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ABSTRACT 

The perceptual use of multisensory information apparently changes with age. Yet it remains unclear 

whether previously reported age-effects arise from changes in the sensory computations by which 

information is combined, from reduced sensory precision with age, or changes in the belief that different 

sensory-motor cues are indeed causally linked. To address this question we analysed how healthy 

young and older adults integrate audio-visual information within (ventriloquist-effect) and between trials 

(ventriloquist after-effect) using models of Bayesian causal inference. Despite a reduced precision of 

sensory representations in the elderly, both groups exhibited comparable ventriloquist biases that were 

reproduced by largely the same sensory computations. While the after-effect bias was also comparable 

between groups, modelling showed that this was driven by previous sensory information in younger but 

by the previous response in older participants. This suggests a transition from a sensory- to a behavior-

driven influence of past experience on subsequent choices with age, possibly related to the reduced 

sensory precision or memory capacity with age.  

 

INTRODUCTION 
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One of the commonly known features of healthy aging is losing the ‘sharpness’ - such as the precision 

of sensory perception (Dobreva et al., 2011; Lindenberger & Baltes, 1994; Otte et al., 2013; Salthouse, 

1996), that of memory (Salthouse, 2010, 2019), or the swiftness of responses (Falkenstein et al., 2006; 

Jones et al., 2019). Such changes in perception are accompanied by alterations in brain structure or 

brain activity with age (Henry et al., 2017; Henschke et al., 2018; McNair et al., 2019), suggesting that 

aging may affect both early sensory and higher level cognitive processes (Diaconescu et al., 2013; Dully 

et al., 2018; Henry et al., 2017; McNair et al., 2019; Nunez, 2015; Zanto & Gazzaley, 2014). Unravelling 

the mechanisms by which perception changes with age becomes particularly challenging when behavior 

relies on the combination of multiple sensory or behavioural attributes, such as during multisensory 

integration or the adaptive trial-by-trial recalibration of perception based on previous experience (also 

known as after-effects). Here, age-related changes in behavior performance could result from a number 

of sources, ranging from a decline in the precision of the individual sensory representations to changes 

in the decision rules or  the computational principles by which different features are combined (Jones et 

al., 2019).  

Previous studies have described a number of ways  in which multisensory perception seems to change 

with age (Freiherr et al., 2013): older adults seem to benefit more from multisensory information during 

speeded detections (Diaconescu et al., 2013), older adults are more strongly influenced by task-

irrelevant distractors (Dobreva et al., 2012), have wider temporal binding windows  (Bedard & Barnett-

Cowan, 2016; Chan et al., 2014b; Diederich et al., 2008), and sacrifice response speed to preserve 

accuracy (Jones et al., 2019). Furthermore, the persistent influence of previous information on 

subsequent decisions changes with age. For example, the adaptation to audio-visual synchrony and the 

recalibration during temporal binding are both attenuated in older adults (Bedard & Barnett-Cowan, 

2016; Chan et al., 2014a; Noel et al., 2016; Vercillo et al., 2017). Despite these widespread changes in 

multisensory perception with age, the underlying mechanisms remain debated. While some studies 

suggested that a reduced precision of sensory representations is the key drive of these changes 

(Dobreva et al., 2012; Lindenberger & Baltes, 1994; Trelle et al., 2019; Tye-Murray et al., 2016), others 

speculated whether the nature of the multisensory sensory computations themselves may change 

(Baum & Stevenson, 2017; Diederich et al., 2008; Mozolic et al., 2012). 

The focus of this study was to understand the nature of potential age-related changes in audio-visual 

spatial perception. We compared changes in two multisensory response biases between young (18 ~ 

35 years) and older (62 ~ 82 years) healthy participants: the within-trial integration of multisensory 
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information (the ventriloquist effect) and the trial-by-trial recalibration of unisensory perception based on 

a previous multisensory stimulus (the so-called ventriloquist after-effect). Using the framework of 

Bayesian causal inference (Angelaki et al., 2009; Jones et al., 2019; Körding et al., 2007; Rohe & 

Noppeney, 2015b; David R. Wozny et al., 2010) we compared  four candidate factors that could explain 

differences in multisensory behavior between groups: first, the precision of unisensory representations; 

second, the a priori belief that sequential experiences are causally linked and hence should be combined 

for a subsequent behavior; third, the decision rules used to forge sensory estimates derived from 

different causal models underlying the received multisensory information; and fourth, the ability of the 

same computational architectures to account for the behavioural data of younger and older participants. 

In brief, our results show that both multisensory integration and recalibration are preserved with age, 

despite a decline of sensory precision with age. However, they also show that the mechanism by which 

previous experience shapes subsequent behavior during trial-by-trial recalibration changes with age, 

shifting from a sensory-driven to a behavior-driven influence of past experience on subsequent choices. 

 

METHODS  

Participants 

The study was conducted in accordance with the Declaration of Helsinki and was approved by the ethics 

committee of Bielefeld University. 24 healthy right-handed younger adults (YA, 9 males, mean age 23.5 

years, range 18 ~ 35 years) and 24 healthy right-handed older adults (OA, 7 males, mean age 69.0 

years, range 62 ~ 82 years) participated in this study. The sample size was determined based on 

previous studies using similar experimental protocols (Jones et al., 2019) and recommendations for 

sample sizes in empirical psychology (Simmons et al., 2011). All participants submitted informed written 

consent. The YA had self-reported normal vision and hearing and indicated no history of neurological 

diseases. OA’s were screened for normal vision and hearing: pure-tone audiometric thresholds were 

obtained at 500 Hz, 1000 Hz, and 2000 Hz and individuals with average thresholds higher than 30 dB 

for either ear were excluded (mean ± SD thresholds for included participants: 14.1 dB ± 6.4 dB, 13.8 dB 

± 6.8 dB for the left and right ear respectively). The visual acuity was 20/25 or 20/20 for all OA 

participants. OA were also tested on the Montreal Cognitive Assessment (MoCA) (Nasreddine et al., 

2005) and all OA’s scored above 26, indicating no cognitive impairment (mean ± SD: 28.8 ± 1.56).  Data 

from two YA (both females) had to be excluded as they were not able to perform the task correctly. One 
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OA did not pass the hearing test and two did not pass the spatial hearing test (see below; both females). 

Therefore, data are reported for a sample of 22 YA and 21 OA.  

Stimuli 

The acoustic stimulus was a 1300 Hz sine wave tone (50 ms duration) sampled at 48 kHz and presented 

at 64 dB r.m.s. through one of 5 speakers (Monacor MKS-26/SW, MONACOR International GmbH & 

Co. KG, Bremen, Germany) which were located at 5 horizontal locations (-17°, -8.5°, 0°, 8.5°, 17°, 

vertical midline = 0°; Figure 1). Sound presentation was controlled via a multi-channel soundcard 

(Creative Sound Blaster Z) and amplified via an audio amplifier (t.amp E4-130, Thomann Germany). 

Visual stimuli were projected (Acer Predator Z650, Acer Inc., New Taipei City, Taiwan) onto an 

acoustically transparent screen (Screen International Modigliani, 2x1 m), which was located at 135 cm 

in front of the participant. The visual stimulus was a cloud of white dots distributed according to a two-

dimensional Gaussian distribution (N = 200, SD of vertical and horizontal spread 2°, width of a single 

dot = 0.12°, duration = 50 ms). Stimulus presentation was controlled using the Psychophysics toolbox 

(Brainard, 1997) for MATLAB (The MathWorks Inc., Natick, MA) with ensured temporal synchronization 

of auditory and visual stimuli.   

Experimental Setup 

The paradigm was based on a single-trial audio-visual localization task (Park & Kayser, 2019; D. R. 

Wozny & Shams, 2011), with trials and conditions designed to probe both the ventriloquist effect and 

the ventriloquist aftereffect. Participants were seated in front of an acoustically transparent screen, with 

their heads on a chin rest. Five speakers were located immediately behind the screen. Participants 

responded with a mouse cursor (Figure 1A). 

The participants’ task was to localize a sound during either Audio-Visual (AV) or Auditory (A), trials, or 

to localize a visual stimulus during few Visual (V) trials. The locations of auditory and visual stimuli were 

drawn semi-independently from the 5 locations to yield 9 different audio-visual discrepancies 

(abbreviated ΔVA in the following; -34°, -25.5°, -17°, -8.5°, 0°, 8.5°, 17°, 25.5°, 34°). We repeated each 

discrepancy between the locations of auditory and visual stimuli 44 times for YA, 45 times for OA, 

resulting in a total of 396 AV-A trial pairs for YA, and 405 for OA (except for the first OA who did the 

same amount as the YA (hence 396 pairs), and one OA for which one block was lost, resulting in 324 

pairs). In addition, on average 72 and 65 visual-only trials were interleaved to maintain attention (V trials 
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always came after A trials, thus not interrupting the AV-A sequence), for the YA and OA respectively, 

resulting in a total of 864 trials for YA and 875 trials for OA. Trials were pseudo-randomized and divided 

into 4 blocks for YA and 5 blocks for OA. Each trial started with a fixation period (uniform 700 ms – 1100 

ms), followed by the stimulus (50 ms). After a random post-stimulus period (uniform 400 ms - 700 ms) 

the response cue emerged, which was a horizontal bar along which participants could move a cursor. 

A letter ‘T’ was displayed on the cursor for ‘tone’ in the AV or A trials, and ‘V’ for the V trials to indicate 

which stimulus participants had to localize. There was no constraint on response times. Inter-trial 

intervals varied randomly (uniform 900 ms - 1200 ms). A typical sequence of trials is depicted in Figure 

1B. Participants were asked to maintain fixation during the entire trial except the response, during which 

they could freely move their eyes. 

All participants underwent a test for spatial hearing prior to the main study. We used four of the five 

potential sound locations (excluding the middle one) and asked participants to indicate the perceived 

location by pressing left or right keys on a keyboard (2-AFC procedure). The median accuracy across 

all four sound positions for YA was 97.5% (range: 85.0% ~ 100%) and 92.5% (range: 72.5% ~ 100%) 

for OA, indicating they could localize the sounds well. We compared the thresholds (at 50% correct) and 

slopes obtained from psychometric fits (fitted with a logistic function, free but equal lapse and guess 

rates) (psignifit toolbox version 4) between groups: the thresholds were 1.09° ± 2.56°, 1.00° ± 4.05° 

(mean ± SD) for the YA and OA respectively, and the slopes 0.074 ± 0.018 and 0.052 ± 0.023, 

respectively. A Wilcoxon rank sum test showed no difference for thresholds (p = 0.9112, z value = 0.111), 

but indicated significantly different slopes (p = 0.01, z value = 2.77, corrected for multiple comparisons 

with the Holm method), suggesting that YA were more sensitive to auditor spatial information than OA.  
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Figure 1. Experimental setup and task. (A) Top view of the experimental setup. (B) Time-course of the sequence 

of AV and A trials (infrequent V trials are not shown). The yellow speaker icons are for display purposes only. The 

A trial always followed the AV trial, and participants responded using a mouse cursor.  

 

Analysis of behavioral biases  

We quantified the perceptual biases observed in the AV and A trial as follows. The single-trial 

Ventriloquist effect (ve) was defined as the bias induced by the visual stimulus away from the true sound 

location in the AV trial: i.e. the difference between the reported sound location (RAV) and the location at 

which the sound (AAV) was actually presented (ve = RAV - AAV). Then, the overall VE-bias for each 

participant was defined as the regression slope of ve against the audio-visual discrepancy (ΔVA).  

The Ventriloquist after-effect was defined as the bias in the reported sound location in the auditory trial 

relative to the audio-visual discrepancy experienced in the previous trial. The single-trial Ventriloquist 

after-effect (vae) was computed as the difference between the reported sound location (RA) and the 

mean reported location for all A trials of the same stimulus position (μRA), i.e., (vae = RA - μRA). This was 

done to ensure that any overall bias in sound localization (e.g. the tendency to perceive sounds closer 

to the midline than they actually are) would not influence this measure (D. R. Wozny & Shams, 2011). 

Then the overall VAE-bias was quantified as the slope of vae against ΔVA for each participant.  

To understand the main causes of these response biases we modelled the single trial responses using 

general linear models. We compared three models as potential explanation of the response in the AV 

trial, based on either just a single unisensory stimulus or their combination: mAV1: RAV ~ 1 + AAV, mAV2: 

RAV ~ 1 + VAV, mAV3: RAV ~ 1 + AAV + VAV. For the A trial we compared different models predicting the 

response based on either the previous audio-visual discrepancy (ΔVA) or the previous response (RAV): 

mA1; RA ~ 1 + AA + ΔVA, mA2; RA ~ 1 + AA + RAV. See (Park & Kayser, 2019) for a similar approach. 

To quantify to what degree the single trial recalibration (vae) is directly related to the integration (ve) of 

audio-visual information in the previous trial, we probed whether the strength of the trial-by-trial 

association of the respective biases (ve,vae) is related to the participant-average (VE or VAE) bias. To 

this end we computed two correlations: first, for each participant the trial-wise correlation of ve and vae 

as a measure of the trial-wise link between multisensory integration and subsequent recalibration 
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(termed ‘cvv’, based on Pearson correlation); and second, the between-participant correlation of this ccv 

index with the VE-bias and VAE-bias (Spearman rank correlations).  

Reaction times (RT) 

RTs were obtained when participants clicked with the mouse to indicate the perceived spatial location. 

RTs hence included both perceptual decision times and motor noise. Still, to obtain an overall measure 

of response speed, we compared the participant-averaged RTs between groups and trial types (AV, A). 

Statistical Analysis 

Behavioral biases were tested against zero using two-sided Wilcoxon signed rank tests, corrected for 

multiple tests using the Holm procedure with a FWE of p = 0.05. Behavioral biases between groups 

were tested with the Wilcoxon rank sum test for equal medians (corrected using the Holm procedure 

with a FWE of p = 0.05). General linear models were fit using maximum-likelihood procedures (fitglme.m 

in MATLAB). The Scheirer–Ray–Hare test (Sokal & Rohlf, 1981) was used to test for a non-parametric 

Group x Trial type (A trial or AV trial) interaction for the bias standard deviations and reaction times.  

Model-based Analyses 

Bayesian Causal Inference Model of Integration 

In order to investigate which aspect of underlying sensory computations is affected by aging, we 

modelled the behavioural data using Bayesian causal inference (BCI) models with different potential 

decision strategies. These models have been shown to capture the computations underlying flexible 

multisensory perception well (Cao et al., 2019; Körding et al., 2007; Rohe et al., 2019; Rohe & Noppeney, 

2015b; David R. Wozny et al., 2010). Briefly, the BCI model reflects the inference process about the 

true causal relations of two sensory-motor features based on prior experience and the available sensory 

evidence. Specifically, the model predicts the belief in a single (C=1) or two distinct (C=2) causes giving 

rise to two noisy sensory inputs, , , as follows:  

| ,
, |

,
																																																					 eq. 1 	
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Here, PCOM denotes the a priori tendency of an observer to belief in a common source of two sensory 

items. Under the assumption of two separate causes, the optimal estimates of the unisensory sensory 

locations (Körding et al., 2007): 

̂ , 1 1 , ̂ , 1 1
	
																																													 eq. 2 	 

  

And under the assumption of a common cause they are given by the linear weighted average (Ernst & 

Banks, 2002): 

̂ , ̂ , 1 1 1 																																																									(eq. 3) 

      

Here ̂ ,  is the estimate for the visual 	or the auditory  stimulus location based on the 

sensory sample . We modelled sensory representations (likelihoods) using Gaussian distributions 

around the true location, with standard deviation , and the true sensory location 	. We allowed for an 

overall bias in spatial perception (Cao et al., 2019; Körding et al., 2007; Rohe & Noppeney, 2015b; David 

R. Wozny et al., 2010), modelled as Gaussian distribution with mean  and standard deviation . 

In this model, the observer derives a final estimate about the stimulus location after obtaining the 

posterior probabilities about the possible causal scenarios and using a specific decision strategy. We 

considered three frequently studied strategies (Cao et al., 2019; Körding et al., 2007; Rohe & Noppeney, 

2015b; David R. Wozny et al., 2010): Model Averaging (MA), Model Selection (MS), and Probability 

Matching (PM). With the MA strategy, the final estimate is derived by the weighted-average of the two 

estimates derived under each causal relation:  

 

̂ 1| , ̂ , 1 1| , ̂ ,         (eq. 4) 

 

The MA strategy minimizes the mean expected squared error of the spatial estimates (Körding et al., 

2007; David R. Wozny et al., 2010). 

The MS strategy uses the posterior probability to guide the decision by choosing the estimate associated 

with the causal structure of higher probability:  
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̂
̂ , 							if							 1| , 0.5
̂ , 						 if							 1| , 0.5

    (eq. 5) 

 

Finally, PM strategy uses a stochastic selection criterion, by choosing a causal scenario in proportion to 

its posterior probability, which can be implemented by sampling a random ξ from a uniform distribution 

on each trial:  

̂

̂ , 							if							 1| ,
̂ , 						 if							 1| ,

where	 	 ∈ 	 0 ∶ 1 	uniform distribution, 
sampled	on	each	trial

     (eq. 6) 

 

Bayesian Causal Inference Model of Recalibration 

To model the ventriloquist after-effect observed for the sound localization during the A trials we derived 

a novel version of the BCI model, by combining relevant features from both the previous (AV) and the 

current (A) trial. We hypothesized that the perceptual bias arising from the audio-visual integration during 

the AV trial persists during the next trial, and is combined with the acoustic information in proportion to 

a belief that the previous and current trial are causally linked. To allow for different sensory or motor 

features as causes for the VAE (see above), we considered different versions of this between-trial BCI 

model that combined either the previous sensory experience or the previous motor response with the 

current acoustic information. The posterior probability for a causal association of the audio-visual and 

auditory trials is: 

| ,
, |

,
																																																				 eq. 7  

 

Whereby  = 1 indicates that the previous and current trial are linked, and  = 2 indicates they are 

separate entities. 	denotes the previous experience: this could be either the previous response 

,		or the influence of the previous audio-visual discrepancy on the current acoustic information, 

∆ . By using the sum of the audio-visual discrepancy ∆  and the current sound location 	we 

ensured that the same spatial dimension was used for both versions of the model. Here PCOMT reflects 

the tendency to combine the previous experience with the current evidence. The estimates derived 

under the two causal scenarios were then derived similar as in equations 2 and 3. 
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For the VAE we considered model averaging as the only decision strategy. The reason was that the 

response in the auditory trial RA is always in large determined by the current sound, with the previous 

trial adding only a proportionally small bias. In contrast to this, the MS or PM decision strategies would 

allow for trials with responses determined solely based on the previous experience and ignoring the 

current acoustic information, which seems at odds with the behavioural data on the VAE. 

Model Fitting 

We optimized model parameters using the BADS toolbox based on the log-likelihood of the true data 

under the model (Bayesian Adaptive Direct Search (v1.0.3) (Acerbi & Ma, 2017). Each model (MA, MS, 

and PM for integration, bΔVA and bRAV for recalibration) had 5 free parameters: σA, σV (σΔVA or σRVA for 

the recalibration model), σP, PCOM (PCOMT), and μP. We repeated the fitting procedure 500 times using 

different starting values. For each run, we produced 20,000 simulations for true stimulus location ( ̂) for 

each model and binned the distributions of real and simulated data into 73 bins (-36° to 36°, increment 

= 1°). For the recalibration model, the true stimulus locations were the 9 ΔVA values when considering 

bΔVA as predictor, and the 9 mean values from each of the equi-populated bins of the response in the 

AV trial (RAV) when considering bRAV. The log-likelihood of the actual data was derived from the overlap 

of real and simulated counts per bin, under the assumption that the different conditions were statistically 

independent. The best parameters for each model and participant was obtained as the mean of the 

parameters from the three best runs. Group-level BIC values were obtained by assuming that individual 

participants provided independent data.  

Model Comparison 

To compare the predictive power of different regression models, we calculated the log-evidence of each 

model and obtained the corresponding BIC values. Based on the BIC we computed protected 

exceedance probabilities using the  VBA-toolbox (Rigoux et al., 2014).  For the Bayesian model analysis, 

we derived the BIC from the log-likelihood obtained from the best model fits. Using -0.5⋅BIC as model 

evidence, we calculated the protected exceedance probabilities. The best model for each participant 

was chosen as the model with the lowest BIC.  

Recovery of behavioral biases from model simulations 

We simulated the predicted behavioral responses from the obtained model parameters from both the 

VE and VAE CI models for each participant to ensure the model indeed captures the behavioral data 
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(Palminteri et al., 2017). We simulated 10,000 trials based on the exact stimuli presented to each 

participant using equations 2,3,8, and 9. We then calculated the mean VE-bias and VAE-bias across 

the simulated trials, deriving a prediction of the average bias under each specific model and participant 

specific parameters (Figure 2).  

 

RESULTS 

Biases in multisensory perception 

 

Figure 2. Ventriloquist biases. (A) The Ventriloquist bias (ve = RAV - AAV), (B) the Ventriloquist aftereffect bias 

(vae = RA - μRA) as a function of the audio-visual discrepancy (ΔVA) (A-B) solid lines indicate the mean of the actual 

data, shaded areas the 95% bootstrap confidence interval of the mean, and dotted lines are mean bias predicted 

by the BCI model. Asterisks denote significant difference from zero bias (two-sided Wilcoxon signed rank tests, 

corrected for multiple tests using the Holm procedure with a FWE of p = 0.05). (C-D) Boxplots of the respective 

standard deviation of these biases averaged across ΔVA. Dotted boxes are predicted standard deviations by the 

BCI model. (E-F) Box plots of regression slopes predicting the ve (A) and vae (B) as a function of ΔVA. (G) Box 

plots of reaction times (RT). In all panels, red and blue denote YA and OA participants, respectively.  
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Figure 2A, B shows the response biases for audio-visual integration (ve) and the trial by trial aftereffect 

(vae). The magnitudes of biases were all significantly larger than zero (two-sided Wilcoxon signed rank 

tests, corrected for multiple tests using the Holm procedure with a FWE of p = 0.05) for nearly all non-

zero discrepancies (ΔVA) for both groups (c.f. Figure 2A-B). The average strength of neither bias, 

quantified as regression slope of ve (vae) against the multisensory discrepancy (Figure 2E-F), differed 

between groups. The VE effect sizes were 0.36 ± 0.28 (mean ± SD) for YA and 0.51 ± 0.19 for the OA. 

The VAE effect sizes were 0.07 ± 0.06 (mean ± SD) for YA and 0.04 ± 0.04 for the OA. A Wilcoxon rank 

sum test did not provide evidence for any significant group-level difference (p = 0.15, Z = -1.79 for both 

biases, corrected for multiple comparisons with the Holm method; c.f. Figure 2E-F and Table 1 for details 

and uncorrected p-values), speaking against a change of multisensory perceptual biases with age.  

Increased variability in perceptual bias in the OA  

We quantified the trial-by-trial variance of the ve/vae biases to compare the within-participant 

consistency of these between groups. As the data (Figure 2C) suggested also a difference between 

multisensory (AV) and unisensory trials (A), we tested for effects of both group and trial-type using a 

non-parametric two-way ANOVA (Scheirer-Ray-Hare test). This indicated a group difference (H = 9.78, 

d.f. = 1, p = 0.0018), and a Trial Type difference (H = 5.74, d.f. = 1, p = 0.017), but no Group x Trial 

Type interaction (H = 0.1131, d.f. = 1, p = 0.737), showing that the perceptual biases for the OA were 

more variable, and more pronounced in the presence of a multisensory distractor for both groups (Figure 

2C-D, Table 1).  

Reaction time 

Although the nature of the obtained reaction times (RT) does not distinguish between motor-related 

factors and the perceptual-decision, we used these to confirm that the OA generally responded slower 

than the YA. A non-parametric ANOVA confirmed a group difference (SRH test: H = 12.3, d.f. = 1, p = 

0.0005) with no Group x Trial Type interactions (H = 0.389, d.f. = 1, p = 0.533).  

 

Table 1. Summary of the behavioural data. YA: younger adults, OA: older adults. VE/VAE-bias: regression slopes 

of ve/vae against ΔVA. VE/VAE SD: VE/VAE standard deviation for each participant averaged across ΔVA. SRH: 

Scheirer-Ray-Hare test (H statistic). d.f.: degrees of freedom. 
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  YA OA Wilcoxon’s test 

(between groups G) 

p-value 

z-value 

 Slope vs ΔVA.  

  Median Conf. Int. Median Conf. Int. 

VE-bias 0.281 [-0.023,  0.343] 0.520 
[0.403,  

0.680] 

0.0741 

-1.79 

VAE-bias 0.0611 [0.024, 0.090] 0.0324 
[-0.0007, 

0.0511] 

0.0741 

-1.79 

 
SRH ANOVA 

(Group, Group x trial type) 

VE SD 6.61 [5.88, 7.14] 9.15 [7.18, 11.6] H = 9.78, d.f. = 1, p = 0.0018 

H = 0.113, d.f. = 1, p = 0.737 VAE SD 5.43 [4.00, 6.38] 7.60 [6.12, 10.9] 

Reaction Time (s) 
SRH ANOVA 

(Group, Group x trial type) 

AV trial 1.03 [0.825, 1.25] 1.34 [1.11, 1.50] H = 12.3, d.f. = 1, p = 0.0005 

H = 0.389, d.f. = 1, p = 0.533 
A trial 0.96 [0.816, 1.11] 1.15 [0.938, 1.30] 

  

 

Modelling the Ventriloquist effect  

First, we tested linear models predicting the response in the AV trial, RAV, based on auditory and visual 

stimulus locations. For both groups we confirmed that the RAV was shaped by both the auditory and 

visual stimuli, as expected. In both groups the comparison of regression models identified the 

multisensory model (mAV3; c.f. Materials and Methods) as winning model (relative group-level BIC for 

YA: [mAV1, mAV2, mAV3] = [2379, 6173, 0]; OA: [mAV1, mAV2, mAV3] = [2137, 1638, 0]). 

Second, we fit Bayesian causal inference models (VE CI;.c.f. Methods) to individual participant’s data. 

To assess the quality of the model fit we calculated the explained variance across conditions. The 

participant-specific best-fitting models explained the data well (YA: [MA, MS, PM] = [95.5%, 95.0%, 

95.4%]; OA: [MA, MS, PM] = [86.8%, 85.6%, 86.6%]). The comparable quality of fit between groups is 

also borne out in the normalized (by number of samples) negative log-likelihood (NegLL), which were 
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comparable between groups (YA: [MA, MS, PM] = [3.39, 3.36, 3.36] and OA: [MA, MS, PM] = [3.16, 

3.15, 3.12]).  

Interestingly, the decision-strategies best explaining the observed data differed between groups. In the 

YA, models based on the PM strategy explained the group-level data best, while in the OA, models 

based on the MS strategy provided the overall best group-level fit (relative summed-BIC values [MA, 

MS, PM] = [640, 419, 0]for YA;  [MA, MS, PM] = [491, 0, 38] for the OA; c.f. Figure 3A, left). While the 

group-level BIC differences between models provided decisive evidence for a difference, we note that 

an assessment based on exceedance probabilities provided no conclusive picture ([0.28, 0.34, 0.38] for 

YA; [0.20, 0.59, 0.21] for OA; Figure 3A, right).  

Comparing the model parameters of the participant-specific best-fitting models between groups 

revealed a significantly reduced sensory precision for auditory and visual spatial information in the OA 

(Figure 3B; Table 2). The other model parameters did not differ. With regards to our main questions 

these data show that overall the same class of sensory computations (i.e. the BCI models) can explain 

the VE bias for both groups. While there seem to be differences in the prevalence of individual decision 

strategies between groups, the a priori belief that the auditory and visual stimuli are causally linked 

(PCOM) did not differ (Table 2). Hence, both groups tended to combine the audio-visual evidence to the 

same degree. 

We confirmed that the model not only reproduces the mean bias for individual participants (Figure 2A-

B), but also verified that the model and the different parameter regimes for YA and OA indeed account 

for the increased trial-by-trial variance of the bias (c.f. Figure 2C-D). More detailed model simulations 

confirmed that the increased variance in the OA likely results from the reduced reliability of the uni-

sensory representations rather than the difference in preference of decision-making strategy. 

Specifically, we simulated a model with the median parameters from the YA and OA groups and 

compared the trial-by-trial variance across model parameters and decision functions (MS and PM), and 

found that changing the decision function (MS and PM) only produced a moderate change in VE SD, 

while changing the parameters from YA to OA produced a twice as large change in the VE SD. 
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Figure 3. Modelling the VE using causal inference. (A) Relative group-level BIC values (left), protected 

exceedance probabilities (EP) (right). (B) Model parameters. Black circles denote the median, and the bars are the 

25% and 75% percentiles. In both panels, red and blue indicate YA and OA, respectively. 

 

Table 2. Model parameters of participant-specific best-fitting VE CI model. YA: younger adults, OA: older 

adults. σA: standard deviation of the auditory likelihood, σV: standard deviation of visual likelihood, σP: standard 

deviation of prior, μP: mean of prior, PCOM: a priori binding tendency. *corrected for multiple comparisons with Holm's 

method.  

  YA OA 
Wilcoxon’s test 

(between groups) 

  Median Conf. Int. Median Conf. Int. 
p-value* 

z-value 

σA 9.86 [8.45, 10.6] 28.1 [21.9, 39.6] 
0.0001 

-4.36 

σV 4.02 [3.08, 5.37] 7.53 [-1.83, 9.39] 
0.0160 

-2.88 

σP 15.4 [8.50, 22.6] 17.2 [8.916, 22.1] 
1.0000 

-0.52 

μP -1.34 [-3.47, 0.71] -0.901 [-1.83, 1.61] 
1.0000 

0.45 

PCOM 0.641 [0.443, 0.795] 0.541 [0.499, 0.601] 
0.8068 

1.11 

 

Modelling the Ventriloquist aftereffect  
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Our modelling analyses suggest that the factors driving the recalibration effect differed between groups. 

First, in a first (linear) analysis, we used GLMs to probe whether the response in the A trial is better 

explained by the multisensory discrepancy in the preceding audio-visual trial (mA1), or the participant’s 

response in that trial (mA2) (Park & Kayser, 2019). A comparison of both GLMs (c.f. Methods) revealed 

that the model based on the previous sensory information better explained the response in the YA, while 

the model based on the previous response better explained the response in the OA (relative group-level 

BIC for [mA1; mA2] = [0, 437] for the YA and [214, 0] for OA; protected exceedance probabilities [0.92, 

0.08] for YA and [0.37, 0.63] for OA).  

In a second analysis we fit a modified Bayesian causal inference model to the trial-by-trial recalibration 

data (cf. Methods). This VAE CI model explained the data in both groups well and the quality of model 

fit was comparable between groups (explained variance; YA: [b∆VA; bRAV] = [96.0%, 95.6%]; OA: 

[90.3%, 89.0%]; normalized NegLL YA: [3.33, 3.34]; OA: [3.35, 3.33]).  

The comparison of candidate VAE CI models confirmed the above result that in the YA the response in 

the A trial was better explained by the previous multisensory discrepancy (ΔVA), whereas in the OA it 

was better explained by the previous response (RAV). The overall quality of model fit based on the group-

level BIC value provided highly conclusive evidence in favour of distinct models in each group (YA: 

[b∆VA; bRAV] = [0, 123]; OA: [355, 0]; Figure 4B) while a comparison based on protected exceedance 

probabilities yielded less conclusive evidence (YA: [0.62, 0.38]; OA [0.49, 0.51]). 

The parameters for the participant-specific best-fitting models are shown in Figure 4C. Again we found 

group-difference in the precision of the unisensory auditory representation (σA; c.f. Table 3), in line with 

the results on the VE above. Also the central bias (μP) differed between groups, suggesting a somewhat 

stronger spatial lateralization bias in the YA. Importantly, and similar as for the ventriloquist effect, the a 

priori belief into an association of the two trials (PCOMT) did not differ (Table 3).  
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Figure 4. Model-based analysis of the VAE. (A) Linear regression models (mA1, mA2), relative Summed-BIC (left), 

Protected EP (right). (B) VE CI model (b∆VA, bRAV), relative Summed-BIC (left), Protected EP (right). (C) 

Parameters for the best model for each participant. ‘bm’ for the second parameter denotes ‘best model’, since the 

parameters were chosen for the participant-wise best model (either b∆VA or bRAV) based on the BIC. Black circle 

dots are the median values, and the bars are the 25% and 75% percentiles. In all panels, red and blue indicate YA 

and OA, respectively. 

 

Table 3. Model parameters of the participant-specific best-fitting VAE CI model. YA: younger adults, OA: older 

adults. σA: standard deviation of auditory likelihood, σV: standard deviation of visual likelihood, σP: standard 

deviation of prior, μP: mean of prior, PCOMT: a priori binding tendency. *corrected for multiple comparisons with 

Holm's method.  

  YA OA 
Wilcoxon’s test 

(between groups) 

  Median Conf. Int. Median Conf. Int. 

p-value* 

Z-value 

Rank sum stats 

σA 9.06 7.41   10.2 15.0 12.5   17.5 
0.0013 

-3.65 
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σbm 15.9 10.4   28.6 16.6 8.23   30.7 
1.0000 

-0.67 

σP 19.6 -5.79   27.9 17.0 -3.97   22.8 
1.0000 

0.33 

μP -9.93 -18.7   -9.85 -0.0584 -6.70 4.79 
0.0233 

-2.76 

PCOMT 0.442 0.0691 0.620 0.281 0.0608 0.389 
0.487 

1.40 

 

Qualitative validation of model parameters 

We confirmed the validity of the participant-specific best-fitting BCI models by further relating model 

parameters to the behavioural data.  

First, we confirmed that the PCOM variable, i.e., the tendency to bind the visual and acoustic stimuli during 

the VE, indeed predicts the strength of the participant specific VE-bias (derived in Figure 2C). For both 

groups, PCOM and the overall VE-bias were significantly correlated (Spearman’s correlation for YA: Rho 

= 0.70, p = 0.0006, CI = [0.38, 0.89]; OA: Rho = 0.56, p = 0.0081, CI = [0.16, 0.84], corrected for multiple 

comparisons with the Holm method, CI based on bootstrapping). Second, we confirmed that the PCOMT 

in the VAE CI model, hence the tendency to associate the two trials, indeed predicts a stronger VAE-

bias resulting from the influence of the AV onto the A trial. For both groups, the PCOMT variable was 

significantly correlated with the overall VAE-bias (defined against the ΔVA or binned RAV, for respective 

models, cf. Methods, ‘Model Fitting’) (Spearman correlation for YA: Rho = 0.66, p = 0.0018, CI = [0.35, 

0.84]; OA: Rho = 0.55, p = 0.0097, CI = [0.14, 0.79], corrected for multiple comparisons with the Holm 

method, CI based on bootstrapping).  

The tendency to combine evidence across trials is linked to the overall biases 
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Figure 5. Single-trial ve/vae coupling (cvv) and the overall biases. (A) Correlation (Spearman rank) between 

participant-wise VE-bias and the single trial coupling (cvv). (B) Correlation between participant-wise VAE-bias and 

trial-wise coupling (cvv). In both panels, red triangles and blue circles indicate YA and OA, respectively. Solid lines 

are linear regression lines for each group.  

 

The above modelling results suggest a mechanistic link between the AV trial (stimulus, or response) 

and the subsequent response bias in the A trial.  To directly capture this single-trial link, we derived an 

index of this trial-wise coupling by computing the participant-specific correlation between the single-trial 

ve and vae biases (termed ‘cvv’). This trial-wise coupling was significant for 19 out of 22 participants in 

the YA, and 15 out of 21 in the OA (at p < 0.05). Numerically the average link was larger for the YA than 

the OA (average correlation coefficients 0.224 and 0.154 for YA and OA), and a permutation test 

suggested that the difference approaches significance (10000 permutations of group-labels, p = 0.0517). 

We then used this index of single-trial link (cvv) to further explore the group-differences in how the VAE 

is related to the multisensory discrepancy experienced during the AV trial. For the YA, the above 

modelling results suggest that the vae is directly driven by the multisensory discrepancy, hence 

predicting a correlation between the amount of cvv and the participant-specific VAE-bias: this was 

indeed confirmed (rho = 0.66, p = 0.0009, CI = [0.30 0.86]). Furthermore, if the strength of multisensory 

integration in the AV trial determines the vae, one should also expect a correlation between the 

participant-specific VE-bias and the cvv: this was also confirmed (rho = 0.47, p = 0.0276, CI = [-0.03 

0.85]).   
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For the OA, the modelling results suggest that the vae is driven by the experience in the previous trial. 

Hence, also in this group the cvv should be related to the participant-specific VAE-bias, which we 

confirmed (rho = 0.61, p = 0.0031, CI = [0.20 0.86]). However, in the OA the after-effect was driven by 

the previous response, rather than the audio-visual discrepancy. Hence, we expected the correlation 

between the VE-bias and the single-trial link to be weak, which was indeed the case (rho = 0.13, p = 

0.5825, CI = [-0.37 0.55]). Overall this supports the conclusion that in both groups the overall response 

bias in the A trial is related to the correlation of response biases between trials. But only in the YA this 

trial-wise bias correlation is driven by the previous multisensory discrepancy, while in the OA it is driven 

by their previous motor response. 

 

DISCUSSION 

While previous studies described multiple changes in multisensory perception with age, the precise 

origin of these remained unclear. We used a model-based approach to characterize and disentangle 

age-related changes at four levels of the sensory decision process: the precision of uni-sensory 

representations, the a priori belief that two items of sensory-motor information are causally linked, the 

decision rules used to forge sensory estimates derived from different causal models, and the overall 

ability of the same computational architectures to account for the behavioural data of younger and older 

participants. Our data show that both the strength of the ventriloquist bias and its after-effect are 

comparable between groups, and can be explained by the same class of computational models, albeit 

with differences in the prevalence of different decision strategies. However, the OA exhibited a 

significantly reduced auditory precision, and in contrast to the YA, their ventriloquist aftereffect (VAE) 

was not driven by the previous sensory information but rather by their previous response. Thereby our 

results point to a profound change in the nature of trial-by-trial perceptual dependencies underlying 

preserved multisensory capacities.  

Perseverance in multisensory perception with age  

A number of changes in multisensory perception with age have been reported. For example, OA benefit 

more from multisensory compared to unisensory information during speeded detections (Laurienti et al., 

2006; Mahoney et al., 2014; Zou et al., 2017), OA have longer multisensory temporal binding windows 

(Chan et al., 2014b; DeLoss et al., 2013; Hay-McCutcheon et al., 2009), OA experience increased 

difficulty to separate distinct multisensory events compared to YA (Setti et al., 2011), and experience 
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stronger a McGurk effect (Sekiyama et al., 2014; Setti et al., 2013). Similar age-effects have also been 

reported in the context of multisensory recalibration (Buch, 2003; Chan et al., 2014a), where OA show 

reduced adaptation. Contrasting this view, recent work suggests that the healthy young and aging brains 

may follow similar rules when combining multisensory information (Billino & Drewing, 2018; Campos et 

al., 2018; Cressman et al., 2010), except possibly that that OA may take longer to respond (Jones et al., 

2019. see also Smith & Brewer, 1995; Starns & Ratcliff, 2010).  

Supporting this notion of a preserved multisensory capacity in the elderly we found similar response 

biases during multisensory integration and recalibration in young and elderly participants. This 

preserved multisensory capacity in the OA is reflected in two key findings. First, the behavioural data in 

both the VE and VAE conditions can be explained by the same class of perceptual models in both 

groups, suggesting that the qualitative computations underlying multisensory perception are preserved 

with age. Second, the a priori belief about a common source underlying the audio-visual information 

during integration, and the belief about a causal association between trials during the after-effect, did 

not differ between groups. This suggests that the overall tendency to combine sensory attributes in a 

ventriloquist setting are not affected by aging.  

Changes in multisensory decision making with age 

In line with previous work we found that the pattern of audio-visual integration during the VE can be 

described using Bayesian causal inference (Körding et al., 2007; Rohe & Noppeney, 2015a; David R. 

Wozny et al., 2010). The typical BCI models considered in the literature comprise a number of decision 

strategies to combine the sensory evidence derived under the assumption of a single or two distinct 

causes giving rise to two stimuli (Körding et al., 2007; Rohe & Noppeney, 2015b; David R. Wozny et al., 

2010). We found that the decision strategy best explaining the group-level data differed between groups: 

for the YA probability matching provided the best group-level fit, in line with previous studies on spatial 

perception (David R. Wozny et al., 2010; David R. Wozny & Shams, 2011).  

To our knowledge no previous study has compared different putative decision strategies for multisensory 

integration in the elderly. In the present data the model selection strategy provided the best group-level 

fit for the OA, suggesting that the processes and behavioral strategies converting multisensory evidence 

to an overt response may change with age (Dully et al., 2018). Still, further studies are required to 

corroborate such a shift in decision strategies and to relate changes in multisensory decision processes 
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to possibly more general changes in cognitive strategies with age (Dully et al., 2018; Koen & Rugg, 

2019; Nyberg et al., 2012; Roberts & Allen, 2016).  

Changes in sequential response patterns with age 

The ventriloquist after-effect describes a trial-by-trial adaptive change in perceptual reports. In principle, 

this serial dependency in behavior may be driven by the sensory information received during the 

previous trial, or the participant’s response committed on that trial, or a mixture of these (Park & Kayser, 

2019; Van der Burg et al., 2018). Corroborating the sensory nature of the VAE, we have previously 

shown that in young participants the previous audio-visual discrepancy is a better predictor of the current 

spatial sound localization including the VAE bias than the previous motor response (Park & Kayser, 

2019) (see also Van der Burg et al., 2018). Here we confirmed this sensory nature of the VAE for the 

YA. However, for the OA we found the aftereffect is better explained by the previous motor response 

than the multisensory discrepancy. This result was consistently obtained in the group-level fit (summed-

BIC) of both linear and Bayesian models to the behavioural data, and suggests a shift from sensory-

driven to a behavior-driven influence of past experience with increasing age.  

In speculating about the origin of this shift, we note that the trial-by-trial ventriloquist aftereffect has been 

linked to brain structures implied in memory (Park & Kayser, 2019). In general, memory is known to 

decline with age (Nyberg & Pudas, 2019), but interestingly, episodic memory seems to be more affected 

than procedural memory (Nyberg et al., 2012; Small, 2001). The active nature of the overt response in 

the present paradigm (cursor movement) may generally boost its maintenance over time compared to 

the sensory information (Cohen, 1989). In the OA, the reduced sensory precision of the auditory 

representations may also have contributed to a prevalence of the sensory memory between trials. Hence, 

the shift from a sensory information-based adaptive bias to a motor-based bias with age may be a multi-

faceted effect arising from both a reduced episodic memory and a reduced sensory precision with age.  

Conclusion 

Aging seems to have limited effects on the strength of two typically observed multisensory sensory 

biases in spatial perception. The mechanisms shaping multisensory integration within a trial were 

comparable between the two age groups, including the tendency to combine evidence across two 

senses. In contrast, the mechanisms shaping the multisensory-aftereffect differed, suggesting a 
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transition from a sensory- to a behavior-driven influence of past experience on subsequent choices with 

age, possibly related to the reduced sensory precision or memory capacity with age.  
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