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Summary 17 

1. Biogeographical regionalization is the classification of regions in terms of their 18 

biotas and is key to understanding biodiversity patterns across the world. 19 

Previously, it was only possible to perform analysis of biogeographic 20 

regionalization on small datasets, often using tools that are difficult to 21 

replicate.  22 

2. Here, we present phyloregion, a package for the analysis of biogeographic 23 

regionalization and spatial conservation in the R computing environment, 24 

tailored for mega phylogenies and macroecological datasets of ever-25 

increasing size and complexity. 26 

3. Compared to available packages, phyloregion is three to four orders of 27 

magnitude faster and memory efficient for cluster analysis, determining 28 

optimal number of clusters, evolutionary distinctiveness of regions, as well as 29 

analysis of more standard conservation measures of phylogenetic diversity, 30 

phylogenetic endemism, and evolutionary distinctiveness and global 31 

endangerment.  32 

4. A case study of zoogeographic regionalization for 9574 species of squamate 33 

reptiles (amphisbaenians, lizards, and snakes) across the globe, reveals their 34 

evolutionary affinities, using visualization tools that allow rapid identification of 35 

patterns and underlying processes with user-friendly colours–for example–36 

indicating the levels of differentiation of the taxa in different regions. 37 

5. Ultimately, phyloregion would facilitate rapid biogeographic analyses that 38 

accommodates the ongoing mass-production of species occurrence records 39 
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and phylogenetic datasets at any scale and for any taxonomic group into 40 

completely reproducible R workflows. 41 

Key-words: biogeography, bioinformatics, conservation, phylogenetics, 42 

regionalization, software  43 
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1.0 Introduction 44 

In biogeography, there is growing interest in the analysis of datasets of ever-45 

increasing size and complexity to explain biodiversity patterns and underlying 46 

processes. A common approach is biogeographical regionalization, the grouping 47 

of organisms based on shared features and how they respond to past or current 48 

physical and biological determinants (Kreft & Jetz, 2010; Morrone, 2018). The 49 

units of biogeographical regionalization i.e., “phyloregions” or “bioregions”, are 50 

key to our understanding of the ecological and historical drivers affecting species 51 

distribution in macroecological or large-scale conservation studies (Kreft & Jetz, 52 

2010; Ladle & Whittaker, 2011; Moreno Saiz et al., 2013; Oikonomou et al., 53 

2014; Ficetola et al., 2017; Morrone, 2018). When paired with phylogenetic 54 

information, biogeographical regionalization allows geographic regions that do 55 

not share any species in common to be quantified (Graham and Fine, 2008), and 56 

can identify patterns overlooked by species-level analyses (Holt et al. 2013; Daru 57 

et al. 2016). However, compared to the mass-production of species distribution 58 

and phylogenetic datasets, statistical and computational approaches necessary 59 

to analyze such data, and approaches that can incorporate efficient storage and 60 

manipulation of such data, are lacking.  61 

 62 

A few open-source tools have recently become available and can provide 63 

infrastructural support for analysis of biogeographical regionalization. The ape 64 

package (Paradis and Schliep 2018) contains a comprehensive collection of tools 65 

for analyses of phylogenetics and evolution and is useful for reading, writing, and 66 
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manipulating phylogenetic trees, among many other functions. The betapart 67 

package (Baselga & Orme 2012) performs computations of total dissimilarity in 68 

species composition along with their respective turnover and nestedness 69 

components. picante focused on analysis of phylogenetic community structure 70 

and trait evolution (Kembel et al. 2010). The use of network methods to detect 71 

bioregions (Carstensen and Olesen 2009, Thébault 2013, Vilhena and Antonelli 72 

2015), while not yet implemented in the R computing environment, provides an 73 

alternative clustering method based on bipartite networks, and performs well at 74 

identifying interzones between regions (Bloomfield et al. 2018). However, there is 75 

no consensus on which method is the most appropriate for biogeographical 76 

regionalization and spatial conservation at large scales (Dapporto et al., 2015; 77 

Bloomfield et al. 2018; Morrone, 2018). The most effective approach to 78 

biogeographical regionalization might therefore depend on the system under 79 

study and the research questions.  80 

 81 

Here, we present phyloregion R package that permits the integration of 82 

phylogenetic relationships and species distributions for identifying 83 

biogeographical regions of different lineages to elucidate the spatial and temporal 84 

evolution of biota in a region. Specifically, phyloregion provides functions for 85 

clustering substantially large-scale species assemblages, determining optimal 86 

number of clusters, quantifying evolutionary distinctiveness of phyloregions, and 87 

visualizing various facets of alpha and beta (differences in species composition 88 

between local communities) diversity. We illustrate the utility of the proposed 89 
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package with a simulated dataset and an empirical dataset on the flora of 90 

southern Africa that includes species distributions and their phylogenetic 91 

relationships. Moreover, we also present a case study for zoogeographic 92 

regionalization with the most comprehensive dataset on the phylogenetic 93 

relationships and geographic distributions for 9574 species of squamate reptiles 94 

(amphisbaenians, lizards, and snakes) across the globe, to demonstrate its 95 

potential for analysis at any scale and for any taxonomic group. Visualization 96 

tools allow rapid identification of phyloregions with colours in multidimensional 97 

scaling space indicating levels of differentiation of the taxa in different 98 

phyloregions. 99 

 100 

2.0 Overview and general workflow of phyloregion 101 

The phyloregion package interacts with several other R packages including 102 

Matrix (Bates and Maechler 2019), ape (Paradis & Schliep 2018), betapart 103 

(Baselga & Orme 2012), raster (Hijmans 2019), and sp (Bivand et al. 2013). We 104 

provide a workflow of the phyloregion package for biogeographical 105 

assessment of any selected taxa and region (Fig. 1). The workflow demonstrates 106 

steps from preparation of different types of data to visualizing the results of 107 

biogeographical regionalization, together with tips on selecting the optimal 108 

method for achieving the best output, depending on the types of data used and 109 

research questions. The development version of phyloregion is hosted on 110 

github at https://github.com/darunabas/phyloregion. To install phyloregion, in 111 

R, type: 112 
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if (!requireNamespace(“devtools”, quietly = TRUE))   113 

    install.packages(“devtools”)  114 

devtools::install_github(“darunabas/phyloregion”) 115 

library(phyloregion) 116 

 117 

2.1. Raw Data 118 

2.1.1 Distribution data input 119 

The phyloregion package ships with functions for manipulating at least three 120 

categories of distribution data at varying spatial grains and extents: point records, 121 

extent-of-occurrence polygons and raster layers. Extent-of-occurrence range 122 

maps can be derived from the IUCN Redlist spatial database 123 

(https://www.iucnredlist.org/resources/spatial-data-download), published 124 

monographs or field guides validated by taxonomic experts. Point records are 125 

commonly derived from GBIF, iDigBio, or CIESIN and typically have columns of 126 

geographic coordinates for each observation. Raster layers are typically derived 127 

from analysis of species distribution modeling, such as aquamaps (Kaschner et 128 

al. 2016). An overview can be easily obtained with the functions points2comm, 129 

polys2comm and raster2comm for point records, polygons, or raster layers, 130 

respectively. Depending on the data source, all three functions ultimately provide 131 

convenient interfaces to convert the distribution data to a community data frame 132 

at varying spatial grains and extents for downstream analyses. 133 

 134 

2.1.2 Phylogenetic data 135 
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Phylogenies are often derived from DNA sequences or supertree approaches, 136 

however, they tend to be prevalent with missing taxa for most non-charismatic 137 

groups e.g. plants or insects. When paired with distribution data, phylogenies can 138 

aid the discovery of common patterns and processes that underlie the formation 139 

of biogeographic regions (Wiley 1988, Daru et al. 2017). The function 140 

phylobuilder appends missing taxa to a supertree. Unlike other tree-building 141 

algorithms that manually graft missing taxa into a working supertree, 142 

phylobuilder creates a subtree with the largest overlap from a species list at a 143 

fast speed. If species in the taxon list are not in the tree (tip label), species will be 144 

added at the most recent common ancestor at the genus or family level when 145 

possible. 146 

 147 

3.0 Data preparation and analyses 148 

3.1. Sparse community matrix 149 

A community composition dataset is commonly represented as a matrix of 1s and 150 

0s with species as columns and rows as spatial cells or communities. In practice, 151 

such a matrix can contain many zero values because species are known to 152 

generally have unimodal distributions along environmental gradients (ter Braak & 153 

Prentice, 1988), and storing and analyzing every single element of that matrix 154 

can be computationally challenging and expensive. Indeed, for large matrices, 155 

most base R functions cannot make a table with > 2^31 elements. One approach 156 

to overcome this limitation is to utilize sparse matrix, a matrix with a high 157 

proportion of zero entries (Duff 1977). Because a sparse matrix is comprised 158 
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mostly of 0s, it only stores the non-zero entries, from which several measures of 159 

biodiversity including biogeographical regionalization can be calculated. Our 160 

sampl2sparse function allows conversion of community data from either long or 161 

wide formats to a condensed sparse matrix (Fig. 2) to ease downstream 162 

analyses such as compositional dissimilarity and avoid the exhaustion of 163 

computer memory capacities. 164 

 165 

3.2. Matching phylogeny and community composition data 166 

In community ecology and biogeographic analyses, it is sometimes desirable to 167 

make sure that different datasets (e.g. community, phylogeny and trait) match 168 

one another (Kembel et al. 2010). However, existing tools are not tailored for 169 

comparing taxa in mega phylogenies spanning thousands of taxa with community 170 

composition datasets at large scales. We present match_phylo_comm that 171 

compares a sparse community matrix against a phylogenetic tree and adds 172 

missing species to the tree at the genus or higher taxonomic levels. 173 

 174 

3.3. Generating beta diversity (phylogenetic and non-phylogenetic) 175 

The three commonly used methods for quantifying β-diversity, the variation in 176 

species composition among sites, – Simpson, Sorenson and Jaccard (Laffan et 177 

al. 2016) – are included in the package as a comparative and optimal selection 178 

tool. The phyloregion’s functions beta_diss and phylobeta compute 179 

efficiently pairwise dissimilarities matrices for large sparse community matrices 180 
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and phylogenetic trees for taxonomic and phylogenetic turnover, respectively. 181 

The results are stored as distance objects for later use. 182 

 183 

3.4. Cluster algorithm selection and validation 184 

To overcome the lack of a priori justification for using a particular method for 185 

identifying phyloregions, the function select_linkage can contrast nine 186 

widely used hierarchical clustering algorithms (including UPGMA, and single 187 

linkage) on the (phylogenetic) beta diversity matrix for degree of data distortion 188 

using Sokal & Rohlf’s (1962) cophenetic correlation coefficient. The cophenetic 189 

correlation coefficient measures how faithfully the original pairwise distance 190 

matrix is represented by the dendrogram (Sokal & Rohlf, 1962). Thus, the best 191 

method is indicated by higher correlation values, resulting in regions with a 192 

maximum internal similarity but with maximum differences from other regions. 193 

 194 

3.5. Determining the optimal number of clusters 195 

The function optimal.phyloregion utilizes the efficiency of the so-called 196 

“elbow” (also “knee”) method corresponding to the point of maximum curvature 197 

(Salvador & Chan, 2004), to determine the optimal number of clusters that best 198 

describes the observed (phylogenetic) beta diversity matrix. Depending on the 199 

research question, the scale of the cutting depth or clustering algorithm method 200 

can be varied systematically. The output is used to visualize relationships among 201 

phyloregions using hierarchical dendrograms of dissimilarity and NMDS 202 
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ordination, and are assessed for spatial coherence by mapping and/or 203 

quantifying their evolutionary distinctiveness. 204 

 205 

3.6. Evolutionary distinctiveness of phyloregions 206 

The function ed_phyloregion estimates evolutionary distinctiveness of each 207 

phyloregion by computing the mean value of (phylogenetic) beta diversity 208 

between a focal phyloregion and all other phyloregions in the study area. It takes 209 

a distance matrix and returns a “phyloregion” object containing a phyloregion × 210 

phyloregion distance object. Areas of high evolutionary distinctiveness can 211 

provide new insights in the mechanisms that are responsible for generating 212 

ecological diversity such as speciation, niche conservatism, extinction and 213 

dispersal (Holt et al. 2013; Daru et al. 2017). 214 

 215 

4.0. Visual representation and assessment of biogeographic regions 216 

The phyloregion package also provides a number of functions that aid 217 

elaborate visualization and assessment of biogeographic regions. 218 

• plot_phyloregion can display clusters of cells (i.e. ‘phyloregions’ or 219 

‘bioregions’) in multidimensional scaling colour space matching the colour 220 

vision of the human visual system (Kruskal 1964). The colours indicate the 221 

levels of differentiation of clades in different phyloregions. Phyloregions 222 

with similar colours have similar clades and those with different colours 223 

differ in the clades they enclose (Fig. 1). 224 
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• plot_evoldistinct quantifies evolutionary distinctiveness of 225 

phyloregions in geographic space as the mean of pairwise beta diversity 226 

values between each phyloregion and all other phyloregions and displays 227 

them in HCL colour space (default is “YlOrBr” palette; Fig. 1). Darker 228 

regions indicate regions of higher evolutionary distinctiveness. 229 

• plot_swatch maps discretized values of a quantity based on 230 

continuous numerical variables of their cells or sites for visualization as 231 

heatmap in sequential colour palettes. 232 

 233 

5.0 Case study of biogeographical regionalization of squamate reptiles 234 

We validated the application of the phyloregion package on the geographic 235 

distributions and phylogenetic data for all 9574 species of squamate reptiles 236 

across the globe (data: Tonini et al. 2016). Despite the fact that reptiles were part 237 

of the dataset used in Wallace’s original zoogeographic regionalization along with 238 

birds, mammals and insects (Wallace 1876), they have been largely neglected in 239 

modern regionalization schemes (Kreft & Jetz 2010; Holt et al., 2013; Meiri & 240 

Chapple 2016). Nevertheless, squamate reptiles are one of the most diverse and 241 

widely distributed animal groups in the world (Böhm et al. 2013). Most notably, 242 

due to the high extinction rates they are facing, the distribution data, phylogeny, 243 

and evolutionary relatedness of squamates have recently been well documented 244 

(Tonini et al. 2016 and references therein). These make squamate reptiles an 245 

ideal system to test the robustness and implementation of phyloregion for 246 

biogeographic regionalization and spatial conservation at large scales. 247 
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 248 

We used updated extent-of-occurrence polygons representing the maximum 249 

geographical extent of each squamate reptile species (Roll et al. 2017). We ran 250 

the polys2comm, sampl2sparse, and match_phylo_comm wrapper 251 

functions to generate the community data at a resolution of 1°× 1°. Note that this 252 

resolution can be adjusted by varying the res argument in the function 253 

fishnet(mask, res = 0.5). We accounted for phylogenetic uncertainty in 254 

our analyses by drawing 100 trees at random from a posterior distribution of fully 255 

resolved trees (Tonini et al. 2016) to generate phylogenetic dissimilarity matrices 256 

(with Simpson’s pairwise phylogenetic dissimilarities as default), and took the 257 

mean across grid cells using mean_matrix. Note that other dissimilarity indices 258 

such as “Jaccard” and “Sorensen” can be used as desired (Laffan et al. 2016), 259 

depending on the data used and research questions; review function 260 

phylobeta.  261 

 262 

Using the ‘elbow method’ (function optimal.phyloregion), we identified 18 263 

optimal phyloregions (i.e. maximum explained variance of 0.72 for clustering 264 

achieved at k = 18) of squamate reptiles (Fig. 3). UPGMA was identified as the 265 

best clustering algorithm (cophenetic correlation coefficient = 0.8; selected using 266 

function select_linkage).  267 

 268 

The resulting phyloregions for squamate reptiles show substantial congruence to 269 

Holt et al.’s (2013) updates of Wallace’s original zoogeographic regions including 270 
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Oceanian, Australian, Madagascan, Palearctic and Nearctic (Fig. 3a). However, 271 

we also identified some discrepancies. For example, the Afrotropical realm 272 

(sensu Holt et al. 2013) was divided into four phyloregions in our study 273 

corresponding to West and Central Africa (11), Horn of Africa (12), Zambezian 274 

(15), and South African (17). We also identified a new phyloregion overlapping 275 

Chile-Patagonian in temperate South America. This discrepancy might be due to 276 

the focal group being reptiles whereas Holt et al. present results for birds, 277 

mammals and amphibians; or differences in spatial grain size (1°× 1° in our study 278 

vs 2°× 2° in Holt et al. (2013)). Phylogenetic beta diversity and environmental 279 

correlates are systematically grain (spatial resolution) dependent (e.g. Keil et al. 280 

2012).   281 

 282 

Notably, geographically proximal phyloregions tend to have low levels of faunal 283 

similarity (Fig. 3b), suggesting spatial patterns of species diversity can have 284 

different phylogenetic structures (Hawkins et al. 2012). Mean phylogenetic 285 

turnover of squamate reptiles between a phyloregion and all other phyloregions 286 

(function ed_phyloregion) indicates a latitudinal gradient in evolutionary 287 

distinctiveness, with higher evolutionary distinctiveness in the tropics than in 288 

temperate phyloregions (Fig. 3c), a similar observation to Tonini et al. (2016). 289 

Notably, the Australian phyloregion has the highest mean phylogenetic turnover 290 

(mean phylogenetic turnover between Australian and all other phyloregions = 291 

0.67; Fig. 3c), reflecting strong niche conservatism or limited dispersal of 292 

lineages in this phyloregion.  293 
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 294 

The use of phylogenetic information and species distributions allows a deeper 295 

understanding of the mechanisms determining current patterns of biodiversity. 296 

Our evolutionary distinctiveness analysis in the recognized phyloregions brings a 297 

new component of evolutionary importance of each region to the biogeographic 298 

regionalization as well as for conservation prioritization. Most of the phyloregions 299 

found here spanned multiple ecoregions and biogeographic realms, suggesting 300 

that conservation planning should be adjusted to cover these larger phyloregions. 301 

 302 

6.0. phyloregion as tool for spatial conservation 303 

We demonstrate the utility of phyloregion in mapping standard conservation 304 

metrics of species richness, weighted endemism (weighted.endemism) and 305 

threat (mapTraits) as well as fast computations of phylodiversity measures 306 

such as phylogenetic diversity (PD), phylogenetic endemism (PE), and 307 

evolutionary distinctiveness and global endangerment (EDGE). The major 308 

advantage of these functions compared to available tools e.g. biodiverse (Laffan 309 

et al. 2010), is the ability to utilize sparse matrix that speeds up the analyses 310 

without exhausting computer memories, making it ideal for handling any data 311 

from small local scales to large regional and global scales. 312 

 313 

6.0. Benchmarking phyloregion 314 

We compared the execution time of phyloregion’s functions with available 315 

packages using exactly the same datasets (R code for benchmarking 316 
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phyloregion with available packages is provided as Data S1). Regardless of 317 

the size of the distribution data and phylogenetic tree, phyloregion is 3 or 4 318 

orders of magnitude faster and memory efficient (Fig. 4). 319 

 320 

7.0. Concluding Remarks 321 

Despite the few other tools that have provided support for biogeographic 322 

regionalization and spatial conservation e.g. ape (Paradis & Schliep 2018), 323 

betapart (Baselga & Orme 2012), or vegan (Oksanen et al. 2019) among many 324 

others, phyloregion adds the following novelties compared to available 325 

packages: 1) ability to utilize sparse matrix and large-scale phylogenies for 326 

analysis of biogeographical regionalization and spatial conservation, allowing 327 

normal operations of a typical matrix in base R to be done on the sparse matrix, 328 

2) novel functions for speedy raw data conversion to sparse community matrix as 329 

well as a user-friendly analysis of biogeographical regionalization into completely 330 

reproducible R workflows, 3) although the functionality of the package has been 331 

developed with biogeographical regionalization in mind, it can accommodate 332 

analysis of spatial conservation at large scales such as mapping various 333 

biodiversity metrics for conservation ranging from mapping biodiversity hotspots 334 

of species richness, endemism, or threat. Other implementations of 335 

phyloregion include the addition of phylogenetic information and sparse 336 

community matrix to map evolutionary diversity including phylogenetic diversity, 337 

phylogenetic endemism, and evolutionary distinctiveness and global 338 

endangerment. 339 
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 340 

Overall, no hard rule exists on how to perform analysis of biogeographic 341 

regionalization or spatial conservation - the choice of approach will ultimately 342 

depend on the goal of the study, questions, hypotheses or the taxonomic group. 343 

The goal of phyloregion is to facilitate analysis of biogeographic 344 

regionalization and spatial conservation at any scale and for any taxonomic 345 

group, tailored to accommodate the ongoing mass-production of species 346 

occurrence data and phylogenetic datasets. 347 
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Fig. 1. Typical workflow for analysis of biogeographical regionalization using phyloregion. a) 479 

Distribution data (point records, polygons, and raster layers) is converted to a long community 480 

data frame format before b) conversion to a sparse community matrix. When paired with 481 

phylogenetic data, phylobuilder creates a subtree with largest overlap from a species list, 482 

thereby ensuring complete representation of missing data. c) phylocommunity matrix to 483 

visualization of results. 484 
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 486 

Fig. 2. Illustration showing community data conversion to sparse community matrix by (a) 487 

sampl2sparse function when the raw data is in long community data format, or (b) 488 

com2sparse for wide community data format. The result is (c) a sparse community matrix for 489 

downstream analysis. 490 

 491 
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 494 

Fig. 3. A global phylogenetic regionalization of 9574 species of squamate reptiles reveals their 495 

evolutionary affinities. a, Map of phyloregions shows evolutionary affinities among disjunct 496 

assemblages (function plot_phyloregion). b, The ordination of phyloregions in NMDS space 497 

shows a tropical-temperate divide (function plot_NMDS). c, evolutionary distinctiveness is high in 498 

the tropics than temperate bioregions (function plot_evoldistinct). d, the optimal number of 499 

phyloregions (function optimal.phyloregion). Colours differentiating between phyloregions in 500 

the map (a) and NMDS plot (b) are identical. 501 
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 504 

Fig. 4. Benchmarking phyloregion with available packages in analysis of a, phylogenetic 505 

diversity, and b, phylogenetic beta diversity. 506 
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