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Abstract: 16 

The rumen microbiota comprises a community of microorganisms which specialise in the 17 

degradation of complex carbohydrates from plant-based feed. These microbes play a highly 18 

important role in ruminant nutrition and could also act as sources of industrially useful enzymes.  In 19 

this study, we performed a metagenomic analysis of samples taken from the ruminal contents of 20 

cattle (Bos Taurus), sheep (Ovis aries), reindeer (Rangifer tarandus) and red deer (Cervus elaphus).  21 

We constructed 391 metagenome-assembled genomes originating from 16 microbial phyla. We 22 

compared our genomes to other publically available microbial genomes and found that they 23 

contained 279 novel species. We also found significant differences between the microbiota of 24 

different ruminant species in terms of the abundance of microbial taxonomies, carbohydrate-active 25 

enzyme genes and KEGG orthologs. However, we found that the vast majority of carbohydrate-26 

active enzymes were present in all of our sample types, which may indicate that there is a core set of 27 

these enzymes which are present across ruminants and are independent of diet and environmental 28 

conditions. We present a dataset of rumen-derived genomes which in combination with other 29 

publicly-available rumen genomes can be used as a reference dataset in future metagenomic 30 

studies.  31 

 32 

Data Summary:  33 

The paired-read fastq files supporting the conclusions of this article are available in the European 34 

Nucleotide Archive repository (https://www.ebi.ac.uk/ena/browser/view/PRJEB34458). The RUG 35 

fasta files supporting the conclusions of this article are available in the Edinburgh DataShare 36 

repository (https://doi.org/10.7488/ds/2640).  37 
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Introduction: 38 

The microbial communities which inhabit the rumen contain a mixture of bacteria, fungi, protozoa, 39 

viruses and archaea, and through fermentation are able to convert complex plant carbohydrates into 40 

short-chain volatile fatty acids. The microbial pathways present have a large impact on feed 41 

efficiency (1-3), alongside other important production traits such as milk and fat yield (4, 5). 42 

Understanding the processes by which food is digested in the rumen may allow us to improve feed 43 

efficiency in ruminants (1), either by the production of enzymes isolated from microbes (6) or by 44 

manipulating the microbiota through the use of pre- or probiotics (7). There are also other potential 45 

industrial uses for the proteins produced by ruminal microbes, for example in processing biofuels, 46 

bioremediation, processing pulp/paper and textile manufacturing (8-11). Ruminants are also the 47 

largest source of anthropogenic methane emissions and gaining a greater understanding of which 48 

microbes are important in methane production could lead to improved methane mitigation 49 

strategies (7, 12-16).  50 

While inroads have been made towards culturing members of the ruminal microbiota (17, 18) there 51 

are still many members which have not been characterised. Metagenomics is a powerful tool which 52 

allows us to examine the entire genetic repertoire of the rumen microbiota without the need for 53 

culturing. Our group has previously published thousands of metagenome assembled genomes from 54 

cattle rumen samples (19, 20) and hundreds of genomes from chicken caecal samples (21), many of 55 

which were identified as novel species.  56 

Several studies have examined the rumen microbiota using metagenomic techniques in cattle and 57 

sheep; however, less effort has been made to characterise the microbiota of other ruminant species 58 

which may be less commercially-important but which could harbour microbes which could be 59 

industrially useful. For example, wild ruminants are likely to consume a far more diverse diet than 60 

farm-raised individuals, and are therefore likely to contain microbes which are able to digest 61 

different substrates. In this paper we analyse rumen metagenomic data from four ruminant species: 62 
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cattle (Bos Taurus), sheep (Ovis aries), red deer (Cervus elaphus) and reindeer (Rangifer tarandus). 63 

We compare the microbiota of these species taxonomically and functionally and construct 391 64 

named rumen-uncultured genomes (RUGs), representing 372 putative novel strains and 279 putative 65 

novel species. 66 

 67 

Methods: 68 

Experimental design 69 

Reindeer (Rangifer tarandus: Grazing mixed vegetation, n=2) and red deer (Cervus elaphus: Grazing 70 

mixed vegetation, n=4) were shot in the wild, and ruminal digesta samples were collected 71 

immediately. Samples were taken from Holstein cattle (Bos Taurus: Fed total mixed ration (once a 72 

day), n=4) and Finn-Dorset cross sheep (Ovis aries: Grazing mixed pasture, n=2) via a rumen cannula. 73 

Samples were taken from sheep after morning grazing. Sheep sampling was performed as described 74 

in McKain et al. (22). Cattle samples were taken 3 hours post feeding. Samples were collected from 75 

the bovine rumen in the following locations: top near cannula, middle at the front of the rumen, 76 

middle towards the back of the rumen and bottom (approximately 45cm down from the entrance to 77 

the rumen). Digesta samples were mixed with buffer containing glycerol as a cryoprotectant (22). 78 

The mixtures were kept on ice for 1-2 hours then frozen at -20°C.  DNA extraction was performed 79 

using repeated bead beating plus column filtration, as described in (23). Shotgun sequencing was 80 

performed on an Ilumina Hiseq 2000, producing an average of 1626 million paired reads per sample, 81 

of 100bp or 150bp in length. 82 

 83 

Bioinformatics 84 

Illumina adaptors were removed using trimmomatic (24) (v.0.36). IDBA-UD (25) (v.1.1.3)  with the 85 

options --num_threads 16 --pre_correction --min_contig 300 was used to perform single sample 86 
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assemblies. After indexing using BWA index (v.0.7.15), BWA-MEM was used to map reads to 87 

assemblies (26). BAM files were created by SAM tools (27) (v.1.3.1) and coverage was calculated 88 

using the command jgi_summarize_bam_contig_depths from the MetaBAT2 (v.2.11.1) software 89 

package (28). A coassembly was carried out on all samples using MEGAHIT (29) (v.1.1.1) with the 90 

options --continue --kmin-1pass -m 100e+10 --k-list 27,37,47,57,67,77,87 --min-contig-len 1000 -t 16. 91 

After filtering out reads which were <2kb, indexing and mapping were performed as for single 92 

assemblies.  93 

Metagenomic binning was carried out using MetaBAT2 with the options --minContigLength 2000, --94 

minContigDepth 2. From the single-assemblies, 1691 bins were created and from the co-assembly 95 

2508 bins were created. Completeness and contamination of bins were calculated using CheckM 96 

(options: lineage_wf, -t 16, -x fa) (v.1.0.5), and the bins were dereplicated using dRep (30) (options: 97 

dereplicate_wf -p 16 -comp 80 -con 10 -str 100 –strW 0) (v.1.1.2). Thus, bins were discarded if their 98 

completeness was <80% or if they had contamination >10%. The dereplicated ‘winning’ bins are 99 

referred to below as RUGs. MAGpy was used to compare the RUGs to public datasets (31). 100 

Taxonomies were assigned to MAGs using GTDB-Tk (32).  Trees produced by MAGpy were rerooted 101 

at the branch between archaea and bacteria using Figtree (33) (v.1.4.4) and visualised using 102 

GraPhlAn (34) (v.0.9.7). For submission to public repositories, our RUGs were named as the lowest 103 

taxonomic level at which NCBI and GTDB-Tk matched. The taxonomies assigned to RUGs were 104 

manually checked against the taxonomic tree and improved accordingly.  105 

Carbohydrate-active enzymes (CAZymes) were identified using dbCAN2 (version 7, 24th August 2018) 106 

by comparing RUG proteins to the CAZy database (35). RUG proteins were compared to the KEGG 107 

database (downloaded on Sept 15th 2018) (36) using DIAMOND (37) (v0.9.21). KEGG hits for which 108 

the alignment length was ≥90% of the query length were retained. The likely KEGG ortholog group 109 

for each RUG protein was inferred from the DIAMOND search results and the KEGG database. 110 

CAZyme and KEGG ortholog abundances were calculated as the sum of the reads mapping to RUG 111 
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proteins within each group after using DIAMOND to align reads to the RUG proteins. PULpy was used 112 

to identify polysaccharide utilisation loci (38).  113 

Statistical analyses were carried out within R (version 3.5.1). The ggplot2 (39) package was used to 114 

construct scatter plots and NMDS graphs. The vegan package (40) was used to create NMDS axes 115 

using the Bray–Curtis dissimilarity. The Adonis function from the vegan package was used to perform 116 

PERMANOVA analyses and DeSeq2 (41) was used to calculate differences in coverage for individual 117 

CAZymes, KEGG orthologs and RUGs. UpSet graphs were constructed using the UpSetR package (42). 118 

Taxonomies were assigned to paired sequence reads with Kraken (43) using a custom kraken 119 

database consisting of RefSeq complete genomes with our RUGs and the rumen superset (20) 120 

added. Prior to statistical analyses (excluding DeSeq2) and graph construction, data was subsampled. 121 

For RUGs, subsampling to the lowest sample coverage was performed. CAZymes and KEGG orthologs 122 

were subsampled to the lowest sample abundance.  123 

 124 

Results: 125 

Construction of RUGs from rumen sequencing data 126 

We produced 979G of Illumina sequencing data from 12 samples then performed a metagenomic 127 

assembly of single samples and a co-assembly of all samples. This created a set of 391 dereplicated 128 

genomes (99% ANI (average nucleotide identity)) with estimated completeness ≥80% and estimated 129 

contamination ≤10% (Additional File 1: Fig 1). 284 of these genomes were produced from the single-130 

sample assemblies and 107 were produced from the co-assemblies. 172 genomes were >90% 131 

complete with contamination <5%, and would therefore be defined as high-quality draft genomes by 132 

Bower et al. (44). The distribution of these RUGs between our samples can be found in Additional 133 

file 2 (based on coverage). Additional file 3 contains the predicted taxonomic assignment for each 134 

RUG while Fig 1 shows a phylogenetic tree of the genomes. The tree is dominated by the 135 
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Bacteroidota (136 RUGs: All order Bacteroidales) and the Firmicutes_A (121 RUGs), followed by 136 

lesser numbers of the Firmicutes_C (40 RUGs), Synergistota (20 RUGs: All family Aminobacteriaceae), 137 

Firmicutes (19 RUGs), Proteobacteria (15 RUGs), Cyanobacteriota (9 RUGs: All family 138 

Gastranaerophilaceae), Actinobacteriota (7 RUGs), Euryarchaeota (7 RUGs: All family 139 

Methanobacteriaceae), Spirochaetota (5 RUGs), Elusimicrobiota (3 RUGs: All family 140 

Endomicrobiaceae), UBP6 (3 RUGs: All genus UBA1177), Fibrobacterota (2 RUGs: All genus 141 

Fibrobacter), Riflebacteria (2 RUGs: All family UBA8953), Chloroflexota (1 RUGs: family 142 

Anaerolineaceae) and Desulfobacterota (1 RUGs: genus Desulfovibrio). All members of the phylum 143 

Firmicutes_A belonged to the Clostridia class: orders 4C28d-15 (n=9), CAG-41 (n=3), 144 

Christensenellales (n=4), Lachnospirales (n=56), Oscillospirales (n=45), Peptostreptococcales (n=2) 145 

and Saccharofermentanales (n=2). Firmicutes_C contains the orders Acidaminococcales (n=8) and 146 

Selenomonadales (n=32).  The phylum Firmicutes contained the orders Acholeplasmatales (n=3), 147 

Erysipelotrichales (n=1), Izimaplasmatales (n=1), ML615J-28 (n=1), Mycoplasmatales (n=1).  RFN20 148 

(n=7) and RF39 (n=5), The Actinobacteria contained the orders Actinomycetales (n=1) and 149 

Coriobacteriales (n=6). The Proteobacteria phylum contains the orders Enterobacterales (n=4), 150 

Paracaedibacterales (n=1), RF32 (n=8) and UBA3830 (n=2). The Spirochaetota contains the orders 151 

Sphaerochaetales (n=1) and Treponematales (n=4).   152 
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 153 

Fig 1: Phylogenetic tree of the 391 draft microbial genomes from rumen samples, labelled by 154 

taxonomic class. Taxonomies were defined by GTDB-Tk.  155 

 156 

After sub-sampling, we found that samples from different ruminant species clustered significantly 157 

separately by abundance of RUGs (PERMANOVA: P = 3e-05). This may be due to the fact that the 158 

vast majority of RUGs were only found in a single host species (Fig 2), including 111 RUGs in red 159 

deer, 78 RUGs in reindeer, 40 RUGs in cow and 31 RUGs in sheep. Only 3 RUGs were found in ≥1X 160 

average coverage in all species: uncultured Bacteroidaceae sp. RUG30019, uncultured Prevotella sp. 161 

RUG30028 and uncultured Prevotella sp. RUG30114. 162 
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 163 

Fig 2: UpSetR graph showing the number of shared microbial genomes at average 1X coverage 164 

(after sub-sampling to equal depth) within four ruminant species.  165 

 166 

We compared our RUGs to microbial genomes which had previously been sequenced from the 167 

rumen to determine if we had discovered any novel strains or species. We dereplicated our RUGs at 168 

99% and 95% ANI to a “superset” of genomes containing rumen RUGs previously produced by our 169 

group (20), Hess et al. (11), Parks et al. (45), Solden et al. (46) and Svartström et al. (47) and the 170 

genomes from the Hungate collection (17). After dereplication at 99% and the removal of any RUGS 171 

with ≥99% ANI to an existing genome (as assigned by GTDB-Tk) or which clustered with members of 172 

the superset, 372 of our RUGs remained, representing putative novel strains. After dereplication at 173 

95% and the removal of any RUGS with ≥95% ANI to an existing genome (assigned by GTDB-tk) or 174 

which clustered with members of the superset, 279 of our RUGs remained, representing putative 175 

novel species. The majority of these species originated from single-sample assemblies: 110 from red 176 

deer samples, 68 from reindeer samples, 23 from sheep samples and 1 from cattle samples, 177 

suggesting that many novel microbial species remain to be discovered from non-cattle ruminant 178 

hosts. These novel species are taxonomically diverse, with members belonging to the phyla 179 

Bacteroidota (n = 97), Firmicutes_A (n = 85), Firmicutes_C (n = 27), Firmicutes (n = 16), Synergistota 180 
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(n = 14), Proteobacteria (n = 11), Cyanobacteriota (n = 9), Actinobacteriota (n = 5), Spirochaetota (n = 181 

4), Euryarchaeota (n = 3), Elusimicrobiota (n = 3), Riflebacteria (n = 2), Chloroflexota (n = 1), 182 

Desulfobacterota (n  = 1) and UBP6 (n = 1). 183 

31 of our total RUGs were able to be taxonomically identified to species level and these contain 184 

bacteria which are commonly isolated from the rumen including novel strains of Bacteroidales 185 

bacterium UBA1184 (45), Bacteroidales bacterium UBA3292 (45), Butyrivibrio fibrisolvens, 186 

Escherichia coli, Fibrobacter sp. UWB2 (48), Lachnospiraceae bacterium AC3007 (17), 187 

Lachnospiraceae bacterium UBA2932 (45), Methanobrevibacter sp. UBA188 (45), 188 

Methanobrevibacter sp. UBA212 (45), Prevotella sp. UBA2859 (45), Ruminococcaceae bacterium 189 

UBA3812 (45), Ruminococcus sp. UBA2836 (45), Sarcina sp. DSM 11001 (17), Selenomonas sp. 190 

AE3005 (17), Succiniclasticum ruminis and Succinivibrio dextrinosolvens. 191 

 192 

Comparing microbial taxonomies, CAZymes and KEGG orthologs between ruminant species 193 

We assigned taxonomies to paired sequence reads using our custom kraken database containing 194 

RefSeq complete genomes, our RUGs, and the superset of rumen isolated microbial genomes. After 195 

subsampling we compared the abundance of members of the microbiota in different ruminant 196 

species at multiple taxonomic levels. Averaging reads across rumens species, the vast majority of 197 

reads mapped to bacteria (Sheep: 97%, Cow: 97%, Reindeer: 92%, Red deer: 98%) with smaller 198 

amounts of archaea (Sheep: 2.3%, Cow: 2.1%, Reindeer: 6.3%, Red deer: 1.9%) and Eukaryota 199 

(Sheep: 0.23%, Cow: 1.3%, Reindeer: 1.8%, Red deer: 0.56%). Eukaryota reads originated primarily 200 

from fungi and protists. In all ruminants, Bacteroidetes was the most abundant phylum (Sheep: 64%, 201 

Cow: 65% Reindeer: 54% Red deer: 52%), with Firmicutes being the second most abundant (Sheep: 202 

29%, Cow: 26% Reindeer: 26% Red deer: 38%). Using PERMANOVA, significant differences in the 203 

abundance of taxonomies between ruminant species were found at both high (Kingdom: P = 204 
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0.01058, Phylum: P = 0.00017) and low (Family: P = 1e-05, Genus: P = 3e-05) taxonomic levels 205 

(Additional File 1: Fig 2).  206 

We also compared the abundance of genes encoding for specific CAZymes between species. These 207 

enzymes are responsible for the synthesis, binding and metabolism of carbohydrates. The 208 

carbohydrate esterases (CEs), glycoside hydrolases (GHs), glycosyltransferases (GTs) and 209 

polysaccharide lyases (PLs) act to degrade cellulose, hemicellulose and other carbohydrates which 210 

could otherwise not be digested by the host. Non-catalytic carbohydrate-binding modules (CBMs) 211 

bind to specific carbohydrates, increasing the efficiency of enzymatic degradation (49). The auxiliary 212 

activities (AAs) redox enzymes are reclassified CBMs which are lytic polysaccharide monooxygenases 213 

(50). In our samples we found the following numbers of these CAZyme families: 6 AAs redox 214 

enzymes, 39 CBMs, 14 CEs, 191 GHs, 61 GTs and 27 PLs. The ten most abundant GHs in the different 215 

ruminant species were: for cows GH2, GH3, GH31, GH97, GH28, GH51, GH43_10, GH105, GH10 and 216 

GH95; for sheep GH2, GH3, GH28, GH31, GH97, GH32, GH51, GH77, GH78 and GH95; for red deer 217 

GH2, GH3, GH31, GH97, GH77, GH32, GH51, GH109, GH28 and GH78; and for reindeer GH2, GH3, 218 

GH92, GH109, GH97, GH13, GH31, GH78, GH28 and GH77. Different ruminant species were found to 219 

have significantly differently abundant CAZyme genes (PERMANOVA: P = 1e-05, Additional File 1: Fig 220 

3). However, it should be noted that the vast majority of CAZyme families were found in all sample 221 

types (Fig 3), indicating that there exists a set of CAZymes which are present across ruminant species 222 

consuming different diets and living in vastly different conditions.   223 
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 224 

Fig 3: UpSetR graph showing the number of shared CAZyme families at average 1X coverage within 225 

four ruminant species. 226 

 227 

DeSeq2 was used to identify specific CAZymes which were significantly more abundant in one 228 

ruminant species vs another (Additional file 4). Those CAZymes which were consistently more 229 

abundant in specific species when compared to other species are listed in Tables 1-4.  230 
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Table 1: CAZymes (Carbohydrate-active enzymes) which were consistently more abundant in 231 

cattle. 232 

CAZyme  Deer - 

adjusted p-

value 

Sheep - 

adjusted p-

value 

Reindeer - 

adjusted p-value 

Carbohydrate-binding modules 

CBM11 0.000113 1.81E-05 8.41E-05 

CBM22 0.000996 0.000958 0.004915 

CBM25 0.000571 0.010859 0.005573 

CBM6 4.32E-11 0.02129 1.91E-25 

CBM74 4.51E-06 0.009696 0.00389 

Carbohydrate esterases 

CE15 1.03E-07 0.000403 0.000357 

CE6 6.57E-13 0.000634 1.07E-27 

Glycoside hydrolases 

GH105 8.55E-10 0.0195 1.22E-14 

GH11 0.000134 0.000687 2.24E-05 

GH115 0.000737 0.018632 1.91E-17 

GH13_28 7.54E-06 0.012113 0.042438 

GH130 1.02E-08 2.69E-06 0.02559 

GH146 0.011892 0.032424 3.57E-06 

GH31 4.20E-08 0.000243 7.31E-10 

GH35 3.11E-06 0.003975 5.19E-10 

GH36 0.001473 0.002527 1.22E-13 

GH43_1 5.48E-12 6.03E-05 2.36E-22 
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GH43_24 3.66E-06 0.000849 0.022236 

GH43_29 5.69E-10 0.000779 3.84E-65 

GH43_35 1.76E-06 0.018491 4.78E-29 

GH43_5 4.79E-16 0.011903 2.98E-40 

GH43_7 2.36E-09 0.012453 1.60E-36 

GH45 1.13E-05 0.000541 0.001412 

GH5_10 9.78E-05 0.000118 0.000164 

GH5_38 1.36E-11 0.022559 1.78E-37 

GH5_39 6.13E-05 0.000849 0.02559 

GH5_52 0.00487 0.015377 0.003089 

GH51 6.44E-08 0.011587 2.36E-12 

GH67 1.50E-11 0.001929 1.45E-31 

GH8 4.01E-10 0.000212 2.96E-31 

GH9 1.12E-06 1.08E-07 0.002527 

GH94 1.45E-05 5.96E-13 0.000853 

  233 
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Table 2: CAZymes (Carbohydrate-active enzymes) which were consistently more abundant in 234 

sheep. 235 

CAZyme Cow - adjusted 

p-value 

Deer - 

adjusted p-

value 

Reindeer - 

adjusted p-value 

Carbohydrate-binding modules 

CBM27 0.019613 1.62E-07 1.13E-05 

Carbohydrate esterases 

CE8 0.021156 1.65E-08 4.29E-14 

Glycoside hydrolases 

GH144 6.75E-05 0.003343 0.034267 

GH30_8 0.026986 0.0002685 2.49E-32 

GH53 0.000983 6.98E-14 9.02E-14 

Glycosyltransferases 

GT69 7.60E-05 5.21E-05 4.40E-06 

GT7 3.50E-08 0.0002904 0.000314 

Polysaccharide lyases 

PL10 0.022559 2.52E-07 3.35E-22 
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Table 3: CAZymes (Carbohydrate-active enzymes) which were consistently more abundant in red 237 

deer. 238 

CAZyme Cow - adjusted p-

value 

Reindeer - adjusted p-

value 

Sheep - adjusted p-

value 

Carbohydrate-binding modules 

CBM34 2.18E-22 3.69E-13 0.049585 

CBM42 0.005095 0.003958 0.000579 

CBM54 2.87E-14 4.60E-07 0.000154 

CBM58 5.65E-05 0.00122 0.000348 

Carbohydrate esterases 

CE13 0.002535 5.30E-06 0.006324 

Glycoside hydrolases 

GH13_20 3.56E-09 0.014494 0.021084 

GH13_29 2.22E-40 4.90E-08 0.006428 

GH13_4 9.39E-08 0.000614 0.000579 

GH147 0.00095 0.000495 0.000842 

GH148 5.24E-10 1.92E-08 0.0105 

GH24 5.09E-23 0.00023 1.24E-05 

GH43 0.010658 0.000118 0.024375 

GH43_11 4.01E-10 0.004229 0.024919 

GH43_21 3.74E-06 0.004636 0.000375 

GH5_44 8.22E-23 0.000382 0.001021 

Glycosyltransferases 

GT23 2.31E-11 0.00713 0.036234 

Polysaccharide lyases 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2020. ; https://doi.org/10.1101/2020.02.12.945139doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.12.945139
http://creativecommons.org/licenses/by-nc/4.0/


17 

 

PL4 4.20E-69 1.94E-19 2.12E-44 

 239 

Table 4: CAZymes (Carbohydrate-active enzymes) which were consistently more abundant in 240 

reindeer. 241 

CAZyme Cow - adjusted p-

value 

Deer - adjusted p-

value 

Sheep - adjusted p-

value 

Carbohydrate-binding modules 

CBM32 4.15E-29 8.21E-08 4.63E-11 

CBM41 0.00392 1.73E-05 1.71E-11 

CBM62 5.74E-06 1.52E-05 1.95E-09 

CBM66 2.12E-29 1.66E-13 3.43E-11 

CBM67 6.33E-11 5.31E-05 0.000125 

CBM68 5.01E-05 8.99E-06 0.000182 

CBM9 8.88E-13 1.44E-11 2.22E-12 

Carbohydrate esterases 

CE3 1.68E-10 7.47E-05 0.00062 

CE9 5.83E-19 7.37E-05 0.007305 

Glycoside hydrolases 

GH109 1.80E-18 9.23E-08 1.92E-13 

GH117 1.25E-05 0.004221 0.003013 

GH123 0.003063 0.000606 0.001734 

GH125 4.14E-19 1.33E-16 1.59E-15 

GH128 2.16E-14 9.97E-07 4.18E-05 

GH13 0.004306 1.47E-07 0.007748 
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GH13_16 7.00E-05 0.00063 3.51E-05 

GH13_2 0.005224 0.0006 0.026906 

GH13_36 0.002131 0.003061 0.027897 

GH13_40 0.000141 1.57E-05 4.25E-07 

GH133 0.030687 1.47E-07 0.000337 

GH16 7.62E-10 6.74E-06 0.000368 

GH18 1.28E-07 2.39E-07 0.000111 

GH20 6.60E-12 0.000614 1.03E-05 

GH38 9.43E-46 1.51E-18 3.04E-43 

GH39 2.69E-07 0.000556 1.43E-10 

GH43_26 1.57E-05 0.000556 0.000556 

GH43_28 1.35E-16 3.00E-08 4.40E-06 

GH43_3 5.69E-08 7.45E-07 8.84E-19 

GH43_31 5.43E-07 0.000583 2.26E-07 

GH43_33 1.58E-06 2.24E-05 1.01E-13 

GH5 1.57E-22 1.80E-08 1.55E-15 

GH5_35 8.84E-13 0.001397 4.49E-06 

GH57 0.003543 0.005297 9.37E-05 

GH59 0.000148 0.003958 0.008335 

GH64 1.91E-09 1.87E-07 2.57E-09 

GH76 2.09E-20 1.55E-27 3.29E-16 

GH85 0.001061 0.002853 0.008951 

GH87 4.47E-10 2.62E-07 1.42E-07 

GH88 0.001577 0.00356 0.006143 

GH92 8.02E-20 3.58E-16 8.82E-23 
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GH93 1.65E-08 4.49E-06 3.88E-11 

GH99 2.06E-07 2.73E-09 0.000163 

Glycosyltransferases 

GT1 1.86E-05 1.86E-10 1.93E-05 

GT10 2.68E-08 0.012407 0.005445 

GT2_Glyco_tranf_2_4 5.94E-21 0.000115 2.57E-07 

GT3 0.008785 0.001394 0.001478 

GT39 0.002494 0.021868 0.003876 

GT4 7.61E-09 0.000752 0.018262 

GT47 0.000453 0.011114 0.002988 

GT66 2.68E-06 5.25E-05 0.008382 

GT70 9.38E-07 0.000433 0.001094 

GT77 0.002527 0.014307 0.009975 

GT8 5.78E-21 0.000151 0.02682 

GT81 1.55E-06 8.26E-06 0.025595 

GT83 4.25E-39 4.13E-05 1.77E-06 

Polysaccharide lyases 

PL17_2 2.55E-05 0.000285 0.00041 

PL22 1.27E-06 0.005756 0.000133 

PL8 0.003063 0.002491 0.006191 

 242 

CAZymes are often found organised into Polysaccharide Utilization Loci (PUL) which comprise a set 243 

of genes that enable the binding and degradation of specific carbohydrates or multiple 244 

carbohydrates. We used the software PULpy to predict PULs which were present in our 245 

Bacteroidales RUGs. Of the 136 RUGs which belong to the taxonomy Bacteroidales, 112 contain 246 
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putative PULs.  Within these RUGs we identified 970 PULs, with numbers of PULs per RUG ranging 247 

from 1 to 35. The largest quantity of PULs originating from one RUG was 35 from uncultured 248 

Bacteroidales sp. RUG30227; these encoded a wide range of CAZymes. This RUG was more abundant 249 

in reindeer samples than samples from other ruminants. Of the 970 PULs, 332 of these were a single 250 

susC/D pair. A summary of identified PULs can be found in Additional file 5 (Additional File 1: Fig 4).  251 

We also examined the abundance of genes which belonged to specific KEGG orthologs. KEGG 252 

orthologs represent a wide range of molecular functions and are defined by a network-based 253 

classification. We found that, as for CAZymes, ruminant species clustered significantly by the 254 

abundance of genes with specific KEGG orthologs (PERMANOVA: P = 1e-05, Fig 4) and that the vast 255 

majority of orthologs were found in all ruminant species (Fig 5). However, the large amount of 256 

orthologs (n=729) which were only found in the two domesticated species (cattle and sheep) is also 257 

worthy of note. It should also be noted that the two sheep samples did not cluster visually to the 258 

same extent as the samples originating from the other ruminant speices (Fig 4). DeSeq2 was used to 259 

identify many KEGG orthologs which were significantly more abundant in one ruminant species vs 260 

another (Additional file 6). Those orthologs which were consistently more abundant in specific 261 

ruminant species (Adjusted p-value <0.05) are listed in Additional file 7. 262 

 263 
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 264 

Fig 4: NMDS of ruminal samples clustered by abundance of KEGG orthologs, using Bray–Curtis 265 

dissimilarity values (PERMANOVA; P = 1e-05).  266 

 267 

 268 

Fig 5: UpSetR graph showing the number of shared KEGG orthologs families at average 1X 269 

coverage within four ruminant species.  270 
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Discussion: 271 

The rumen microbiota plays a crucial role in the ability of ruminants to efficiently digest feed while 272 

the rumen microbiota and their products also have a potential use in diverse industrial applications. 273 

The ruminal microbiota of red deer and reindeer have previously been studied using 16S rRNA gene 274 

sequencing (51-54). However, metagenomic studies of these species are limited, with only one study 275 

in reindeer (55) and no studies in red deer.  276 

In this study we constructed 391 rumen microbial genomes from metagenomic data from cattle, 277 

sheep, red deer and reindeer. We assigned taxonomies to our RUGs using GTDB-Tk rather than NCBI 278 

based taxonomies as this improves the classification of uncultured bacteria due to the use of a 279 

genome-based taxonomy (32). We have also previously found less need to manually correct 280 

taxonomic assignments when using GTDB-Tk (21). Our microbes predominantly belonged to the 281 

Bacteroidota and Firmicutes_A, with lesser numbers of 14 other phyla. We dereplicated our 282 

genomes alongside a superset of rumen bacterial genomes (20) and used the results output by 283 

GTDB-Tk to identify RUGs which represent novel microbial strains and species. Amongst our 284 

genomes we identified 372 novel strains and 279 novel species. These microbes were taxonomically 285 

diverse, belonging to 15 phyla. Only 31 RUGs were assigned an identity at species level.  286 

The vast majority of our total RUGs were only present on average at ≥1 coverage in one ruminant 287 

species. However, we found that at higher taxonomic levels taxonomies were shared between 288 

sample types. When comparing the abundance of taxonomies between samples we found that 289 

ruminant species clustered separately by both higher (kingdom and phylum) and lower (family and 290 

genus) taxonomic levels. We are aware that the sample sizes for our study are small and therefore 291 

any conclusions about differences between the microbiota of ruminant species should be drawn 292 

cautiously.  However, our data are supportive of the hypothesis that there are host species-specific 293 

rumen microbiota at the strain and species level but that these differences do not necessarily 294 

translate into large differences in the types of CAZymes expressed. 295 
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While we found that there were significant differences between the abundances of CAZymes 296 

between ruminant species, most CAZymes were present in all ruminant species. These results also 297 

reflected those which we found when analysing the abundance of KEGG orthologs. We also 298 

identified 970 PULs in our Bacteriodales RUGs, with numbers of PULs per genome ranging from 1 to 299 

35. The RUG containing 35 PULs was found most abundantly in reindeer samples, emphasising the 300 

potential for the discovery of novel carbohydrate-active enzymes in lesser studied ruminant species, 301 

as also highlighted by a previous study which identified multiple PULs in metagenomic samples from 302 

reindeer (55). Unfortunately due to the nature of our samples, with red deer and reindeer samples 303 

originating from animals eating a non-regimented diet, we are not able to provide metadata as to 304 

the exact nutritional composition of our animals’ diets, therefore a more in depth analysis of dietary 305 

carbohydrates vs CAZyme/PUL abundance is not possible.  306 

While several thousand RUGs have previously been published that originate from the rumen 307 

microbiota, the vast majority of these originate from cattle. By investing more effort in exploring the 308 

metagenome of less well studied ruminants we will be able to identify even more microbes and 309 

microbial products that are of industrial-interest. In conclusion, we present a dataset of RUGs from 310 

four ruminant species which can be used as a reference dataset in future metagenomic studies and 311 

to aid in the design of culture based studies. 312 
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