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ABSTRACT  

Investigation   of   spatial   cellular   composition   of   tissue   architectures   revealed   by   multiplexed   in   situ   RNA  

detection   often   rely   on   inaccurate   cell   segmentation   or   prior   biological   knowledge   from   complementary  

single   cell   sequencing   experiments.   Here   we   present   spage2vec,   an   unsupervised   segmentation   free  

approach   for   decrypting   the   spatial   transcriptomic   heterogeneity   of   complex   tissues   at   subcellular  

resolution.   Spage2vec   represents   the   spatial   transcriptomic   landscape   of   tissue   samples   as   a   spatial  

functional   network   and   leverages   a   powerful   machine   learning   graph   representation   technique   to  

create   a   lower   dimensional   representation   of   local   spatial   gene   expression.   We   apply   spage2vec   to  

mouse   brain   data   from   three   different   in   situ   transcriptomic   assays,   showing   that   learned  

representations   encode   meaningful   biological   spatial   information   of   re-occuring   gene   constellations  

involved   in   cellular   and   subcellular   processes.  

 

INTRODUCTION  

Recent   advances   in   single-cell   RNA   (scRNA)   sequencing   [1,2]   allow   to   dissect   the   cell   type  

heterogeneity   of   complex   tissues   at   incredible   pace.   An   international   effort   has   started    building  

comprehensive   reference   maps   of   gene   expression   at   cellular   resolution   to   uncover   the   cell   type  

composition   of   entire   organs   and   organisms   [3].   However,   in   order   to   understand   the   functional  

architecture   of   a   tissue   it   is   essential   to   reconstruct   the   spatial   organization   of   its   constituent   cell  

1  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 13, 2020. ; https://doi.org/10.1101/2020.02.12.945345doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.12.945345


27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

types.   To   this   end,   single   cell   sequencing   analyses   are   often   complemented   with   imaging-based  

methods   for   spatially   resolved   multiplexed   in   situ   RNA   detection   [4-8]   that   allow   to   map   mRNA  

molecules   directly   in   tissue   samples   and   identify   specific   cell   type   location,   enabling   the   discovery   of  

their   functional   role   inside   the   tissue   architecture.  

 

Previous   attempts   to   map   the   spatial   heterogeneity   of   cell   types   mostly   relied   on   cell   body  

segmentation   algorithms   and   gene   assignments   to   cells   based   on   segmented   cell   boundaries   [4-7].  

Extracted   per-cell   gene   expression   profiles   are   successively   clustered   and   annotated   based   on  

complementary   scRNA   sequencing   analysis   experiments   or   published   literature   [4-7].   

This   means   that   analysis   of   the   spatial   heterogeneity   in   tissue   samples   is   limited   by   the   accuracy   of  

image   segmentation   algorithms   to   outline   exact   cell   borders   in   dense   and   overlapping   cell  

environments,   with   uneven   illumination   conditions   and   low-signal   to   noise   ratios.   Moreover,   while  

some   cell   types   are   defined   by   clear   differences   in   their   gene   expression   profiles,   others   differ   by   only  

a   few   genes   in   their   transcriptome   (e.g.   like   finely   related   neuronal   subtypes)   making   their  

identification   challenging.  

 

Preliminary   work   from    Park   J,   Choi   W.   et   al.    [9]   tries   to   address   these   problems   proposing   a  

segmentation-free   spatial   cell-type   analysis   (SSAM)   based   on   cellular   mRNA   density   estimation   via  

Gaussian   KDE   [10],   defining   cell   location   as   local   maxima   of   mRNA-dense   regions   and   extracting  

gene   expression   profiles   for   each   cell   (i.e.   local   maxima)   as   the   averaged   gene   expression   in   that   unit  

area.    Qian   X.   et   al .   [11],   instead,   proposed   a   probabilistic   framework   for   jointly   assigning   mRNAs   to  

segmented   cells   and   cells   to   cell   types   based   on   scRNA-seq   cell-type   priors,   achieving   a   fine  

classification   of   interneurons   subtypes   of   CA1   hippocampal   region.  

 

Despite   these   efforts   for   improving   cell   type   identification   in   situ,   spatial   cell   type   analyses   alone   do  

not   use   the   full   power   of   in   situ   spatial   transcriptomics:   The   subcellular   resolution   can   reveal   spatial  

heterogeneity   also   at   subcellular   levels.   There   is   compelling   evidence   that   many   genes   are   expressed  

in   a   spatially   dependent   fashion   independent   of   cell   types   [12],   and   this   information   is   lost   when  

analysing   transcriptional   profiles   of   single   cells.   Moreover,   there   is   a   considerable   amount   of  
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heterogeneity   within   each   cell   type   explained   by   the   balance   between   intrinsic   regulatory   networks  

and   extrinsic   subcellular   processes   depending   on   the   local   cellular   microenvironment   [13-17].   mRNA  

localization   plays   an   important   role   in   these   cell   differentiation   processes   as   localization   can   vary  

during   specific   stages   of   cell   development,   and   distinguishes   cell   phenotypes,   activities   and  

communication.   Specifically,   mRNA   localization   is   involved   in   cellular   compartmentalization   of   gene  

expression   into   spatial   functional   domains   involved   in   spatially   targeted   segregation   of   protein  

synthesis   [18].   For   example,   mRNA   localization   is   particularly   diffused   in   neurons,   where   protein  

synthesis   can   take   place   at   distal   sites   far   away   from   the   nucleus:    Dendritic   and   axonal   structures  

express   several   forms   of   plasticity   that   requires   local   translation   [19-22].   Disruption   of   these  

subcellular   biological   processes   were   shown   to   be   implicated   in   neurodevelopmental,   psychiatric   or  

degenerative   diseases   [23-26].   It   is   thus   important   to   take   advantage   of   in   situ   mRNA   detection  

methods   to   dissect   the   spatial   heterogeneity   of   gene   expression   at   subcellular   resolution   with   respect  

to   development   and   disease,   and   unreveal   the   subcellular   spatial   domains   underlying   cell  

differentiation.  

 

Here   we   propose   a   novel   segmentation   free   approach   for   analyzing   the   spatial   heterogeneity   in   gene  

expression   of   tissue   samples   that   does   not   rely   on   the   definition   of   cell   types   and   cell   segmentation  

but   leverages   the   spatial   organization   of   single   mRNAs   to   define   subcellular   spatial   domains   involved  

in   cellular   differentiation.   Specifically,   we   consider   the   spatial   organization   of   mRNAs   inside   tissues   as  

a   spatial   functional   network   where   different   mRNA   types   interact   based   on   their   spatial   proximity  

[Figure   1],   and   where   subcellular   domains   can   be   identified   as   clusters   of   local   gene   constellations  

that   are   shared   or   cell-type   specific.   In   order   to   investigate   the   spatial   mRNA   network   for   recurrent  

gene   constellations,   we   adopted   a   powerful   graph   representation   learning   technique   [27]   based   on  

graph   neural   networks   (GNN)   [28],   that   has   recently   emerged   as   state-of-the-art   machine   learning  

technique   for   leveraging   information   from   graph   local   neighborhoods.   Therefore,   each   mRNA   location  

is   encoded   in   a   graph   as   a   node   with   a   single   feature   representing   the   gene   it   belongs   to   and   it   is  

connected   to   all   the   other   nodes   representing   the   other   mRNAs   located   in   its   neighborhood   [Figure  

1a].   During   training,   the   GNN   learns     the   topological   structure   of   each   node’s   local   neighborhood   as  

well   as   the   distribution   of   node   features   in   the   neighborhood   (i.e.   local   gene   expression),   and   projects  
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each   node   in   a   lower   dimensional   embedding   space   that   encapsulates   high-dimensional   information  

about   the   node’   s   neighborhood   [Figure   1b].   We   call   this   vectorization   approach   spatial   gene  

expression   to   vector,   or   spage2vec,   where   geometric   relations   in   this   lower   dimensional   space  

corresponds   to   higher   order   relationships   in   the   local   gene   environment.   We   apply   spage2vec   to   three  

publicly   available   datasets   and   compare   the   resulting   gene   constellations   to   cell   type   maps   presented  

in   the   respective   publications.  

 

 

Figure  1. Spage2vec  workflow  for  detecting  subcellular  spatial  domains  from  spatial  gene  expression  data.  ( a )  Spatial                 

transcript  locations  of n  targeted  genes  are  encoded  in  a  graph  connecting  neighboring  mRNA  spots  based  on  their  spatial                    

distances.  ( b )  A  lower  dimensional  representation  is  learnt  for  each  of  the k  mRNA  spots  using  a  graph  representation  learning                     

technique  based  on  a  graph  neural  network.  The  neural  network  predicts  a  node  embedding  vector  for  each  mRNA  of  the  graph                      

representing  high  order  spatial  relationships  with  its  local  neighborhood  (Materials  &  Method).  Thereafter,  the  spatial  gene                 

expression  variation  can  be  ( c )  visualized  at  subcellular  resolution  projecting  the  learnt  node  embedding  vectors  in  RGB  color                   

space,  or  ( d )  unsupervised  clustering  analysis  can  define m  different  clusters  representing  distinct  subcellular  spatial  functional                 

domains.  

 

RESULTS  

Spage2vec   for   in   situ   sequencing   analysis  
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We   first   analyzed   published   in   situ   sequencing   (ISS)   data   of   mouse   hippocampal   area   CA1   [11],  

where   transcripts   of   99   genes   were   localized.   After   representing   the   spatial   gene   expression   as   a  

graph,   we   applied   spage2vec   to   generate   a   50   dimensional   embedding   for   each   mRNA   spot   (Material  

&   Methods),   encoding   information   of   its   local   neighborhood.   We   then   projected   the   50   dimensional  

embedding   to   three   dimensions   in   order   to   visualize   spatial   relationships   learnt   from   the   data   as  

similar   colors   in   RGB   color   space   [Figure   2a,c].   Next,   in   order   to   investigate   if   the   learnt   lower  

dimensional   embedding   contains   significant   information   of   biological   functional   domains,   we   clustered  

the   spot   embeddings   directly   in   the   50-dimensional   space   (Material   &   Methods)   and   compared  

obtained   spot   cluster   labels   with   cell-type   annotations   of   spots   from    Qian   X.   et   al.    We   initially   obtained  

29   clusters   [Figure   2   supplementary   1],   which   reduced   to   25   after   merging   highly   correlated   clusters  

(Material   &   Methods).   Identified   clusters   can   be   interactively   explored   at  

https://tissuumaps.research.it.uu.se/demo/ISS_Qian_et_al.html    [Supplementary   File   1].   We   then  

compared   the   25   identified   clusters   with   20   cell-type-   and   69   subcell-type-annotations   defined   in    Qian  

X.   et   al. ,   excluding   spots   without   cell-type   labels   [Figure    2e-f].   To   demonstrate   the   ability   of   the   model  

to   generalize   over   unseen   data,   we   used   the   spage2vec   model   trained   on   the   right   hemisphere  

mouse   hippocampal   area   CA1   to   predict   the   node   embedding   for   the   spatial   gene   expression   graph   of  

the   left   hemisphere   CA1   area   unseen   during   training   [Figure   2b,d].   As   can   be   seen   in   the   figures  

[Figure   2a-d],   the   node   representation   of   the   two   spatial   gene   expression   graphs   projected   and  

visualized   in   RGB   color   space   shows   that   the   model   produces   visually   similar   embeddings   for   data  

not   available   during   training.   
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Figure   2.    Application   of   spage2vec   to   in   situ   sequencing   data   of   mouse   hippocampal   area   CA1.   Visualization   of   functional  

variation   of   spatial   gene   expression   at   subcellular   resolution   in   right   ( a )   and   left   ( b )   hippocampal   area   CA1   color   coded   based  

on   their   node   embedding   projections   in   RGB   color   space   for   right   ( c )   and   left   ( d )   hemisphere.   ( e )   Spatial   gene   expression   with  

colored   cell-type   labels   from    Qian   X.   et   al.    analysis.   ( f )   Heatmap   showing   the   obtained   spage2vec   clusters   with   respect   to   cell-  

and   subcell-type   annotations   (marked   with   different   colors)   from    Qian   X.   et   al .,   and   cell-type   legend.   

 

spage2vec   for   osmFISH   analysis  

In   order   to   demonstrate   the   generalizability   of   spage2vec   to   other   datasets,   we   also   produced   a   lower  

dimensional   representation   of   mRNAs   from   published   osmFISH   data   of   33   cell-type   marker   genes  
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targeted   in   mouse   brain   somatosensory   cortex   [7].   Again,   we   represented   the   gene   expression   as   a  

graph   and   applied   spage2vec,   resulting   in   a   50   dimensional   representation   of   each   mRNA   spot.   We  

projected   the   50   dimensions   to   three   dimensions   and   visualized   similar   gene   constellations   as   similar  

colors   in   3D   RGB   color   space   [Figure   3a].   Next,   we   clustered   the   learnt   embedding   space   in   274  

domains   [Figure   3   supplementary   1],   and   reduced   to   69   domains   after   merging   highly   correlated  

clusters   (Material   &   Methods).   Identified   clusters   can   be   interactively   explored   at  

https://tissuumaps.research.it.uu.se/demo/osmFISH_Codeluppi_et_al.html   [Supplementary   File   1].  

We   then   compared   the   resulting   69   clusters   with   the   31   cell-type   annotations   defined   in    Codeluppi   et  

al. ,   excluding   spots   without   cell-type   labels   [Figure   3b,c].   

 

 

Figure   3.    Application   of   spage2vec   to   osmFISH   data   from   the    mouse   brain   somatosensory   cortex.   ( a )   Visualization   of  

functional   variation   of   spatial   gene   expression   at   subcellular   resolution   color   coded   based   on   node   embedding   projection   in  

RGB   color   space,   and   ( b )   spatial   gene   expression   with   colored   cell-type   labels   from    Codeluppi   S.   et   al.    cell   segmentation.  

Shaded   areas   correspond   to   regions   excluded   in   the   original   cell-type   analysis.     ( c )   Heatmap   showing   the   obtained   spage2vec  

clusters   with   respect   to   cell-type   (marked   with   different   colors)   annotations   from    Codeluppi   S.   et   al .,   and   cell-type   legend.  

 

Spage2vec   for   MERFISH   analysis  

We   further   applied   spage2vec   to   a   3D   mRNA   localization   dataset   of   hypothalamic   preoptic   region  

analyzed   by   MERFISH   [6],   where   the   transcripts   of   135   targeted   genes   were   localized   in   3D.   As   for  

the   previous   dataset,   we   applied   spage2vec   to   the   graph   representation   (in   this   case   3D),   and  

projected   the   50   dimensions   into   three   for   visualization   [Figure   4a].   Leveraging   the   symmetry   of   the  
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data   we   trained   a   spage2vec   model   on   approximately   half   the   sample   (0-956   µm)   and   tested   on   the  

other   half.   Clustering   in   50-dimensional   space   resulted   in   198   clusters   [Figure   4   Supplementary   1],  

which   reduced   to   121   after   merging   of   clusters   with   a   gene   expression   correlation   greater   than   95%.  

Identified   clusters   can   be   interactively   explored   at  

https://tissuumaps.research.it.uu.se/demo/MERFISH_Moffitt_et_al.html    [Supplementary   File   1].  

We   compared   the   gene   expression   profiles   of   these   121   clusters   with   the   10   cell-types   and   76  

subcell-types   presented   in   [6]   [Figure   4b-d].   

 

DISCUSSION  

We   showed   that   spage2vec   can   learn   low   dimensional   embeddings   encoding   important   topological  

and   functional   information   of   local   gene   expression.This   rich   low   dimensional   space   can   be   used   for  

downstream   clustering   analysis   in   order   to   detect   biologically   meaningful   re-occuring   gene  

constellations   that   correlate   well   with   subcellular   and   cellular   domains.   The   embedding,   found   by  

unsupervised   training,   has   an   inductive   property   to   generalize   over   unseen   nodes.   This   means   that   it  

can   be   applied   to   a   new   unseen   dataset,   as   long   as   the   new   dataset   has   the   same   feature   set   (e.i.,  

consists   of   gene   expression   data   from   the   same   gene   panel).   This   is   especially   useful   to   predict  

embeddings   for   new   spatial   gene   expression   datasets   and   map   them   to   a   common   lower   dimensional  

space.   The   fact   that   spage2vec   is   a   fully   unsupervised   approach   triggers   the   possibility   for   the  

discovery   of   novel   cell-types   in   situ   without   the   need   of   scRNA   sequencing   data   driven   analysis.  

 

The   presented   approach   is   completely   independent   of   cell   segmentation,   and   equally   applicable   to   2D  

and   3D   data,   meaning   that   dense   gene   expression   datasets   such   as   those   from   MEHRFISH   can   be  

analyzed   without   relying   on   the   accuracy   of   cell   segmentation.   In   fact,   most   cell   segmentation  

approaches   are   based   on   identifying   cell   nuclei,   and   then   approximating   gene-to-cell   assignment   by  

shortest   distance   to   the   closest   nucleus.   This   can   very   often   introduce   noise   as   cells   may   vary   very  

much   in   shape,   and   the   nucleus   of   a   given   cell   may   not   even   be   present   in   the   same   tissue   section   as  

the   bulk   of   the   cell.   Furthermore,   the   presented   segmentation   free   spage2vec   approach   enables  
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detection   of   cell   types   with   varying   sub-cellular   gene   expression   patterns   as   well   as   subcellular  

constellations   of   genes   representing   functional   domains   located   far   away   from   a   cell   nucleus.  
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Figure   4.    Application   of   spage2vec   to   MERFISH   data   of   the   mouse   brain   hypothalamic   preoptic   region.   ( a )   Visualization   of  

functional   variation   of   spatial   gene   expression   at   subcellular   resolution   color   coded   based   on   their   node   embedding   projections  

in   RGB   color   space.   The   gray   dashed   line   defines   regions   of   the   sample   used   for   training   (left)   and   for   testing   (right).   ( b )   Spatial  

gene   expression   with   colored   cell-type   labels   from    Moffitt   J.   R.   et   al.    cell   segmentation.   ( c )   Spatial   distribution   of   node  

embedding   projections   in   RGB   color   space   (upper   row)   and   cell-type   labels   (bottom   row)   from    Moffitt   J.   R.   et   al.    across   the  

whole   section.     ( f )   Heatmap   showing   the   obtained   spage2vec   clusters   with   respect   to   cell-   and   subcell-type   annotations   (marked  

with   different   colors)   from    Moffitt   J.   R.   et   al .,   and   cell-type   legend.  

 

MATERIAL   &   METHODS  

Building   a   Spatial   Gene   Expression   Graph  

Spatially   resolved   gene   expression   data   consists   of   gene   expression   information   and   coordinates  

describing   spatial   location   (in   2D   or   3D)   in   a   tissue   sample.   This   information   can   be   represented   as   a  

graph   by   saying   that   a   node   in   the   graph   has   a   single   categorical   feature   representing   the   gene  

expression   (mRNA)   it   belongs   to.   Next,   connections   are   drawn   between   each   node   and   all   its   local  

neighbors   within   a   maximum   spatial   distance    d max .    The   distance    d max     is   defined   such   that   at   least   97  

percent   of   all   nodes   are   connected   to   at   least   one   nearest   neighbor,   automatically   adjusting   for   the  

spatial   resolution   of   the   dataset.   Connected   components   with   less   than   three   nodes   representing  

spurious   expressions   are   removed   from   the   graph   before   further   processing   [Figure   1a].   Note   that   the  

same   graph   representation   works   in   both   2D   and   3D.  

 

Neural   Network   Model   and   Training  

Next,   spage2vec   strives   to   transform   the   spatial   gene   expression   graph   into   an   embedding   where  

similar   gene   constellations   are   assigned   similar   vectors   using   a   neural   network   model.   The   neural  

network   model   consists   of   an   unsupervised   GraphSAGE   [27]   model   implemented   with   the   open  

source   machine   learning   python   library   StellarGraph   [29].   The   model   learns   embeddings   of   unlabeled  

graph   nodes   by   combining   the   node’s   own   feature   with   features   sampled   and   aggregated   from   the  

node’s   local   neighborhood.   Specifically,   node   embeddings   are   learnt   by   solving   a   binary   node  

classification   task   that   predicts   whether   arbitrary   node   pairs   are   likely   to   co-occur   in   a   random   walk  

performed   on   the   graph.   For   this   task   the   training   set   consists   of    positive    node   pairs,   pairs   that  

co-occur   within   walks   of   length   2   on   the   graph,   and    negative    pairs   of   nodes   uniformly   randomly  
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selected   from   the   graph.   Through   training   this   binary   node   pair   classifier,   the   model   automatically  

learns   an   inductive   mapping   from   a   high-dimensional   feature   space   (i.e.   spatial   gene   expression)   to   a  

lower   dimensional   node   embedding   space,   describing   gene   constellations,   preserving   important  

topological   and   structural   features   of   the   nodes.   The   model   architecture   consists   of   two   identical  

GraphSAGE   encoder   networks   sharing   weights,   taking   as   input   a   pair   of   nodes   together   with   the  

graph   structure   and   producing   as   output   a   pair   of   node   embeddings.   Thereafter,   a   binary   classification  

layer   with   a   sigmoid   activation   function,   learns   to   predict   how   likely   it   is   that   a   pair   will   occur   at   a  

random   position   in   the   graph.   Model   parameters   are   optimized   by   minimizing   binary   cross-entropy  

between   the   predicted   node   pair   labels   and   the   true   labels,   without   supervision.  

 

Neural   network   hyperparameters  

The   proposed   spage2vec   model   architecture   used   for   all   experiments   presented   here   consists   of   two  

GraphSAGE   layers   with   50   hidden   units,   a   bias   term,   l2   normalization,   and   l1   kernel   regularization,  

using   attentional   aggregator   function   [30]   with   LeakyRelu   [31].   Each   GraphSAGE   encoder   embeds  

each   node’s   neighborhood   with   a   2-hop   node   aggregation   strategy,   sampling   respectively   20   and   10  

nodes   for   the   first   and   the   second   hop.   The   model   is   trained   with   on-the-fly   batch   generation   with  

batch   size   equal   to   50,   using   Adam   [32]   as   optimizer   with   learning   rate   equal   to   0.5e-4.   The   output   of  

spage2vec   will   thus   be   one   vector   of   length   50   per   spatial   gene   expression   position.   All   details   and  

settings   are   provided   as   Python   notebooks   (https://github.com/wahlby-lab/spage2vec).   

 

Visualization   of   node   embeddings  

To   visualize   the   extracted   spatial   gene   expression   embeddings   created   by   spage2vec,   we   reduced  

the   embedding   dimensionality   to   three   dimensions   with   UMAP   [33].   This   allowed   us   to   present   the  

spatial   gene   expression   constellations   as   data   points   in   a   3D   RGB   color   space.   Mapping   the   new  

color-coding   back   to   tissue   space   shows   that   many   of   the   constellations   not   only   cluster   in   space   but  

also   seem   to   recur   and   correlate   with   cellular   and   subcellular   spatial   domains   [Figure   1d].  
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Identification   of   distinct   gene   constellations   and   spatial   domains  

For   further   comparing   the   spage2vec   output   with   approaches   aimed   at   identifying   cell   types   we  

hypothesize   that   recurring   constellations   of   genes   are   spatial   functional   domains   that   may   be   cell   type  

specific,   or   represent   processes   shared   among   different   cell   types.   We   therefore   cluster   the  

50-dimensional   spage2vec   output   using   the   Leiden   clustering   algorithm   [34,35]   followed   by   Z-score  

normalization   of   the   cluster   expression   matrix   (cluster   x   genes).   Clusters   where   gene   expression  

counts   have   a   correlation   greater   than   95%   are   merged,   and   the   merged   cluster   expression   matrix   is  

re-normalized   with   Z-score   normalization,   leading   to   a   final   set   of   clusters.   Note   that   the   trained   model  

has   an   inductive   property,   meaning   that   it   can   generalize   and   find   embeddings   for   previously   unseen  

gene   constellations.  

 

Datasets  

We   apply   spage2vec   to   three   publicly   available   published   mouse   brain   tissue   datasets   obtained   by  

three   different   spatial   transcriptomics   assays:   (1)   In   situ   sequencing   (ISS)   of   left   and   right  

hippocampal   area   CA1   [11,   https://tissuumaps.research.it.uu.se/demo/ISS_Qian_et_al.html],   with   a  

resolution   of   0.325   μm   per   px   and   a   total   of   84880   detections   of   99   different   mRNAs.   We   refer   to   this  

as   the   ISS   dataset.     (2)     An   osmFISH   analysis   of   the   somatosensory   cortex   [7,  

https://tissuumaps.research.it.uu.se/demo/osmFISH_Codeluppi_et_al.html],   comprising   a   tissue  

section   of    3.8 mm 2 ,   with   a   resolution   of   0.065   μm   per   pixel,   and   a   total   of   1802589   detections   of   33  

different   mRNAs.   We   refer   to   this   as   the   osmFISH   dataset.   (3)   A   MERFISH   analysis   of   the  

hypothalamic   preoptic   region   [6,  

https://tissuumaps.research.it.uu.se/demo/MERFISH_Moffitt_et_al.html],   comprising   a   3D   tissue  

section   10   μm   thick   of   1.8   by   1.8   mm   and   a   total   of   3728169   detections   targeting   135   different   genes,  

referred   to   as   the   MERFISH   dataset.  

 

Code   Availability  

All   software   was   developed   in   Python   3   using   open   source   libraries.   The   processing   pipeline   and   the  

source   code   used   to   generate   figures   and   analysis   results   presented   in   this   paper   are   available   as  

Python   notebooks   at   https://github.com/wahlby-lab/spage2vec.  
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Figure   2   supplement   1.    Gene   expression   per   detected   cluster,   or   gene   constellation.   Each   column   represents   a   cluster   from  

the   spage2vec   embedding   of   the   ISS   data   from    Qian   X.   et   al.    and   each   row   shows   how   much   each   gene   contributes   to   a   given  

cluster   with   Z-score   normalized   values.   The   red   line   on   top   of   the   dendrogram   shows   the   correlation   threshold   used   for   merging  

clusters.  
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Figure   3   supplement   1.    Gene   expression   per   detected   cluster,   or   gene   constellation.   Each   column   represents   a   cluster   from  

the   spage2vec   embedding   of   the    osmFISH    data   from    Codeluppi   S.   et   al .,   and   each   row   shows   how   much   each   gene  

contributes   to   a   given   cluster   with   Z-score   normalized   values.   The   red   line   on   top   of   the   dendrogram   shows   the   correlation  

threshold   used   for   merging   clusters.   
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Figure   3   supplement   1.    Gene   expression   per   detected   cluster,   or   gene   constellation.   Each   column   represents   a   cluster   from  

the   spage2vec   embedding   of   the    MERFISH    data   from    Moffitt   J.R.   et   al .,   and   each   row   shows   how   much   each   gene   contributes  

to   a   given   cluster   with   Z-score   normalized   values.   The   red   line   on   top   of   the   dendrogram   shows   the   correlation   threshold   used  

for   merging   clusters.   
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Visualization   of   spage2vec   clusters   in   TissUUmaps   online   viewer  
1. Open   in   a   browser   one   of   the   following   websites:  

○ ISS   dataset:  
https://tissuumaps.research.it.uu.se/demo/ISS_Qian_et_al.html  

○ osmFISH   dataset:  
https://tissuumaps.research.it.uu.se/demo/osmFISH_Codeluppi_et_al.html  

○ MERFISH   dataset:  
https://tissuumaps.research.it.uu.se/demo/MERFISH_Moffitt_et_al.html  

2. Click   on    Download    data    in    Marker   data    ->    Gene   expression     tab,   analysis   results   will  
load   in   your   browser.  

3. Select   “ macro_cluster ”    from    cluster   column    drop   down   menu  
4. Select   “ global_X_pos ”   from    X   column    drop   down   menu  
5. Select   “ global_Y_pos ”   from    Y   column    drop   down   menu  
6. Click   on    Load   markers ,   the   list   of   clusters   with   read   counts   ,   color   and   marker   shape   will  

appear.  
7. Check   the    Show    box   of   the   clusters   you   wish   to   visualize  

Note:   For   efficient   visualization   at   the   lower   magnifications   only   a   fraction   of   reads   will   be  
displayed,   while   the   number   of   displayed   markers   will   increase   zooming   in   to   the   highest  
magnification   (displaying   all   markers   in   the   field   of   view).  

8. Marker   size   can   be   changed   in    Global   size    box   for   all   the   markers   or   in   the    size    box   for  
the   individual   marker,   as   well   as   marker   color   and   shape.   Zooming   in   or   out   will   refresh   the  
view   and   the   update   will   be   in   place.  
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