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Abstract 

Background: Processing and quantitative analysis of magnetic resonance spectroscopy (MRS) 

data are far from standardized and require interfacing with third-party software. Here, we present 

Osprey, a fully integrated open-source data analysis pipeline for MRS data, with seamless 

integration of pre-processing, linear-combination modelling, quantification, and data visualization. 

New Method: Osprey loads multiple common MRS data formats, performs phased-array coil 

combination, frequency-and phase-correction of individual transients, signal averaging and 

Fourier transformation. Linear combination modelling of the processed spectrum is carried out 

using simulated basis sets and a spline baseline. The MRS voxel is coregistered to an anatomical 

image, which is segmented for tissue correction and quantification is performed based upon 

modelling parameters and tissue segmentation. The results of each analysis step are visualized in 

the Osprey GUI. The analysis pipeline is demonstrated in 12 PRESS, 11 MEGA-PRESS, and 8 

HERMES datasets acquired in healthy subjects. 

Results: Osprey successfully loads, processes, models, and quantifies MRS data acquired with a 

variety of conventional and spectral editing techniques. 

Comparison with Existing Method(s): Osprey is the first MRS software to combine uniform pre-

processing, linear-combination modelling, tissue correction and quantification into a coherent 

ecosystem. Compared to existing compiled, often closed-source modelling software, Osprey’s 

open-source code philosophy allows researchers to integrate state-of-the-art data processing and 

modelling routines, and potentially converge towards standardization of analysis. 

Conclusions: Osprey combines robust, peer-reviewed data processing methods into a modular 

workflow that is easily augmented by community developers, allowing the rapid implementation 

of new methods. 
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1. Introduction 

Magnetic resonance spectroscopy (MRS) is the only methodology that can determine the levels of 

neurochemicals in living tissue non-invasively, providing a unique window on the neurobiology 

of the human brain in health and pathology. Over the course of several decades, the field has 

developed a wide range of data acquisition, processing, and quantitative analysis methods (Harris 

et al., 2017; Landheer et al., 2019; Öz et al., 2020; Wilson et al., 2019). 

In general, state-of-the-art analysis of MRS data can be divided into three fundamental steps: 

1. Pre-processing of raw data that has been exported directly from the scanner or obtained 

from an institutional archiving system (PACS). Currently, no convention for a 

standardized MRS data format exists. Instead, each major vendor has developed 

proprietary file formats that store data in varying degrees of ‘rawness’ and limited 

information on acquisition parameters. Some of the most widely used file formats 

(DICOM MRS, Philips SDAT/SPAR, Siemens RDA, GE P-file) contain data that have 

been pre-processed to varying extents in the vendor-native online reconstruction 

environment. On-scanner processing relies on proprietary vendor-specific reconstruction 

code and is therefore neither standardized nor publicly documented.  

Data processing can include basic low-level operations on the raw time-domain data 

(down-sampling, zero-filling, filtering, truncating, Fourier transformation), higher-level 

operations to improve critical signal properties like linewidth and signal-to-noise ratio 

(weighted receiver-coil combination, alignment of individual averages), and operations to 

address acquisition-related artefacts (removal of residual water signal, eddy-current 

correction).  

2. Modelling of the processed spectral data is performed to derive quantitative parameters 

that allow conclusions to be drawn about the levels of individual metabolites. The 

complexity of this process ranges from simple peak integration, through single-resonance 

modelling, to linear-combination algorithms to decompose spectra into their constituent 

signals. While simple models are easy to implement, the full information content of an 

MRS spectrum can only be unlocked by modelling it fully. The most widely used linear-

combination algorithms are exclusively implemented in third-party compiled software, 
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either open-source (e.g. Tarquin (Wilson et al., 2011), Vespa1), or closed-source 

academic (e.g. the AQSES (Poullet et al., 2007) algorithm in jMRUI (Stefan et al., 2009)) 

or commercial (LCModel (Provencher, 1993)). 

Despite their widespread use, all common fitting software packages are developed and 

maintained by small groups of researchers (or even a single individual), who often 

critically rely on third-party funding to keep the project alive. 

3. Quantification is here used to describe the process of converting quantitative modelling 

parameters into biologically meaningful estimates of metabolite levels. Depending on the 

complexity of the quantification method, this may entail simply taking ratios of peak 

areas, or include more sophisticated calculations such as correcting for the fraction of 

cerebrospinal fluid (CSF), tissue-specific relaxation correction (Gasparovic et al., 2006), 

or accounting for assumed differences of metabolite abundance between tissue classes 

(Harris et al., 2015).  

The core task of modelling is usually performed by third-party software, which typically has 

limited capability of pre-processing and quantification. This forces researchers to create their 

own local pipeline, starting from a rich diversity of scanner-specific export formats, choosing an 

appropriate set of processing steps, and finally exporting the processed data into a format that is 

accepted by the modelling software. Many modelling software solutions include the calculation 

of signal amplitude ratios to a reference (creatine, N-acetyl aspartate, water), but at the time of 

writing, none of them allow direct incorporation of tissue-specific segmentation or metabolite-

specific relaxation information. Therefore, researchers must, again, develop local custom code to 

import the modelling results, apply corrections, and calculate final quantitative measures. In 

contrast to popular imaging modalities like functional MRI, which have established publicly 

available analysis frameworks and software environments open to community contributions, a 

widely used standardized pipeline is currently not available for MRS data analysis. 

We have identified several issues with these practices. In short, the current best practices are not 

only inefficient, but severely hinder the more widespread use of MRS as a research tool, and 

curb its potential as a clinical one: 

 
1 Brian J. Soher et al, https://scion.duhs.duke.edu/vespa/project 
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a. Waste of resources: If every lab resorts to writing custom code to carry out the same 

task, a lot of time, energy, and funding is wasted into duplicate efforts. 

b. Methodological heterogeneity: The lack of a single analysis pipeline to include pre-

processing, modelling and quantification forces all labs to rely on local custom code. 

Additionally, many labs conducting advanced methodological MRS research rely on their 

own, long-established pipelines (including either local or third-party modelling) and keep 

methodological developments local. This is detrimental to standardization, comparability, 

and transparency of data analysis.  

c. High-entry threshold: Developing custom analysis code represents an often 

insurmountable effort for new research groups for whom MRS is a potential tool, but not 

a primary focus, and who might not have the background knowledge, resources, or 

technical expertise to create a processing pipeline from scratch. 

d. Inertia and slow evolution: New methodological developments take longer than 

necessary to gain acceptance and become widely adopted, because newcomers struggle to 

implement them if the code is not made publicly available right away. Integrating new 

developments into compiled third-party software requires larger programming efforts, 

with low incentives for the developer to devote resources to this task.   

e. Dependence and vulnerability: To evolve and be maintained, third-party software is 

critically dependent on its developers. They may transition to different positions (or leave 

academia altogether), run out of funding, lack time or staff support, or simply have no 

incentive to actively develop the software. This is particularly true for closed-source or 

commercial software, or tools that are maintained by single individuals.   

Here we describe a new open-source MATLAB-based toolbox “Osprey”. Osprey is an all-in-one 

software package that combines all steps of state-of-the-art pre-processing, linear-combination 

modelling, quantification, and visualization of MRS data. The Osprey framework is designed as a 

modular, fully open-source environment to flexibly adopt future methodological developments, 

accelerate their adaptation, and foster standardization. The entire source code of Osprey is 

available in the public domain, inviting improvements, bug fixes, and addition of state-of-the-art 

technical developments from the community. 
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2. Methods 

The Osprey workflow is summarized in Fig. 1. Osprey consists of seven separate modules –  Job, 

Load, Proc, Fit, Coreg, Seg, and Quant, all of which are sequentially called by simple MATLAB 

commands. Alternatively, users can conduct the entire workflow in a graphical user interface 

designed to minimize the amount of user input. The Osprey code builds upon functions and the 

organizational structure of FID-A (Simpson et al., 2017), an open-source collection of MATLAB 

scripts for simulating, loading, and processing MRS data. 

 

Figure 1: The Osprey workflow with the seven modules Job, Load, Proc(ess), Fit, Coreg(ister), 
Seg(ment), and Quant(ify).  

 

2.1 Job 

The only user interaction that is required to specify and conduct an Osprey data analysis is to 

define a Job in a job file. The job system allows easy batch processing of multiple datasets. The 

job file is a text file containing the paths to the MRS data files and structural image files to be 

processed, and parameters to control data processing and linear-combination modelling. In 

addition, the user must specify an output folder that Osprey will use to save exported data, 

coregistration and segmentation images, and quantitative result tables. 

Osprey distinguishes between three classes of MRS data files: 
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• Metabolite (water-suppressed) data. These are a mandatory input. 

• Lineshape reference data. These are an optional input, acquired with the same sequence as 

the metabolite data, but without water suppression, and used to perform eddy-current 

correction (Klose, 1990) of the metabolite data. If only lineshape reference data are 

provided, this signal is also used to calculate water-scaled concentration estimates. 

• Short-TE reference data. These are another optional input. If the user provides short-TE 

reference data, they will be used to derive water-scaled concentration estimates (and 

lineshape data are only used for eddy-current correction). Using short-TE water as the 

concentration reference standard reduces T2-weighting of the water reference signal (and 

associated correction errors) compared to long-TE water data. 

In addition to the paths to the raw data files, the job file must specify the type of sequence (with 

or without spectral editing, such as MEGA (Mescher et al., 1998; Rothman et al., 1993), HERMES 

(Chan et al., 2016; Saleh et al., 2016), or HERCULES (Oeltzschner et al., 2019a)), the target 

molecules of spectral editing experiments, and options for the fitting process, which are explained 

in Section 2.4. 

The job file can also specify an optional CSV file which is used to specify external statistical 

variables for the GUI visualization of batch analyses, such as age of subjects, diagnostic classifiers, 

or behavioral measures. 

Upon execution, the Job command initializes a MATLAB structure array that serves as the 

superstructure for all settings and data that have been previously specified in the job file. All 

subsequent modules of the Osprey pipeline act solely on the superstructure created by the Job 

module. The name of the superstructure variable is the only argument to be passed on when calling 

other functions along the Osprey workflow.  

 

2.2 Load 

Osprey supports most common raw and processed file formats from major MRI vendors. This 

includes Philips (SDAT/SPAR, DATA/LIST), Siemens (RDA, TWIX) and GE (P-file) data. 

Additionally, single-file or multi-file DICOM datasets can be loaded. At the time of writing, 
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single-voxel conventional and various J-difference-edited data from many sequence 

implementations are supported.  

Upon calling the Load command, Osprey parses the filename endings of the MRS data files to 

determine the correct file format. The appropriate loading functions then extract all relevant 

information from the headers to correctly load the raw spectroscopic data into the Osprey 

superstructure. Aside from the FIDs, the Load module saves the receiver bandwidth, repetition and 

echo times, number of averages, number of data points, transmitter frequency (or magnetic field 

strength), as well as information about voxel dimensions and positions. 

The Load module also combines the signals from multi-channel receiver coils by determining the 

channel-specific phase and weighting each channel with the ratio of the signal to the square of the 

noise. Assuming uncorrelated noise, this procedure has been shown to yield the optimal signal-to-

noise ratio (Hall et al., 2014). If lineshape reference or short-TE reference data are provided, they 

are used instead of the metabolite data to determine the phasing and weighting parameters.  

The coil-combined (but un-aligned and un-averaged) data is stored in FID-A data structure arrays 

within the Osprey superstructure for further processing. 

 

2.3 Proc 

The Proc (Process) module performs all necessary steps to translate the raw, un-aligned, un-

averaged data into spectra that are ready to be modeled.  

The pre-processing pipeline includes the following steps: 1) alignment of individual averages 

using spectral registration in the time domain (Near et al., 2015); 2) averaging; 3) Fourier 

transformation; 4) automatic determination of the correct polarity of the spectrum since some 

water-suppression schemes can result in negative residual water peaks; 5) residual water removal 

by singular-value decomposition of the signal (Barkhuijsen et al., 1987) and subtracting 

components between 4.6 and 4.8 ppm; 6) linear baseline correction (based on the mean of 100 data 

points at the far edges of the frequency domain spectrum; 7) correct frequency referencing based 

on a single-Lorentzian fit to the 2.01 ppm NAA singlet. If lineshape reference data are available, 

the Klose method (Klose, 1990) is applied to correct the metabolite spectra for eddy-currents. 
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For J-difference-edited experiments (MEGA, HERMES, HERCULES), sub-spectra are aligned by 

minimizing the frequency-domain difference signal within a particular frequency range containing 

identical signal in pairs of sub-spectra. As an example, the edit-ON and edit-OFF spectra in 

GABA-edited MEGA data usually share a considerable residual water signal that is used for 

alignment. In contrast, the residual water signal is suppressed in the edit-ON spectra of GSH-edited 

MEGA data due to the editing pulse being applied at 4.56 ppm. In this case, the 2.01 ppm NAA 

signal is used for alignment. After sub-spectrum alignment, difference and sum spectra are 

calculated and stored. 

In addition to performing the automated processing, Osprey determines several quality-control 

parameters. Linewidth is determined as the full-width half-maximum of a single-Lorentzian fit to 

the NAA peak (between 1.8 and 2.2 ppm). SNR is determined as the ratio between the amplitude 

of the NAA peak and the standard deviation of the detrended noise between −2 and 0 ppm. The 

frequency drift over the course of the experiment is determined based on the creatine signal in 

every single average (creatine and choline signals that nominally appear at 3.02 and 3.20 ppm are 

modeled by two Lorentzians). 

The Proc module can optionally export the fully processed spectra to output subfolders, in formats 

readable by external third-party fitting software (LCModel, Tarquin, jMRUI, Vespa).  This feature 

allows users to perform traditional data modelling, with the benefit of improved SNR and linewidth 

resulting from optimized coil-combination and alignment of individual averages – features that the 

established software solutions currently do not offer. For spectral editing data, separate files are 

created for the difference and sum spectra, as well as for each sub-experiment (edit-ON/OFF for 

MEGA, A/B/C/D for HERMES/HERCULES). Additional files are created for the lineshape and 

short-TE water data, if available. If water reference data acquired are with spectral editing 

sequences, the subspectra are added and saved as a single file. 

 

2.4 Fit 

The Fit module models the processed spectra passed from the Proc module with a linear 

combination of basis functions. The default Osprey model is designed to mimic several key 

features of the algorithms implemented in LCModel and Tarquin. It requires a sequence-specific 
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basis set, which is automatically selected by Osprey based on the vendor, sequence type, and 

sequence parameters. Several fit options are specified in the job file, e.g. the frequency range over 

which the spectrum is to be modelled, and the baseline flexibility (as controlled by the minimum 

ppm-spacing between neighboring knots of the cubic baseline spline). 

The Fit module requires a sequence-specific basis set, which is automatically selected by Osprey 

based on the vendor, sequence type, and sequence parameters. Osprey basis sets can be generated 

with a single command line function from a set of spectra that have been simulated with FID-A. 

Several sequence-specific basis sets for commonly used implementations of PRESS, MEGA-

PRESS, HERMES, and HERCULES are included, derived from fast spatially resolved density-

matrix simulations (Zhang et al., 2017) using ideal excitation and shaped refocusing pulses. 

Additional basis sets can be generated either by users or upon request by the authors, and added to 

the repository. Basis functions for macromolecule and lipid functions are added by generating 

Gauss-shaped signals with properties summarized in Table 1. 

Name Frequencies [ppm] FWHM [ppm] Amplitude 

MM09 0.91 0.14 3.00 

MM12 1.21 0.15 2.00 

MM14 1.43 0.17 2.00 

MM17 1.67 0.15 0.20 

MM20 2.08 0.15 1.33 

 2.25 0.20 0.33 

 1.95 0.15 0.33 

 3.00 0.20 0.40 

Lip09 0.89 0.14 3.00 

Lip13a 1.28 0.15 2.00 

Lip13b 1.28 0.089 2.00 

Lip20 2.04 0.15 1.33 

 2.25 0.15 0.67 

 2.80 0.20 0.87 

Table 1: Default properties of the macromolecule and lipid basis functions included in Osprey 
basis sets, mimicking the approach of LCModel (section 11.7 of the LCModel manual). 
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Amplitude values are scaled relative to the 3.02 ppm Cr CH3 singlet in the basis set, which has 
amplitude 3. 

The Fit module interpolates the basis set to match the resolution (data points per ppm) of the 

processed spectra. All spectra of a single dataset (water-suppressed and water-unsuppressed) are 

then scaled to the basis set to facilitate convergence of the subsequent optimization. 

Prior to the full analysis, two preparation steps are carried out. First, for optimal frequency 

referencing, the spectrum is cross-correlated with a sum of unit delta functions at 2.01 ppm, 3.03 

ppm, and 3.21 ppm, representing the major landmark singlets from NAA, Cr, and Cho, 

respectively, and the frequency shift corresponding to the offset of the cross-correlation function 

is applied to the spectrum. Second, to obtain good starting values for the phase and linebroadening 

parameters, a preliminary fit is performed with a reduced basis set only including the basis 

functions of NAA, Cr, PCh, Glu, and Ins, and a more flexible baseline with a knot spacing of 0.15 

ppm. The final phase and linebroadening estimates from this preliminary fit are used as starting 

values for the full fit. Together with the initial referencing step, selecting a reasonable starting 

point for the non-linear parameters helps stabilize the optimization problem. 

Osprey fits the real part of the frequency-domain spectrum 𝑌(𝜈) using a model similar to the one 

used by the LCModel algorithm. The 𝑁! simulated time-domain metabolite basis functions 𝑚"(𝑡) 

in the basis set receive the same Gaussian linebroadening 𝛾, and individual Lorentzian 

linebroadenings 𝛼" and frequency shifts 𝜔" (𝑚 = 1,… ,𝑁!) before they are Fourier-transformed 

into the frequency domain: 

𝑀"(𝜈; 𝛼", 𝜔") = 𝐹𝐹𝑇(𝑚"(𝑡) exp(−𝑖𝜔"𝑡 −	𝛼"𝑡 − 𝛾𝑡#)) 

To account for deviations from a perfect Voigtian lineshape as determined by the linebroadening 

parameters, the frequency-domain basis spectra are then convolved with an arbitrary, 

unregularized lineshape model. This supplementary lineshape model 𝑺	has a length equal to a 

spectral width of 2.5 times the coarse estimate of the FWHM of the spectrum that was estimated 

during the initial referencing step. S is normalized, so that this convolution does not impact the 

integral of signals, and is initialized as a unit delta function at the central point. 

The smooth baseline is constructed as a linear combination of 𝑁$ normalized, equally spaced cubic 

B-spline basis functions 𝐵%(𝜈) with coefficients 𝛽% (𝑗 = 1,… ,𝑁$), with knots 2 and (𝑁$ − 1) 
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located on the edges of the fit range, and two additional knots outside the modeled range. 𝑁$ is 

determined from the fit range based upon the minimum knot spacing condition that the user 

specifies in the job file. In contrast to the LCModel algorithm, the default Osprey model does not 

currently include baseline regularization. To prevent an unreasonably flexible baseline without 

using a regularizer, the default Osprey spline knot spacing is increased to 0.4 ppm, compared to 

the default LCModel ‘DKNTMN’ setting of 0.15 ppm. 

The model spectrum 𝑌=(𝜈) is constructed from these components as follows: 

𝑌=(𝜈) = exp[𝑖(𝜑& + 𝜑'(𝜈))]B∑ 𝛽%𝐵% +∑ 𝐴"[𝑀" ∗ 𝑺](!
")'

("
%)' F. 

Here, 𝜑& represents the global zero-order phase correction; 𝜑'(𝜈) the global first-order (linear) 

phase correction; and 𝐴"	the amplitude of each metabolite/MM/lipid basis function. 

To minimize the sum of squares of the difference between the data 𝑌(𝜈) and the model 𝑌=(𝜈), the 

Fit module uses an implementation of the popular Levenberg-Marquardt (Levenberg, 1944; 

Marquardt, 1963) non-linear least-squares optimization algorithm that allows hard constraints to 

be imposed on the parameters2. The amplitude parameters applied to the metabolite and baseline 

spline basis functions occur linearly in the model, and are determined at each iteration of the non-

linear algorithm with a limited-memory algorithm for bound constrained optimization (L-BFGS-

B)3 (Byrd et al., 1995; Zhu et al., 1997), constraining the metabolite amplitudes to be non-negative 

(𝐴* ≥ 0). Default hard constraints on non-linear parameters and weak soft constraints on 

macromolecule and lipid amplitudes are imposed to stabilize the solution, and are defined as they 

are in LCModel and Tarquin (Table 2). 

 
2 Alexander Dentler (2020), alexander.dentler@gmail.com. Levenberg-Marquardt toolbox 
(https://www.mathworks.com/matlabcentral/fileexchange/53449-levenberg-marquardt-toolbox), 
MATLAB Central File Exchange. Retrieved January 16, 2020.  

 
3 Stephen Becker (2020). LBFGSB (L-BFGS-B) mex wrapper 
(https://www.mathworks.com/matlabcentral/fileexchange/35104-lbfgsb-l-bfgs-b-mex-wrapper), 
MATLAB Central File Exchange. Retrieved January 16, 2020.  
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Parameter Lower bound Upper bound 
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Metab 1 Metab 2 Ratio 

𝜑& −359° 359° NAAG NAA 0.15 

𝜑' −10°/𝑝𝑝𝑚 10°/𝑝𝑝𝑚 Lip09 Lip13 0.267 

𝛾 0	𝐻𝑧 √5000	𝐻𝑧 Lip20 Lip13 0.15 

𝛼" (metabolites) 0	𝐻𝑧 10	𝐻𝑧 MM20 MM09 1.5 

𝛼" (MM/lipids) 0	𝐻𝑧 100	𝐻𝑧 MM12 MM09 0.3 

𝜔" (metabolites) −0.03	𝑝𝑝𝑚 0.03	𝑝𝑝𝑚 MM14 MM09 0.75 

𝜔" (MM/lipids) −0.05	𝑝𝑝𝑚 0.05	𝑝𝑝𝑚 MM17 MM09 0.375 

Table 2: Hard constraints on fitting parameters, and weak soft constraints on amplitude ratios. 

 

Water-unsuppressed data are modelled from a simulated water resonance with the same 

constrained non-linear least-squares algorithm using a simplified model, only including the 

following six hard-constrained modelling parameters: zero-order phase (−2𝜋 ≤ 𝜑& ≤ 2𝜋), first-

order phase (− +
,
≤ 𝜑' ≤

+
,
), Gaussian linebroadening (0	𝐻𝑧 ≤ 𝛾 ≤ √5000	𝐻𝑧), Lorentzian 

linebroadening (0	𝐻𝑧 ≤ 𝛼 ≤ 50	𝐻𝑧), frequency shift (−15	𝐻𝑧 ≤ 𝜔 ≤ 15	𝐻𝑧), and amplitude 𝐴. 

No baseline is included in the water model.  

For J-difference-edited experiments, the user can choose between two fitting styles in the job file.  

When the ‘Concatenated’ fitting style is selected, all difference spectra and the sum spectrum are 

modeled simultaneously. In this case, the amplitude, lineshape, phase and linebroadening 

parameters are shared between the models for each sub-spectrum, while each sub-spectrum 

maintains its own baseline parameters and is allowed an additional small frequency shift to account 

for small inconsistencies between sub-spectra. The simultaneous modelling approach incorporates 

all available spectral information to constrain the model in a way that is most consistent with the 

data, thereby reducing the variability of the quantification results compared to unconstrained 

separate modelling (Oeltzschner et al., 2019a). When the ‘Separate’ fitting style is selected, each 

difference spectrum is modeled separately – one for MEGA-edited data, two (or more) for 

Hadamard-edited data like HERMES and HERCULES. In this case, the editing-off spectrum (for 

MEGA) or the sum spectrum (for HERMES/HERCULES) is also separately modeled. 
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2.5 Coreg 

The Coreg module uses information about size, position and orientation of the MRS voxel in 

scanner-space coordinates (which were extracted from header by Load) to create a binary voxel 

mask, i.e., a 3D image in which the values 1 and 0 represent locations inside or outside the MRS 

voxel, respectively. While the definitions of the voxel orientation parameters differ between 

vendors, in each case, they uniquely define the dimensions and positioning of the voxel in scanner 

space. The binary voxel mask is then transformed to the same coordinate system as the structural 

image (in NIfTI format) that the user provides in the job file. This step ensures that the voxel mask 

is coregistered to the structural image, and reproduces the original voxel placement. 

 Finally, the coregistered voxel mask is saved in NIfTI format using SPM12 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) volume processing tools. 

 

2.6 Seg 

The Seg module invokes the SPM12 segmentation function to segment the structural image into 

gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). The coregistered voxel 

mask that was created by the Coreg module is then overlaid with the GM, WM, and CSF tissue 

probability maps. The Seg module then calculates fractional tissue volumes 𝑓-./ for GM, WM and 

CSF according to:  

𝑓-./,1 =
∑ 3#(5)$

(
, 

with the tissue probabilities 𝑝1(𝑛) for the tissue class 𝑘 ∈ 𝐺𝑀,𝑊𝑀, 𝐶𝑆𝐹 and the 𝑛-th image voxel 

(𝑛 ∈ 1, 2, … , 𝑁), where 𝑁	represents the number of image voxels within the MRS voxel.  

 

2.7 Quant 

The Quant (Quantify) module calculates various quantitative outputs, depending on the available 

modelling parameters that have been determined during the Fit process: 

- Ratios of the metabolite signal amplitudes 𝑆"78	to the total creatine amplitude 
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𝑆89: = 𝑆9: +	𝑆;9: 

are always determined, regardless of whether water data have been provided, according to  

[𝑚𝑒𝑡]89: =
𝑆"78
𝑆89:

 

These tCr ratios are reported as raw ratios, i.e. no relaxation correction or accounting for 

tissue composition is applied. In difference-edited experiments, the Cr resonances are 

usually subtracted out in the difference spectra. In these cases, the tCr reference is 

determined from the edit-OFF spectrum if the fit option ‘Separate’ has been selected, and 

from the sum spectrum if the fit option ‘Concatenated’ has been selected.  

- When an unsuppressed water signal is provided, Osprey can report water-scaled metabolite 

estimates. If both lineshape reference data (i.e. data with the same TE as the water-

suppressed data) and additional short-TE water data are available, the latter will be used as 

the water-scaling reference signal. Osprey reports water-scaled metabolite estimates 

according to: 

[𝑚𝑒𝑡]<%= =
>&'(
>)%*

× [𝐻#𝑂] × 𝑓<%= ×
'?𝑒

−𝑇𝑅𝑤𝑇1𝑤

'?𝑒
−𝑇𝑅𝑚𝑒𝑡𝑇1𝑚𝑒𝑡

× 𝑒
−𝑇𝐸𝑤𝑇2𝑤

𝑒
−𝑇𝐸𝑚𝑒𝑡𝑇2𝑚𝑒𝑡

. 

Here, [𝐻#𝑂] is the molal concentration of pure MR-visible water (55.5 mol/kg of MR-

visible water (Gasparovic et al., 2006; Knight-Scott et al., 2003)); 𝑓<%= is the relative water 

density of white matter; 𝑇𝑅", 𝑇𝑅#$%, 𝑇𝐸", 𝑇𝐸#$% are the repetition and echo times of the 

water-unsuppressed and water-suppressed acquisitions; 𝑇'@ and 𝑇#@ are averaged 

relaxation times for tissue water (for brain data at 3T, 𝑇'@ = 1100 ms and 𝑇#@= 95 ms 

(Wansapura et al., 1999)); 𝑇'"78 and 𝑇#"78 are the averaged relaxation times of all 

metabolites and generated from a lookup table that can be modified by the user. No tissue 

correction is applied. These water-scaled estimates are calculated even if no tissue 

composition information (from the Seg module) is available. 

- When unsuppressed water data and tissue segmentation are available, Osprey calculates 

water-scaled metabolite estimates corrected for the volume fraction of CSF in the voxel 

according to 

[𝑚𝑒𝑡]9>AB.:: =
[𝑚𝑒𝑡]<%=
1 − 𝑓-./,9>A
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Here, [𝑚𝑒𝑡]<%= is the water-scaled metabolite estimate obtained in the previous step, and 

𝑓-./,9>A is the fractional tissue volume of CSF as determined by the Seg module.  

- Finally, Osprey derives fully tissue-and-relaxation-corrected molal concentration estimates 

according to the Gasparovic method (Gasparovic et al., 2006), according to 

[𝑚𝑒𝑡]C*DD9.:: =
𝑆"78

𝑆<%=(1 − 𝑓9>A)
× [𝐻#𝑂]

×
𝑓E! × 𝑅<%=_E! + 𝑓G! × 𝑅<%=_G! + 𝑓9>A × 𝑅<%=_9>A

𝑅"78
 

Here, 𝑓E!, 𝑓G! and 𝑓9>A are the molal water fractions for GM, WM and CSF, which are 

derived from the volume fractions according to  

𝑓1 =
𝑓-./,1 × 𝑐𝑜𝑛𝑐<%=,1

𝑓-./,E! × 𝑐𝑜𝑛𝑐<%=,E! + 𝑓-./,G! × 𝑐𝑜𝑛𝑐<%=,G!+𝑓-./,9>A × 𝑐𝑜𝑛𝑐<%=,9>A
 

with the relative water densities 𝑐𝑜𝑛𝑐<%=,E! = 0.78	[𝐻#𝑂], 𝑐𝑜𝑛𝑐<%=,G! = 0.65	[𝐻#𝑂], 

and 𝑐𝑜𝑛𝑐<%=,9>A = 0.97	[𝐻#𝑂]. Tissue-specific relaxation corrections are calculated 

according to 𝑅<%=_# = g1 − 𝑒
− 𝑇𝑅𝑤
𝑇1𝑤_𝑘h × 𝑒

− 𝑇𝐸𝑤
𝑇2𝑤_𝑘 and 𝑅"78 = g1 − 𝑒

−𝑇𝑅𝑚𝑒𝑡𝑇1𝑚𝑒𝑡h × 𝑒
−𝑇𝐸𝑚𝑒𝑡𝑇2𝑚𝑒𝑡 . 

Relaxation times for metabolites and water at 3T field strength were adapted from several 

widely used references (Edden et al., 2012; Mlynárik et al., 2001; Puts et al., 2013; 

Wansapura et al., 1999; Wyss et al., 2018).  

For GABA-edited spectra, Osprey calculates an additional ‘alpha correction’ metric (Harris 

et al., 2015) that normalizes for the fact that GABA levels are higher in gray matter than in 

white matter (Jensen et al., 2005).  

Osprey saves all available quantitative results for the entire job as comma-separated value 

(CSV) tables to a subfolder “QuantifyResults” in the output folder. This easily accessible 

format provides a direct interface to external third-party software for subsequent statistical 

analysis and visualization (e.g. R, SPSS). 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 12, 2020. ; https://doi.org/10.1101/2020.02.12.944207doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.12.944207


   
 

   
 

2.8 GUI 

While all Osprey analysis steps can be carried out with simple MATLAB console commands, the 

Osprey GUI serves as the central hub for data visualization and quality assessment. Once a job file 

is loaded, all analysis steps can be triggered with dedicated GUI buttons, and the results from each 

step can be viewed on separate tabs, for each sub-spectrum from each dataset in the job. The ‘Load’ 

tab displays the pre-aligned, pre-averaged data, while the ‘Process’ tab shows the aligned 

individual transients, the final averaged spectra that are passed on to the Fit module, as well as 

information about the frequency history of the experiment pre- and post-alignment, and the basic 

quality assessment metrics (linewidth and SNR). The ‘Fit’ tab shows the spectrum, the complete 

fit, residual, baseline, and individual basis function contributions. The ‘Coreg/Seg’ tabs visualizes 

the results of voxel coregistration and segmentation, and the ‘Quantify’ tab features tables with all 

available quantitative outcome measures. 

The additional ‘Overview’ tab provides useful summary visualizations of batched jobs with many 

datasets. It provides visualization of mean spectra with overlaid ribbon plots of the standard 

deviation; mean fit, residual, and baseline; raincloud plots (Allen et al., 2019; Whitaker et al., 

2019) of quantitative results for quick assessment of the population distributions of metabolite 

estimates; and interactive display of correlation plots between metabolite estimates. If the job file 

was specified in CSV format and included assignment of each dataset to a group (e.g. patients or 

control subjects), the data in each raincloud and correlation plot is separated by the group variable. 

 

2.9 Demonstration 

To demonstrate the consistency and versatility of the processing and modelling capabilities of 

Osprey, several single-voxel MRS datasets from the Big GABA dataset (Mikkelsen et al., 2019, 

2017) were loaded, processed, and modelled.  

Twelve PRESS datasets acquired on a 3.0T GE scanner (GE Healthcare, Milwaukee, United 

States) were selected. Parameters included: TR/TE = 2000/35 ms; 32 averages; 30 ´ 30 ´ 30 mm3 

voxel in midline parietal cortex; 5 kHz bandwidth with 4096 data points. 
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Further, eleven GABA-edited MEGA-PRESS datasets from the Big GABA repository, acquired 

on a 3.0T Philips scanner (Philips Healthcare, Best, The Netherlands), were loaded, processed, and 

modelled. Parameters that differed from the PRESS parameters included: TE = 68 ms; 320 

averages; 15-ms editing pulses applied at 1.9 ppm (edit-ON) and 7.5 ppm (edit-OFF). 

Finally, eight GABA/GSH-edited HERMES datasets, acquired on a 3.0T Philips scanner (Philips 

Healthcare, Best, The Netherlands), were loaded, processed, and modelled. Parameters that 

differed from the MEGA-PRESS parameters included: TE = 80 ms; 20-ms editing pulses applied 

in the GABA/GSH HERMES scheme (Saleh et al., 2016). 

 

3. Results 

All twelve PRESS datasets were successfully loaded and processed in Osprey, and are plotted in 

Figure 2A. The mean of these processed spectra (and ± one standard deviation range) is shown in 

Figure 2B, along with the mean of the model spectra and the mean modelling residual. NAA SNR 

was 184 ± 26 and NAA linewidth was 7.1 ± 1.2 Hz. The results of quantification of these spectra 

are summarized in the following. tCr ratios of NAA, mI and Glx were 1.44 ± 0.07, 0.73 ± 0.07, 

and 1.23 ± 0.14, respectively. Water-scaled estimates of NAA, mI and Glx, for example, were 

19.97 ± 0.96 i.u., 2.52 ± 0.24 i.u., and 17.08 ± 1.43 i.u., respectively. 
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Figure 2: Results from the Osprey processing and modelling of PRESS data. (A) Individual 
spectra; (B) mean spectra (black) +/- SD (gray ribbons); mean fit (red), mean residual (above).  
(C) Example fit with contributions from individual metabolites (Asc ascorbate; Asp aspartate; Cr 
creatine; GABA g-aminobutyric acid; GPC glycerophosphocholine; GSH glutathione; Gln 
glutamine; Glu glutamate; Ins myo-inositol; Lac lactate; NAA N-acetylaspartate; NAAG N-
acetylaspartylglutamate; PCh phosphocholine; PCr phosphocreatine; PE phosphoethanolamine; 
Scyllo scyllo-inositol; Tau taurine). 

 

GABA-edited MEGA-PRESS datasets were also successfully loaded, processed and modelled in 

‘Separate’ mode, as summarized in Figure 4A and B. NAA SNR was 282 ± 51, while the NAA 

linewidth was 4.7 ± 0.5 Hz. GABA levels were quantified as 0.13 ± 0.05 (tCr ratio) and 1.49 ± 

0.64 i.u. (water-scaled), respectively.  
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Figure 3: Results from the Osprey processing and modelling of GABA-edited MEGA-PRESS data. 
(A) Individual spectra; (B) mean spectra (black) +/- SD (gray ribbons); mean fit (red), mean 
residual (above).  (C) Example fit with contributions from individual metabolites. 

 

Similarly, the HERMES data are summarized in Figure 5. NAA SNR was 226 ± 33 with a NAA 

linewidth of 5.2 ± 0.5 Hz. GABA and GSH levels were estimated as 0.17 ± 0.04 and 0.19 ± 0.03 

(tCr ratios), and 1.79 ± 0.43 i.u. and 1.99 ± 0.44 i.u. (water-scaled), respectively. 
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Figure 4: Results from the Osprey processing and separate-mode modelling of GABA/GSH-edited 
HERMES data. (A) Individual spectra; (B) mean spectra (black) +/- SD (gray ribbons); mean fit 
(red), mean residual (above).  (C) Example fit with contributions from individual metabolites. 

  

The figures show individual spectra overlaid (green lines) in panel A, demonstrating consistent 

high-quality data resulting from the Osprey processing pipeline. Panels B display mean spectra 

(black solid lines), the standard deviation of the spectra (gray ribbon plots), mean model fits (red) 

and mean residuals (above the spectra) across all datasets. Panels C show representative linear-

combination modelling. The fits approximate the data well with a relatively smooth baseline. The 

most prominent unmodeled features in the residual are contributions from macromolecules in the 

difference spectra, which are difficult to simulate appropriately. 

The structure of the GUI is shown in Figure 5. The workflow buttons corresponding to the different 

Osprey modules are in the left column, as well as a list of loaded datasets from which the user 

selects the dataset to be displayed. The tabs above the data display panels are used to switch 

between the analysis stages, and the tabs below correspond to different sub-spectra (here A, B, C, 

D, sum and difference spectra for HERMES data, along with water reference data). 

Figure 6 shows the GUI data display panels corresponding to the various stages of analysis of a 

single HERMES dataset, exemplifying the visualization of spectral-editing sub-experiments. 
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Figure 5: The Osprey GUI with workflow buttons (left), list of datasets (bottom left), analysis stage 
selection tabs (top row), sub-spectrum selection tabs (bottom row), and data display panel. The 
figure shows a GABA-GSH-edited HERMES dataset, with sub-experiments A, B, C, and D. 
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Figure 6: Osprey visualization of the analysis of a HERMES dataset. (A) ‘Load’ visualization; (B) 
‘Proc’ visualization with individual transients and frequency drift plot before and after spectral 
alignment; (C) ‘Fit’ visualization of the GABA-edited HERMES difference spectrum; (D) ‘Coreg’ 
and ‘Seg’ visualization of voxel coregistration and segmentation, including display of tissue 
fractions. 

 

4. Discussion 

The magnetic resonance spectrum of the human brain is rich with biochemical information, but 

extracting that information is a challenging task due to the overlapped nature of the metabolite 

spectra and the broad in-vivo linewidth. Quantitative MRS measurement outcomes are known to 

vary considerably depending on field strength, scanner vendor, localization technique, acquisition 

parameters, and choice of data processing and quantification practices. Recently, the MRS 

community has led efforts to converge towards standardized data acquisition (Deelchand et al., 
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2019; Öz et al., 2020; Saleh et al., 2019; Wilson et al., 2019). In contrast, consensus on the 

processing and analysis of data has been slower to emerge. 

The most commonly used strategy for quantitative analysis of MR spectra is linear-combination 

modelling. As a result of the methodological diversity and lack of standardized processing 

pipelines, most researchers have developed their own code to prepare their data for third-party 

quantification software. This practice is problematic for a number of reasons: a) methodological 

heterogeneity and opacity diminish comparability and reproducibility of quantitative MRS studies; 

b) benchmarking and subsequent adaptation of methodological progress is considerably slowed 

down; c) researchers new to the field experience a high-level entry threshold; d) strong dependency 

on engagement, support, and funding situation of third-party software developers leaves the 

community vulnerable. 

Our new toolkit ‘Osprey’ seeks to address these issues by providing the community with a freely 

available open-source environment that unifies all steps of modern MRS data analysis – 

processing, modelling, quantification – into a common framework. Osprey is designed to: a) 

reduce methodological heterogeneity with its built-in standardized processing pipeline, modelling 

and quantification routines. These can serve as a substrate and starting point for the development 

of advanced data analysis methods, such as coil-combination or spectral alignment routines; b) 

accelerate the benchmarking, critical evaluation and finally integration of improved methods into 

the modular workflow; c) be immediately deployed by novice MRS users who seek to obtain 

quantitative results from MRS data using a single software solution, and who lack the resources to 

develop analysis code of their own; d) reduce the dependency of the MRS community on continued 

development of third-party linear-combination modelling software. Instead, the model code is 

directly accessible, modifiable, and exchangeable, allowing the research community to study the 

factors influencing results of linear-combination modelling, and compare or improve modelling 

algorithms. 

Many other MRI modalities suffer from the same susceptibility to ‘processing bias’, and their 

communities have developed and adopted de-facto-standardized data processing and analysis 

toolboxes. Notable examples are, among others, SPM (Friston, 2007) and FSL (Jenkinson et al., 

2012) for fMRI analysis, BART (Uecker et al., 2014) for parallel imaging reconstruction, and the 

Spinal Cord Toolbox (De Leener et al., 2017). In contrast, no such common framework currently 
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exists for MRS, but rather a diverse field of tools mostly dedicated to modelling or visualization. 

LCModel continues to be the most widely used spectral analysis tool, despite its current cost of 

13300 USD, restrictive licensing, limited ongoing development by a single software engineer, and 

lack of built-in pre-processing functions. In addition, many parameters and settings that critically 

affect performance and results of the algorithm remain incompletely understood or documented, 

most notably the influential ‘DKNTMN’ parameter that determines the degree of spline baseline 

flexibility (Bhogal et al., 2017; Marjanska and Terpstra, 2019). jMRUI offers basic functions to 

manipulate spectra and a variety of modelling algorithms (AMARES, QUEST, AQSES), but 

requires a high degree of user interaction and expertise, making it less suitable for novice 

researchers and reproducible processing of large datasets. Tarquin supports automated processing, 

but, like jMRUI, requires pre-processed spectra to model, and leaves a lot of freedom in choosing 

modelling options to the user. Gannet (Edden et al., 2014) is an open-source toolbox with a similar 

all-inclusive workflow as Osprey, but is limited to simple peak integration of spectral-edited data. 

SIVIC (Crane et al., 2013) does not offer data pre-processing or linear-combination modelling at 

all, and is primarily dedicated to visualizing MRSI data and interfacing with radiological PAC 

systems. INSPECTOR4 offers automated analysis, but has not been peer-reviewed and is only 

distributed as closed-source obfuscated MATLAB executable code, as is the more interactive 

MRspa5. 

All these existing software solutions either run as compiled executables or closed-source 

MATLAB applications, and while the source code is publicly available for some (Tarquin, SIVIC, 

Vespa), community-sourced modifications are either impossible, or may require substantial 

modifications downstream and local recompiling. In contrast, the entire Osprey source code 

(written in MATLAB) is publicly available in a single repository at 

https://github.com/schorschinho/osprey. At the time of writing, Osprey functions are primarily 

tailored to processing, modelling, and quantifying data from widely used single-voxel 1H MRS 

sequences designed to detect common metabolites in the human brain in-vivo. The modularity of 

the pipeline allows developers and users to implement analogous workflows for data acquired with 

 
4 http://innovation.columbia.edu/technologies/cu17130_inspector-magnetic-resonance-spectroscopy-software-
for-optimized-data-extraction 
5 https://www.cmrr.umn.edu/downloads/mrspa/ 
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different localization techniques, at different field strength, from other nuclei and body parts, 

animals, or phantoms, simply by branching out the workflow using ‘if’ statements and flags.   

The Osprey workflow has been designed to facilitate the development and comparison of 

processing routines and new linear-combination models. For example, there is currently no 

consensus linear-combination strategy for GABA-edited MEGA data. Using Osprey, different 

strategies can be compared, e.g. whether to include macromolecular basis functions and 

homocarnosine (Deelchand et al., 2019), whether to impose soft constraints (Murdoch and Dydak, 

2011), whether to increase baseline stiffness, whether to constrain the model by incorporating fit 

information from the sum spectrum (Oeltzschner et al., 2019b), etc. Osprey facilitates 

methodological investigations like these through its job system that allows many datasets to be 

batch-processed by modifying a single text file. While large-scale repositories of MRS data are 

still rare, projects like Big GABA (https://www.nitrc.org/projects/biggaba/) already provide 

publicly available datasets that can be easily deployed to benchmark the performance of analysis 

methods with high statistical power.  

 

5. Conclusions 

Osprey is a new, open-source software environment for the pre-processing, linear-combination 

modelling, quantification and visualization of magnetic resonance spectroscopy data. It is hoped 

that the availability of such a tool will improve the standardization and accessibility of MRS data 

processing, while enabling further investigation and rapid adoption of new methodology. 
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0

8.56e-02

Asc
Asp
Cr
GABA
GPC
GSH
Gln
Glu
H2O
Ins
Lac
NAA
NAAG
PCh
PCr
PE
Scyllo
Tau
MM09
MM12
MM14
MM17
MM20
Lip09
Lip13
Lip20

Raw Water Ratio

Asc:    
Asp:    
Cr:     
GABA:   
GPC:    
GSH:    
Gln:    
Glu:    
H2O:    
Ins:    
Lac:    
NAA:    
NAAG:   
PCh:    
PCr:    
PE:     
Scyllo: 
Tau:    
MM09:   
MM12:   
MM14:   
MM17:   
MM20:   
Lip09:  
Lip13:  
Lip20:  
        

8.78e-06
3.21e-07
0.00e+00
4.03e-05
2.71e-07
5.17e-05
2.00e-05
3.81e-04
0.00e+00
2.43e-05
4.14e-06
5.44e-04
2.77e-05
5.94e-07
1.41e-07
7.19e-06
0.00e+00
2.90e-08
4.03e-21
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
2.07e-21
0.00e+00
        

/Volumes/Samsung_T5/working/HERM_GABA_GSH_data/S09/S09_GGH_4_2_raw_act.SDAT

Metabolite Data -> Sequence: HERMES2 GSHS; B0: 3.0005; TE / TR: 80 / 2000 ms ; spectral bandwidth: 2000 Hz      
raw subspecs: 4; raw averages: 320; averages: 320; Sz: 2048    80     4; dimensions: 36 x 36 x 36 mm = 46.656 ml

Coregistration: S09_GGH_4_2_raw_act.SDAT & S09_GGH_3_1.nii

Segmentation: S09_GGH_4_2_raw_act.SDAT & S09_GGH_3_1.nii
Voxel GM WM CSF

voxel fraction 0.56 0.38 0.06

A

C

B

D
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