 

consciousness, bottom-up sensory signal strength, and attention-based modulation 

(Dehaene et al., 2006). Specifically, in the absence of attention the activation caused 

by the presence of a weak stimulus should remain within early extrastriate areas, 

leading to weak priming effects (i.e. only slightly above chance) and unavailability for 
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conscious report. When stimulus strength is weak but attention is present, the signal 

should reach deeper levels of extrastriate cortex – leading to noticeable priming 

effects (i.e. above chance) yet still unavailable for report. When stimulus strength is 

increased, but attention is absent, this should allow for deep processing, again 

facilitating noticeable (e.g., semantic) priming effects but activation should remain 

limited to sensory areas and be unavailable for report. Finally, when a strong signal 

has made its way to deep levels of processing and is amplified by top-down 

attention, prefrontal and parietal loops will be recruited to maintain sensory 

information through recurrent activity – thereby making it broadly available to large-

scale networks subserving domain-general (goal-directed) cognition and allowing for 

conscious report (among other adaptive uses).   

These predictions, while by no means uncontroversial, have been largely 

corroborated. In a pioneering fMRI study, Dehaene and colleagues found that 

conscious report of rapidly presented words resulted in the wide-spread activation of 

prefrontal, temporal and parietal regions, whereas activity remained within sensory 

regions when the stimulus was rendered invisible via masking (Dehaene et al, 2001). 

In a meta-contrast masking paradigm combined with electroencephologaphy (EEG), 

DelCul et al (2007) found that early event-related potential (ERP) components did 

not display a significant difference between seen and unseen conditions, while the 

late P3 component showed a significant non-linear increase in amplitude between 

seen and unseen conditions. Importantly, objective task performance was well above 

chance even at the lowest visibility rating. Similarly, using an attentional blink 

paradigm, Sergent et al (2005) found that early ERP components either did not vary 

with visibility, or had a linear relationship with visibility. In contrast, late components, 

such as the P3, showed non-linear increases in amplitude when T2 visibility was 
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above 50%. Work using multivariate decoding in magnetoencephalography (MEG) 

has extended this finding, showing that, in comparison to temporally adjacent 

distractor stimuli, consciously reported target stimuli display a stronger and more 

sustained pattern of activation (Marti & Dehaene, 2017). Convincingly, when 

recording from intracranial electrodes implanted in epilepsy patients, Gaillard et al 

(2009, p.475) found that conscious word perception had a significant effect on many 

frontal and parietal electrodes, whilst the electrodes showing a significant effect of 

unconscious perception were almost all located in the occipital and temporal lobes. 

Most recently, van Vugt et al, (2018) used multiunit electrodes implanted in 

non-human primate V1, V4, and dlPFC to study the relationship between the 

threshold for conscious access and ignition dynamics in PFC. Monkeys were trained 

to report a visual stimulus presented at low contrasts by making a saccade to a 

particular location. On unseen trials activity propagated through V1 (sometimes 

reaching V4), but the signal was lost before reaching PFC. In contrast, on seen trials 

activity was propagated with a high firing rate through V1 and V4, and caused a non-

linear activation of dlPFC. Crucially, although not as pronounced as on seen trials, 

false alarm trials were also characterised by a spontaneous ignition like pattern of 

activation in dlPFC. These results support the conclusions of a recent modelling 

study (Joglekar et al, 2018), which showed that ignition like dynamics emerge 

naturally from a neural network constructed to mirror connectivity of the macaque 

cortex. As with van Vugt et al, (2018), they found that feedforward connections, 

when balanced by local inhibitory connections, steadily propagate activity forwards 

until the signal reaches PFC, at which point feedback connections cause a late and 

non-linear ignition like pattern of activity (for a discussion and up to date review of 

the theory and evidence behind the GNW see Mashour et al., 2020).  
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Despite the flood of research supporting the GNW, the theory also has a 

number of limitations. First, it is largely described at the level of gross neuroanatomy, 

leaving the details of cortical micro-architecture unspecified, which in turn limits 

limiting the granularity of predictions. Second, the GNW is agnostic about the 

implementation of expectation, rendering the theory unable to engage with a large 

body of evidence highlighting the role of expectation in visual consciousness (e.g. 

Chang et al., 2015; Denison et al., 2011; Valuch & Kulke, 2019; van Gaal et al., 

2015). 

 Of greater concern is the fact that, as experimental paradigms have become 

more sophisticated, two predictions of the original theory have been falsified. For 

example, in a delay matching task, multivariate decoding showed that the brain 

represented both target presence and target orientation for an entire 800ms delay 

period across visibility levels. In addition, whilst target visibility correlated with 

decoding accuracy for target presence, unseen stimuli still exhibited a stable pattern 

of activation that generalised across time, suggesting that information did not have to 

be conscious to enter later phases of processing (King et al.,2016). This 

corroborates the findings of Salti and colleagues (Salti et al.,2015) who showed that 

target position could be decoded from superior frontal and superior parietal cortices 

in both seen and unseen conditions. Together these results demonstrate that, 

contrary to the original formulation of the GNW, information is processed and 

unconsciously maintained (at least briefly and insofar as multivariate decoding is a 

defensible proxy for information processing) by the same structures implicated in 

conscious processing.  

Another seemingly inconsistent result was found by Pitts et al (2014). Using a 

novel inattentional blindness paradigm, they showed that the P3, which was initially 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2020. ; https://doi.org/10.1101/2020.02.11.944611doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.11.944611
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

 

thought to discriminate whether information had entered the global workspace (see 

Dehaene, 2014, p.180), was driven by task relevance and not conscious access. 

This result was recently replicated in a standard masking paradigm (Cohen, et al., 

2020) showing unequivocally that the P3 is related to task relevance and is not a 

necessary signature of conscious access. 

 To the credit of GNW theorists, the model has been revised to accommodate 

these findings. First, a revised computational model of subjective report has been 

proposed, which, in addition to frontoparietal activity, requires that a stimulus 

representation can be separated from a noise distribution (King & Dehaene, 2014). 

Second, the claim that the P3 is a specific marker of conscious access (Dehaene et 

al., 2014) is no longer defended. However, the modified computational model of 

subjective report (King & Dehaene, 2014) is too idealised to make neurobiological 

predictions. In addition, the abandonment of the P3 as a signature of conscious 

access was not accompanied by any theoretical revisions and makes no additional 

behavioural or neurobiological predictions. This situates the GNW in a tenuous 

position, in which revision primarily explains away contrary results – a recognized 

characteristic of degenerative research programs (Lakatos, 1970). 

 Here we aim to make progress in overcoming these limitations by advancing 

an extension of the global neuronal workspace - the predictive global neuronal 

workspace (PGNW) - that unifies essential aspects of the GNW with the more recent 

(Bayesian) Active Inference approach to understanding brain function. Specifically, 

we present a hierarchical, partially-observable Markov decision process (POMDP) 

model of visual consciousness based upon Active Inference. Importantly, we 

leverage the neural process theory associated with Active Inference to make explicit 

links between neurobiology and the simulations afforded by the model. 
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Formalising ideas first introduced by Hohwy (2013), Whyte (2019), and 

Friston et al (2012), we will argue that conscious access or “ignition” is a 

fundamentally inferential process that depends upon a level of processing of 

sufficient temporal depth to contextualise and coordinate lower levels of processing. 

This longer timescale coordination is seen as necessary for the generation of 

subjective reports. Here, subjective reports stand in as one example of a broader set 

of temporally extended action plans (i.e., extended sequences of actions), the 

generation of which requires integration, maintenance, and manipulation of 

information over sufficient lengths of time – and where that information is sufficiently 

complex to guide the controlled generation of such goal-directed behaviours. For 

instance, combining conceptual contents associated with words such as “I”, “see”, 

“a”, “red” and “square” requires representing contents of much greater abstraction 

and temporal depth than is necessary for representing the perceptual property 

denoted by the word “red”.  

 To build on the previous conceptual contributions in this area mentioned 

above, we substantiate our arguments with a series of detailed computational 

simulations. These simulations are based upon the first principles account of 

perception and action selection offered by Active Inference. The simulations we 

show are also implemented using standard routines (that are available via open 

access; see software note), which will allow the reader to replicate our results and 

customize these simulations for their own purposes. The proof of principle offered by 

these simulations is particularly important when it comes to understanding the 

neuronal processes that implement the belief updating underlying the GNW 

formulation of conscious access. We mention this here to prepare the reader for a 

somewhat lengthy paper that must first cover some fundamentals that may appear a 
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bit technical. However, as we will show, having an in silico subject at hand allows us 

to demonstrate how a host of otherwise disparate findings in current neuroscience 

research on visual consciousness can be explained by a first principles account of 

brain function. 

 To begin, we provide a brief primer on Active Inference and POMDPs, 

followed by a specification of the specific structure of the generative model we will 

employ, paying close attention to the importance of temporal depth. With the 

groundwork laid out, we show through simulations that the model can both; 1) unify 

seemingly contradictory previous results; and 2) reproduce the essential aspects of 

the four-way taxonomy predicted by the GNW, describing the relationship between 

conscious access, attention, and stimulus strength. Using the same generative 

model architecture, we then reproduce (and offer mechanistic explanations for) the 

electrophysiological and behavioural results of the inattentional blindness paradigm 

introduced by Pitts et al (2014).  

Next, we turn to the role of expectation in visual consciousness and show how 

our model can extend the original four-way taxonomy of GNW theory to encompass 

paradigms that manipulate prior expectations on a trial-by-trial basis – highlighting 

the novel predictions that emerge from this extension. We also describe a novel 

paradigm that could be used to test distinct model predictions regarding dissociable 

effects of expectation, attention, and stimulus strength. We end by examining the 

relationship between the PGNW and alternative models, and briefly address 

potential concerns about how phenomenal consciousness could plausibly be 

situated within our model. However, this paper is chiefly concerned with what Block 

(2005) terms “access consciousness” which is defined as the availability of 

information for verbal report, voluntary action, and executive processing. For brevity, 
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we will use “conscious access” and “consciousness” interchangeably throughout the 

paper unless otherwise indicated.  

 

2. Theory 

2.1 A Primer on Active Inference  

Active Inference, a corollary of the free energy principle (FEP), is a first principles 

approach to modelling (approximately) Bayes optimal behaviour (Friston; 2010; 

Friston et al, 2016, 2017a). The FEP starts from the tautology that, in order for a self-

organising system to maintain the integrity of its internal milieu, it must stay within 

the narrow range of states consistent with its survival. Human body temperature, for 

example, should ideally stay within the range of 36.5 – 37.5 degrees (Celsius). This 

entails that an organism’s phenotype has an attracting set of physical states. Over 

long timescales, these attractor states have a high probability of being observed in 

the sense that the organism will visit them repeatedly (Friston, 2013). Formally then, 

all self-organising systems must be minimising the (information-theoretic) surprise of 

their sensory observations (i.e., where observations deviating from phenotype-

congruent states elicit surprise). However, surprise is computationally intractable. 

Instead, according to the FEP, organism’s construct an internal (generative) model of 

environmental dynamics that, when accurate, acts as an upper bound on surprise 

(Buckley et al., 2017). The perception-action cycle is thus cast as an optimisation 

problem. Perception corresponds to the process of inferring the hidden state values 

that maximise the likelihood of observations and create a tight bound on surprise, 

while action is the process of inferring action sequences that either minimise 

uncertainty about hidden states (epistemic value) or bring about preferred 

observations (pragmatic value), thereby minimising the surprise following an action 
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(Friston et al, 2016, 2017). The former (perception) corresponds to the minimisation 

of variational free energy F, while the latter (action selection) corresponds to the 

minimisation of expected free energy G (see figure 1 for formal descriptions). 

 Before we continue, it is worth acknowledging here that the material in this 

section might understandably come across to some readers as overly engineered 

and unnecessarily mathematical. However, at a computational level of analysis, the 

mechanics of belief updating described here are necessary to quantitatively account 

for both perception and action selection. Crucially, as we will see later, many aspects 

of the neuronal implementation of this belief updating scheme are already well 

established (at least at coarser-grained levels of description) and provide novel 

predictions in terms of firing rates and associated measures of synaptic efficacy. 

Here we formulate the generative model as a partially observable Markov 

decision process (POMDP; see figure 1). POMDPs model discrete transitions 

between latent variables and the observations they generate. Such models infer 

states and policies based upon the (likelihood) mapping between different hidden 

state factors and distinct observation (or outcome) modalities – given by a set of A 

matrices (one matrix per outcome modality). Transitions between states are 

determined by the transition probabilities encoded by a set of B matrices (at least 

one matrix per state factor; see description of policy selection below). A set of C 

matrices describes the agent’s prior preferences over observations at each time 

point (one matrix for each outcome modality) and quantifies the degree to which 

agents prefer, or are averse to, particular observations. Finally, prior beliefs about 

initial states are determined by a set of D vectors (one per hidden state factor). A, B, 

C and D are each categorical distributions with Dirichlet priors over their respective 

parameter spaces.  
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Such models are equipped with allowable sequences of actions that can be 

chosen (plans or policies; π), where each possible sequence is assigned a value 

(higher policy values relate to lower expected free energies G, defined in relation to 

the prior preferences encoded in C). In the context of this class of models, allowable 

policies are specified as sequences of allowable state transitions, where each 

allowable transition (action) at each time point is encoded by a distinct B matrix for a 

given state factor. Thus, action corresponds to the agent’s direct control of state 

transitions. Observations and hidden states are factorised into separate outcome 

modalities and hidden state factors to allow for interactions between hidden states in 

the likelihood mapping (A). In hierarchical models, such as the model employed in 

this paper, the hidden states at the first level serve as observations at the second 

level (see figure 1). Crucially, hierarchical models also allow for inferences about 

deep temporal structure. An intuitive example of this is reading, in which the first 

level of a model could infer single words while the second level could infer the 

narrative meaning entailed by sequences of words over longer spatiotemporal scales 

(see Friston et al, 2017). Over the timescale of a single trial of a task (for example) 

belief updates are equivalent to (e.g., perceptual) inference, while, over longer 

timescales, updating gives rise to learning (we refer mathematically interested 

readers to Da Costa et al., 2020a). Technically, inference refers to updating beliefs 

about hidden states, while learning corresponds to updating (beliefs about) the 

parameters of the generative model specified by the matrices described above.  
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Figure 1. The top panel illustrates the free energy functionals and partially observable Markov 

decision process (POMDP) structure used within the generative model. The left side of this upper 

panel shows the decomposition of Variational free energy (VFE) into relative entropy and model 

evidence. Because the relative entropy term is always greater than or equal to zero when the 

approximate posterior approximates the true posterior  VFE is equal to the negative model 

evidence. Minimising VFE is, therefore, equivalent to maximising model evidence. For visual simplicity 
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we have not included the policy term in the VFE, although it should be noted that states are, 

generally, conditioned on policies. Also shown is the decomposition of expected free energy (G) into 

epistemic value and pragmatic value. Here � � ���|�����|	� means that the expectation sums over 

all future observations that are expected under each policy (	). To minimise G agents must maximise 

the epistemic value term by selecting policies that transition them into states that maximising 

expected information gain (i.e. maximise the difference between �� ���|	�  and �� ���|�, 	�) whilst 

also maximising the probability of preferred outcomes (�� ����) by seeking out preferred states. In 

other words, agents are driven to select actions that reduce uncertainty about hidden states whilst 

also aiming to maximise the fulfilment of their preferences. The right side of this upper panel provides 

a graphical depiction of the 2-level POMDP. Arrows show the dependences between variables 

(circles). Observations depend on hidden states at the first level. In turn, hidden states at the first level 

depend hidden states at the second level. Specifically, first-level hidden states function as 

observations for the second level. Equivalently, first level hidden states are the outcomes generated 

by hidden states at the second level.  This representation also highlights the role of the 

vectors/matrices (squares) in determining the conditional dependencies between variables. 

Observations are generated by hidden states described by the matrix A. The B matrix determines 

state transitions, beliefs about which function as empirical priors. The D vector serves as the prior for 

initial states. When the B matrix is under the control of the agent, state transitions depend upon the 

policy (π). The probability that a particular policy will be selected depends on the expected free 

energy G of the policy which is, in turn, partially dependent on prior preferences specified by C. The 

bottom panel depicts the neural process theory associated with the model, Including the update 

equations and neural network implementation of the message passing implied by the Bayesian 

network shown in the top panel. The left portion of this lower panel shows the update equations and 

free energy functionals. Heuristically, state prediction errors � score the evidence that observations 

provide for each policy (i.e., the difference between outcomes expected under each policy and those 

that are subsequently observed). In contrast, outcome prediction errors � encode beliefs about the 

value of each policy (i.e., higher outcome prediction errors for a given policy roughly correspond to 

lower probabilities of observing preferred outcomes under that policy, as well as less informative 

observations expected under that policy). Directly below are expressions for variational free energy F 

and expected free energy G, expressed in terms of the above mentioned (state and outcome) 
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prediction errors. Also shown are the update equations for states, policies, Bayesian model averages 

and the depolarisation variable, as well as action selection and its relation to the update terms for 

expected precision over policies. The right side of this lower panel provides a schematic of message 

passing between cell populations that could implement these updates. Red units encode Bayesian 

model averages, cyan units encode expectations over hidden states, and pink units encode state and 

outcome prediction errors. The backdrop image, depicting the neuroimaging signature associated with 

conscious access, is adapted from (Sadaghini et al., 2009). 

 

 In terms of neurobiological implementation, Active Inference has a detailed 

process theory that specifies how a family of possible message passing algorithms 

can be used to perform inference, as implemented within neurobiologically plausible 

structural and functional dynamics (Friston et al., 2017; Parr & Friston, 2018).  

Broadly speaking, the firing rates of certain neuronal populations - represented in 

figure 1 as neuronal populations within cortical columns - encode the current 

estimate of the posterior probability over hidden states. The synaptic inputs to the 

columns carry the conditional probabilities encoded in each of the matrices 

described above. This means that, for example, activity levels in neuronal 

populations encoding expectations of states are updated by ascending signals (from 

observations) based on synaptic weights encoding the amount of evidence that each 

possible observation provides for each possible hidden state (i.e., entries within the 

A matrices). 

 Of particular importance for the purposes of this paper are the equations 

describing the expected hidden states and the time derivative of the depolarisation 

variable ��  (see lower half of figure 1) associated with the neural process theory 

linked to Active Inference. Specifically, the posterior expectation over hidden states 

is a softmax (normalized exponential) function of the depolarisation variable � which 

represents the average membrane potential of the neuronal populations responsible 
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for encoding the surprise of expected states. The output of the softmax function is 

taken as the average firing rate of the population. The use of the softmax function 

(which is simply a generalisation of the sigmoid logistic function to vector inputs) to 

simulate average firing rate is based on the assumption made in mean-field models 

that the average firing rate of a population can be treated as a sigmoid function of 

the average membrane potential (Breakspear, 2017; Da Costa et al, 2020b). ERPs 

and local field potentials are modelled as the time derivative (rate of change) of the 

depolarisation variable because the change in membrane potential over neuronal 

populations is what generates ERPs. It is worth highlighting the face validity of this 

setup. Because the depolarisation variable is not normalised it can take both positive 

and negative values (i.e. like voltage) and after being normalised by the softmax 

function it is bounded between zero and one (i.e. like a normalised firing rate).  

 

2.2 A Deep Temporal Model of Visual Consciousness  

To model the difference between conscious and unconscious perception, we based 

our simulated task on the paradigm introduced by Pitts and colleagues (2012, 2014a, 

2014b). We chose this task because, with only minor changes in design, the 

paradigm can be used to study both inattentional blindness and phenomenal 

masking – allowing us to model the interaction between attention and sensory signal 

strength in an empirically plausible manner. 

 At the beginning of each trial in our simulated task, the in silico subject - or 

agent - was presented with a stimulus composed of an array of bars surrounded by 

coloured disks. At the 2nd time point, the array of bars was replaced by a square, 

and at the 3rd time point the array changed back to the collection of bars. The agent 

was then required to self-report whether or not they had seen the square or to 
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perform a two-alternative forced-choice task. We manipulated attention by requiring 

the agent to monitor the colour of the surrounding circles (either red or black) at the 

expense of the inner array (see figure 2).  

 

 

Figure 2. Illustration of the task performed by the agent. On each trial the in silico subject was 

presented with a stimulus composed of an array of bars surrounded by coloured discs. At the 2nd 

time point, the array was replaced by a square, and at the3rd time point the array changed back to the 

original bar pattern. The agent was then required to either perform a two-alternative forced-choice 

task or report whether they had seen the square. 

 

 To model manipulations of attention and stimulus signal strength, we 

manipulated the precision of the mapping between hidden states and the outcomes 

encoded in the first-level A matrix by passing what were initially identity matrices 

through two softmax (normalized exponential) functions controlled by two precision 

parameters,  and , respectively encoding attention and signal strength (i.e. 

presentation time or contrast; see figure A1 in the appendix). Higher values of these 

parameters made the A matrices more precise. We set up the interactions between 

the A matrices such that the likelihood mapping for the internal stimulus factor was 
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more precise when the agent was in an attentive state. In contrast, stimulus strength 

manipulations reduced the precision of the mapping between stimuli and hidden 

states independent of attentional state, with high stimulus strength corresponding to 

a precise likelihood mapping.  

 To simulate the perceptual categorisation and self-report behaviour described 

above, we specified the task in terms of a generative model which was inverted 

using a variational message passing scheme (for technical details see Parr et al., 

2019a).  To reproduce the recurrent interactions between the frontoparietal network 

identified with the global workspace, and the input it receives from the visual system, 

we employed a two-level deep temporal model (Friston et al., 2017b; Friston et al., 

2018). The first level (see figure 3), which roughly corresponds to processes within 

the visual system, had four hidden state factors; attention allocation, internal stimulus 

(bars/square), surrounding or peripheral stimulus (red/black circles), and a set of 

auditory-verbal states (a number of words that could be put together in different 

sequences to generate verbal reports). The second, higher level, which corresponds 

to the frontoparietal network associated with the global workspace, included three 

hidden state factors: 1) sequence type (encoding beliefs about the sequence of 

internal and peripheral stimuli presented on each trial), 2) time point within the trial 

which, in line with data from non-human primates (Kapoor et al., 2018), encodes the 

current phase of the task, and 3) abstract semantic representations that could be 

unpacked into different verbally reported sequences of words at the lower-level 

(dependent on the chosen policy at the higher level).  

 It is worth emphasising that the temporal depth of this second level is 

essential for simulating the self-report behaviour that defines conscious access. The 

language component of the model is obviously an oversimplified depiction of 
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linguistic cognition. Yet, it remains true that, in order to coordinate the selection of a 

specific sequence of words (i.e., to construct a sentence describing the content of 

perception), where each word is generated over a more rapid time scale, the agent 

must have a level of processing that unfolds over a slow enough time scale. This 

allows the agent to abstract away from the moment-to-moment sensory flux and 

coordinate lower-level language processes to report the outcome of perceptual 

decision-making in a goal- (i.e., preference-) dependant manner. Thus, the higher 

level is necessary to accumulate evidence from the moment-to-moment sensory flux 

with the longer-timescale, controlled processes capable of generating goal-directed 

behaviour plans with greater temporal depth. This feature is at the core of our model 

and we will revisit it in more depth in the discussion.  

 

 

Figure 3. Bayesian network depiction of the generative model, with arrows showing the dependencies 

between hidden state factors and outcome modalities. At the second level, states within the sequence 

type and trial phase hidden state factors determine the internal stimulus and peripheral stimulus 

hidden states at the first level (which function as second-level observations). This was set up such 
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that the mapping between second-level hidden states and first-level hidden states was dependent on 

the time point within the trial. The report state factor determined the language processing state at the 

first level. In turn, first-level outcomes were dependent on first-level hidden states. Importantly, there 

was only a precise mapping between the first-level internal (line/square) stimulus hidden state factor 

and the corresponding outcome modality when the model was in an attentive state.  

 

 We made the modelling decision to have a more liberal threshold for forced-

choice behaviour than for subjective reports based on the well-replicated finding that 

subject’s display above-chance performance even in the absence of reportability 

(see discussion in King & Dehaene, 2014). However, we acknowledge that this 

finding is largely dependent on the method of report.  Specifically, there is evidence 

suggesting that humans have optimal introspective access to their perceptual 

processes in the sense that betting performance in a 2-interval forced-choice task 

matches that of an ideal Bayesian observer (Peters & Lau, 2015). We do not wish to 

take a stand on this issue here as we consider it an open empirical question. 

Instead, we merely note that the decision was a pragmatic one based on the method 

of report used in the paradigms we were aiming to simulate and that we plan to 

pursue a more principled justification for report thresholds in future work. 

 For a full description of the generative model in terms of the matrices and 

associated parameter values see the appendix following the discussion section.  

 

3. Results  

3.1 Foundational Simulations 

As a proof of principle, we simulated 200 trials, 100 of which were “square-present” 

trials. The model was in an attentive state (Σ = 1) and the stimulus also had a high 

stimulus strength (� = 1), corresponding to a long presentation time that enabled 
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evidence accumulation resulting in a relatively precise hidden state-to-outcome 

mapping. We found that the model performed with 100% accuracy on the forced-

choice task and when reporting the presence – and absence – of the square (see 

figure 4). 

 Having established the face validity of the model, we now turn to the 

simulation of minimal contrast paradigms. 
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Figure 4. Simulated firing rates (darker = higher firing rate) predicted under the process theory 

associated with Active Inference (Friston et al., 2017). Each row represents the firing rate of the 

neuronal populations encoding the posterior expectations over each state. Individual squares each 

represent the time point within the trial. Actions (cyan dots = true action chosen; colour represents the 
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posterior confidence in the actions chosen at the end of each trial, darker = higher confidence). Self-

report outcomes (cyan dots = actual observations; colour indicates the preference for each 

observation, darker = greater preference, here the colours are all the same which means the agent 

did not have a preference for language outcomes). Top. Simulated results for 100 “square-present” 

trials. Notice the outcome modality associated with the “seen” report state generates the sentence “I 

see a square”. Bottom. Simulated results for 100 “square-absent” trials. Notice that the outcomes 

associated with the “unseen” report state generate the sentence “I didn’t see anything”.  

 

3.2 A Four-Way Taxonomy of the Factors Underlying Conscious Access 

As a field, the neuroscience of consciousness has converged on the use of minimal 

contrast paradigms that, through masking, inattention, or near-threshold 

presentation, render nearly identical stimuli unconscious in one condition and 

conscious in the other. Combined with neuroimaging, this allows for the contrast of 

conscious and non-conscious forms of visual processing. However, early 

neuroimaging research reported conflicting results. Some studies found that 

subjective reports correlated with activation in early visual cortices (Zeki, 2003), 

while others found that subjective reports correlated with the activation of 

frontoparietal areas (for a meta-analysis see Bisenius et al., 2015). Still others 

argued that frontoparietal involvement is due to an attentional confound and does not 

reflect conscious access (Peter et al., 2005).  Based upon simulations of thalamo-

cortical networks (Dehaene et al., 2003), Dehaene and colleagues (Dehaene et al., 

2006) created a taxonomy of factors underlying conscious access with the aim of 

unifying the conflicting results under the theoretical framework of the GNW.  

 In their exposition of the taxonomy, Dehaene and colleagues (Dehaene et al., 

2006) distinguished between subliminal, preconscious and conscious forms of 

processing. However, for the sake of clarity, we describe the taxonomy in terms of 

the two factors underlying the classifications; attention, which can be present or 
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absent, and signal (i.e. stimulus) strength, which can be strong or weak. As 

described in the introduction, the activation caused by a weak stimulus in the 

absence of attention (e.g. an unattended masked stimulus) should remain within 

early extrastriate regions – remaining unavailable for report and only causing weak 

priming effects. When attention is present, but stimulus strength is weak (an 

attended but masked stimulus), the signal should reach deeper levels of extrastriate 

cortex – remaining unavailable for report but leading to stronger priming effects. 

When attention is absent, but stimulus strength is high (i.e. during inattentional 

blindness or motion-induced blindness), there should be deep levels of processing 

within sensory areas – facilitating priming effects but remaining unavailable for 

report. Lastly, when a strong signal reaches a deep level of processing and is 

amplified by top-down attention, recurrent loops in frontoparietal cortices will 

maintain the information over longer timescale and make it available to inform the 

generation of verbal reports and other long-timescale goal-directed behaviours.   

 Crucially, different neural correlates are observed when using specific 

paradigms, such as the attentional blink and phenomenal masking, to contrast 

different parts of the taxonomy. Dehaene et al (2006) have leveraged these findings 

to explain a number of seemingly contradictory results.  

 While the theoretical backbone of the taxonomy has been revised, in that the 

activation of frontoparietal regions is no longer considered sufficient for conscious 

access, it is still a useful starting point – as the interactions between stimulus 

strength and attention described by the taxonomy encompass many, if not most, of 

the minimal contrast paradigms reported in the literature.  

 As described above, we modelled the effects of both attention and signal 

strength on simulated behaviour by altering the precision of the state-outcome 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2020. ; https://doi.org/10.1101/2020.02.11.944611doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.11.944611
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

 

mapping between the internal stimulus hidden state and internal stimulus outcome at 

the first level. In terms of the task, the “low signal strength (� � 0.05
 + attention 

absent (Σ � 0.01
” condition corresponds to a short presentation time, with the agent 

attending to the peripheral coloured disk at the expense of the internal stimulus. The 

“low signal strength (� � 0.01
 + attention present (Σ � 1
” condition corresponds to 

a short presentation time with the agent directing attention to the internal stimulus. 

The “high signal strength (� � 0.7
 + attention absent (Σ � 0.1
” condition 

corresponds to a long presentation time with the agent attending to the peripheral 

coloured disk. Finally, the “high signal strength (� � 0.7
 + attention present (Σ � 1
” 

condition corresponds to a long presentation time with the agent attending to the 

internal stimulus. We settled on the specific parameters shown above by searching 

the parameter space to find consistent values that best reproduced the behavioural 

results reported in the empirical literature, while remaining within plausible limits (i.e., 

as when fitting model parameters to real participant behaviour in empirical studies). 

 

3.2.1 Four-Way Taxonomy: Simulated Behaviour 

We presented the model with 400 “square present” trials, 100 corresponding to each 

of the four parameter variants described above. When signal strength was low and 

attention absent, the agent displayed chance levels of forced-choice performance 

(47%) and only reported having seen the square on 10% of trials. When signal 

strength increased, or when the agent attended to the stimulus, forced choice 

performance improved to well above chance, 58% and 61% respectively, while still 

not reporting ‘seen’ on more than 40% of trials (11% and 36% respectively). When 

stimulus strength was strong, and attention was present, the agent showed near-

ceiling levels of forced-choice performance (96%; i.e., due to the small amounts of 
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stochasticity in choice within the model) and accurately reported having seen the 

square on 99% of the trials. Thus, under a consistent set of parameter settings, the 

model accurately reproduced the self-report and forced-choice behaviour commonly 

reported in the literature (see figure 5). This should not be a surprise, as we fine-

tuned the parameter values to capture behaviour reported in the empirical literature. 

However, it is worth noting that it is possible a priori that no consistent set of 

parameter values could be found to reproduce all of these known empirical results – 

which would have shown a clear insufficiency of the model. Thus, the existence of 

this consistent set of parameter values does support the validity of the model. 

Figure 5. Report frequencies, forced choice accuracy, simulated firing rates, and simulated ERPs for 

each quadrant of the four-way taxonomy. Numbers shown on the lower-level firing rate plots illustrate 

the firing rate strengths (between 0 and 1) before and after top-down feedback from the higher level 

(i.e., time steps 2 and 3, respectively). ERP plots show the temporal derivative of the firing rates. 
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3.2.2 Four-Way Taxonomy: Simulated Firing Rates 

We next simulated the neural firing rates associated with the different quadrants of 

the taxonomy. The simulated first- and second-level firing rates both accurately 

reproduced a number of otherwise disparate empirical findings (see figure 5, left 

portion of each quadrant). Specifically, in all but the “weak signal + attention absent” 

condition, the model showed an amplification of first-level firing rates after receiving 

feedback from the second level. In line with the notion of ignition, this top-down 

amplification was notably greater when the model reported having seen the square. 

Similarly, at the second level of the model, in all but “weak signal + attention absent” 

condition the firing rates corresponding to the neuronal population encoding the 

“square present” sequence was amplified by the presentation of the square, even in 

the absence of report. Again, in line with the notion of ignition, the firing rate at the 

second level was further enhanced when the model reported having seen the square 

on all trials.  

 These results mirror the multivariate decoding results reviewed in the 

introduction, which found that, although increased visibility correlated with increased 

decoding accuracy, target orientation could be decoded across visibility levels from 

superior frontal and superior parietal cortices (Salti et al., 2015). What leads the 

agent to report the presence of the square is not simply that the second level has 

greater firing rates for the “square present” sequence, but that the model is 

sufficiently more confident about the “square present” sequence than the “random 

bar” (i.e. “square absent”) sequence. This feature of the model is similar to other 

Bayesian and hierarchical models in the literature that associate subjective report 

with the inference that a stimulus distribution is distinct from a noise distribution (King 

& Dehaene, 2014; Peters and Lau, 2015; Fleming 2019). However, the threshold for 
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report in the present model is set by the expected free energy functional, which is 

composed of both an epistemic component (i.e., related to the difference between 

posterior expectations over states with and without an observation expected under 

each policy) and a pragmatic component (i.e., related to the deviation of expected 

and preferred observations under each policy; see Friston et al., 2017). The inclusion 

of the pragmatic component allows the PGNW to, in principle, explain the observed 

role of reward in modulating the content of visual consciousness (e.g. Marx & 

Einhäuser, 2015; Dong et al., 2019). 

 Importantly, if we were to apply a contrastive methodology and compare any 

of the three unconscious sections of the taxonomy with the conscious section, we 

would find that conscious access is associated with an enhanced firing rate at the 

first and second levels of the model. This mirrors the finding that conscious report 

correlates with the enhanced activation of sensory regions and the seemingly all-or-

nothing activation of frontoparietal cortices originally cited in support of the GNW 

taxonomy (e.g. Dehaene et al, 2001). Based on our model, the (seemingly) 

contradictory finding that superior frontal and superior parietal cortices contain 

decodable information across visibility levels (Salti et al., 2015) can be explained as 

the result of using different methods to analyse the same underlying Active Inference 

architecture – that is, the use of standard univariate analyses on the one hand, which 

look for voxels that are more activated by visible stimuli than invisible stimuli (e.g. 

Dehaene et al., 2001), and more sensitive multivariate pattern analyses on the other, 

which instead look for patterns of information present across voxels. As was noted 

above, using a standard univariate approach to analyse the simulated firing rates 

shown in figure 5 would show that firing rate is enhanced on conscious compared to 

unconscious trials at both the first and second level. However, this ignores the 
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presence of stimulus relevant information in the firing rates; although firing rates are 

higher for conscious compared to unconscious conditions, there is still a greater than 

baseline firing rate in unconscious conditions at both the first- and second-level 

within our simulations that could easily be exploited by a classifier. Thus, our model 

can simulate and explain both (seemingly conflicting) results within a single 

neurocomputational architecture. 

 

3.2.3 Four-Way Taxonomy: Simulated Event-Related Potentials 

Finally, we examined the ERPs1 predicted by our model under different quadrants of 

the taxonomy (figure 5, right portion of each quadrant). Here we found that ERPs at 

the first level of the model – which correspond to early components such as the 

P100 and N100 – are relatively unaffected by changes in visibility. In contrast, ERPs 

at the second level – which correspond to late components, and specifically the P3 – 

appear to be strongly modulated by changes in visibility. This emulates the empirical 

findings described in the introduction, in which early components were relatively 

unaffected by changes in visibility while late components displayed a non-linear 

increase in amplitude as visibility increased (DelCul et al.,2007; Sergent et al., 2005).  

 As described above, ERPs are here modelled as the time derivative of the 

depolarisation variable. When confidence in a state changes rapidly, the derivative of 

the depolarisation variable increases in magnitude. This gives us a new perspective 

                                                 
1 It should be noted that in the standard active inference simulation routine (spm_MDP_VB_X.m), there is an 
optional parameter (mdp.erp) that encodes the assumed degree of decay or attenuation in posterior beliefs across 
timesteps (i.e., before each period of gradient descent following each new observation). In empirical work, this 
parameter needs to be fit to neuronal or behavioural responses. Here we do not include this parameter (i.e., we 
set it to a value of 1), which entails that posterior beliefs at one timepoint fully carry over as priors for the 
subsequent timepoint in a trial. This is analogous to predictive coding formulations and is most appropriate for 
our simulations due to the fact that multiple timepoints in our simulated trials are treated as single observations 
(i.e., there should be no attenuation or ‘resetting’ of priors within a single stimulus presentation). It is important 
to note this here, however, as predicted ERPs in simulations can be affected by different values of this 
parameter. 
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on late ERP components in the context of visual consciousness. Since the model 

only reports the presence of the square when it is sufficiently more confident about 

the “square present” sequence than the “random bar” sequence, it makes sense that 

verbal reports are accompanied by late ERPs – as they reflect the rapid change in 

beliefs at the second level of the model when the square is presented.  

 However, it is important to highlight that this is not a necessary feature of 

conscious access. If the model is already sufficiently confident in a state – either 

because of a precise likelihood mapping or because the rate of belief updating is 

slowed (by a lack of precision in the likelihood; e.g., because of inattention) – the 

model may report the presence of a stimulus without an accompanying late ERP. 

This is indeed what we see empirically. Specifically, in the inattentional blindness 

paradigm that guided development of the particular task structure of our model, Pitts 

and colleagues (2012, 2014a, 2014b) found that the P3 is associated with task 

relevance (i.e. attentional set) and not reportability, which was interpreted as 

evidence against the standard model of the GNW. In other words, the amplitude of 

the P3 changed as a function of attentional set – which affects precision – rather 

than conscious access as such. In the next section we discuss in more detail how 

our model can account for this result and demonstrate how the model can shed light 

on the specific electrophysiological correlates of inattentional blindness more 

generally.  

 

3.3 Inattentional Blindness 

The simulations reported in the previous section were focused on reproducing the 

findings that characterise minimal contrast paradigms associated with the GNW 

theory’s proposed four-way taxonomy. However, minimal contrast paradigms are not 
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without limitations. For example, as Aru and colleagues (2012) have argued, these 

paradigms often confound the neural correlates of consciousness with the 

prerequisites to, and consequences of, consciousness. With these confounds in 

mind, in the study referred to above Pitts and colleagues (2014a, 2014b) created a 

three-phase sustained inattentional blindness paradigm that was designed to 

dissociate the electrophysiological correlates of consciousness from the correlates of 

task relevance.   

  The task used the same stimulus set discussed in the previous two sections. 

In phase one, participants were instructed to monitor the peripheral disks for a 

change in colour. Every 600-800ms the internal section of the stimulus alternated 

between random bars and a square, both of which were presented for 300ms. After 

phase one, participants completed a debrief and 50% of them reported not being 

aware of the square, replicating the findings of Mack and Rock (1998). The debrief 

acted as a cue alerting the participants to the presence of the stimulus. Phase two 

was identical to phase one except that participants had been alerted to the presence 

of the square. Despite not being task relevant, 100% of participants reported having 

seen a square in the subsequent debrief. In phase three, participants were instructed 

to attend to the inside stimulus while ignoring the peripheral disks.  

 Contra the original predictions of the GNW model, the ERP results revealed a 

dissociation between awareness and the P3. As expected, in phase one the P3 was 

absent for inattentionally blind participants. However, the P3 was also absent in 

phase two when all participants were conscious of the stimulus despite it not being 

task relevant. In contrast, when the stimulus was conscious and task relevant (in 

phase three), there was a large P3, showing that task relevance is the primary diver 

of this ERP component.  
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 Our aim in simulating this task here is to provide a bridge between established 

experimental findings and the more abstract account of the relationship between the 

P3 and visual consciousness advanced in the previous section. To match the 

empirical setup, we modelled phase one by placing the agent in an “attention absent” 

state toward the square stimulus (Σ � 0.05
 and then found the value of the stimulus 

strength parameter (� � .75) that led the model to report the presence of the square 

~50% of the time (as during individual thresholding procedures in empirical studies). 

To model the effect of the debrief that alerted the participants to the presence of the 

square, in phase two we increased the value of the attention parameter Σ � 0.2
 so 

that it was higher than in the “attention absent” state but still substantially lower than 

an “attention present” state, plausibly corresponding to a diffuse allocation of 

attention. Phase three was the same as phase two, except that the model was 

placed in an “attention present” state toward the possibility of seeing the square 

Σ � 1
.  

 

3.3.1 Inattentional Blindness: Simulated Behaviour and Event Related 

Potentials  

We presented the model with 300 square trials, 100 corresponding to each of the 

three sets of parameter values described above. Through stimulus strength 

calibration, in phase one the model reported the presence of the square 53% of the 

time, mirroring the empirical results. Crucially, however, the electrophysiological 

results of all three phases, and the behavioural results of phase two and phase 

three, reproduced the empirical findings without any further adjustments to 

parameter values. In phase one, there were only early first-level ERPs (see figure 6). 

In phase two, when the “square present” and “random bar” sequences had equal 
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prior probability, the model reported the presence of the square on 99% of trials and, 

in line with empirical results, there were again only large first-level ERPs; no late P3-

like ERPs were generated. Finally, in phase three, when the model was attending to 

the internal stimulus, the square was reported on 100% of trials and there was a 

large and late ERP at the second level resembling the P3. Considering the idealised 

nature of the model, the simulated ERPs displayed in figure 6 bear a striking 

resemblance to the empirically observed ERPs.  

 

 

 

Figure 6. Report frequency, simulated ERPs, and associated firing rates predicted for each of the 

three phases of the sustained inattentional blindness task. The empirical ERP plots, taken from the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2020. ; https://doi.org/10.1101/2020.02.11.944611doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.11.944611
http://creativecommons.org/licenses/by-nc-nd/4.0/


34 
 

 

original study conducted by Pitts et al (2014), show the amplitude for “random bar” (black) versus 

“square present” (red) trials at electrode CZ. Firing rate plots illustrate how more gradual updates in 

2nd-level beliefs do not produce P3-like ERPs (middle panel, Phase 2) despite self-reported 

experience of the square, while a faster rate of change in 2nd-level beliefs does produce P3-like 

ERPs (right panel, Phase 3) in addition to almost identical self-reported experience.  

 This result is noteworthy. The dissociation of the P3 and visual consciousness 

emerges naturally out of the belief updating scheme that underwrites the PGNW. 

Further, it leads to a straightforward prediction; visual consciousness will be 

accompanied by a late ERP whenever confidence in a particular state at a high level 

of the hierarchy changes rapidly.  

 Having shown that our model reproduces the minimal contrast results cited in 

support of the original formulation of the GNW, explains away otherwise 

contradictory results in the minimal contrast literature, and accounts for the 

dissociation of the P3 and visual awareness, we now turn to the role of visual 

expectation – and illustrate how our model offers an extension of the previously 

introduced four-way taxonomy of factors underlying conscious report. In addition to 

attention and stimulus strength, our model introduces a third factor: trial-by-trial 

changes in prior visual expectation.  

 

3.4 Extended Taxonomy: Expectation and Visual Consciousness  

There is now a large body of evidence showing that expectation plays a fundamental 

role in determining the content of visual consciousness. Specifically, under 

conditions of continuous flash suppression predictive cues accelerate the entry of a 

suppressed stimulus into consciousness (van Gaal et al., 2015). In binocular rivalry 

paradigms, predictive context increases the dominance of stimuli congruent with that 

context (Denison et al., 2011; Valuch & Kulke, 2019). Cross-modal predictions also 
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accelerate the re-entry of stimuli into consciousness after a period of motion induced 

blindness (Chang et al., 2015). In the absence of attention, expectations reliably 

induce illusory perception of absent stimuli (Aru et al., 2018). And, when viewing 

ambiguous figures, expectations have been shown to bias the perceived direction of 

rotation (Sterzer et al., 2008). In light of this, if visual consciousness is to be fully 

understood, it appears essential to extend the taxonomy of factors underlying 

conscious access to include expectation.   

 To integrate the role of expectation – and the violation of expectation – into 

the taxonomy, we altered the prior probability of the “square present” sequence in 

the second level D vector for each of the four parameter settings used in the four-

way taxonomy, such that the model was approximately twice as confident, a priori, in 

either the “square present” sequence (“consistent prior expectation” condition) or the 

“random bar” sequence (“inconsistent prior expectation” condition). We treated each 

trial as independent, so the manipulation of prior expectations most plausibly 

corresponds to the use of explicit cues.  

 We retained the same generative model architecture used in the previous two 

sections, allowing us to independently manipulate expectation, attention, and 

stimulus strength. We are aware, however, that independently manipulating these 

factors in an experimental setting is far from trivial. In the interest of making our 

model empirically useful, we end this section by proposing a novel Posner cueing 

paradigm aimed at empirically validating the results of our simulations.  

 Finally, it must be highlighted that the behavioural results of the following 

simulations should be interpreted as directional hypotheses, as opposed to precise 

predictions about the percentage of seen vs unseen trials. In contrast to firing rates 

and ERPs, the model’s report behaviour (policy selection) depends on a number of 
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parameters (policy precision and motor stochasticity) that need to be fitted to each 

participant individually and will substantially shift the size of the effect for 

manipulations of prior expectation.  

 

3.4.1 Extend Taxonomy: Simulated Behaviour 

We presented the model with 800 “square present” trials, 100 corresponding to 

“consistent prior” and “inconsistent prior” conditions, for each of the four parameter 

settings used in the four-way taxonomy. Across all taxonomy conditions, we found 

that consistent prior expectations increased both the accuracy of forced-choice 

behaviour and the percentage of trials where the model reported having seen the 

stimulus (see figure 7 for percentages). Similarly, inconsistent prior expectations 

decreased both the accuracy and the number of seen trials. The effects were 

particularly pronounced in all of the otherwise sub-threshold conditions. This result 

makes intuitive sense, as expectations will have the greatest enhancing effect on 

visibility when a stimulus is marginally below the threshold for “ignition”; and, in the 

absence of attention and/or precise sensory input, top-down messages will dominate 

perception. 

 While these results are consistent with a number of studies showing an 

enhancing effect of consistent prior expectations for both forced-choice performance 

and stimulus detection (Aru et al., 2016; Stein, & Peelen, 2015), there is some 

evidence showing that when expectations are induced by explicit cues, they boost 

subjective visibility but do not alter accuracy (Andersen et al., 2019). Similarly, Lamy 

et al (2017) found that prior experience of a target increased visibility but did not alter 

response priming. Here forced-choice behaviour, like subjective report, depends on 

policy selection at the second level of the model. However, if forced choice 
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behaviour depends upon a distinct neural substrate that operates over a shorter 

timescale than subjective report, it would be better modelled by policy selection at 

the first level of the model (c.f. Maniscalco & Lau, 2016). If this were the case 

increasing the prior probability of a state at the second level (as we have done here) 

would have a marginal effect on forced-choice behaviour. This represents an 

important possible extension of our model architecture that will be addressed in 

future work. 

 

Figure 7. Report frequency, forced choice behaviour, and simulated firing rates predicted for each 

consistent-inconsistent prior combination of the quadrants shown in the four-way taxonomy. Relative 

to the results of the four-way taxonomy, consistent expectations increased forced choice accuracy, 

the percentage of trials reported as “seen”, and boosted the enhancing effect of feedback from the 

higher level. Inconsistent priors had the opposite effect, reducing accuracy, the percentage of “seen” 

trials and first level firing rates.   
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3.4.2 Extending the Taxonomy: Simulated Firing Rates 

Next, we simulated the firing rates associated with consistent and inconsistent priors. 

In all sections of the extended-taxonomy, relative to the four-way taxonomy, 

consistent priors enhanced the amplifying effect of feedback.  Correspondingly, 

inconsistent priors dampened the effect of feedback. Interestingly, in the “strong 

signal + attention present” condition, although inconsistent priors dampened the 

amplifying effect of feedback (i.e., in comparison to the four-way taxonomy and the 

consistent prior condition), the net effect of feedback still raised the firing rate of first 

level neuronal populations. 

  Again, this makes intuitive sense; feedback is driven by posterior confidence 

at the second level, and, in all but the “strong signal + attention present” condition, 

the sensory likelihood mapping is relatively imprecise. As such, posterior confidence 

at the second level is dominated by the effect of prior expectation. Consistent 

expectations increase second-level posterior confidence to a sufficiently large 

degree to shift otherwise unconscious trials over the threshold for “ignition” by 

magnifying the feedback to the first level (while inconsistent priors reduce posterior 

confidence and dampen top-down feedback). In contrast, when the first-level 

likelihood mapping is more precise, as is the case in the “strong signal + attention 

present” condition, inconsistent priors carry less influence and second-level posterior 

confidence in the “square-present” sequence is still high enough to enhance top-

down feedback (i.e., despite it being dampened relative to the four-way taxonomy 

and consistent prior condition).  

 This result produces three novel predictions. First, when consistent 

expectations raise posterior confidence past the threshold for ignition, feedback from 

frontoparietal to sensory regions will be enhanced. Second, when a stimulus is well 
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above threshold, inconsistent expectations will reduce the amplification of feedback 

relative to consistent expectations. Third, based on the extrinsic connectivity 

predicted by the neural process theory (see figure 1), feedback from frontoparietal to 

sensory regions will be associated with a specific pattern of effective connectivity. 

That is, consistent prior expectations are predicted to disinhibit granular layers in the 

relevant neuronal populations in sensory cortices (via feedback connections 

originating in superficial pyramidal cells in frontoparietal regions), while inconsistent 

priors are predicted to inhibit granular layers in the same lower-level neuronal 

populations. This last prediction, although highly specific, can be readily tested via 

dynamic causal modelling (e.g. Parr et al., 2019b). However, it is important to note 

that this prediction is dependent upon the use of variational message passing (or 

marginal message passing), and other message passing schemes have been 

proposed (see Parr et al., 2019a).  

 

3.4.3 Extend Taxonomy: Simulated Event Related Potentials 

Lastly, we simulated the ERPs predicted by our model for all combinations of 

consistent and inconsistent prior expectation conditions within the four-way 

taxonomy (see figure 8). Despite the previously described changes in reported 

visibility, in most cases ERPs were relatively unaffected by consistent and 

inconsistent priors at both levels of the model. However, in the “strong signal + 

attention present” condition the amplitude of ERPs at the second level of the model, 

corresponding to the P3, were dampened by a consistent prior and boosted by an 

inconsistent prior relative to neutral priors. This result makes sense, because in the 

consistent prior condition the model was already confident that it would be presented 

with a square, so the presentation of the stimulus caused a smaller and less rapid 
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belief update, while the opposite was true in the inconsistent prior condition – thus 

reducing the rate of change of posterior expectations at the second level in the 

consistent prior condition and increasing it in the inconsistent prior condition.  

 Importantly, these results lead to another novel prediction. Specifically, 

contingent upon the presence of attention, and sensory input being sufficiently 

precise, a consistent prior should decrease the amplitude of the P3 (relative to 

neutral and inconsistent prior conditions), whilst an inconsistent prior should increase 

the amplitude of the P3 (relative to neutral and consistent prior conditions). Indeed, 

this prediction has already been partially confirmed empirically. Melloni et al. (2011) 

found that expectations induced via a history of prior exposure to a stimulus both 

increased the proportion of trials reported as seen and decreased the amplitude of 

the P3. However, this study did not simultaneously manipulate attention, which will 

be a critical further test of the hypothesis.   
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Figure 8. Second-level ERPs predicted for each combination of consistent or inconsistent priors with 

each quadrant in the four-way taxonomy. Notice that 1) the P3 is attention- and stimulus strength-

dependent (i.e., only the bottom-right quadrant shows clear responses above noise levels), 2) it is 

enhanced by inconsistent priors, and 3) it is dampened by consistent priors. 

 

3.4.4 Extend Taxonomy: A Novel Paradigm for Dissecting the Influences of 

Signal Strength, Attention, and Expectation on Conscious Access.  

The structure of our generative model is generic enough to generalise across 

paradigms that involve inference; however, as noted above, in an empirical setting 

independently manipulating expectation, signal strength, and attention poses a 

number of methodological challenges, with expectation often being confounded with 

attention (e.g. Rahnev et al., 2011). In the interest of making the predictions of our 

model as straightforward to test as possible, we here outline a possible extension of 

the Posner cueing paradigm introduced by Kok and colleagues (2012) that would 

allow for the independent manipulation of expectation, signal strength, and attention. 

The key feature of the design is the orthogonal manipulation of expectation 

and attention (see figure 9). Expectation can be manipulated in a block-wise manner 

with a predictive cue appearing at the beginning of every block consisting of a word 

(“left”, “right” or “neutral”) indicating the likelihood with which the stimulus will appear 

in a particular hemifield on each trial. Attention, in contrast, will be manipulated in a 

trial-wise manner, with a cue appearing at the start of every trial indicating the 

hemifield to which the subject should covertly direct their attention. However, the 

attention cue will contain no information about the likelihood of the stimulus’ location. 

Finally, stimulus strength will be manipulated by altering the time between the 

stimulus and the backward mask. Each block would begin with a predictive cue, and 

each trial would begin with the presentation of an attention cue, followed by a briefly 
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presented stimulus (a grating in the above figure) that is congruent with the 

prediction on 75% of trials (paired with either a backwards mask or a blank). 

Subsequent to the presentation of the mask (or blank), subjects would be given a 

forced-choice task and asked to provide a subjective report.  

Crucially, since expectation, attention, and stimulus strength are manipulated 

independently of each other, this paradigm could allow all 12 quadrants of the 

extended taxonomy to be studied within one paradigm.  

 

Figure 9. A potential extension of Posner cueing paradigm introduced by Kok and colleagues (2012) 

that could allow for the independent manipulation of expectation, stimulus strength, and attention. By 

manipulating expectation in a block-wise manner, and attention and stimulus strength in a trial-wise 

manner, the paradigm would allow all twelve combinations of expectation (consistent, neutral, 

inconsistent) by attention (present, absent) by stimulus strength (strong, weak) to be studied within 

one paradigm. Shown above are predicted/attended and unpredicted/unattended combinations. 
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4. Discussion 

4.1 The role of deep temporal structure 

 

The defining (measurable) feature of conscious access is subjective report (Baars, 

1988; Dehaene, 2014; Fleming, 2019), which requires the coordination of processing 

between perceptual, motor, and auditory-verbal systems, all of which evolve over a 

rapid temporal scale. The core notion underlying our model is that conscious access 

is a fundamentally inferential process that can only occur at a level of processing that 

is sufficiently temporally deep to integrate information from lower levels of the 

hierarchy and contextualise processing at these lower levels. To produce subjective 

reports, a system must infer the state of a lower level perceptual system, integrate 

this information into a representation that is not tethered to the moment by moment 

sensory flux, and use this representation to modulate more controlled, slowly 

evolving trajectories of action over time. Put another way, temporally deeper levels 

are necessary to encode patterns of covariance in lower-level sensory and motor 

representations over time under different goal states. Without a sensory 

representation updating predicted patterns of covariance at this higher level (to a 

sufficient degree), the use of that piece of sensory information by the more complex 

cognitive processes carried out at the higher level would be greatly limited (i.e., only 

promoting implicit biases through small changes in higher-level posterior 

distributions). Technically, the insight here is that ignition and the global workspace 

are descriptions of evidence accumulation or assimilation – which necessarily implies 

some temporal narrative. The nature of this narrative turns a straightforward 
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Markovian model of the world into a semi-Markovian model with deep temporal 

structure. 

 The first major insight afforded by our model is that many previous 

electrophysiological results can be reproduced based only on assuming a simple 2-

level model with deep temporal structure. Self-reported conscious vs. unconscious 

percepts can then be accounted for by specifying the integrative functions of the 

higher level of the model that are plausible based on the known neural correlates of 

consciousness, and how the different hidden state factors (which could perhaps 

correspond to distributed processing hubs within association cortices implicated in 

domain-general cognition i.e. van den Heuvel et al., 2012) operate on those 

contents. The second major insight comes from how our model illustrates the way 

prior expectation can fit seamlessly within this structure – affording a number of 

novel, testable predictions. 

 

4.2 Relationship to Other Models 

The PGNW is a formal extension of the GNW and, as such, the models share many 

similarities. However, as should be clear by this point, the PGNW diverges 

substantially from the original GNW model. Ultimately, the point of departure for the 

PGNW is its implementation in an Active Inference architecture, which, as we have 

shown, has a number of important consequences. Foremost, by leveraging the 

process theory that accompanies Active Inference, we are able to reproduce/explain 

previous findings and make predictions about the neurobiological implementation of 

the inferential machinery that we argue underlies conscious access. Crucially, this 

also allows the PGNW to make specific predictions about the role of visual 

expectation. In contrast, the inferential machinery cited in support of the standard 
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GNW model (i.e. King & Dehaene 2014) remains at a more abstract computational 

level of description (in the sense of Marr, 1980). What the PGNW retains is the 

fundamental insight that conscious access makes information widely available to 

domain-general cognitive processes (i.e., represented by the different state factors at 

the second level of our model). It is for this reason that we retain the workspace 

label. However, unlike the initial conceptual account of the PGNW introduced by 

Hohwy (2013) and Whyte (2019) which, as Marvan and Tomáš (2020) point out, 

relies on explanatory machinery external to the Active Inference framework to 

explain conscious access, here we identify the global availability of information with 

temporally deep processing, and conscious access with the posterior confidence 

threshold required for report (broadly construed as goal-directed verbal report, button 

presses, saccades or any other method of goal-directed reporting of subjective 

content). As such the PGNW explains conscious access exclusively in terms of the 

explanatory tools of Active Inference.  

 The model that is most similar to the PGNW is Fleming’s (2019) higher-order 

state-space (HOSS). Both the PGNW and HOSS are implemented in hierarchical 

generative models, and as such they entail similar predictions. However, there are 

two key points of separation. First, HOSS casts conscious access as a 

metacognitive inference about the presence or absence of a stimulus in the content 

of a generative model of perception. This inference relies on an abstract state 

representing presence or absence that is independent of the specific content of a 

stimulus. The function of this metacognitive state is to differentiate stimulus 

representations from noise distributions at lower levels of the model (c.f. Lau, 2007, 

2019). A stimulus representation becomes available for report according to HOSS 
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when the model infers that a distribution is different enough from a noise distribution 

to be classified as present.  

 There is a sense in which HOSS is simply a higher-order version of the 

PGNW. In fact, it would be relatively simple to introduce a new hidden state factor 

corresponding to the presence or absence of a stimulus and factorise a generative 

model such that the presence of the stimulus would be independent of the content of 

the stimulus. Computationally, however, this state would have no function. Precision 

estimation is an inbuilt feature of Active Inference architectures (see Parr & Friston 

2017 for technical details) that modulates the updating process in response to the 

estimated reliability of a bottom-up signal, without needing to posit an additional 

abstract state representing presence and absence.   

 This brings us to a second key difference. According to the HOSS model, 

absence of a stimulus is explicitly represented in addition to all the possible states of 

a stimulus making the state space asymmetric. Fleming (2020) leverages this 

asymmetry to explain the ignition response that sweeps across frontoparietal 

cortices during conscious access. Because there are many more ways that a 

stimulus can be present than absent, the presence of a stimulus causes larger belief 

updates than when a stimulus is absent. Although this is ultimately an empirical 

question, we regard the explicit representation of the absence of a stimulus in the 

perceptual state space to be a somewhat unrealistic idealisation. Participants in 

minimal contrast paradigms are fully aware of the presence of the background 

screen (itself a stimulus) and the task requirements, and frontoparietal cortices are, 

of course, active the whole time. The wide scale activation of these regions when a 

stimulus is seen is only apparent because we isolate the processes underlying the 

reportability of the stimulus, while holding all of these other variables constant. When 
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participants do not report a stimulus, they are not perceiving “absence”; at a 

minimum the content of perception will include the background screen. It may be a 

mistake, therefore, to explicitly represent the absence of a stimulus in a generative 

model of perception. Instead, as we have done in the current model, the state space 

should consist of sequences of stimuli with and without the critical stimulus. The 

ignition response is then instead explained by the update that occurs at temporally 

deep levels of the model when the stimulus is seen as opposed to unseen.   

 Finally, it is worth mentioning that, although there have been proposals aimed 

at integrating other major theories of consciousness, such as integrated information 

theory (Oizumi, Albantakis & Tononi, 2014) with VFE and active inference (Safron, 

2020a, 2020b), these proposals remain largely at the level of conceptual analysis 

and do not afford the detailed simulations and resulting empirical predictions that are 

a straightforward consequence of the PGNW architecture. However, it remains an 

open question whether or not systematic relationships might be found between 

measures of integrated information and VFE in future work (for discussion on this 

topic see Friston, Wiese & Hobson, 2020). 

 

4.3 Brief Note on Phenomenology and the Phenomenal Consciousness - 

Access Consciousness Distinction 

Although not the focus of this paper, it is worth briefly clarifying how phenomenology 

does and does not plausibly situate within our model. Specifically, we would like to 

avoid implicitly conveying that the phenomenological contents of our first-person 

experience correspond to the contents of second-level states. A major problem with 

this is that the contents of second-level states appear to operate on timescales that 

are too slow to match the moment-to-moment sensory flux of perceptual experience.  
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 However, there is also a problem with identifying phenomenological contents 

with the contents of lower-level states. To see why, consider that, as is the case in 

our model, there is no explicit representation of absence at the higher level of the 

model that generates reports. The model will always represent and report an 

experience of something based on the posterior distribution over second-level states 

(e.g., either lines or a square; and note that the model’s state space could also be 

extended such that the agent could report the experience of ‘just seeing the 

background screen’). If this architecture is representative of human cognition, it 

highlights an interesting change in perspective. Specifically, the question about 

phenomenology being separable from access (c.f. Block, 2005) changes to a 

question about the possibility of inconsistencies between phenomenology and what 

was accessed (i.e., the states represented at the second level). For example, if the 

agent reported currently seeing lines (and not a square), and yet a square stimulus 

was present and encoded at the first level, a strong distinction between 

phenomenology and access would not merely entail that “square” phenomenology 

was present but not accessed. Instead it would mean that the agent’s confident self-

reported phenomenology of experiencing lines (i.e., what was represented at the 

second level) would be inconsistent with their “true” phenomenology of experiencing 

a square (i.e., based on what was represented at the first level). In other words, they 

would be wrong about what they believed they were currently experiencing or had 

just experienced. Taken to the extreme, this would entail that any honestly reported 

phenomenology could be problematically different from true phenomenology (e.g., a 

person honestly reporting experiencing a loud screeching sound could have the 

“true” phenomenology of a hearing a piece of classical music).  
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Another way to highlight this problem more formally is by considering that one 

could manipulate the second-level likelihood mapping (A matrix) in our model while 

leaving the first-level likelihood mapping unchanged (i.e., one could selectively 

manipulate the nature of the messages that are passed from the first level to the 

second level that update higher-level beliefs at each timestep). If so, first-level states 

would still reliably track presented stimuli (e.g., square stimuli would activate first-

level square states), but those states could now update the second-level in an 

entirely different way. For example, with the right second-level likelihood mapping, 

red circle and line representations at the first level could be specified so as to pass 

messages to the second level that activate representations of, and promote self-

reported phenomenology of, a black circle and a square (which would also obviously 

be problematic for the empirical study of conscious experience; i.e., the presence of 

a particular phenomenology would become empirically unfalsifiable). 

 To avoid this uncomfortable conclusion, while also keeping sensory 

phenomenology at the correct timescale, we suggest that phenomenology in our 

model is most plausibly situated at the point during which (and based on the 

manner in which) lower-level representations update the content of higher-level 

states. In other words, phenomenology in our model most plausibly depends on 

the nature of the messages passed from the lower to the higher level, and would 

occur at the point where the higher level assesses or “decodes” the contents of 

the lower-level signals through the second-level likelihood mapping (A matrix). 

These updates occur at the fast timescales associated with the sensory flux; yet, 

the nature of each fast-timescale update (i.e., the nature of the influence the first 

level has on the second level at each time point) will necessarily be correlated 

with self-reported beliefs about what type of phenomenology was experienced – 
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preventing the possibility of strong disagreements between “true” and self-

reported beliefs about phenomenology (for more on this line of argument see 

Smith, 2016). Note that the focus on belief updating thus speaks to phenomenal 

consciousness as a process of inference.  

Thus, the perspective motivated by our model might therefore be seen as 

somewhat at odds with a strong distinction (or at least with the most commonly 

made distinction; (Block, 2005)) between phenomenal consciousness and 

access consciousness. In contrast to the typical distinction, our model suggests 

that (empirically verifiable) phenomenology and access consciousness each rely 

on particular (partially theoretically separable) types of access (c.f. Cohen & 

Dennett, 2011). Phenomenology (i.e., the content of first-person experience) 

most plausibly depends on the faster timescale process by which first-level 

representations update higher-level beliefs via the nature of the messages 

passed through the second-level likelihood function (A-matrix). In contrast, 

access consciousness (as typically defined), and all of the functional benefits 

that it is associated with, corresponds best to the encoding of posterior beliefs 

over hidden states at the second level, which, although updated by the moment-

to-moment sensory flux, are themselves representations of regularities that 

occur over longer timescales. 

A final point worth emphasizing is that, while verbal or other types of goal-

directed self-report measures remain the gold-standard in assessing the 

presence or absence of conscious experience, our model also clearly 

distinguishes access consciousness from report. That is, access consciousness 

in our model depends only on the precision of posterior beliefs at the higher 

level. In a no-report paradigm, for example, an active inference task model 
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analogous to the one we have presented would be able to demonstrate that – 

even if no report was made at the timepoint of stimulus presentation – posterior 

beliefs were sufficiently precise at that timepoint such that, had the person been 

incentivized to report their experience, they would have reported seeing the 

stimulus. Such extensions of our model to no-report paradigms represents an 

important future research direction. 

 
4.4 Limitations 

To make the PGNW testable, we have deliberately limited the scope of the model to 

experimental settings where visual consciousness is operationalised via report. We 

follow Baars (1988) in taking report, or rather the availability of information for report, 

as the epistemic foundation of the scientific study of consciousness. However, we 

acknowledge that report paradigms come with methodological difficulties (Tsuchiya 

et al., 2015). By the same token, in limiting the scope of the PGNW to the visual 

modality, we are aware that we are reifying the pervasive bias in consciousness 

science of primarily studying vision. That said, it is crucial to emphasise that the 

model structure is sufficiently general that it can be straightforwardly applied to other 

modalities (e.g., first-level observations could fairly easily be understood as auditory 

as opposed to visual). A somewhat similar 2-level architecture was also recently 

employed to simulate emotional awareness based on interoceptive stimuli (Smith, et 

al., 2019a).  

 The main focus of the GNW has, until recently, been the contents of 

consciousness (especially vision). Likewise, this paper has limited the scope of the 

simulations to conscious access in awake behaving subjects. However, there is now 

a growing body of work showing that the GNW is also able to account for differences 
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in levels of consciousness (see Mashour et al, 2020 for a review), in the sense that 

the integrity of connectivity between workspace nodes covaries with changes in the 

overall state of consciousness. Specifically, all major classes of general anaesthetic 

have been shown to in some way disrupt frontoparietal networks (Hudetz & 

Mashour, 2016). Further, work in non-human primates has found that, only in a 

waking state, GNW nodes – including parietal, prefrontal, and sensory cortices – 

display a wide range of functional connectivity patterns much richer than anatomical 

connectivity. In contrast, a range of anaesthetics with different molecular 

mechanisms (ketamine, propofol, and sevoflurane) all drastically limit functional 

connectivity to patterns that resemble anatomical connectivity (Uhrig et a, 2018). The 

simulations in this paper do not speak directly to these results, although they do sit 

well with the relevant aspects of the computational architecture of the PGNW. For 

example, the most plausible analogue in our model to the disconnection between 

prefrontal and parietal cortices that accompanies general anaesthesia would be a 

lesion to the 2nd level A-matrix (i.e., such that the first and second levels no longer 

exchange information). In this case, second-level representations would quickly 

become maximally imprecise (barring infinitely precise second-level priors) and carry 

no information, plausibly corresponding to general unconsciousness (i.e., no 

conscious content of any kind). Importantly, the agent would also become insensitive 

to longer timescale regularities in sensory input, explaining the abolishment of the P3 

response to violations of longer time scale auditory regularities during sedation and 

sleep (Shirazibeheshti et al, 2018; Strauss et al, 2015). 

 In addition to these big picture limitations, our model has a number of more 

specific limitations that apply strictly to the study of visual consciousness. Principally, 

our model only has two levels and we treat the entire visual system as a singular and 
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discrete level instead of modelling it for what it is – a continuous and multi-level 

system. The need for multiple levels brings us to the next limitation. As Kouider et al 

(2010) argue, people are often only partially aware of a visual scene in the sense 

that they may be aware of an object’s colour but not its identity. This requires 

information to skip levels of the hierarchy, which is also not possible in the present 

model. A more complete model would therefore allow both shallower and deeper 

representations to selectively update the second “workspace” level (e.g., allowing 

separable awareness of representations of an eye vs. a face vs. a person’s identity).  

 

5. Conclusions and Future Directions 

This paper introduced a formal extension of the global neuronal workspace – the 

predictive global neuronal workspace – implemented within a deep Active Inference 

architecture. In addition to explaining and unifying otherwise disparate findings in the 

neural correlates of visual consciousness literature, the predictive global neuronal 

workspace model presented here generates several empirical predictions, and 

mechanistic neuro-computational explanations, regarding the relationship of the P3 

and subjective report, the neurobiological implementation of the inferential machinery 

underlying conscious access, and the role of expectation in visual consciousness.  

 In future work, we hope to build on the wealth of existing Active Inference 

models (e.g. Allen et al., 2019; Parr et al., 2019c; Smith et al., 2019a; 2019b), to 

extend the PGNW to other sensory modalities and more sophisticated experimental 

paradigms.  

 

Software note: The generative model detailed in this paper used a generic belief 

updating scheme (spm_MDP_VB_X.m) implemented in Matlab code using the freely 
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available SPM academic software: https://www.fil.ion.ucl.ac.uk/spm/. The scripts 

used to produce the specific simulations reported here can be downloaded from 

https://github.com/CJWhyte/PGNW_ERP-1_2020.  

 

Conflict of interest statement: The authors have no conflicts of interest to disclose. 

 

Appendix: Full Model Specification 

At the first level of the model (see figure A1), the D vectors specified the initial state 

of the four hidden state factors; top-down attention (present, absent), internal 

stimulus (bars/square), peripheral stimulus (red/black circles), and auditory-verbal 

states (single words: “silent”, “I”, “see”, “a”, “square”, “didn’t”, “anything”). The state 

transitions specified by the B matrices were all identity matrices, meaning that the 

hidden states were stable across the course of each trial. The likelihood mapping 

between the hidden states and outcomes, specified by the A matrices, is where we 

implemented the attention and signal strength manipulations. The peripheral 

stimulus and language matrices were both fully precise (identity matrices). In 

contrast, we reduced the precision (denoted by � for stimulus strength and Σ for 

attention) of the mapping between the internal state and the outcomes by passing 

what were initially identity matrices through two softmax functions controlled by 

precision parameters representing the effects attention and signal strength (i.e. 

presentation time). Higher values of these parameters made the A matrices more 

precise. We set up the interaction between the A matrices such that the likelihood 

mapping for the internal stimulus factor was more precise when the agent was in an 

attentive state. In contrast, stimulus strength manipulations reduced the precision of 

the mapping between stimuli and hidden states independent of attentional state.  
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Figure A1. 1st-level generative model matrices. All matrices are passed through softmax functions 

such that the columns of each matrix, and the rows of each vector, always sum to one. Each column 

of the D vector represents the probability of a hidden state. Columns of the B matrix correspond to 

states at time t and rows correspond to states at t+1. Here all the B matrices are identity matrices 

meaning that the states were believed to be stable across each trial. Columns of the A matrix 

correspond to hidden states while rows correspond to observations. An identity mapping therefore 

implies a deterministic (i.e. precise) likelihood mapping between states and observations. To model 

the effects of attention and stimulus strength the A matrix encoding the likelihood mapping for the 

internal segment of the stimulus was passed through a softmax function twice with a precision 

multiplier representing attention ( ) which could be present or absent, and stimulus strength which 

could be strong or weak ( . The combined effect of the attention and signal strength multipliers 

determine the final precision of the matrix as depicted above. With the exception of the A matrix 

encoding the likelihood mapping for the internal segment of the stimulus, all other first-level A 

matrices were identity matrices, meaning that the mapping was deterministic. Finally, it is important to 

note that, for visual simplicity, the matrices displayed above have not been factorised (in the code, 

these matrices are Kronecker tensor products). 
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 At the second level (see figure 5) the three hidden state factors specified by 

the D vectors were: sequence type (black disk and square, black disk and bars, red 

disk and square, red disk and bars), time point within trial (1-8), and report state 

(wait, seen, unseen). We set the initial level of the report state to “wait”. The B matrix 

for sequence type was an identity matrix, meaning that the agent believed a priori 

that the sequence type would not change mid-trial. Trial phase was set up such that 

time point 1 transitioned to time point 2, which transitioned to time point 3 and so on 

until the end of the trial. For time points 1-4, all states in the “report” B matrix 

mapped to “wait”; however, at time point 5 the agent had control over the B matrices 

for the report state, meaning that it could transition to either a “seen” or “unseen” 

state depending on which policy best minimised expected free energy. The A 

matrices were factorised such that the mapping from hidden states to outcomes was 

dependent on the time point in the trial (see the time-in-trial hidden state factor in 

figure A2). In other words, the narrative of this paradigm was specified in terms of 

interactions between time and other content-specific hidden state factors (i.e., and 

the interaction between ‘when’ and ‘what’). For example, at time point 1 both square 

sequence and bar sequence hidden states predicted a bar outcome (recall that 

second-level outcomes are also first-level hidden states). While at the 2nd and 3rd 

time points the square sequence predicted a square outcome and a bar hidden state 

predicted a bar outcome. At time point 4, both the square sequence and bar 

sequence once again predicted a bar outcome. To model the recurrent feedback 

between hierarchical levels characteristic of ignition, the square sequences mapped 

to the square outcomes for time point 2 and 3 – allowing the state at the second level 

to influence belief updating at the first level via the second-level A matrix. From time 

points 1-4 all the states in the “report” factor mapped to the “silent” first-level verbal 
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state. However, from time point 5 on, “seen” and “unseen” states entailed a different 

sequence of lower-level word representations. The “seen” report state entailed the 

words (in order) “I” “see” “a” “square” at each successive time point, while the 

“unseen” report state entailed the words “I” “didn’t” “see” “anything” in that order. The 

report state also had a likelihood mapping to a feedback outcome. The agent was 

“correct” if, at time point 8, they reported “seen” after a square sequence or “unseen” 

after a bar sequence, and “incorrect” if they reported “unseen” after a square 

sequence or “seen” after a bar sequence (this preferred feedback was used to 

motivate honest verbal reporting policies; see below). To account for the diffuse 

nature of feedback projections (Bannister, 2005; Garcia-Cabezas et al., 2019), we 

lowered the precision of the A matrix for the “sequence type” factor (precision = 0.8) 

providing a plausible threshold on ignition events. 

 

Figure A2. 2nd-level generative model matrices. D vectors for sequence type (unless otherwise 

indicated) assigned equal probability to each state. The D vector for the trial phase hidden state factor 

was initialised so that the model would always start each trial with full confidence that it was in the 

state corresponding to time point 1. Similarly, the D vector for the report state was initialised so that 
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the model had full confidence in the “wait” state at the start of each trial. The B matrix for sequence 

type was an identity matrix meaning that the agent believed a priori that the sequence of states would 

be stable throughout the trial. We set up the B matrix for the trial phase hidden state factor such that 

each state successively transitioned to the next state (i.e. state 1 transitioned to state 2 and so on). 

For the controllable B matrices there was one matrix for each possible report state (wait, unseen, and 

seen). From time step 1 - 4 the agent could only select the “wait” matrix but at time step 5 the agent 

could choose (i.e. via policy selection) between the “seen” and unseen “matrices”. The C matrix 

encoded the agents preference for each outcome and had a column for each time point and a row for 

each action (report state). There was one C matrix for each outcome modality. Here we only display 

the C matrix for the “correct/incorrect feedback” outcome modality associated with the report state, as 

it is the only outcome for which the agent had non-zero preferences.  That is, the agent preferred to 

be “correct” at the end of each trial rather than “incorrect”. Finally, the A matrices were set up such 

that the sequence type hidden state factor had two corresponding outcome modalities, which mapped 

the sequence type hidden states to the internal stimulus and peripheral stimulus hidden states at level 

1. To provide the model with a plausible “ignition threshold,” we lowered the precision of the A matrix 

for the “sequence type” factor by passing it through a softmax function (precision = 0.8) although we 

do not picture this graphically. The report hidden state factor did not map to hidden states at the level 

below, instead it mapped to observations that informed the agent about whether they were “correct” or 

“incorrect” (recall that, because of the C matrix, the agent wanted to receive “correct” observations 

and was averse to “incorrect” observations). Finally, the report hidden state factor mapped to first 

level language processing hidden states so that after time step 5, once the model was in a “seen” or 

“unseen” state, the appropriate sequence of spoken word states would be initiated at the level below 

(i.e. “I” “see” “a” “square”). Again, for visual simplicity the matrices displayed above have not been 

factorised and appear differently to how they are implemented in code. 

 

 Finally, we constructed the C matrix such that when the agent received 

feedback at time point 8 they most preferred to be correct and least preferred to be 

incorrect when reporting whether or not they had seen the stimulus (preference 

values that produced sufficient motivation for accurate reporting are depicted in 
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figure A2). To model forced-choice behaviour, we ran a separate simulation but 

reduced the preference for being correct versus incorrect, making the agent less 

conservative and more likely to guess under conditions of weaker perceptual signals. 

Because Active Inference models are deterministic, we set policy precision (the 

confidence in policy selection denoted by �), and motor stochasticity (randomness of 

action selection denoted by �) to � � 2 and � � 6, thereby allowing for a plausible 

level of behavioural variability reflecting the agent’s relative confidence in some 

states over others. 
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