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 7 

Abstract 8 

Detecting synaptic connections using large-scale extracellular spike recordings presents a statistical challenge. 9 

While previous methods often treat the detection of each putative connection as a separate hypothesis test, here 10 

we develop a modeling approach that infers synaptic connections while incorporating circuit properties learned 11 

from the whole network. We use an extension of the Generalized Linear Model framework to describe the cross-12 

correlograms between pairs of neurons and separate correlograms into two parts: a slowly varying effect due to 13 

background fluctuations and a fast, transient effect due to the synapse. We then use the observations from all 14 

putative connections in the recording to estimate two network properties: the presynaptic neuron type (excitatory 15 

or inhibitory) and the relationship between synaptic latency and distance between neurons. Constraining the 16 

presynaptic neuron’s type, synaptic latencies, and time constants improves synapse detection. In data from 17 

simulated networks, this model outperforms two previously developed synapse detection methods, especially on 18 

the weak connections. We also apply our model to in vitro multielectrode array recordings from mouse 19 

somatosensory cortex. Here our model automatically recovers plausible connections from hundreds of neurons, 20 

and the properties of the putative connections are largely consistent with previous research. 21 

 22 

Introduction 23 

Using in vivo or in vitro multielectrode arrays, the extracellular spiking of hundreds of neurons can be recorded 24 

simultaneously. These recordings are allowing new, large-scale studies of neuronal networks (Hahn et al. 2019; 25 

Harris et al. 2003; Levenstein et al. 2019; Okun et al. 2015; Tingley and Buzsáki 2018), and the number of 26 

neurons that can be simultaneously recorded is increasing approximately exponentially (Stevenson and Kording 27 

2011). Depending on the species, brain area, and electrode configuration, these simultaneously recorded 28 

neurons can have tens of thousands of potential synapses between them. Detecting and characterizing these 29 

synapses represents a major challenge for neural data analysis. Here, we develop a model-based method 30 

incorporating network-level constraints on 1) the presynaptic neuron type and 2) the synaptic latencies between 31 

pre- and postsynaptic neurons. We examine whether these constraints can improve synapse detection using 32 

simulated data and large-scale in vitro multielectrode array recordings. 33 

 34 

Detecting synaptic connections from extracellular spike observations is a difficult statistical problem. Since both 35 

spiking and synapses themselves are sparse, it is often difficult to distinguish between changes in spike 36 

probability that are due to a specific synaptic input, changes that are due other (typically unobserved) inputs, or 37 

due to chance. Using extracellular spike data, researchers often identify putative monosynaptic connections by 38 

examining cross-correlograms between the spiking of two neurons. If two neurons are connected, there will often 39 
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be a fast-onset, short-latency peak (excitatory) or trough (inhibitory) in the cross-correlogram, where the post-40 

synaptic neuron tends to spike more (excitatory) or less (inhibitory) following a pre-synaptic spike. Previous 41 

methods for distinguishing putative synaptic connections and non-connections in large-scale recordings used 42 

hypothesis testing to ask whether a peak or trough is significantly different from a baseline level of expected 43 

spiking (Barthó et al. 2004; Fetz et al. 1991; Fujisawa et al. 2008; Hatsopoulos et al. 2003; Perkel et al. 1967a). 44 

These models typically treat decisions about the presence or absence of a synapse between each pair of 45 

neurons as separate hypothesis tests. However, synapses from the same presynaptic neuron are likely to share 46 

certain properties, and these shared properties could potentially improve the detection of synaptic connections. 47 

Here we aim to incorporate information from two basic features of neural circuits: 1) that neurons tend to be 48 

either excitatory or inhibitory and not both (Dale’s Law (Eccles et al. 1954)), and 2) that the synaptic latency 49 

between a pair of neurons should grow with the distance between the neurons (all else being equal). For example, 50 

knowing that there is an excitatory connection from neuron A to neuron B, increases the chances that other 51 

connections from neuron A should be excitatory. Similarly, if the distance between neuron A and B is known, then 52 

the latency of that connection provides some information about what latencies we might expect for neuron A’s 53 

other connections. These sources of information could potentially allow weak connections that are consistent 54 

with the circuit to be more readily detected and false positives due to noise to be rejected when that noise is 55 

inconsistent with the circuit. 56 

 57 

To apply these circuit-level constraints, here we develop an extension of a Generalized Linear Model to describe 58 

cross-correlograms between pairs of neurons and to automatically detect putative synaptic connections. In 59 

contrast to the traditional hypothesis testing approach, here we fit an explicit model for the rate of post-synaptic 60 

spiking at each interval relative to the presynaptic neuron’s firing. This model includes both a fast, transient 61 

synaptic effect and a slower effect that accounts for potentially fluctuating baseline correlation. Based on Dale’s 62 

law and the expected linear relationship between distance and synaptic latency, we rule out false positives by 63 

constraining presynaptic neuron type, synaptic latencies, and time constants. We then evaluate our model using 64 

two simulated integrate-and-fire networks. Our model outperforms previous synapse detection methods: spike 65 

jitter method and thresholding method, especially on the weak connections. We also apply our model to in vitro 66 

multielectrode array (MEA) data, where our model recovers plausible connections between hundreds of neurons 67 

in a slice culture of mouse somatosensory cortex. Many of the neurons appear to follow approximately linear 68 

distance-latency relationships, and neurons with excitatory/inhibitory connections often have waveforms that are 69 

wide/narrow, consistent with previous research (Barthó et al. 2004). Altogether, by incorporating constraints due 70 

to circuit structure, the model-based approach presented here may allow more accurate automated detection of 71 

synapses from large-scale spike recordings. 72 

 73 

Methods 74 

 75 

Extended Generalized Linear Model for Synaptic Detection 76 

 77 
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Here we develop an extension of a generalized linear model (GLM) to describe the spike correlograms between 78 

pairs of neurons: a suspected presynaptic neuron 𝑖 and postsynaptic neuron 𝑗. For the binned spike trains of the 79 

two neurons, 𝑛𝑖 and 𝑛𝑗 (1 when there is a spike and 0 otherwise), the cross-correlogram is given by 80 

𝑦𝑖𝑗(𝑚)  =  ∑ 𝑛𝑖(𝑡)𝑛𝑗(𝑡 − 𝑚)

𝑡

 81 

where 𝑚  denotes the interval between pre- and postsynaptic spikes, and 𝑦𝑖𝑗(𝑚)  is the number of the times 82 

spikes in 𝑛𝑖 and 𝑛𝑗 are separated by an interval [𝑚 −
1

2∆𝑡𝑏𝑖𝑛
, 𝑚 +

1

2∆𝑡𝑏𝑖𝑛
) for binsize ∆𝑡𝑏𝑖𝑛 (0.5 ms here). 83 

 84 

We then model the cross-correlogram using two components: 1) a slow effect caused by fluctuating firing rates 85 

and common input from other neurons, and 2) a fast effect caused by a potential synaptic connection. Namely, 86 

we model the rate of counts 𝜆𝑖𝑗 as a linear combination of the slow effect and the fast effect passed through an 87 

output nonlinearity: 88 

𝜆𝑖𝑗 = exp(𝛽0 + 𝑋𝑐𝛽𝑐 +  𝑤𝑖𝑗  𝛼(𝜏, ∆𝑡) ) 89 

where 𝛽0 + 𝑋𝑐𝛽𝑐  describes the slow effect and  𝑤𝑖𝑗 𝛼(𝜏, ∆𝑡)  describes the fast effect. For the slow effect, 𝑋𝑐 90 

represents a set of smooth basis functions learned by applying a low-rank, nonlinear matrix factorization to all 91 

the cross-correlograms in the dataset (see below). For the fast effect, we use an alpha function 𝛼(𝜏, ∆𝑡) =92 

 
𝑡−∆𝑡

𝜏
exp (1 −

𝑡−∆𝑡

𝜏
), with a latency ∆𝑡 and a time constant 𝜏, while 𝑤𝑖,𝑗 represents the connection strength from 93 

neuron i  to neuron j (positive for excitatory connections, negative for inhibitory). 𝛽0,  𝛽𝑐,  ∆𝑡, 𝜏, and 𝑤𝑖,𝑗 are the 94 

parameters that are estimated in the model (see below for the details about optimization). In addition to this 95 

extended GLM (the full model), we also fit a reduced, slow model, 𝜆𝑖𝑗 = exp(𝛽0 + 𝑋𝑐𝛽𝑐  ), which only contains the 96 

basis functions without the alpha function to capture the synaptic effect. If the full model substantially outperforms 97 

the slow model, we can infer that there is putative synaptic connection from the pre- to postsynaptic neuron. 98 

Note that, although the full model is similar in structure to the traditional Poisson GLM, the parameters of the 99 

alpha function are not linear, and cannot be optimized using traditional reweighted least-squares methods. 100 

 101 

Parameter Estimation 102 

 103 

To fit the cross-correlogram 𝑦𝑖𝑗  using the slow model 𝜆𝑖𝑗 = exp(𝛽0 + 𝑋𝑐𝛽𝑐  ), we minimize the negative Poisson 104 

log-likelihood: 𝑙𝑠𝑙𝑜𝑤(𝜃) ∝  − ∑ (𝑦𝑖𝑗𝑙𝑜𝑔𝜆𝑖𝑗 − 𝜆𝑖,𝑗)𝑚   and estimate the parameters θ =  {𝛽0, 𝛽𝑐}  using iteratively 105 

reweighted least-squares. This provides a baseline null model, without a fast, synaptic effect. We then estimate 106 

the fast, synaptic effect using the full model 𝜆𝑖𝑗 = exp(𝛽0 + 𝑋𝑐𝛽𝑐 +  𝑤𝑖𝑗 𝛼(𝜏, ∆𝑡) ). Here we fit the model in two 107 

stages: 1) an initial fit that does not constrain the synaptic latencies, and 2) a subsequent fit that does. Using the 108 

estimated synaptic latency from the initial fit, we estimate the linear relationship between the distance and the 109 

synaptic latency. This enables us to use the estimated relationship to constrain the synaptic latency in the 110 

subsequent fit.  111 

 112 
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In stage 1, we fit the cross-correlogram 𝑦𝑖𝑗 optimizing the penalized negative Poisson log-likelihood: 𝑙𝑓𝑢𝑙𝑙_1(𝜃) ∝113 

 − ∑ (𝑦𝑖𝑗𝑙𝑜𝑔𝜆𝑖𝑗 − 𝜆𝑖𝑗)𝑚 +  𝜂𝑤‖𝑤𝑖𝑗‖
2

+ 𝜂𝜏‖𝜏𝑖𝑗 − 𝜏0‖
2
. This function is not convex due to the structure of the alpha 114 

function. However, we optimize the penalized log-likelihood using a non-linear conjugate gradient descent 115 

algorithm , and we use random restarts (50) in order to reduce the chances of getting stuck in local minima. Here 116 

𝜂𝑤 and 𝜂𝜏 are regularization hyperparameters that penalize large weights 𝑤𝑖𝑗 and differences between the time 117 

constant 𝜏𝑖𝑗 from a reference 𝜏0, respectively. Using the estimated latency ∆𝑡𝑖𝑗 from the initial fit and the distance 118 

between the neurons, we then estimate a “conduction” velocity 𝑣𝑖  and synaptic delay 𝑑𝑡𝑖 for the presynaptic 119 

neuron 𝑖 (see below).  120 

 121 

In stage 2, using the estimated 𝑣𝑖  and 𝑑𝑡𝑖, we fit the cross-correlogram with an additional constraint on synaptic 122 

latency. Here we optimize the penalized negative Poisson log-likelihood: 123 

 𝑙𝑓𝑢𝑙𝑙_2(𝜃) =  − ∑ (𝑦𝑖𝑗𝑙𝑜𝑔𝜆𝑖𝑗 − 𝜆𝑖𝑗)𝑚 + 𝜂𝑤‖𝑤𝑖𝑗‖
2

+ 𝜂𝜏‖𝜏𝑖𝑗 − 𝜏0‖
2

+  𝜂Δ𝑡,𝑖 ‖Δ𝑡𝑖𝑗 − (
1

𝑣𝑖
𝑑𝑖𝑗 + 𝑑𝑡𝑖) ‖

2
. 124 

Adding the convex L2 penalty terms does not change the overall convexity of the function. Since the log-125 

likelihood itself is not convex, here we again use a non-linear conjugate gradient descent algorithm with random 126 

restarts. 𝜂𝑤  and 𝜂𝜏  are hyperparameters constraining the weight and time constant, as before. Given the 127 

distance between the two neurons 𝑑𝑖𝑗 , the additional hyperparameter 𝜂Δ𝑡,𝑖  controls how strictly the synaptic 128 

latency Δ𝑡𝑖𝑗 should be tied to the predicted linear distance-latency relationship. Here 𝜂Δ𝑡,𝑖 is set based on the 129 

estimation of conduction velocity (see below, 𝜂𝛥𝑡,𝑖  =  2/�̂� for the MEA data, 𝜂𝛥𝑡,𝑖  =  10/�̂� for the simulations). 130 

 131 

In both stages, 𝑤𝑖𝑗, 𝜏𝑖𝑗 , ∆𝑡𝑖𝑗 are log transformed so that they are strictly positive during the optimization (or, with 132 

a sign change, strictly negative when modeling an inhibitory 𝑤𝑖𝑗). In the results shown here we set 𝜂𝑤 = 5 and 133 

𝜂𝜏 = 20 through manual selection, and 𝜏0 is set to 0.8 ms. After fitting, we compare the performance of the full 134 

model with the slow model by calculating the log likelihood ratio of the two models  𝐿𝐿𝑅 =  𝑙𝑓𝑢𝑙𝑙_2(𝜃) − 𝑙𝑠𝑙𝑜𝑤(𝜃). 135 

If the log likelihood ratio exceeds a certain threshold, we conclude that there is a putative connection from 136 

neuron 𝑖 to neuron 𝑗.  137 

 138 

Generating basis functions to describe the slow effect 139 

To capture the slow fluctuations in correlograms, we use low-rank nonlinear matrix factorization to learn a set of 140 

smooth basis functions 𝑋𝑐. Here we aim to reconstruct all of the correlograms in a given multielectrode recording 141 

using a generalized bilinear model:  142 

𝛬 = 𝑒𝑥𝑝(𝜇𝑥0  + 𝛢𝑋𝑐) 143 

where 𝛬 is a reconstruction matrix that aims to model the observed correlograms in terms of a vector of baseline 144 

correlations 𝜇 , a matrix of weights 𝐴 , and the smooth basis functions 𝑋𝑐 . Note that here we model all 𝑝 145 

correlograms in the dataset simultaneously (𝑝 = 𝑐(𝑐 − 1)/2 if there are 𝑐 neurons). To ensure that 𝑋𝑐 is smooth 146 

we further decompose this matrix as 𝑋𝑐 = 𝐵𝑋𝑠 where 𝑋𝑆 is a set of cubic B-spline curves with equally spaced 147 

knots. Altogether, the matrix of correlograms is reconstructed using the parameters 𝜇, 𝛢 and 𝛣. 𝛢 is a 𝑝 × 𝑛𝛽 148 
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matrix, where 𝑛𝛽 is the number of basis functions that we aim to learn from the dataset (here set to 6). 𝛣 is a 149 

𝑛𝛽 × 𝑛𝑠 matrix, where 𝑛𝑠 is the number of spline curves (here set to 16). And 𝜇 is a vector that describes the 150 

baseline correlation for each correlogram, and that is multiplied by a row vector of ones 𝑥0. In order to estimate 151 

the parameters we use an alternating gradient descent algorithm to approximately maximize the overall log-152 

likelihood ∑ ∑ (𝑦𝑖𝑗 log Λ𝑖𝑗 − Λ𝑖𝑗 )𝑚𝑖𝑗 . We alternate between updating the fits to each correlogram (𝜇 and 𝐴) given 153 

a fixed set of bases (𝐵) and updating the bases (𝐵) given a fixed description of the individual correlograms (𝑀 154 

and 𝐴). Finally, we generate the basis functions as 𝑋𝑐  =  𝛣𝑋𝑆. 155 

 156 

Although some pairs of neurons may have fast synaptic effects in addition to slower fluctuations due to common 157 

input, the proportion of these pairs is expected to be small (less than ~5%). Since these connected pairs also 158 

have different weights, latencies, and time constants, the overall effect on the shapes of the learned bases 𝑋𝑐 159 

should be relatively small.  160 

 161 

Structural constraints on fast, synaptic effects 162 

While learned bases capture slow structure in the cross-correlograms across all pairs, we also aim to describe 163 

structure in the fast, synaptic effects for each presynaptic neuron. In the full model, we include two structural 164 

constraints: 1) we constrain the latency of synaptic connections to increase with increasing distance between 165 

neurons, and 2) we constrain presynaptic neurons to either excite or inhibit all of their postsynaptic targets, in 166 

accordance with Dale’s law. Together, these constraints have the potential to improve detection of weak 167 

connections that are consistent with the constraints and rule out the false positives that are inconsistent. 168 

 169 

Estimation of the “conduction velocity” 170 

To implement the constraint that synaptic latencies should increase with distance, we estimate an approximate 171 

“conduction velocity” for each presynaptic neuron based on the distances between neurons and the estimated 172 

synaptic latencies from stage 1 above. Physiologically, conduction velocities vary as a function of axon diameter 173 

and myelination (Sakaguchi et al. 1993) so some differences are perhaps expected. However, that in most 174 

extracellular applications we are estimating the soma locations based on uncertain waveform information, and 175 

the locations of axons and dendrites are unknown. “Conduction velocity” is, thus, just an approximation of the 176 

potential positive relationship between synaptic latency and the distance. 177 

 178 

Here we assume that there is a linear relationship between the synaptic latencies and the distances between 179 

the estimated somatic location of a presynaptic neuron 𝑖 and postsynaptic neuron 𝑗,  180 

∆𝑡𝑖𝑗 =
1

𝑣𝑖
𝑑𝑖𝑗 + 𝑑𝑡𝑖 181 

where ∆𝑡𝑖𝑗 is the synaptic latency, 𝑑𝑖𝑗 is the distance between neurons, and the parameters 𝑣𝑖 and 𝑑𝑡𝑖 describe 182 

the “conduction velocity” and “synaptic delay” of the presynaptic neuron. To estimate the parameters, we first fit 183 

all possible connections from the presynaptic neuron. Using initial estimates of ∆𝑡𝑖𝑗
̂  from the full model (stage 1), 184 
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we then estimate 𝑣𝑖   and 𝑑𝑡𝑖 for the neuron using a penalized weighted linear regression with the inter-neuronal 185 

distances as predictors. Namely, we minimize the penalized, weighted negative log-likelihood 𝑙(𝑣𝑖 , 𝑑𝑡𝑖) ∝186 

𝛴(∆𝑡𝑖𝑗 − ∆𝑡𝑖𝑗
̂ )2𝑤𝑣

𝑖𝑗
/𝛴𝑤𝑣

𝑖𝑗
+ 𝜂𝑑𝑡‖𝑑𝑡𝑖‖2 , where the penalty ‖𝑑𝑡𝑖‖2  ensures that 𝑑𝑡𝑖  close to zero, and 𝜂𝑑𝑡  is a 187 

hyperparameter, which we set to 5 based on manual search. The weights 𝑤𝑣
𝑖𝑗

 are set by ranking each pair of 188 

neurons based on the likelihood ratio between the slow model and full model (𝑙𝑓𝑢𝑙𝑙_1 − 𝑙𝑠𝑙𝑜𝑤, see Parameter 189 

Estimation), with the 𝑟th ranked pair having  𝑤(𝑟) =
1

1+𝑒2(𝑟−5). This allows the pairs that are more likely to be true 190 

connections (those with larger likelihood ratios) to have larger weights. Then, after conducting the penalized 191 

weighted linear regression, we pick the 5 neuron pairs with the largest weights to estimate the mean squared 192 

prediction error �̂�𝑖
2 =

1

5
∑(Δ𝑡𝑖𝑗 − Δ�̂�𝑖𝑗)

2
, which measures the reliability of the estimation. This estimated prediction 193 

error, along with the estimated conduction velocity 𝑣𝑖 and delay 𝑑𝑡𝑖, is then used to constrain the penalized full 194 

model in stage 2 (see Parameter Estimation above). 195 

 196 

Estimation of the presynaptic neuron type 197 

According to Dale’s Law, a single neuron should rarely be both excitatory and inhibitory, and connections with 198 

the same presynaptic neuron are most likely to be all excitatory or all inhibitory. In order to estimate the 199 

presynaptic neuron type, for each presynaptic neuron 𝑖, we fit all the cross-correlograms 𝑦𝑖1, 𝑦𝑖2, … 𝑦𝑖𝑛 using full 200 

model twice, once constraining 𝑤𝑖𝑗 ≥ 0    (excitatory model) and once constraining 𝑤𝑖𝑗 ≤ 0  (inhibitory model). 201 

Here we determine the presynaptic neuron type using the log likelihood ratio of the excitatory model fit to the 202 

inhibitory model fit. 203 

𝐿𝐿𝑅± = (𝑦𝑖𝑗𝑙𝑜𝑔𝜆𝑖𝑗
+ − 𝜆𝑖𝑗

+ ) − (𝑦𝑖𝑗𝑙𝑜𝑔𝜆𝑖𝑗
− − 𝜆𝑖𝑗

− ) 204 

If the log likelihood ratio is positive, this suggests that the excitatory model provides a better description of the 205 

correlogram than the inhibitory model. For each presynaptic neuron, we use the single neuron pair with the 206 

largest likelihood ratio between two models to classify the neuron type (we tried using several weighting schemes, 207 

such as the average 𝐿𝐿𝑅 across all pairs or the top-N pairs, but for the simulations and datasets used here the 208 

top-1 pair performed well). We classify the presynaptic neuron 𝑖 as a putative excitatory neuron if 𝐿𝐿𝑅± > 0, or 209 

as a putative inhibitory neuron if 𝐿𝐿𝑅± < 0. After the neuron type classification, we only adopt the corresponding 210 

full model (excitatory/inhibitory model based on the presynaptic neuron type) to later determine whether there is 211 

a putative synaptic connection. We label all the putative connections from an excitatory presynaptic neuron as 212 

putative excitatory connection, and all the putative connections from an inhibitory presynaptic neuron as putative 213 

inhibitory connections.  214 

 215 

Simulated networks of synaptically connected neurons 216 

To examine how our model-based synapse detection approach performs we build two simulated networks of 217 

modified leaky integrate-and-fire (LIF) neurons. In real data, the shapes of cross-correlograms of two neurons 218 

can be affected by both the background activity of the network (external input shared by the network), and the 219 

patterns of presynaptic activity (e.g. high vs low firing rate, bursting). Here we designed two distinct simulations 220 
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to capture these effects. In a first simulation we model a network of recurrently connected neurons that all receive 221 

background common input, creating slow fluctuations in the cross-correlograms similar to those observed in real 222 

data. In a second simulation we then model a set of neurons receiving presynaptic inputs from experimentally 223 

observed spikes, creating presynaptic spike patterns similar to those present in real data (Simulation 2 with real 224 

presynaptic inputs). 225 

 226 

For Simulation 1 with common input, we build a simplified, simulated network of adaptive leaky integrate-and-227 

fire neurons with current-based synaptic inputs. 300 neurons are included in the simulation – 50% excitatory, 50% 228 

inhibitory. All the neurons are randomly distributed in a square area. The neurons are randomly connected, and 229 

only the neuron pairs whose distances are less than the median distance have synaptic connections. The 230 

connection probability is set to be 5%. 60 minutes of current input and voltage recording for each neuron are 231 

simulated with a simulated sampling rate 10kHz for this network. The mean firing rate of all the neurons is 3.5Hz. 232 

In this modified LIF model (based on (Liu and Wang 2001)), the membrane potential dynamics are affected by 233 

three currents: 1) a leak current, 2) an after-hyperpolarization current, and 3) synaptic input 234 

𝐶𝑚

𝑑𝑉𝑚

𝑑𝑡
= −𝑔𝑙𝑒𝑎𝑘(𝑉𝑚 − 𝑉𝑟𝑒𝑠𝑡) − 𝑔𝐴𝐻𝑃[𝐶𝑎2+](𝑉𝑚 −  𝑉𝐴𝐻𝑃) +𝐼𝑖𝑛𝑝𝑢𝑡 235 

with  236 

𝑑[𝐶𝑎2+]

𝑑𝑡
=  −

[𝐶𝑎2+]

𝜏𝐶𝑎
 237 

and if 𝑉𝑚(𝑡) =  𝑉𝑡ℎ  the neuron resets with 238 

𝑉𝑚 →  𝑉𝑟𝑒𝑠𝑡, [𝐶𝑎2+] =  [𝐶𝑎2+] + 𝑎. 239 

 240 

Here the dynamics of the membrane potential 𝑉𝑚 are governed by leaky integration of the input current, but every 241 

time the neuron spikes Ca-currents lead to an after-hyperpolarization, preventing the neuron from spiking rapidly. 242 

In the modified LIF model, when the membrane potential 𝑉𝑚 reaches the threshold 𝑉𝑡ℎ,the neuron spikes, 𝑉𝑚 is 243 

reset to 𝑉𝑟𝑒𝑠𝑡, and [𝐶𝑎2+] increases by the amount 𝑎. 244 

 245 

The input current 𝐼𝑖𝑛𝑝𝑢𝑡 to each postsynaptic neuron is given by 246 

𝐼𝑖𝑛𝑝𝑢𝑡(𝑡) = (1 − 𝑤𝑐𝑜𝑚)𝐼𝑠𝑝𝑜𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠(𝑡) + 𝑤𝑐𝑜𝑚𝐼𝑐𝑜𝑚(𝑡 − ∆𝑡𝑐𝑜𝑚 ) + ∑ 𝐼𝑠𝑦𝑛,𝑖(𝑡)
𝑖

.  247 

where 𝐼𝑠𝑝𝑜𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 is 1/𝑓 noise independently generated for each neuron, 𝐼𝑐𝑜𝑚 is 1/𝑓 noise shared by the whole 248 

network. Each neuron receives the common input with random latencies ∆𝑡𝑐𝑜𝑚 to simulate the slow fluctuation 249 

caused by background common input, and 𝑤𝑐𝑜𝑚 is the random common input weight. 𝐼𝑠𝑦𝑛,𝑖 denotes the synaptic 250 

current from the 𝑖th presynaptic input added to the postsynaptic neuron with a synaptic latency ∆𝑡𝑖𝑗  after each 251 

presynaptic spike at 𝑡𝑠 , 𝐼𝑠𝑦𝑛,𝑖(𝑡) = 𝑤𝑠𝑦𝑛,𝑖 ∑
𝑡−𝑡𝑠−∆𝑡𝑖𝑗

𝜏𝑠𝑦𝑛
𝑒1−(𝑡−𝑡𝑠−∆𝑡𝑖𝑗)/𝜏𝑠𝑦𝑛

𝑡𝑠<𝑡  . 𝑤𝑠𝑦𝑛,𝑖  is the synaptic weight randomly 252 

drawn from a bounded log-normal distribution – positive when the connection is excitatory and negative when 253 

the connection is inhibitory. Note that, since max (
𝑡

𝜏
𝑒1−

𝑡

𝜏) = 1, 𝑤𝑠𝑦𝑛 sets the amplitude of individual Post synaptic 254 
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current (PSC) in units of nA. Here we also give each presynaptic neuron a random “conduction velocity” 𝑣𝑖 and 255 

set the synaptic latency according to ∆𝑡𝑖𝑗 =  𝑑𝑖𝑗/𝑣𝑖𝑗. This simulated network, thus, obeys the rule that synaptic 256 

latencies increase linearly with the distances between presynaptic neuron and postsynaptic neuron (see Table 257 

1 for parameters). 258 

 259 

In Simulation 2 with real presynaptic inputs, we model 300 adaptive leaky integrate-and-fire neurons that receive 260 

input from 300 neurons whose spike trains are from an in vitro multielectrode array recording. We randomly 261 

assign half of the 300 presynaptic neurons to be excitatory neurons and half to be inhibitory. The connection 262 

probability, connection rules, and LIF parameters are the same as in the first simulation (see Table 1). Here the 263 

simulated sampling rate is 20Hz, which was used in the in vitro recording, and the input currents do not contain 264 

the background common input, 𝐼𝑖𝑛𝑝𝑢𝑡(𝑡) = 𝐼𝑠𝑝𝑜𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠(𝑡) + ∑ 𝑤𝑠𝑦𝑛,𝑖𝐼𝑠𝑦𝑛,𝑖(𝑡)𝑖 . 265 

 266 

Membrane properties 

membrane capacity 

𝐶𝑚 = 1000 pF 
 

membrane conductance 

𝑔𝑙𝑒𝑎𝑘 =  .1 μS 

resting potential 

𝑉𝑟𝑒𝑠𝑡 =  −65 mV 

action potential threshold 

𝑉𝑡ℎ =  −50 mV 

After-hyperpolarization (AHP) adaption 

AHP conductance 

𝑔𝐴𝐻𝑃 = 1 μS 

AHP potential 

𝑉𝐴𝐻𝑃 =  −80 mV 

AHP time constant 

𝜏𝐶𝑎 = 10 ms 

influx 

𝛼 =  .2 μM 

Synaptic input current 

conduction velocity* 

Sim1: 𝑣𝑖  ~ 𝑈(. 6, 2.1) AU/s 
Sim2: 𝑣𝑖  ~ 𝑈(1, 3) AU/s  

synaptic time constant 

𝜏𝑠𝑦𝑛 = 1 ms 

synaptic weight (PSC amplitude) 

|𝑤𝑠𝑦𝑛|~𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(−1.8, .25) ∈ [. 05, .5] nA 

Common input current 

common input weight 

𝑤𝑐𝑜𝑚 =  .5 

common input latency 

∆𝑡𝑐𝑜𝑚~𝑈(0, 50) ms 

 

Table 1: Parameters in the two simulated networks 267 

*Since we don’t specify the “area” of the square space, the unit of the velocity is in arbitrary units (AU/s). 268 

 269 

Synaptic detection based on hypothesis testing 270 

In addition to our model-based synapse detection method we also examine two previous methods based on 271 

hypothesis testing: a thresholding method and a spike jitter method. 272 

 273 

The thresholding method detects synapses by testing if the peak or trough in the correlogram is significantly 274 

different from the expected number of coincidences (Barthó et al. 2004; Perkel et al. 1967b). Here we model the 275 

count distribution using the mean �̅�𝑖𝑗 and standard deviation 𝑠𝑖𝑗 of the cross-correlogram across bins – here 276 

between [-25,25] ms, excluding the bins within the interval of [-10,10] ms. We then compute the z-score 𝑧𝑖𝑗
𝑘  = 277 
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(𝑦𝑖𝑗
𝑘 − �̅�𝑖𝑗)/𝑠𝑖𝑗 for each bin 𝑘 and compare this to a critical value 𝑧𝑐. If there is at least one bin within the interval 278 

of interest that exceeds the upper threshold 𝑧𝑐, the connection from neuron i to neuron j is labeled as an excitatory 279 

connection. Similarly, if there is at least one bin within the interval below the lower threshold −𝑧𝑐, the connection 280 

from neuron 𝑖 to neuron 𝑗 is labeled as an inhibitory connection. In practice, the threshold 𝑧𝑐 can be adjusted to 281 

optimize the number of false positives/negatives. In comparing models, we use ROC curves to examine all 282 

thresholds (see below). 283 

 284 

One potential problem with the thresholding method is that the baseline for a correlogram is often not constant. 285 

To address this, an alternative method (Fujisawa et al. 2008; Hatsopoulos et al. 2003) uses jittered spike trains 286 

to generate a baseline cross-correlogram that keeps the shape of the slow fluctuation while removing fast 287 

synaptic effects. With the jitter method, the presence of synaptic connections can then be inferred by testing if 288 

there is a peak or trough that is significantly different from this time-varying baseline. Here we use a variant of 289 

this method where, for each neuron, we randomly and independently jitter each spike on a uniform interval of [-290 

5,5] ms (as in Fujisawa et al. 2008) and generate 1000 jittered spike trains. The baseline cross-correlogram 291 

between neurons 𝑖 and 𝑗 is then defined as the mean of the 1000 cross-correlograms constructed using the 292 

original spike trains of neuron 𝑖 and the 1000 jittered spike trains of neuron 𝑗. We calculate the mean �̅�𝑖𝑗and 293 

standard deviation 𝑠𝑖𝑗 of the 1000 cross-correlograms for each neuron pair. We then compute the z-score of 294 

each bin based on the original correlogram 𝑧𝑖𝑗
𝑘  = (𝑦𝑖𝑗

𝑘 −  �̅�𝑖𝑗
𝑘 )/𝑠𝑖𝑗

𝑘 . As in the threshold method, if at least one of the 295 

bins within the interval of [0,10] ms exceeds the upper threshold 𝑧𝑐, the connection is labeled as excitatory. 296 

Similarly, if there is at least one bin within the interval below the lower threshold −𝑧𝑐, the connection is labeled 297 

inhibitory. 298 

 299 

Evaluating methods for synapse detection 300 

Using the simulations described above we evaluate our model-based synapse detection method alongside the 301 

thresholding method and jitter method. Benchmarking the performance of synapse detection methods on real 302 

extracellular recordings is difficult, since we are almost  always uncertain about whether or not two neurons are 303 

monosynaptically connected. However, with simulations, the ground-truth connectivity is known, and we can 304 

compare the detection accuracy for different methods. Here we use receiver operating characteristic (ROC) 305 

curves, specifically comparing false positive and true positive rates. Since the number of true positives is small 306 

(less that ~5%), these rates and the area under the ROC curve (AUC) give a more accurate impression of the 307 

detection performance than the overall accuracy and can be calculated without a set threshold. The scores we 308 

use to determine whether there is a synaptic connection in generating the ROC curves vary for the three methods. 309 

For the model-based method developed here, we use the log likelihood ratios of full model to slow model, while 310 

for thresholding and jitter methods, we use the largest z-score within the [0,10] ms interval. 311 

 312 

The ROC curves measure the overall performance of different methods on a series of thresholds. But when we 313 

apply the method to real data and plan to make decisions on synapse detection, we still need to specify a 314 
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threshold. The choice of threshold has a large effect on the detection of putative synaptic connections. A 315 

threshold that is too strict will result in a large number of false negatives, while a threshold that is not strict enough 316 

will result in a large number of false positives. The uncertainty and diversity of the real datasets make it difficult 317 

to pick the optimal threshold. Here, for illustration, we pick the threshold based on the results in our simulated 318 

network (we pick Simulation 1 here since the threshold based on Simulation 1 is stricter). Since synaptic 319 

connections are relatively rare compared to the total number of neuron pairs, we use Matthews correlation 320 

coefficient (MCC, Matthews 1975) to measure the performance of different thresholds, which performs well for 321 

imbalanced data (Boughorbel et al. 2017): 322 

𝑀𝐶𝐶 =  
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 , 323 

where 𝑇𝑃  is the number of true positives,  𝑇𝑁  is the number of true negatives, 𝐹𝑃  is the number of false 324 

negatives, and 𝐹𝑁 is the number of false negatives. For the model-based method, the maximum MCC is .81 325 

(TPR = 73.46%, FPR = 0.33%) for Simulation 1, the corresponding threshold is 5.09 (log likelihood ratio). It may 326 

be valuable to note that this threshold is relatively close to the decision rule that would be given by minimizing 327 

the Akaike or Bayesian Information Criteria (AIC or BIC), where the log likelihood ratios would need to be greater 328 

than 3 or ~6.9, respectively (based on 𝑘 = 3  extra parameters and 𝑛 = 100  bins of observations). For jitter 329 

method, the maximum MCC is .63 (TPR = 49.99%, FPR = 0.58%), the corresponding threshold is 3.92 (z-score) 330 

for Simulation 1. In comparing the results from different synapse detection methods with real data, we pick the 331 

thresholds for our method and the jitter method based on these maximum MCC results from the simulation.  332 

 333 

In addition to the choice of threshold, the jitter method has 1 hyperparameter (jitter interval) and the model-based 334 

method has 7 (𝜂𝑤 , 𝜂𝜏, 𝜏0, 𝜂Δ𝑡,𝑖, 𝜂𝑑𝑡 , 𝑛𝛽 , 𝑛𝑠) that are used for the entire set of putative connections. Here we fix the 335 

hyperparameters for the model-based approach based on a coarse, manual optimization that minimizes false 336 

positive fits with unlikely latencies (Δ𝑡) and time constants (𝜏). These values could also potentially be optimized 337 

using the cross-validated likelihood but, in practice, the results are robust across a wide range of settings.        338 

 339 

MEA data 340 

To examine how these methods detect putative synaptic connections in experimental data we use in vitro 341 

recordings of spontaneous activity from organotypic slice cultures of mouse somatosensory cortex made using 342 

a large and dense multielectrode array (512 electrodes, 60 μm interelectrode spacing, 5 μm electrode diameter, 343 

flat electrodes, roughly 1 mm by 2 mm total array area). The extracellular signals were recorded for 60 minutes 344 

at 20 kHz, and the spiking activity was then spike sorted based on the waveforms of the marked electrode and 345 

its six adjacent neighbors using principal component analysis (PCA). The location of each neuron was estimated 346 

using a 2D Gaussian fit to the maximum values of the spike triggered average waveforms across multiple 347 

electrodes. There are 25 datasets available, most of which possess hundreds of neurons (min: 98, max: 594, 348 

mean: 309, total: 7735, mean firing rate of the neurons: 2.1 Hz). All data is available via the Collaborative 349 

Research in Computational Neuroscience (CRNCS) Data Sharing Initiative: https://crcns.org/data-sets/ssc/ssc-350 

3/about-ssc-3. Additional experimental details can be found in (Ito et al. 2014).  351 
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 352 

To simulate the network with real data input (Simulation 2), we used spike trains from the highest firing rate 353 

neurons combined from two datasets (datasets 16 and 23), choosing 300 neurons in total (out of 904 possible). 354 

The mean firing rate of the 300 neurons was 5.57Hz (min: 1.88Hz, max: 44.55Hz). 355 

 356 

For examining putative synaptic connectivity in the experimental data, we use dataset #13 (number of neurons: 357 

381, mean firing rate: 1.95 Hz) and dataset #23 (number of neurons: 310, mean firing rate: 2.81 Hz). Here we 358 

exclude the neurons with less than 1000 spikes recorded, 68 neurons (17.85%) are excluded from dataset #13, 359 

21 neurons (6.77%) are excluded from dataset #23. Before we apply the detection methods on these datasets, 360 

we also exclude the neuron pairs where the correlogram may be misestimated due to the way that spike trains 361 

were sorted. If the waveforms of two neurons show up on the same set of electrodes, near simultaneous spikes 362 

tend to overlap and be sorted inaccurately (Pillow et al. 2013, "spike shadowing"). Here, we calculate a spike 363 

sorting index 𝑠𝑠 = 𝑚𝑖𝑛 {
𝜇𝑐−𝜇𝑙

𝜇𝑙
,

𝜇𝑐−𝜇𝑟

𝜇𝑟
} to exclude the cross-correlograms with a peak or trough near 𝑚 = 0. Here 364 

𝜇𝑐 is the total number of counts within 1.5 ms of the center of the correlogram (3 bins), 𝜇𝑙 is the total number of 365 

counts within 1.5 ms (3 bins) that are to the left of the center, 𝜇𝑟 is the total number of counts within 1.5 ms (3 366 

bins) that are to the right of the center. We exclude the neuron pairs when the spike sorting index 𝑠𝑠 is greater 367 

than 0.5. Based on this rule, 6.51% of the neuron pairs are excluded from dataset #13, 5.55% of the neuron 368 

pairs are excluded from dataset #23. 369 

 370 

Results 371 

Here we develop an extension of a generalized linear model (GLM) to describe the correlograms between pairs 372 

of neurons. This model aims to separate the cross-correlogram between each pair of neurons into two parts: 1) 373 

a slow effect caused by fluctuating firing rates and common input from other neurons, which is fit using a group 374 

of smooth basis functions learned from the data, and 2) a fast effect caused by the synaptic connection, which 375 

is fit by a short-latency, fast onset alpha function (Fig. 1A). In this study, we model the time interval between -25 376 

ms to 25 ms, with a binsize of 0.5 ms. To determine whether or not a given pair of neurons might be synaptically 377 

connected we then compare the full model with a reduced model that has the slow effect but not the fast effect. 378 

If the full model provides a better description of the data than the slow model (using log-likelihood ratio), this may 379 

indicate that there is a synaptic connection between the two neurons (Fig. 1B). 380 

 381 

Although this model comparison based on the correlogram between a single isolated pair of neurons can provide 382 

evidence of a putative synaptic connection, incorporating information from other connections may be able to 383 

improve detection accuracy. Here we first constrain the parameters of the full model based on the presynaptic 384 

neuron type. Since neurons are rarely both excitatory and inhibitory (Dale’s Law), synaptic connections with the 385 

same presynaptic neuron are most likely to be all of one sign. If a presynaptic neuron has a connection with a 386 

clear positive synaptic effect, this can indicate that other connections from this presynaptic neuron should be 387 

positive as well. Second, we constrain the parameters of the full model based on the synaptic latency. Synaptic 388 
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latencies tend to increase with the distance between the pre- and postsynaptic neuron (Fig. 1C). Here we assume 389 

a linear relationship between distance and latency and estimate a “conduction velocity” for each presynaptic 390 

neuron. If this relationship is clearly linear, the possible latencies for other connections can be constrained. 391 

Together, these two constraints may act to better detect the weak connections and exclude the false positives 392 

that violate the expected structure (see more details in methods). 393 

 394 

 395 
Figure 1: Model-based description of the cross-correlogram between the spiking of a pair of potentially connected neurons.  A: The 396 

extended GLM separates the cross-correlogram into two parts: 1) a slow effect that we fit using a group of smooth basis functions which 397 

were learned from the whole network (outlined in red), and 2) a fast effect that we fit using a short-latency, fast onset alpha function 398 

(outlined in yellow). B: Some examples of model fits for cross-correlograms of putative excitatory, putative inhibitory, and putative non-399 

connections. If the full model (yellow) provides a better fit to the correlogram than the slow model (red), we label the neuron pair as a 400 

putative connection. C: The schematic figure shows the structural information that we use to constrain the model fits: 1) the connections 401 

from one presynaptic neuron should be either all excitatory or inhibitory, and 2) the synaptic latency should increase with increasing 402 

distance between pre- and postsynaptic neurons. 403 

 404 

Simulated networks with type and latency constraints 405 

To evaluate our model, we build two simulated networks of adaptive leaky integrate-and-fire (LIF) neurons: 406 

Simulation 1 with common inputs, a network of 300 recurrently connected LIF neurons receiving slow, 407 

background common input, and Simulation 2 with real presynaptic inputs, a network of 300 unconnected LIF 408 

neurons receiving input from a set of experimentally recorded spike trains. In the first simulation, the neurons 409 
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are randomly connected to each other with a connection probability of 5% (~15 connections per presynaptic 410 

neuron). Half of the neurons are randomly assigned to be excitatory, with the other half being inhibitory. Synaptic 411 

weights (as PSC amplitude) are then randomly drawn from a log-normal distribution, similar to results from in 412 

vitro observations (Song et al. 2005). In addition to the synaptic input, all neurons receive background common 413 

input from a single slowly fluctuating, noisy source with a random delay (see Methods). This common input 414 

produces baseline fluctuations in the cross-correlograms similar to what is frequently observed in the real data 415 

(Fig 2A). Additionally, we assign each presynaptic neuron a “conduction velocity” and make the synaptic latencies 416 

between neurons distance-dependent. In Simulation 1, the mean firing rate of all the neurons is 3.56 Hz (min: 417 

1.84 Hz, Q1: 2.94Hz, Q2:3.44 Hz, Q3: 4.06 Hz, max: 7.83 Hz, SD = .90 Hz). This simulated network, thus, has 418 

realistic slow fluctuations in the correlograms, obeys Dale’s Law, and the relationship between synaptic latency 419 

and distance increases linearly for each presynaptic neuron.  420 

 421 

The second simulation consists of a set of 300 LIF neurons each receiving presynaptic inputs from a subset of 422 

300 spike trains recorded in vitro. Again, the presynaptic neurons are randomly connected to the postsynaptic 423 

neurons with a connection probability of 5%, presynaptic neurons are randomly assigned to be excitatory or 424 

inhibitory (p=0.5), and the synaptic weights are randomly drawn from a log-normal distribution. The synaptic 425 

latencies also increase linearly with distance, as before. In this case, although there is no common input, the 426 

presynaptic spike patterns are drawn from experimental recordings and the presynaptic neurons have greater 427 

variation in their firings rates and inter-spike interval patterns. The mean firing rate of the presynaptic neurons in 428 

this simulation is 5.57 Hz (min: 1.88 Hz, Q1 = 2.84 Hz, Q2 = 4.26 Hz, Q3 = 6.55 Hz, max: 44.6 Hz, SD =4.98 429 

Hz). The mean firing rate of the postsynaptic, LIF neurons is 6.02 Hz (min: 4.13 Hz, Q1: 5.44 Hz, Q2:5.96 Hz, 430 

Q3: 6.54, max: 8.66 Hz, SD = .84 Hz). Although the correlograms of Simulation 2 do not have slow baseline 431 

fluctuations (Fig 2B), they have a broader range of absolute baselines and will allow us to determine to what 432 

extent synapse detection is affected by more realistic presynaptic spike patterns. 433 

 434 
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 435 

Figure 2: Two simulated networks of leaky integrate-and-fire (LIF) neurons. A: Schematic showing the structure of Simulation 1 with 436 

common inputs (left). 300 LIF neurons (50% excitatory, 50% inhibitory) are randomly connected to each other with constraints on synaptic 437 

latency (see Methods). They receive background common input to generate a slow baseline fluctuation in the cross-correlogram. 438 

Examples of the cross-correlograms for simulated excitatory, inhibitory and non-connections (right). B: Schematic showing the structure 439 

of Simulation 2 with real presynaptic inputs (left). 300 LIF neurons receive presynaptic inputs from 300 experimentally recorded spike 440 

trains. We randomly assign 50% of the presynaptic neurons to be excitatory and the other half to be inhibitory. Note that, although the 441 

schematic illustrates the bipartite connectivity structure, the 600 neurons are randomly distributed in space and the synaptic latencies 442 

increase linearly with distance between the neurons as in Simulation 1. Examples of the cross-correlograms of simulated excitatory, 443 

inhibitory, and non-connections from the second simulation (right). Due to the fact that the experimentally recorded spike trains have 444 

greater variation in the average firing rates and patterns, the cross-correlograms here have a wider range of absolute baselines. 445 

 446 

A central assumption of the model-based detection approach used here is that neuron type and latency 447 

constraints can, in principle, allow information to be shared across the connections made by a presynaptic neuron. 448 

However, in order for these constraints to be useful, the model must be able to accurately estimate both whether 449 

a presynaptic neuron is excitatory or inhibitory and the presynaptic neuron’s “conduction velocity” from noisy 450 

spiking data. Therefore, before evaluating whether these constraints improve detection, we determine how 451 

accurately we can recover neuron type and “conduction velocity” in each of the simulations. 452 

 453 

In order to determine the presynaptic neuron type, we compare two models of the cross-correlogram between 454 

each pair of neurons: one with a positive fast, synaptic effect and the other with a negative synaptic effect. We 455 

can then estimate the type of each presynaptic neuron by asking which of the two models provides a better 456 

description of the cross-correlograms involving that presynaptic neuron (see Methods). Using our model, in 457 

Simulation 1 with common inputs, 99.7% of the neurons are labeled correctly (1 out of 300 mislabeled). In 458 
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Simulation 2 with real presynaptic inputs, 94.3% of the neurons are labeled correctly (17 out of 300 mislabeled). 459 

In this case the mislabeled neurons are also relatively low-firing rate (mean firing rate = 2.99 Hz, compared to 460 

5.57 Hz for all neurons). 461 

 462 

We then evaluate how well we can estimate each presynaptic neuron’s conduction velocity from the cross-463 

correlograms. Here we estimate the synaptic latency between each pair of neurons and use a weighted linear 464 

regression to then estimate the “conduction velocity” of each presynaptic neuron (see Methods). Using this 465 

approach, we find that we can recover the true velocity that was assigned to each of the presynaptic neurons in 466 

the simulations relatively accurately. For Simulation 1 with common inputs, the estimated latency-distance 467 

parameters are correlated with their true values (
1

𝑣𝑖
 ), 𝑟 =  .93  , 𝑝 < .01 , root mean squared error 𝑅𝑀𝑆𝐸 =468 

 .0013m/s (Fig. 3A) and for Simulation 2 with real presynaptic inputs, 𝑟 =  .66, 𝑝 < .01, 𝑅𝑀𝑆𝐸 =  .0016 m/s (Fig. 469 

3D). 470 

 471 

Given these constraints, we can then examine how well we are able to recover the properties of individual 472 

connections. Here we analyze only the true connections within the simulations and find that the true synaptic 473 

weight can be recovered relatively accurately: for Simulation 1 with common inputs, 𝑟 =  .97, 𝑝 < .01 , for 474 

Simulation 2 with real presynaptic inputs, 𝑟 =  .88, 𝑝 < .01 . Similarly, synaptic latency can be estimated 475 

accurately: for the simulation with common inputs,  𝑟 =  .98, 𝑝 < .01, 𝑅𝑀𝑆𝐸 =  .34  ms for the simulation with 476 

common inputs,  𝑟 =  .89, 𝑝 < .01, 𝑅𝑀𝑆𝐸 =  .66 ms. And Including neuron type and latency constraints improves 477 

those reconstructions (For the model without constraints, Simulation 1: latency:   𝑟 =  .57, 𝑝 < .01, 𝑅𝑀𝑆𝐸 =  1.84 478 

ms, weight: 𝑟 =  .93, 𝑝 < .01. Simulation 2: latency:   𝑟 =  .37, 𝑝 < .01, 𝑅𝑀𝑆𝐸 =  2.17 ms, weight: 𝑟 =  .76, 𝑝 <479 

.01). Together, these results illustrate how, for simulated networks, our model is able to capture the type and 480 

conduction velocity of presynaptic neurons, as well as the parameters of individual connections.  481 

 482 
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 483 

Figure 3: The extended GLM can capture the properties of presynaptic neurons and individual synaptic connections in two simulated 484 

networks: a recurrent network with common input (A-C) and a network with realistic input (D-F). A & D: Estimated and true presynaptic 485 

conduction velocity. Each dot represents one simulated presynaptic neuron. Colors indicate the estimated presynaptic neuron type. B & 486 

E: Estimated and simulated synaptic weight (𝑤𝑖𝑗, coefficient of the alpha function). Here each dot represents one true connection. Y-487 

axis is the PSC amplitude assigned in the simulations. Note that dots in the second and fourth quadrants correspond to cases where 488 

the presynaptic neuron type has been misestimated. C & F: Estimated and simulated synaptic latency. Again, each dot represents one 489 

true connection. 490 

 491 

Synapse detection with simulated spike trains: Evaluating the model-based method 492 

Given that the model-based approach can recover the properties of presynaptic neurons (type and conduction 493 

velocity) and the properties of individual connections, we then ask how well our model can distinguish which 494 

pairs of simulated neurons are synaptically connected and which are not. We applied our model and two 495 

previously used synapse detection methods: the thresholding method and spike jitter method, to the two 496 

simulations described above. Briefly, the thresholding method is based on testing if the peak or trough in the 497 

correlogram immediately following a presynaptic spike is significantly different from a constant, baseline number 498 

of coincidences. Since the baseline is estimated with a single value, the thresholding method is generally 499 

effective in cases where there is little fluctuation but will not work well in situations where there are strong 500 

fluctuations (e.g. due to shared common input). To account for these fluctuations, Hatsopoulos et al. (2003) 501 
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developed a pattern jitter method where jittered spike trains generate a baseline cross-correlogram that 502 

preserves slow structure in the correlogram while removing fast, transient effects such as those due to a synaptic 503 

connection. The spike jitter method is then based on testing if the peak or trough is significantly different from 504 

the local baseline estimated from the jittered spikes (see Methods for more details). In both the thresholding and 505 

the jitter methods there is no explicit model for the slow effects and fast, synaptic effects, and each cross-506 

correlogram is treated as a separate hypothesis test. In contrast, the extended GLM uses an explicit, parametric 507 

structure for the slow and fast effects, as well as constraints based on neuron type and conduction velocity. 508 

 509 

Since we know where the connections are in the simulations, we can compare the performance of the model-510 

based method to the thresholding and spike jitter methods. Fig. 4A and 4B show the overall receiver operating 511 

characteristic (ROC) curves for each method, for the two simulated networks, respectively. These curves 512 

compare the true positive rate (where a true, simulated synaptic connection is detected as a connection, 513 

regardless of whether the connection was excitatory or inhibitory) and the false positive rate (where the simulated 514 

neurons were not connected, but the method detected a connection). For Simulation 1 with common inputs, the 515 

extended GLM without any network constraints (area under the curve, AUC = .94) performs better than jitter 516 

method (AUC = .91) and thresholding method (AUC = .75). With the constraints on neuron type and conduction 517 

velocity, the performance of the model-based method improves (AUC = .98). Similarly, for Simulation 2 with real 518 

presynaptic inputs, the extended GLM with constraints (AUC = .89) outperforms the model without constraints 519 

(AUC = .85), the jitter method (AUC = .85), and the threshold method (AUC = .85). The standard errors of AUC 520 

generated using bootstrap for all the methods are less than .04. 521 

 522 

Although all methods perform well above chance in detecting connections, we find that both the jitter method 523 

and thresholding method have a bias towards the detection of excitatory connections. When the decision criterion 524 

is set such that the number of false positives is small (less than ~10%) both methods detect far more excitatory 525 

connections than inhibitory connections, despite the fact that the number and strengths of excitatory and 526 

inhibitory connections were approximately balanced in the simulations. This bias may be partially due to the fact 527 

that here, for jitter method and thresholding method, we approximate the noise distribution of the correlograms 528 

using a normal distribution (z-scores), rather than using an empirical distribution. On the other hand, the extended 529 

GLM shows no preference for either excitatory or inhibitory connections (Fig. 4B & E). 530 

 531 

In addition to the overall performance and the performance on different cell types, we also expect the detectability 532 

of synapses to depend on the synaptic strength and the rates of the pre- and postsynaptic neurons. Here we 533 

find that, for both of the simulations, the extended GLM with constraints and the jitter method perform at a similar 534 

level for strong connections, but that the extended GLM has better detection for weak connections (Fig. 4C and 535 

F). We also find that the performance of both methods varies as a function of the firing rate of presynaptic 536 

neurons. Here the extended GLM outperforms the jitter method at all rates, but both of the methods show better 537 

performance for synaptic connections where the presynaptic firing rate is high compared to those where rate is 538 

low (Fig. 4G). By incorporating the learned network information, the extended GLM with constraints appears to 539 
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better detect weak connections and rule out false positives. For example, although both the extended GLM and 540 

the jitter method can detect strong excitatory connections (Fig. 4H, top two correlograms), the jitter method has 541 

more false positives and false negatives. It may fail to detect a weak connection that does not exceed threshold 542 

(the third correlogram), or falsely detect a non-connection if there is noise that exceeds threshold (the bottom 543 

correlogram). On the other hand, if the weak connection has a sign and latency consistent with the constraints, 544 

the extended GLM can successfully detect it, and if the sign or latency are inconsistent with the constraints, the 545 

extended GLM can successfully rule this connection out (Fig. 4H). 546 

 547 
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 548 

Figure 4: The extended GLM with constraints outperforms the jitter and thresholding methods on both of the simulations. Panel A, B and 549 

C show the results from Simulation 1 with background common inputs. Panel D, E and F show the results from Simulation 2 with real 550 

presynaptic inputs. A & D: ROC curves for the extended GLM with and without constraints, jitter method, and thresholding method. B & 551 

E: Jitter method and thresholding method are biased towards the detection of excitatory connections. The y-axis is the ratio of the 552 

excitatory true positive rate and the inhibitory true positive rate. If the method has no preference for connection type, the ratio should be 553 

1. C & F: The extended GLM with constraints performs better than jitter method especially on weak connections. Here we divide the 554 

synaptic connections into 20 groups based on their synaptic weights and calculate AUC for each group (each group contains 5% of the 555 

connections). The error bars denote standard error (estimated using bootstrapping). G: The performance of both of the two methods is 556 

affected by the presynaptic firing rate. We divide all the presynaptic neurons into 10 groups based on their firing rates and calculate AUC 557 

for each group (each group contains 10% of the presynaptic neuron). Only results from Simulation 2 are shown, since there is a wide 558 

range of presynaptic firing rates. H: The extended GLM with constraints can better detect weak connections and rule out the false positives 559 

based on the learned structural information. The two columns show the same four cross-correlograms with the same excitatory 560 

presynaptic neuron along with the results for the extended GLM (left) and the jitter method (right). For the model the yellow line represents 561 

the full model with positive alpha function, and the red line represents the slow model. For the jitter method, the red and blue lines denote 562 

the upper and lower bounds, respectively.  563 

 564 

Synapse detection with in vitro multielectrode array (MEA) data 565 

 566 

In order to evaluate the performance of our method on real data, we apply it to spontaneous in vitro spike activity 567 

recorded in a mouse somatosensory cortex slice culture using a 512-electrode array (see Methods). Here we 568 

adopt two representative datasets: dataset #13 and dataset #23, and examine potential connections between 569 

neurons with >1000 spikes recorded. Before we run the model on the dataset, in order to get rid of the possible 570 

influence of spike sorting problems, we exclude the neuron pairs when there is an anomalous peak or trough 571 

right in the middle of the correlogram (<7% of pairs, see Methods for more details). 572 

 573 

Since we don’t know the ground truth about where the synaptic connections are in the in vitro data, we are not 574 

able to directly measure the performance of our synapse detection methods. However, we can qualitatively 575 

assess whether or not the method gives results consistent with what we expect. We first validate whether our 576 

method can correctly classify excitatory neurons and inhibitory neurons by analyzing the shape the spike 577 

waveform of each neuron. Previous studies have shown that the excitatory neurons typically have broader spike 578 

waveforms, while the majority of inhibitory neurons have narrower spike waveforms (Barthó et al. 2004). In the 579 

two datasets used here, the neurons with broader waveforms are more likely to be classified as excitatory 580 

neurons by our model based on their putative synaptic connections, but the results for neurons with narrow 581 

waveforms are mixed (Fig. 5A). To quantify the relationship between waveform and connectivity, we fit a 582 

Gaussian mixture model with 3 components to the trough-to-peak duration and half-amplitude duration of the 583 

waveforms creating three clusters for “broad waveforms”, “narrow waveforms”, and “outliers”. After assigning 584 

each neuron to a cluster (based on the posterior probability), we analyze the consistency between the waveform 585 

shape and the neuron type given by their putative connections. From the presynaptic neurons with putative 586 

connections detected by our method, we find that 77% of the “broad-spiking” neurons are classified as putative 587 

excitatory neurons based on their connectivity, and 47% of the “narrow-spiking” neurons are classified as putative 588 
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inhibitory neurons. Inhibitory, non-fast-spiking neurons with broad waveforms have been previously reported 589 

(Dehghani et al. 2016), however, excitatory neurons with narrow waveforms are unexpected. There are likely to 590 

be some cases where the extended GLM misidentifies the neuron type, however, there are also cases where 591 

neurons with narrow waveforms appear to have putative excitatory connections with typical short-latency, fast 592 

transient increases in the cross-correlograms. This difference may, in part, be due to differences in the waveforms 593 

recorded by in vitro recordings. Many single units in the MEA data here appear to be narrow due to the fact that 594 

they have triphasic waveforms. Previous work suggests that this could indicate a nearby axon (Barry 2015; 595 

Gesteland et al. 1982; Robbins et al. 2013). 596 

 597 

We then analyze the properties of the putative synaptic connections detected by our method. Here we pick the 598 

thresholds for our method based on the maximum MCC from the simulation with background fluctuations (see 599 

details in Methods). We first find that the neurons close to each other are more likely to have putative connections 600 

(Fig. 5B). The median distance between neuron pairs with putative connections is 701 μm, compared to a median 601 

distance between all the neurons of 813 μm for dataset #13. And for dataset #23, the median distance between 602 

neuron pairs with putative connections is 810 μm compared to the median distance between all the neurons 859 603 

μm. These results are consistent with previous findings in other cortical areas that the probability of a synaptic 604 

connection decreases with distance (pyramidal cells in layer 2/3 of rat visual and somatosensory cortex: 605 

Holmgren et al. 2003; pyramidal cells in layer 5 of rat visual cortex: Song et al. 2005).    606 

 607 

We then examine to what extent the synaptic latencies of the putative connections from one presynaptic neuron 608 

increase as function of distance. For each neuron with more than 2 putative connections (409 out of 602 neurons 609 

across both datasets), we calculate the Pearson correlation coefficient 𝑟 between the estimated synaptic latency 610 

∆𝑡 and the distance between the corresponding pre and postsynaptic neuron. Fig. 5E shows the histogram of all 611 

the correlation coefficients of the two datasets, 69% of the neurons show a positive correlation between the 612 

estimated synaptic latency and distance between neurons, 33% of them are statistically significant (𝑝 < .05). Fig. 613 

5C shows some examples of presynaptic neurons that have many connections and are consistent with a linearly 614 

increasing latency-distance relationship (r > 0). We find both putative excitatory and putative inhibitory cases 615 

where this relationship seems to hold. In the cases where the neurons don’t obey the rule (𝑟 < 0, 31% of the 616 

neurons), the accuracy of the linear fit of the latency-distance relationship tends to be lower. Under the extended 617 

GLM the constraint on the synaptic latency for these ill-predicted connections (𝜂Δ𝑡) is also weaker (unpaired t-618 

test 𝑡(216)  =  −2.49, 𝑝 < .05, 𝐶𝐼 =  [−2.19, −.25], Fig. 5F). Since the strength of the constraint in our model is 619 

partially based on how well the latency-distance relationship is fit by a linear trend, these constraints thus have 620 

a weaker influence and our method is still able to detect putative connections at unexpected latencies (Fig. 5D). 621 

 622 

We then compare the putative connections detected by the extended GLM and the jitter method on these same 623 

datasets. As with our method, we pick the threshold for jitter method based on the maximum MCC (see details 624 

in Methods) from Simulation 1 with background fluctuations. In general, the extended GLM and jitter method 625 

detect highly distinct sets of connections (Fig. 5G and 5H). Here we sort the neurons based on the similarity of 626 
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their putative connections detected by our method (using hierarchical clustering). For the Hinton plot of our 627 

method, the size of each square represents the magnitude of the estimated synaptic weight 𝑤𝑖,𝑗  of the 628 

corresponding neuron pair. For the Hinton plot of jitter method, the size of each square represents the magnitude 629 

of the z-score of the corresponding neuron pair.  630 

 631 

Based on the Hinton plots, we do see that the results from our method and jitter method show certain agreements 632 

on the detection of putative connections, especially on the strong connections: For dataset #13, the two methods 633 

show the same detection results (whether there is a synaptic connection or not) on 98.8% of the neuron pairs, 634 

for dataset #23, the two method show the same detection results on 95.8% of the neuron pairs. However, since 635 

the vast majority of pairs are not connected, we also use MCC to measure the similarity between the results of 636 

the two methods. The MCC between the results of the two methods is .38 (dataset #13) and .51 (dataset #23), 637 

which implies some disagreements between the results of the two methods. We find that jitter method reports 638 

more putative connections than our method (dataset #13: 1507 vs. 1197, dataset #23: 3678 vs. 3185). In addition, 639 

our method reports more putative inhibitory connections. For dataset #13, 26.8% (321 out of 1197) of the putative 640 

connections are inhibitory when using our method, while 7.4% (111 out of 1507) of the putative connections are 641 

inhibitory when using jitter method. For dataset #23, 48.7% (1550 out of 3185) of the putative connections are 642 

inhibitory when using our method, while 16.3% (599 out of 3679) of the putative connections are inhibitory when 643 

using jitter method. 644 

 645 
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 646 

Figure 5: Applying the extended GLM to in vitro multielectrode array data. A: left: most of the neurons with wide waveforms are classified 647 
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as putative excitatory neurons by our method, while the results for neurons with narrower waveforms are rather mixed. Right: The 648 

waveforms of putative excitatory neurons and inhibitory neurons. For putative inhibitory neurons, the waveforms are narrow, while for the 649 

putative excitatory neurons, there are two clusters of waveforms. B: the histograms of the distance between neurons (top: dataset #13, 650 

bottom: dataset #23). Distances for all neuron pairs are in blue, while distance for neuron pairs with putative connections are in red. C & 651 

D: examples of neurons where the relationship between synaptic latency and distance is consistent with an increasing linear trend (panel 652 

C) and inconsistent with such a trend (panel D). Left: data points with the same color represent putative connections from the same 653 

presynaptic neuron. The dotted lines show the linear regression of the estimated synaptic latency and distance. Right: cross-correlograms 654 

for these connections with colors corresponding to the scatter plot. E: the histogram of Pearson correlation between the putative synaptic 655 

latency and distance for all the presynaptic neurons. F: mean 𝜂Δ𝑡 for the neurons that don’t obey the latency rule (𝑟 < 0) and the neurons 656 

that obey the rule (𝑟 > 0 & 𝑝 < .05). G & H: Hinton plots for dataset #13 (G) and #23 (H) using the extended GLM and jitter method, 657 

respectively. The putative excitatory connections are marked in red. The putative inhibitory connections are marked in blue. Here all the 658 

neurons are sorted by the similarity of their putative connections detected by our method. Each row represents the connections from one 659 

presynaptic neuron. In each Hinton plot, the two horizontal lines separate the neurons with no putative connections, putative inhibitory 660 

neurons, and the putative excitatory neurons. The two vertical lines mark the same boundaries for postsynaptic neurons.  661 

 662 

Discussion 663 

Traditionally, intracellular recording represents a gold standard for characterizing synaptic connections. 664 

Detecting synaptic connections using the intracellularly recorded postsynaptic potentials and currents is 665 

straightforward and reliable (Harris et al. 2016; Song et al. 2005). However, only a relatively small number of 666 

neurons can be recorded simultaneously using intracellular recording, particularly in vivo (but see Pawlak et al. 667 

2013). In recent decades, advances in multielectrode arrays have allowed the spiking of hundreds to thousands 668 

of neurons to be recorded simultaneously in vivo or in vitro with thousands of potential synapses between them 669 

(Cheung et al. 2007; Ito et al. 2014; Seeman et al. 2018; Spira and Hai 2013). Distinguishing the monosynaptic 670 

connections from the many tens of thousands of possible connections in these large-scale extracellular 671 

recordings is a difficult statistical problem. Previous methods for distinguishing putative synaptic connections 672 

and non-connections in large-scale recordings have used separate hypothesis tests on the cross-correlograms 673 

of all potentially connected neuron pairs (Hatsopoulos et al. 2003; Pastore et al. 2018; Perkel et al. 1967b). Here 674 

we develop an extension of a Generalized Linear Model that explicitly separates fast synaptic effects and slow 675 

background fluctuations and also incorporates two structural constraints learned from the whole network: 676 

presynaptic neuron type and the relationship between the synaptic latency and distance between pre- and 677 

postsynaptic neurons. On two simulated integrate-and-fire networks, our model outperforms previous synapse 678 

detection methods (the threshold method and spike jitter method), especially on the weak connections. We also 679 

apply our model on in vitro multielectrode arrays (MEAs) data. Here our model recovers plausible connections 680 

from hundreds of neurons recorded extracellularly. 681 

 682 

Many factors affect how likely a synaptic connection is to be detected, including the firing rates of the pre- and 683 

postsynaptic neurons, the recording time, and the synaptic strength. Here, in our simulations, we find that the 684 

model-based approach outperforms the hypothesis testing-based approaches for a wide range of firing rates 685 

and shows particular improvement for detecting weak connections. At the same time, in our simulations, the 686 

model-based methods outperform the hypothesis test-based methods at all thresholds. That is, the distributions 687 
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of likelihood ratios for connections and non-connections are more distinct than the distributions of test statistics 688 

with the jitter or thresholding methods. In practice, however, when detecting putative synapses, the choice of 689 

threshold has a strong effect on how many synapses are detected and also how many false positives there are. 690 

Here, in detecting putative synapses in experimental data we apply the same optimal (MCC maximizing) 691 

threshold from the simulation. This is largely for illustration, but selecting an appropriate threshold for 692 

experimental recordings depends on the researchers’ tolerance for false positives and false negatives. Ultimately, 693 

the choice of threshold should be based on the aims of the analysis and the costs/benefits of mistakes in 694 

interpreting the underlying data. 695 

 696 

Since we don’t know the ground truth for experimental data, it is possible that the threshold used here might be 697 

either too strict or too permissive. However, the performance of the model-based method may be somewhat 698 

more robust to the choice of threshold than the jitter and thresholding methods. In our simulations, we find that 699 

both the jitter method and thresholding method show strong biases towards detecting excitatory connections, 700 

particularly at strict thresholds with few false positives. The model-based approach, on the other hand, detects 701 

excitatory and inhibitory connections in proportion to their prevalence in the simulation at all the thresholds. The 702 

bias of the jitter method may due to the fact that we here measure test statistics assuming that spike counts 703 

follow a normal distribution. This approximation clearly does not accurately account for the fact that spike counts 704 

can only be non-negative. However, in practice we find that this type of smooth approximation has better 705 

performance at strict thresholds compared to using the empirical count distributions (using the percentile of the 706 

true counts in the jittered count distribution), which do not have smooth tails. These biases we find in the 707 

simulation results may indicate that, when we apply these methods to real data, jitter method and thresholding 708 

method may distort the observed E-I ratio if the threshold is too strict. Consistent with the simulation results, in 709 

the in vitro data analysis, we find that the jitter method also typically detects many more excitatory than inhibitory 710 

connections (5-13x more), while the model-based method detects putative connections with a larger EI ratio 711 

(~3:1). Previous work has found that approximately one in five neurons is GABAergic in many neocortical areas 712 

and species (Hendry et al. 1987; Sahara et al. 2012). Although there are many factors that might influence the 713 

observed EI ratios when measuring putative synapses from spikes, the model-based approach appears to be 714 

less biased. 715 

 716 

In the model-based approach, we learn two structural constraints from the whole network: presynaptic neuron 717 

type and the relationship between the synaptic latency and distance between pre- and postsynaptic neurons. 718 

For the presynaptic neuron type, using the simulation, we find that the model-based approach is able to 719 

successfully classify most neurons. However, when applying the method to the in vitro data, we compare the 720 

neuron type estimated based on putative synaptic connections with waveform shapes, and find that our results 721 

are somewhat less clear than previous findings in vivo (Barthó et al. 2004). Instead of two, well separated 722 

excitatory (broad waveforms) and inhibitory (narrow waveforms) clusters, we find substantial mixing of types 723 

across clusters. This may be partially due to the particulars of organotypic slice recording. Previous works have 724 

found that the waveforms in these recordings tend to be more triphasic potentially due to axonal conductance 725 
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(Barry 2015; Robbins et al. 2013), and this could lead to misestimation of waveform width. New methods, such 726 

as optotagging (Lima et al. 2009) or optrodes (English et al. 2017) may offer a more reliable identification of 727 

neuron type. However, in the absence of experimental verification, it is difficult to evaluate the accuracy of cell 728 

type inferences. Additionally, although here we assume that presynaptic neurons are either exclusively excitatory 729 

or exclusively inhibitory, there is recent and growing evidence that presynaptic neurons can co-release multiple 730 

neurotransmitters (Root et al. 2014). 731 

 732 

For the relationship between the synaptic latency and distance between pre- and postsynaptic neurons, we found 733 

that the model-based method can successfully learn linear relationships in simulation and that these constraints 734 

improve detection performance. In the in vitro data, we also find that for most of the neurons, the synaptic 735 

latencies tend to increase with the distance between the pre- and postsynaptic neurons. However, there appears 736 

to be a portion of neurons that don’t show this pattern. In many cases, we may not have enough putative synaptic 737 

connections to estimate such a trend. In the cases where there are enough connections, there may not be a 738 

trend due to several other reasons. First, the locations of the somas are only approximate – based on which 739 

electrodes have the highest amplitude waveforms. Second, although here we model presynaptic conduction 740 

velocity, it’s possible that the dendritic distance constitutes a large portion of the distance. And third, the straight-741 

line distance between somas may not be the same as the trajectory of the axons/dendrites. Although previous 742 

theoretical work on the minimum wiring length principle might suggest the conduction distance between two 743 

neurons can be well approximated with straight-line (Chklovskii et al. 2002; Koulakov and Chklovskii 2001), there 744 

are clearly many sources of uncertainty when estimating conduction velocity here. However, it is important to 745 

note that, within the extended GLM, the conduction velocity is only a soft constraint, and the strength of the 746 

constraint is related to how accurately the relationship is fit by a straight line. We are still able to detect 747 

connections even if the relationship between synaptic latency and distance is not clearly linear. 748 

 749 

With the model-based method, we are able to learn the properties of each presynaptic neuron (type and 750 

conduction velocity) and use these properties to better detect individual synaptic connections based whether 751 

they are consistent with these properties. However, we could potentially include other sources of information to 752 

better estimate these properties. For instance, cell types can be classified according to: mean firing rate, the 753 

mode of the inter-spike interval distribution, burstiness, and spike asymmetry (English et al. 2017), and 754 

conduction velocity could also potentially be estimated using spatiotemporal electrical image generated using 755 

the spike waveforms across multiple electrodes (Li et al. 2015). In addition, the model-based approach is flexible 756 

enough that other constraints could also be incorporated. For instance, we could use constraints based on 757 

connectivity across and between brain regions or other network structure (Linderman et al. 2016). Finally, as 758 

neural recording techniques continue developing, increasing numbers of neurons can be recorded 759 

simultaneously (Stevenson and Kording 2011). These recordings have the potential to contain more 760 

monosynaptic connections per recording, and this should result in more reliable estimation of neuronal properties. 761 

 762 

Although the methods presented here are likely to be useful for large-scale detection of putative synaptic 763 
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connections, modeling the cross-correlogram directly does not necessarily provide unambiguous evidence for 764 

or against the presence of a synapse. The shape of the cross-correlogram depends on the dynamics of the 765 

presynaptic neuron (Perkel et al. 1967b), and can be influenced by many other factors, such as common input 766 

from unobserved neurons (Gerstein et al. 1989; Stevenson et al. 2008) . Other methods may allow more detailed 767 

pattern in spiking to be modeled (Casadiego et al. 2018; Chen et al. 2011; Ito et al. 2011; Kadirvelu et al. 2017; 768 

Ladenbauer et al. 2019; Monasson and Cocco 2011; Song et al. 2013). Additionally, although we account for 769 

some potential structure due to properties of presynaptic neurons, modeling multiple inputs to the same 770 

postsynaptic neuron will likely result in more accurate estimates of the true connectivity  (Roudi et al. 2015; 771 

Volgushev et al. 2015; Zaytsev et al. 2015). In a recent work, Kobayashi et al. 2019 also approach the problem 772 

of synapse detection from cross-correlograms, and find that a model-based approach combining a slow 773 

background effect and a fast synaptic effect provides improved performance. Here we show how constraints on 774 

cell type and latency may further improve detection accuracy. 775 

 776 

Ultimately, being able to accurately detect putative synaptic connections from large-scale extracellular recordings 777 

opens a host of neuroscientific questions. Previous work found that synaptic weights detected from spikes can 778 

have strong type-dependent structure (Barthó et al. 2004), seem to vary based on behavior (Fujisawa et al. 779 

2008), and also have substantial short-term dynamics (English et al. 2017; Ghanbari et al. 2017). Our method 780 

provides an additional tool for detecting these connections using large-scale recordings. With the development 781 

of larger-scale recording techniques, this approach may help us better understand how the properties of single 782 

neuronal connections relate to population neural activity and behavior. 783 

 784 
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