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Highlights 

• Behavioral reactions to unexpected changes in visual feedback are implemented by a 15 

feedback control mechanism 

• A long-lasting change in visual feedback updates the state of the neuronal controller 

• The cerebellar internal model mediates this recalibration 
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Abstract 20 

Animals must adapt their behavior to survive in a changing environment. Behavioral 

adaptations can be evoked by two mechanisms: feedback control and internal-model-based 

control. Feedback controllers can maintain the sensory state of the animal at a desired level 

under different environmental conditions. In turn, internal models learn the relationship 

between behavior and resulting sensory consequences in order to modify the behavior when 25 

this relationship changes. Here, we present multiple perturbations in visual feedback to larval 

zebrafish performing the optomotor response and show that they react to these perturbations 

through a feedback control mechanism. In contrast, if a perturbation is long-lasting, fish adapt 

their behavior by updating a cerebellum-dependent internal model. We use modelling and 

functional imaging to show that neuronal requirements for these mechanisms are met in the 30 

larval zebrafish brain. Our results illustrate the role of the cerebellum in encoding internal 

models and how these can calibrate neuronal circuits involved in reactive behaviors depending 

on the interactions between animal and environment. 
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Introduction 

The interaction between animals and their surroundings changes constantly, due to changes in 

the environment or processes such as development, growth or injury, which modify the body 40 

plant of the animal. Nevertheless, precise behavior is so important that evolution has provided 

animals with mechanisms to produce successful behavior in these changing conditions. The 

task of adapting behavior to the changing environment can be solved in two ways. One way is 

to react to these changes through a feedback control mechanism, which ensures that the goal 

of a behavioral act is achieved under a variety of conditions. A second option is for the animal 45 

to learn the new environmental conditions and adjust its behavioral program in the long-term. 

This second mechanism is only possible if the change in conditions lasts and can therefore be 

predicted. 

Many stimulus-driven behaviors result in the effective cancellation of the stimulus that evoked 

them. Examples include the optokinetic reflex (OKR) 1, in which retinal slip evokes eye motion 50 

that sets this slip to zero. If the stimulus is monitored constantly, a feedback control loop with 

well-tuned parameters may provide an appropriate mechanism for performing the task of 

setting the stimulus to zero 2. This happens online, so feedback controllers are limited by the 

time delay required for sensory processing, which in the case of visual feedback is estimated 

to be between 100 to 300 ms 3–7. If the processing of sensory information is long with respect 55 

to the duration of the motor action, the current state of the body will change dramatically by 

the time the feedback signal starts to influence the motor command. As a result, the feedback 

signal will implement an inappropriate correction based on out-of-date sensory information 8. 

To overcome this limitation of feedback motor control, the brain can encode internal models 

of different parts of the body and/or of different aspects of the external world 9–11. These models 60 
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monitor the sensorimotor transformation performed by a motor plant and learn a forward or an 

inverse transfer function of this transformation either to predict sensory consequences of a 

motor command (forward models) or to provide an appropriate feedforward command to reach 

a desired sensory state (inverse models). If the transfer function changes in a long-term manner, 

the model updates, leading to motor learning. It is widely believed that internal models for 65 

motor control exist in the central nervous system and that in vertebrates, the cerebellum plays 

a major role in encoding them 8,12–16. 

In this study, we investigate the interplay between feedback controllers and internal models 

and the role of the cerebellum in encoding them. We make use of the larval zebrafish optomotor 

response (OMR) 17, a behavior shared by many animals 18,19, by which they turn and move in 70 

the direction of perceived whole-field visual motion. The OMR can be defined in terms of a 

feedback control mechanism as a locomotor behavior that tries to set the optic flow to zero, 

thus stabilizing the animal with respect to its visual environment; in this framework, the OMR 

is similar to the OKR as both of these behaviors effectively cancel the stimulus that evoked 

them. 75 

As larvae, zebrafish swim in bouts that comprise several full tail oscillations and last around 

350 ms, separated by quiescent periods called interbouts 20. When zebrafish, or any other 

animal, move forward, they experience the visual scene coming towards them. Previous work 

has shown that larval zebrafish swimming in a closed-loop experimental assay react to 

perturbations in this visual feedback 21–23. Specifically, if a larva receives less feedback than 80 

normally, it tries to compensate for this lack of feedback by increasing its bout duration. This 

reaction happens on the time scale of individual bouts 21, so we call this phenomenon “acute 

reaction”. A hypothesized mechanism of acute reaction is that fish use an internal 

representation of expected sensory feedback, and if the actual feedback does not meet this 
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expectation, they adapt their behavior to minimize this discrepancy 21. This postulates that fish 85 

use forward internal models to compute predicted sensory feedback from motor commands 

during acute reaction. In a subsequent study, it was further proposed that these predictive 

computations take place in the cerebellum 22. 

Here, we employ behavioral tests, modelling and loss-of-function experiments to demonstrate 

that acute reaction to unexpected perturbations can be implemented without internal models by 90 

a simple feedback controller. The state of this feedback controller can be adjusted if the animal 

experiences a long-lasting and therefore predictable perturbation in sensory feedback. 

Crucially, an intact cerebellum was necessary for this recalibration but not for the functioning 

of the feedback controller itself. We used functional imaging in animals performing adaptive 

optomotor locomotion to determine whether neuronal requirements of this hypothesis are met 95 

in the larval zebrafish brain. Our results illustrate the role of the cerebellum in encoding internal 

models, which can calibrate existing neuronal circuits according to predictable features of the 

environment. 
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Results 100 

Unexpected perturbations in visual reafference result in acute behavioral reaction 

When an animal, such as larval zebrafish, moves in a given direction, it naturally experiences 

optic flow in the opposite direction (Fig. 1a). We will refer to the swimming-elicited velocity 

of the optic flow as visual reafference (Fig. 1b). To investigate how perturbations in visual 

reafference affect ongoing behavior, we took advantage of the previously developed closed-105 

loop experimental assay 21,22 (Fig. 1c). In this assay, head-restrained zebrafish larvae swim in 

response to a forward moving grating, a behavior known as the OMR. A high-speed camera 

captures this behavior, and the fictive larvae velocity is inferred from the tail motion (see 

Closed-loop experimental assay in head-restrained zebrafish larvae in Methods). To provide 

fish with visual reafference, this estimated velocity can be subtracted from the initial stimulus 110 

velocity such that the larvae experience the sensory consequences of their own swimming (Fig. 

1c-d). Importantly, the transformation that determines how estimated swimming velocity 

translates to reafference is under experimental control, which allows us to introduce 

perturbations in reafference and to study how the animals react to these perturbations. 

In the first set of experiments we aimed to characterize acute reactions of zebrafish larvae to a 115 

variety of different perturbations and to determine whether these reactions can result from a 

feedback control mechanism. We used three distinct perturbations in reafference to probe the 

space of possible behavioral reactions (Fig. 2a). The first reafference condition, which has been 

previously used 21,22, we call gain change and corresponds to changing the gain of the 

experimental closed-loop, such that larvae receive more or less visual reafference upon 120 

swimming (Fig. 2ai). Note that a gain of 0 corresponds to open-loop and a gain of 1 to the 

freely-swimming condition, referred hereafter as the normal reafference condition 

(respectively, red and blue vertical bars in Fig. 2a). The gain change tests how behavior 
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depends on the amount of reafference that larvae receive upon swimming (e.g. covered distance 

or reached velocity). The second condition we call lag, and corresponds to introducing an 125 

artificial temporal delay between the behavior of the larva and the reafference it experiences 

(Fig. 2aii). In the shunted lag version of this condition, the reafference is set to zero when the 

larvae stop swimming (Fig. 2aii, bottom). The lag tests how behavior depends on the temporal 

relationship between the bout and its related reafference. The final reafference condition, gain 

drop, corresponds to dividing the first 300 ms of a bout into four 75 ms segments and setting 130 

the visual reafference to zero during one or more of these segments (Fig. 2aiii). The gain drop 

tests whether perturbations in reafference lead to the same behavioral reactions regardless of 

when they occur within the bout. 

Individual wild-type larvae were exposed to 15-second trials during which a grating moved in 

a caudal to rostral direction at 10 mm/s (Fig. 1d). Larvae responded by performing swimming 135 

bouts and the reafference conditions were randomized on a bout-by-bout basis. Perturbation-

induced changes in bout and subsequent interbout duration are presented in Fig. 2c-d (black 

data points). 

For all types of reafference conditions, the bout duration increased when the overall reafference 

was less than normal (Fig. 2c). This was particularly noticeable for the very low gains 0 and 140 

0.33 (Fig. 2ci), under the lag and shunted lag conditions (Fig. 2cii-ciii) and under the gain drop 

conditions where more than one bout segment had gain 0 (Fig. 2civ). Interestingly, the observed 

increase in bout duration was close to linear as a function of the lag and, as expected, it did not 

show a significant difference between the lag and shunted lag cases, as these two conditions 

were identical during the bout (Fig. 2aii). Finally, under the gain drop condition, the mean bout 145 

duration was differentially prolonged depending on what bout segment had a perturbed 

reafference. Overall, a segment with a gain of 0 had a larger effect on increasing the bout 
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duration the earlier it occurred within the bout: compare for example the cases for gain profiles 

0111 and 1110 (gray triangles in Fig. 2civ). 

The effects on the interbout duration are displayed in Fig. 2d. Decreasing the gain initially 150 

resulted in shorter interbouts (gain 0.66 - 2) although further decreases reversed this tendency 

to the extent that interbouts at gain 0 were longer than those at gain 1 (Fig. 2di). Under the lag 

conditions, the mean interbout duration increased with longer lag in the non-shunted setting 

only (Fig. 2dii-diii). This demonstrates that the duration of a bout and a subsequent interbout 

can be independently influenced by different aspects of the reafference. Explicitly, insufficient 155 

reafference in the beginning of the bout, present in both lag settings (red triangles in Fig. 2aiii), 

increases the bout duration (Fig. 2cii-ciii), whereas excessive reafference after the bout end, only 

present in a non-shunted lag setting (blue triangle in Fig. 2aii), lengthens the interbouts (Fig. 

2dii). Under the gain drop conditions, the interbout duration decreased if the preceding bout 

had a gain drop (Fig. 2div). In contrast with the results for mean bout duration, interbouts were 160 

affected more when the gain was dropped in segments closer to the end of the bout: compare 

for example the cases for gain profiles 0011 and 1100 (gray triangles in Fig. 2div). 

In summary, these results demonstrate that larval zebrafish acutely react to unexpected 

perturbations in visual reafference in an intricate way. Bout duration is prolonged if the 

reafference is insufficient or delayed compared to the normal reafference condition, and 165 

reafference during the early segments of swimming bouts has more influence over the bout 

duration. On the other hand, larvae prolong the interbout duration if they receive excessive 

reafference during or after the preceding bout, with reafference during late bout segments 

having more influence. 
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Acute reaction is implemented after a sensory processing delay 170 

We hypothesized that this acute reaction is implemented by a feedback controller, which must 

rely on a relatively slow measurement of the controlled variable (see Introduction). Therefore, 

this acute reaction should be implemented only after a sensory processing delay. To identify 

the time that larval zebrafish need to react to unexpected perturbations in reafference, we 

analyzed the temporal dynamics of the tail beat amplitude in the form of bout power within 175 

individual bouts in different reafference conditions (Fig. 2e; see Behavioral data analysis in 

Methods for details). 

Comparing the mean bout power profiles across different reafference conditions revealed that, 

when the reafference was perturbed from the very beginning of a bout (as in gain change, lag 

and shunted lag conditions), larvae reacted by increasing the tail-beat amplitude only 220 ms 180 

after the bout onset (Fig. 2ei-eiii). However, if the change in the reafference was introduced 

once the bout had already started (as in the gain drop condition with gain profiles 1000, 1100), 

the deviation in the respective mean bout power was observed only around 220 ms after the 

start of the perturbation (blue triangles in Fig. 2eiv).  

We conclude that larval zebrafish react to perturbations in visual reafference with a delay of 185 

220 ms. This result prompted us to define two periods within bouts: an initial stereotyped 

ballistic period lasting 220 ms and a subsequent reactive period. An unexpected change in 

reafference condition (regardless of whether the change occurs during the ballistic or the 

reactive period), can only affect the tail-beat amplitude during the reactive period (Fig. 2e). 

Such a prominent sensory processing delay suggests that the OMR is implemented by a 190 

feedback controller. Finally, we note that the delay duration is consistent with processing time 

of visual feedback information in other species 3–7. 
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Acute reaction can be implemented by a feedback controller that integrates the optic 

flow 

To confirm that acute reaction is implemented by a feedback controller, we took a simulation 195 

approach, which involved designing such a controller and testing its performance under the 

aforementioned perturbations in reafference. 

The main rationale of the designed model derives from the definition of the OMR in terms a 

feedback control mechanism, as a locomotor behavior that tries to keep perceived optic flow at 

zero. If optic flow is constant, an animal moving in discrete bouts cannot achieve this goal at 200 

all possible points in time. Instead, it can stabilize its position on average by integrating the 

optic flow in time, estimating displacement with respect to the visual environment over a time 

window and performing bouts whenever the integrated signal reaches a threshold. 

Following this reasoning, we designed a feedback controller consisting of three parts: a sensory 

part, a sensory integration part and a motor output generation part (Fig. 2b). The sensory part 205 

instantaneously combines forward and backward grating velocity with independent excitatory 

and inhibitory weights, respectively. This weighted sensory input is then integrated in time by 

a velocity integrator. The output of this integrator can be interpreted as a metric of motivation 

to swim, which we refer to as sensory drive. This sensory drive is then fed into a motor output 

generator that produces a motor command when it reaches a threshold. As zebrafish larvae 210 

swim in discrete bouts, the model contains a motor integrator that inhibits the motor output 

generator and eventually leads to the termination of the bout. The output of the motor integrator 

can be interpreted as a metric of tiredness that ensures that bouts have finite length even when 

the sensory drive to continue swimming is very high. Finally, to ensure that bouts last for some 

minimum time once started in cases when the sensory drive becomes low immediately after 215 

bout onset (for example, if the gain of the closed-loop is very high and the fish receives a lot 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.02.12.945956doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.12.945956
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

of reafference), we introduced a self-excitation loop to the motor output command generator 

(see Feedback control model of acute reaction in Methods for further details; see also Extended 

Data Fig. 1 for formal mathematical description of the model). 

Using cross-validation, we fit the model with a set of parameters such that it generated bouts 220 

and interbouts of realistic duration in response to forward moving grating in the normal 

reafference condition (Extended Data Fig. 1). Furthermore, the behavior of the model under 

different perturbations in reafference reproduced the findings presented in Fig. 2c-d, including 

the increased motor output in response to decreased or delayed reafference, the difference in 

reaction of interbout duration to shunted and non-shunted lags, and different reactions under 225 

the gain drop condition depending on which bout segment had a perturbed reafference (Fig. 

2b-d, cyan data points). Therefore, acute reaction to perturbed reafference can be implemented 

by a feedback control mechanism that relies solely on temporal integration of the optic flow. 

Larval zebrafish are able to integrate the optic flow 

To test the main assumption of this model, namely, the existence of the velocity integration in 230 

the larval zebrafish brain, and to gain some further insight into the model, we performed whole-

brain functional imaging in head-restrained larvae expressing GCaMP6s in all neurons 24, while 

they were performing the OMR in a custom-built light-sheet microscope (Fig. 3a). 

After segmenting the imaged brains (Fig. 3b) into regions of interest (ROIs, N = 24677 ± 4811, 

mean ± s.e.m. across 6 imaged larvae) (see Functional imaging data analysis in Methods for 235 

details), we observed ROIs that increased their fluorescence at the onset of the moving grating 

(sensory ROIs; see gray triangle in Fig. 3c) or when the larvae were performing bouts (motor 

ROIs; see black triangle in Fig. 3c). Analysis of the mean grating- or bout-triggered 

fluorescence (Fig. 3d-e) revealed that the activity of a large fraction of detected ROIs was either 
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sensory-, or motor-related (respectively, 36 ± 5 % and 40 ± 4 %, mean ± s.e.m. across imaged 240 

larvae, N = 6). Motor ROIs were located predominantly in the hindbrain and in the nucleus of 

the medial longitudinal fascicle in the midbrain, and sensory ROIs were mostly present in the 

hindbrain, midbrain and diencephalic regions, including the inferior olive, dorsal raphe and 

surrounding reticular formation, optic tectum, pretectum, and thalamus (Fig. 3f, see also 

Extended Data Fig. 2 for anatomical reference). 245 

As one of the main assumptions of the model is the existence of stimulus velocity-integrating 

ROIs, we analyzed the rise time of sensory ROIs (Fig. 3g-i). To identify whether some of these 

ROIs integrate the stimulus velocity in time, we fitted a leaky integrator model to the grating-

triggered average fluorescence of each ROI. The integration time constant was zero for about 

half of sensory ROIs (56 ± 5 %, mean ± s.e.m. across larvae), indicating that these ROIs did 250 

not integrate sensory evidence and could be therefore termed “velocity sensors”. The remaining 

44 ± 5 % of sensory ROIs had positive time constants, and we defined these to be “velocity 

integrators” (Fig. 3g-i). Sensors and integrators were located in distinct brain regions. Sensors 

were located predominantly in the optic tectum and in the inferior olive, whereas the integrators 

occupied the dorsal raphe with surrounding reticular formation and aforementioned 255 

diencephalic regions (Fig. 3j, see also Extended Data Fig. 2 for anatomical reference). The 

anatomical location of the ROIs assigned to all aforementioned functional groups was 

significantly consistent across imaged larvae (Extended Data Fig. 2, see Functional imaging 

data analysis in Methods for details). 

We conclude that certain regions of the larval zebrafish brain (dorsal raphe, pretectum, and 260 

thalamus) integrate the velocity of the moving grating in time, and could therefore compute the 

sensory drive that evokes the OMR (as shown also for other experimental paradigms by 25,26). 
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This provides an important substrate for the feedback controller-based mechanism of acute 

reaction presented in Fig. 2. 

Larval zebrafish adapt their behavior in response to a long-lasting perturbation in 265 

visual reafference 

We next hypothesized that the role of the cerebellum is to update the state of the neuronal 

controller of the OMR if the relationship between the behavior and the resulting sensory 

consequences changes in a consistent and predictable manner and can therefore be captured by 

an internal model. To test this hypothesis, we first developed a long-term adaptation 270 

experimental assay, in which zebrafish larvae performed the OMR and experienced a long-

lasting and consistent perturbation in visual reafference. The paradigm consisted of 240 trials 

that were grouped into four phases: calibration, pre-adaptation, adaptation and post-adaptation 

(Fig. 4a; see Experimental protocols in Methods for details). Animals were divided into two 

experimental groups: normal-reafference control and lag-trained. Lag-trained animals received 275 

a constantly lagged reafference during the adaptation phase (225 ms non-shunted lag; Fig. 4a, 

red trace). Importantly, this assay allows to monitor both acute reaction to unexpected 

perturbation in reafference (immediately after the perturbation is presented to a naïve larva) 

and potential long-term behavioral changes (after the larvae experiences the perturbation for 

some time). 280 

We analyzed the duration of first bouts in each trial, as the first bout should not depend on 

putative short-term sensorimotor memory accumulated during the current trial and should 

therefore reflect potential long-term changes in the OMR circuitry more clearly than 

subsequent bouts. As expected, naïve lag-trained larvae acutely reacted to unexpected lag in 

reafference by increasing their bout duration in the beginning of the adaptation phase (dark-285 

blue arrows in Fig. 4b-d). However, by the end of the adaptation phase, their bout duration 
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returned to the baseline level even though the reafference was still lagged (light-green arrows 

in Fig. 4b, c, e) and became statistically indistinguishable from the control group that was never 

exposed to perturbed reafference (Fig. 4e). We refer to this phenotype as the “back-to-baseline 

effect”, which demonstrates that the circuitry underlying the OMR was recalibrated during 290 

long-term exposure to a novel reafference condition. This interpretation is confirmed by a 

prominent decrease in bout duration of lag-trained animals observed during the post-adaptation 

phase, referred to as the “after-effect” (orange arrows in Fig. 4b, c, f). 

When we analyzed modulation of the tail-beat amplitude within individual bouts during the 

experiment, we confirmed our previous observations presented in Fig. 2e. Thus, acute reaction 295 

to lagged reafference in the beginning of the adaptation phase occurred only after a 

considerable sensory processing delay (Fig. 4g, i; compare black and dark-blue traces in Fig. 

4gii, acute reaction is indicated by magenta arrows). On the other hand, tail-beat amplitude 

during the initial ballistic period was not modulated during acute reaction (Fig. 4g-h). Since 

the tail-beat amplitude during the ballistic period does not depend on the current reafference, it 300 

can be used as a readout of the homeostatic state of the neuronal controller that determines how 

forward motion of the grating is transformed into optomotor behavior. If, according to the 

proposed hypothesis, this state updates during the long-term adaptation, one could expect that 

the ballistic power would change during the long-term exposure to a novel reafference 

condition. As expected, we observed that ballistic bout power during the post-adaptation phase 305 

was indeed significantly larger than during the pre-adaptation phase (Fig. 4g, compare black 

and orange traces, increase in ballistic power is indicated by black arrows). Interestingly, this 

metric of long-term adaptation did not depend on the reafference condition presented during 

the adaptation phase (Fig. 4j; see Discussion). 
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These results demonstrate that larval zebrafish are able not only to acutely react to unexpected 310 

perturbation in reafference but also to adapt their behavior in the long-term if this perturbation 

is persistent. The long-term adaptation includes a decrease of bout duration during the 

adaptation period down to the baseline level and a consequent after-effect. In addition, the tail-

beat amplitude during the ballistic period is increased during long-term adaptation. 

Long-term adaptation, but not acute reaction, is impaired after PC ablation 315 

Our hypothesis predicts that long-term adaptation depends on cerebellar output, whilst acute 

reaction is implemented by a cerebellum-independent mechanism. To test this prediction, we 

generated a transgenic line expressing nitroreductase in all cerebellar Purkinje cells (PCs), 

which allows targeted pharmaco-genetic ablation of PCs by treating the larvae with 

metronidazole (Fig. 5a; see Targeted pharmaco-genetic ablation of PCs in Methods for details). 320 

Treatment resulted in severe damage of PCs including swelling and destruction of the PC nuclei 

and aggregation of the neuropil into puncta with complete loss of the characteristic filiform 

structure (Extended Data Fig. 3). 

PC-ablated fish were still able to perform the OMR and to acutely react to perturbations in 

visual reafference. When we probed the responses of treated and control zebrafish larvae in the 325 

acute reaction paradigm (Fig. 2), we found that responses to all the perturbations (gain, lag, 

shunted lag, gain drop) were not affected by the ablation of PCs (Extended Data Fig. 4). Also 

when tested in the long-term adaptation paradigm, naïve PC-ablated larvae were still able to 

react acutely to unexpected lag in the reafference in the beginning of the adaptation phase (blue 

arrows in Fig. 5b-c). In fact, the magnitude of acute reaction to lag was even higher in PC-330 

ablated larvae compared to the treatment control group (Fig. 5c). 
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On the other hand, long-term adaptation was significantly impaired after PC ablation. The 

back-to-baseline effect (light-green arrows in Fig. 5b, d) was absent in PC-ablated lag-trained 

animals. Thus, by the end of the adaptation phase, their bouts were still significantly longer 

than in PC-ablated normal-reafference control group (Fig. 5d) and their own bouts during the 335 

pre-adaptation phase (Fig. 5bii). Furthermore, the after-effect was also absent in PC-ablated 

larvae (Fig. 5bii). Although this effect was clearly observed in the treatment control group 

(orange arrow in Fig. 5b), it was not statistically significant in both groups (Fig. 5e). Finally, 

the increase in ballistic bout power (black arrow in Fig. 3f) was significantly less prominent in 

PC-ablated animals compared to the treatment controls (Fig. 5f-g). 340 

Taken together, these results demonstrate that PC ablation impairs only the long-term 

adaptation to a consistently changed reafference condition, while sparing the OMR itself, as 

well as acute reaction to unexpected perturbations in reafference. This is consistent with the 

hypothesis that the neuronal controller involved in reactive optomotor swimming does not 

require an intact cerebellum for its functioning, but its state can be modulated by a cerebellar 345 

internal model. 

Activity of a subpopulation of PCs can represent the output of an internal model 

After observing that long-term behavioral adaptation to consistently perturbed reafference is a 

cerebellum-dependent process, we set out to determine whether the output of the cerebellum 

contains features of a recalibrating internal model. To this end, we performed functional 350 

imaging of PC activity in zebrafish larvae expressing GCaMP6s in all PCs 27 while they were 

performing long-term adaptation in a custom-built light-sheet microscope (Fig. 6a). The 

experimental protocol was modified from the one described in Fig. 4 by shortening the 

adaptation phase from 210 trials to 50 trials and prolonging the post-adaptation phase from 10 
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trials to 50 trials (Fig. 6b). This was done to ensure stable recordings of the PC activity during 355 

the whole experiment, and to follow the cell activity for a longer time after the adaptation. 

We first divided lag-trained larvae into two groups: adapting and non-adapting (Fig. 6c). 

Adapting animals were defined based on the magnitude of the back-to-baseline effect as it was 

the most prominent feature of long-term adaptation: larvae which decreased their bout duration 

during the adaptation phase by at least 40 ms were considered adapting. We verified that despite 360 

the small sample size (8, 8 and 9 larvae in normal-reafference control, lag-trained non-adapting 

and lag-trained adapting groups, respectively), the shorter adaptation phase and the microscope 

excitation light, the long-term adaptation effects were still detectable (Extended Data Fig. 5). 

Lag-trained adapting larvae acutely reacted to presentation of lagged reafference in the 

beginning of the adaptation phase (blue arrows in Extended Data Fig. 5biii, ci), decreased their 365 

bout duration to a level indistinguishable from that of the control group by the end of the 

adaptation phase (light-green arrows in Extended Data Fig. 5biii, cii), and demonstrated a clear 

after-effect in the beginning of the post adaptation phase (orange arrow in Extended Data Fig. 

5biii, ciii). The after-effect in lag-trained adapting animals was statistically significant only when 

compared with lag-trained non-adapting larvae (p = 0.03) but not with normal-reafference 370 

control group (p = 0.24) (Extended Data Fig. 5ciii) presumably due to small sample size and 

high variability in bout duration. 

After confirming that the long-term adaptation effects were detectable in lag-trained adapting 

larvae and not in other experimental groups, we turned to analyzing the activity of ROIs in the 

cerebellum (N = 366 ± 19 ROIs, mean ± s.e.m. across all 25 imaged larvae; see Functional 375 

imaging data analysis in Methods for details). The activity of two example ROIs in several 

trials sampled from different phases of the experiment is presented in Fig. 6di, and their location 

within the cerebellum is presented in Fig. 6a. We observed that the activity of the vast majority 
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of ROIs was to some extent modulated during swimming bouts (data not shown), so we focused 

our analysis on first-bout-triggered activity (Fig. 6dii). We first computed the bout-triggered 380 

response in each trial by averaging the bout-triggered fluorescence of each ROI in a 1.2-second 

window after the first bout onset (Fig. 6diii). Then, we measured how much the bout-triggered 

response changed during four crucial transitions in the experimental protocol by computing the 

following four criteria for each ROI (Fig. 6div): 

1. Criterion 1: how much the bout-triggered response increased in response to unexpected 385 

presentation of lagged reafference to a naïve larva. 

2. Criterion 2: how much the response increased during the adaptation phase, while the lag-

trained animals were adapting to a novel reafference condition. 

3. Criterion 3: how much the response increased when the reafference condition was switched 

back to normal. 390 

4. Criterion 4: how much the response increased during the post-adaptation phase, while the 

animals were adapting back to the original reafference condition. 

We determined the statistical significance of the computed criteria, which allowed us to assign 

a 4-digit barcode to each ROI (Fig. 6dv). Each digit corresponds to one of the criteria defined 

above and can take one of three values: “+” (significant increase of bout-triggered response), 395 

“-” (significantly decrease), or “0” (no significant change). We aimed to find activity profiles 

that were significantly enriched in lag-trained adapting larvae compared to both non-adapting 

and normal-reafference controls, because these activity profiles might reflect the output of a 

recalibrating internal model. To this end, we divided all ROIs into distinct clusters based on 

their barcodes. We found that the only cluster that contained significantly higher fractions of 400 

ROIs in lag-trained adapting fish was the 0-0+ cluster (9.4 ± 5.4 % in lag-trained adapting fish 
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versus 0.2 ± 0.2 % in lag-trained non-adapting fish and 1.0 ± 0.3 % in normal-reafference 

control fish, mean ± s.e.m. across larvae; Fig. 6e).  

The bout-triggered responses of these ROIs gradually decreased during the adaptation phase 

and increased back to the original level during the post-adaptation phase (Fig. 6f). Such an 405 

activity profile is similar to the expected output of a putative internal model, which monitors 

the motor-to-sensory transformation rule and gradually recalibrates if a long-lasting and 

therefore learnable change in this rule occurs. Furthermore, we were able to show that the 

activity of this cluster could not result from changes in motor activity throughout the 

experiment (see Functional imaging data analysis in Methods) and therefore rather reflect the 410 

output of a recalibrating internal model. ROIs belonging to this functional cluster were 

distributed within the cerebellum without apparent spatial organization (Extended Data Fig. 7). 
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Discussion  

Feedback control mechanism drives acute reaction 415 

In this study, we propose that the OMR and its acute reactions to unexpected perturbations in 

reafference are implemented by a feedback control mechanism. This contradicts the previously 

proposed internal-model-based mechanism suggesting that fish use an internal representation 

of expected reafference and adapt their behavior if the actual reafference does not meet this 

expectation 21–23. In those studies, the behavioral changes in response to perturbed reafference 420 

were termed “adaptive locomotion”, highlighting that larvae actually adapt their behavior 

when they experience a sudden unexpected perturbation. The term “adaptation” implies that 

something in the brain has changed during this process. Here, we use the term “reactive 

locomotion” to emphasize that we believe these behavioral changes represent reactions of a 

simple feedback controller without any changes in the underlying circuitry. 425 

The proposed mechanism represents a straightforward implementation of the OMR definition 

in a control loop. Thus, while the essence of the OMR is to stabilize the animal’s position with 

respect to its visual environment, the feedback controller might be trying to keep the integrated 

optic flow at zero. We were surprised to find that implementing this simple definition in a 

circuit not only results in swimming behavior similar to that of real larvae (compare Extended 430 

Data Fig. 1 with Fig. 1d) but also closely reproduces the acute reactions to all tested 

perturbations in reafference (Fig. 2c-d). The model suggests that bout and interbout duration is 

determined by the interplay between the two variables computed by the controller: sensory 

drive and tiredness. Sensory drive accumulates while the grating moves forward and can be 

interpreted as motivation to swim. In the model, an increased sensory drive leads to longer 435 

bouts and shorter interbouts. On the other hand, larval zebrafish rarely perform bouts that are 

longer than 500 ms. This is implemented in the model by a motor integrator that encapsulates 
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a family of possible reasons for bout termination, such as tiredness. In the model, high tiredness 

terminates the bouts and prolongs subsequent interbouts. 

This interplay between sensory drive and tiredness can explain all the subtleties in observed 440 

acute reactions. Thus, high gains decrease sensory drive during bouts which results in shorter 

bouts and longer interbouts (Fig. 2ci-di). On the other hand, very low gains result in increased 

sensory drive, which significantly prolongs the bouts (Fig 2ci). If the bouts are very long, the 

effect of high tiredness starts to dominate over high sensory drive, and as a result, the interbouts 

following these long bouts would be shorter despite high sensory drive. This explains the 445 

peculiar V-shaped trend in interbout duration as a function of gain (Fig. 2di).  

In the case of lagged reafference, bouts are prolonged due to increased sensory drive in the 

beginning of the bout when there is no reafference (i.e. no slowing down of the grating) (Fig. 

2cii-ciii). In addition, the model explains why the interbouts are prolonged only in the non-

shunted lag setting but not in the shunted one (Fig. 2dii-diii). In the non-shunted setting, the 450 

grating continues to move backwards after the bout offset, so the sensory drives continues to 

decrease, which leads to prolonged interbouts (Fig 2dii). In the shunted setting, however, the 

grating returns to forward motion immediately after the bout offset, so the interbouts are not 

prolonged (Fig 2diii).  

Finally, the model explains why reafference perturbed during early bout segments has more 455 

influence over the bout duration, whereas perturbations late in the bout affect the subsequent 

interbout (Fig. 2civ-div). The reason is that the influence of tiredness and sensory drive over the 

final motor output changes throughout the course of a bout. Since the tiredness accumulates 

during the bout, it starts to affect the output more strongly and to dominate over the sensory 

drive by the end of the bout. Simply, if fish is tired, it does not matter how much drive to 460 
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continue swimming it has. As a result, in the beginning of the bout, while the fish is not yet 

tired, a decrease in sensory drive effectively prolongs the bout. If, however, sensory drive is 

decreased late in the bout, it does not prolong the bout as much because by then, the bout 

duration is almost completely determined by the increasing tiredness. In this case, the tiredness 

by the end of the bout will be less than if the reafference was perturbed early in the bout, so the 465 

interbout duration will decrease more. 

In order for this modelled mechanism to work in real larvae, they must be able to integrate the 

optic flow to compute the sensory drive. Our whole-brain functional imaging experiments 

revealed that the process of sensory integration of the forward visual motion indeed takes place 

in several brain regions including the pretectum (Fig. 3j; Extended Data Fig. 2). An increasing 470 

body of work suggests that the pretectum plays a crucial role in whole-field visual processing 

and visuomotor behaviors in larval zebrafish 28–31. It has been shown that pretectal neurons 

integrate monocular direction-selective inputs from the two eyes and drive activity in the 

premotor hindbrain and midbrain areas during optomotor behavior 29. Together with recent 

evidence from different experimental paradigms 25,26, the present study demonstrates that the 475 

pretectum is involved not only in the binocular integration of sensory inputs, but also in 

temporal integration that can underlie accumulation of the sensory drive. 

The proposed feedback control mechanism of reactive optomotor locomotion can therefore be 

mapped onto the larval zebrafish brain (Fig. 7). The sensory part of the feedback controller 

starts with direction-selective velocity sensors. Direction-selectivity can be observed in the 480 

brain already at the level of retinal ganglion cells in vertebrates 32,33, including zebrafish larvae 

34,35. The velocity integrator can correspond to the pretectum, which receives projections from 

the contralateral direction-selective retinal ganglion cells 29,36,37. Finally, the pretectal neurons 

(velocity integrators) send anatomical projections to premotor areas in the hindbrain and to the 
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nucleus of the medial longitudinal fascicle 31,38,39. As these regions both displayed motor-485 

related activity in our experiments (Fig. 3f; Extended Data Fig. 2), we hypothesize that they 

correspond the premotor parts of the controller. In essence, this study suggests that the major 

role of the pretectum in visuomotor behaviors is computing the sensory drive, or motivation, 

to perform a motor action. This predicts that motor output of the fish should increase in 

response to increased activity of pretectal neurons, and vice versa, although more studies would 490 

be required to address this prediction.  

Finally, our loss-of-function experiments have demonstrated that, in contrast with previous 

predictions 21–23, acute reaction is a cerebellum-independent process (Fig. 5b-c; Extended Data 

Fig. 4). Consequently, the neuronal controller involved in reactive optomotor behavior does 

not require intact cerebellum for its functioning.  495 

A cerebellar internal model drives long-term adaptation 

In the present study we demonstrate that larval zebrafish are able to gradually adapt their 

behavior in response to a long-lasting perturbation in reafference (Fig. 4), and that this process 

is cerebellum-dependent (Fig. 5). This is consistent with the view of the cerebellum as a 

neuronal substrate of internal models 8,12–16. 500 

The notion that the cerebellum is not involved in online corrections of the movements in 

response to wrong sensory feedback, but is involved in learning relations between movements 

and their feedback in order to adapt the behavior in a predictive manner, has been already 

proposed in the cerebellar literature 40. In two studies 15,16, humans with impaired cerebellar 

function were able to update the motor program during a reaching task after the feedback of 505 

their movements was perturbed by the experimenters. However, they were not able to update 

their feedback estimation after the adaptation session, indicating that the cerebellum is involved 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.02.12.945956doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.12.945956
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

 

in acquiring and updating a forward internal model. In our long-term adaptation experiments, 

a similar process has taken place. During long-lasting exposure to consistently perturbed 

reafference, animals with an intact cerebellum may have recalibrated their forward models to 510 

reduce their expectations, thus making them adequate to the novel environmental condition. 

In this study, we took advantage of the zebrafish larvae’s accessibility for functional imaging 

to monitor this process of recalibration in the cerebellum during motor learning. We have 

identified a subpopulation of PCs that gradually decreased their responses while the animals 

were adapting to insufficient reafference, and increased their responses back to the original 515 

level while the animals were getting used to the original condition after the adaptation. This 

activity profile is similar to the expected output of a recalibrating internal model, with the bout-

triggered activity in this population corresponding to a putative “expected visual feedback” 

signal. 

Although this study provides direct evidence of internal models in the cerebellum, the exact 520 

processes that take place in the cerebellum of adapting animals remain unclear. Since functional 

imaging provides only a coarse view about how motor, sensory, and expectation-related signals 

are represented in PCs, future electrophysiological investigations are required to address these 

questions. Nevertheless, the fact that we observed sensory-related activity in the inferior olive 

(Fig. 3f,j) indirectly suggests that the cerebellum in larval zebrafish acts as a forward model 525 

during the OMR, and the highly sensory nature of PCs’ complex spikes that directly result from 

action potentials in the inferior olive 41 was also reported recently 27. Inferior olive activity is 

believed to convey a teaching signal to the PCs 42,43 that updates the internal models in the 

cerebellum 9,44 by modifying synaptic weights in the cerebellar circuitry 45,46. Since the teaching 

signal must be expressed in the same coordinates as the output of the internal model, the 530 
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sensory nature of the teaching signal suggests that the cerebellar internal model involved in 

adaptive OMR is forward in nature, although this distinction is likely to be more subtle. 

A cerebellar internal model calibrates a feedback controller involved in sensorimotor 

control 

One interesting result of this study is that bout power during the initial ballistic period of the 535 

bouts did not depend on the current reafference condition: the magnitude of the first several 

tail oscillations is fixed regardless of what sensory input the fish receives (Fig. 2e). This means 

that the behavior during this ballistic period is pre-determined by the state of the neuronal 

controller that converts information about moving grating into optomotor behavior. However, 

if larval zebrafish are exposed to a long-lasting perturbation in reafference, the magnitude of 540 

the initial tail oscillations increases (Fig. 4g), and we show that this process is cerebellum-

dependent (Fig. 5f-g). This means that the cerebellum can influence the state of the neuronal 

controller of the OMR, and if the internal model in the cerebellum updates, the state of the 

controller updates as well (Fig. 7). 

Unexpectedly, the increase in ballistic bout power was observed not only in the lag-trained 545 

group but also in the normal-reafference control group, which never experienced perturbed 

reafference (Fig. 4j). This can be explained by the fact that what we call the normal reafference 

condition in the closed-loop experiments may in fact differ from the real sensory feedback that 

larval zebrafish perceive upon free unrestrained swimming bouts. For example, the reafference 

presented by the projector always lags slightly behind the tail movements due to the software 550 

processing delay. In addition, the way by which we computed the swimming velocity from the 

tail movements may only approximate the real velocity that the fish would have reached if it 

were freely swimming. Finally, in our closed-loop experiments, head-restrained larvae did not 

receive any vestibular and lateral line sensory feedback. Therefore, even though the normal 
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reafference condition was calibrated to closely match the visual real-life conditions, it was 555 

inevitably different from the total sensory feedback received by freely swimming larvae. Future 

experiments involving translation of the long-term adaptation experiment to the freely-

swimming environment would be required to identify whether this disparity underlies observed 

recalibration of the neuronal controller of the OMR. 

The exact pathway by which the cerebellum affects the circuitry involved in OMR remains 560 

unclear. One possibility is that it acts upon the premotor parts of the circuit, as cerebellar 

projection neurons send their output to the nucleus of the medial longitudinal fascicle and to 

the hindbrain 39 (this possibility is shown in Fig. 7). In this scenario, the cerebellum would 

recalibrate the motor parts of the controller during the long-term motor adaptation, so that fish 

would behave differently in response to the same sensory drive. Another possibility is that the 565 

cerebellum recalibrates the sensory parts of the OMR circuitry during the adaptation. It was 

proposed for the case of the eye movements that the action of the cerebellum is to modify the 

time constant of the oculomotor neuronal integrator in the brainstem 47,48. Similarly, in the case 

of the OMR adaptation, the role of the cerebellar internal model might be to fine-tune the time 

constant of the optic flow integrator in the pretectum. This influence can be mediated by 570 

anatomical projections from the cerebellum to the pretectum, which have been described in 

zebrafish 49. 

To conclude, our results demonstrate the role of cerebellar internal models in calibrating the 

neuronal circuits involved in reactive motor control. This process ensures that the circuit is 

well-tuned in the sense that the animal’s behavior has the required effect on its sensory 575 

environment. 
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Figure Titles and Legends 

Fig. 1: Closed-loop experimental assay to study optomotor behavior in larval zebrafish 

a, When a larval zebrafish swims forward with respect to its visual environment (left), the 600 

environment moves backwards with respect to the fish (right). Black-and-white grating depicts 

visual environment of the fish. Variables expressed in motor coordinates, such as tail 

movement and resulting position or velocity of the swimming larva, are presented in green. 

Variables expressed in sensory (visual) coordinates, such as observed position or velocity of 

the visual environment, are presented in magenta. This color-code is used throughout the 605 

figures. b, Change in position and velocity of a swimming fish with respect to its visual 

environment (left) and of the environment with respect to the swimming fish (right). In all 

figures, decrease of environment position and velocity along the y-axis means that fish 

progresses forward with respect to the environment. Swimming-elicited change in 

environmental velocity is referred hereafter as visual reafference, in contrast with externally-610 

generated changes in velocity, referred as exafference. c, Behavioral rig (left) and schematics 

of the closed-loop experimental assay (right) used to induce OMR and to provide visual 

reafference to the fish (see Closed-loop experimental assay in head-restrained zebrafish larvae 

in Methods for details). This panel is modified from 21. Scale bar: 1 mm. d, Raw data recorded 

during one experimental trial. In b and d, vertical shaded bars indicate swimming bouts. 615 

Fig. 2: Acute reaction to unexpected perturbations in visual feedback can be 

implemented by a feedback controller 

a, Schematic representation of all reafference conditions used to induce acute reaction (see 

Closed-loop experimental assay in head-restrained zebrafish larvae in Methods for details). 

Vertical shaded bars indicate swimming bouts, blue and red bars indicate normal reafference 620 

and open-loop conditions, respectively. Red triangles indicate that in both shunted and non-
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shunted lag settings, reafference is insufficient in the beginning of the bout compared to the 

normal reafference condition, blue triangle indicates that only in the non-shunted setting, 

reafference is excessive after the bout offset. Gain drop conditions (aiii) are labeled by four 

digits that are either 1, or 0, depending on the gain of each bout segment (e.g. condition 1100 625 

has normal reafference during the first 150 ms of the bout but no reafference for the next 150 

ms). b, Feedback control model of acute reaction. White squares depict mathematical 

operations performed by respective nodes: integration, rectification, saturation and 

thresholding. Magenta and green traces represent input and output of the model in a short one-

bout experimental trial, orange traces represent output of respective nodes. Seven small Greek 630 

letters and 𝒕𝒕𝒕𝒕𝒕𝒕 denote eight parameters of the model; Δt denotes sensory processing delay of 

220 ms. See Feedback control model of acute reaction in Methods for details; see also Extended 

Data Fig. 5 for formal mathematical description of the model. c, d, Mean bout duration (c) and 

interbout duration (d) as a function of reafference condition. Black lines represent experimental 

data, and cyan lines represent predictions of the model, fit to each individual larva. To obtain 635 

data for one larva, all bout and interbout durations were averaged within each reafference 

condition. Mean ± s.e.m. across larvae/models is shown; N = 100. Gray triangles in civ and div 

indicate two gain drop conditions, in which the gain was set to 0 during the same number of 

75-ms segments of a bout but the behavior was modified differently depending on what bout 

segment had a perturbed reafference. e, Bout power profile as a function of reafference 640 

condition. Bout power profiles were averaged within each reafference condition in each larva. 

Median across larvae is shown. Dotted lines indicate bout onsets, dashed lines separate ballistic 

and reactive periods. Thick horizontal black lines above the plots indicate time points, at which 

bout power depends on reafference condition (Kruskal-Wallis test, p < 0.05 / 220, where 220 

is the total number of tested time points). Blue triangles indicate that if perturbation in 645 
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reafference was introduced after the bout had already started (as in gain drop conditions 1000 

and 1100), the deviation in the respective mean bout power was observed only around 220 ms 

after the start of the perturbation. 

Fig. 3: Larval zebrafish are able to integrate the optic flow 

a, Light-sheet microscope combined with a behavioral rig used in the whole-brain functional 650 

imaging experiments (see Light-sheet microscopy in Methods for details). b, Location of all 

ROIs detected in the imaged brains (N = 6 larvae). Color codes for percentage of larvae with 

ROIs detected in a given voxel of the reference brain. In b, f, and j, presented maps are 

maximum projections along dorsoventral or lateral axis: ro - rostral direction, l - left, r - right, 

c - caudal, d - dorsal, v - ventral; fb - forebrain, mb - midbrain, hb - hindbrain; scale bars: 100 655 

µm. Note that in rostral and dorsal parts of the midbrain (outlined by dotted black curves), only 

a few ROIs were detected because these regions were blocked from the scanning laser beams 

by eye-protecting screens shown in a. Colored circles indicate location of example ROIs 

presented in c, d, g, and h. c, Z-scored fluorescence traces of sensory and motor example ROIs 

in one trial. In b-f, magenta and green colors represent sensory and motor ROIs, respectively. 660 

Vertical shaded bars indicate swimming bouts. Note that the sensory ROI responded when the 

grating started to move forward (indicated by a gray triangle), whereas the motor ROI 

responded only after the first bout onset (indicated by a black triangle). d, Average grating- 

and bout-triggered fluorescence of example ROIs presented in c. In d and h, shaded areas 

represent s.e.m. across triggers. In d, e, h, and i, vertical dotted lines indicate respective 665 

triggers. e, Average grating- and bout-triggered fluorescence of all sensory and motor ROIs 

pooled from all imaged larvae. f, Anatomical location of sensory and motor ROIs in the 

reference brain (see Extended Data Fig. 2 for anatomical reference). In f and j, color codes for 

percentage of larvae with ROIs from respective functional group in a given voxel of the 
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reference brain. g, Z-scored fluorescence traces of two sensory ROIs in one trial: one with zero 670 

time constant of leaky integration (sensor, blue) and another with a non-zero time constant 

(integrator, red). A trial where the larva did not perform bouts was chosen to illustrate that the 

difference in fluorescence rise time is not related to behavior and rather reflect the process of 

sensory integration. In g-j and b, blue and red colors represent sensors and integrators, 

respectively. h, Average grating-triggered fluorescence of example ROIs presented in g. i, 675 

Average grating-triggered fluorescence of all sensory ROIs pooled from all imaged larvae and 

categorized into sensors and integrators. j, Anatomical location of all sensors and integrators 

in the reference brain (see Extended Data Fig. 2 for anatomical reference). 

Fig. 4: Larval zebrafish adapt their behavior in response to a long-lasting perturbation 

in visual reafference 680 

a, Protocol of the long-term adaptation experiment. It consisted of four phases: calibration, pre-

adaptation, adaptation, and post-adaptation. Animals were divided into two experimental 

groups: normal-reafference control larvae (N = 103) and lag-trained larvae (N = 100). 

Reafference was lagged by 225 ms during the adaptation phase for the lag-trained animals (red 

trace). b, Tail traces from eight example trials sampled from different phases of the experiment 685 

in one lag-trained fish. Vertical dotted lines outline the period when the grating was moving 

forward. Vertical shaded bars indicate first swimming bout in each trial. Blue arrow indicates 

increase of first bout duration in the beginning of the adaptation phase (acute reaction), cyan 

arrow indicates decrease of bout duration by the end of the adaptation phase (back-to-baseline 

effect), and orange arrow indicates decrease of bout duration in the post-adaptation phase 690 

(after-effect). c, First bout duration in each trial. Solid lines and shaded areas represent mean ± 

s.e.m. across larvae. d-f, Quantification of acute reaction (d), back-to-baseline effect (e) and 

after-effect (f). Each gray dot represents first bout duration in one fish, averaged across 10 trials 
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and normalized by subtracting the baseline value obtained during the pre-adaptation phase. In 

d-f and h-j, black and red lines represent median and quartiles across larvae. Red dots represent 695 

example fish shown in (b). g, Mean bout power profiles from three phase of the experiment. 

First bout power profiles were averaged within respective blocks of 10 trials in each larva. 

Colored curves and shaded areas represent median and quartiles across larvae. Dotted lines 

indicate bout onsets, dashed lines separate ballistic and reactive periods. Thick horizontal 

colored lines indicate time points, at which respective mean bout power is different from the 700 

baseline pre-adaptation bout power (Wilcoxon singed rank test, p < 0.05 / 220, where 220 is 

the total number of tested time points). Black arrows indicate increase of ballistic power during 

the experiment. h-j, Quantification of the change in mean bout power during the experiment. 

Each gray dot represents area below the first bout power curve in one fish, computed over 

respective bout period, averaged across 10 trials and normalized by subtracting the baseline 705 

value obtained during the pre-adaptation phase. In d-f and h-j, n.s. - p ≥ 0.05, * - p < 0.05, ** 

- p < 0.01 (Mann-Whitney U test with two-tailed alternative). 

Fig. 5: Long-term adaptation, but not acute reaction, is impaired after PC ablation 

a, Experimental flow of PC ablation experiments. (see Targeted pharmaco-genetic ablation of 

PCs in Methods for details). b, First bout duration in each trial of the long-term adaptation 710 

experiment in treatment control larvae (N = 85 and 85 for normal-reafference control and lag-

trained groups, respectively) and PC-ablated larvae (N = 83 and 90). Solid lines and shaded 

areas represent mean ± s.e.m. across larvae. In b-e, blue arrows indicate acute reaction, cyan 

arrows indicate back-to-baseline effect, and orange arrow indicates the after-effect. c-e, 

Quantification of acute reaction (c), back-to-baseline effect (d) and the after-effect (e). Each 715 

gray dot represents first bout duration in one fish, averaged across 10 trials and normalized by 

subtracting the baseline value obtained during the pre-adaptation phase. In c-e and g, black and 
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red lines represent median and quartiles across larvae. f, Mean bout power profiles from pre- 

and post-adaptation phases of the experiment. First bout power profiles were averaged within 

respective blocks of 10 trials in each larva. Colored curves and shaded areas represent median 720 

and quartiles across larvae. Dotted lines indicate bout onsets, dashed lines separate ballistic and 

reactive periods. Thick horizontal orange lines indicate time points at which mean bout power 

during the post-adaptation trials is different from the baseline pre-adaptation bout power 

(Wilcoxon singed rank test, p < 0.05 / 220, where 220 is the total number of time points, two-

tailed alternative). Black arrows indicate increase of ballistic power during the experiment. 725 

Data from normal-reafference control and lag-trained animals were pooled together as no effect 

of reafference condition on increase in ballistic bout power was observed (Fig. 4j). g, 

Quantification of the change in mean ballistic bout power during the experiment. Each gray 

dot represents area below the first bout power curve in one fish, computed over the ballistic 

period, averaged across 10 trials and normalized by subtracting the baseline value obtained 730 

during the pre-adaptation phase. In c-e and g, n.s. - p ≥ 0.05, * - p < 0.05, ** - p < 0.01 (Mann-

Whitney U test with two-tailed alternative). 

Fig. 6: Activity of a subpopulation of PCs can represent the output of an internal model 

a, Light-sheet microscope combined with a behavioral rig used in PC functional imaging 

experiments (see Light-sheet microscopy in Methods for details). Inset shows the cerebellum 735 

within the reference brain and location of two example ROIs shown in d within the cerebellum. 

In a and g, scale bars: 100 µm; ro - rostral direction, l - left, r - right, c - caudal. b, Modified 

protocol of the long-term adaptation experiment that was used during functional imaging (see 

Experimental protocols in Methods for details). c, First bout duration in each trial in normal-

reafference control larvae (N = 8), lag-trained non-adapting larvae (N = 8), and lag-trained 740 

adapting larvae (N = 9). Mean across larvae is shown. d, Imaging data processing flow shown 
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for two example ROIs (see Functional imaging data analysis in Methods for details). di, Z-

scored fluorescence traces in five trials sampled from different phases of the experiment. 

Vertical dotted lines indicate onset of the forward motion of the grating; vertical shaded bars 

indicate first swimming bout in each trial. dii, First-bout-triggered fluorescence. Vertical dotted 745 

lines indicate first bout onset. diii, First-bout-triggered responses in each trial, computed by 

averaging bout-triggered fluorescence in a 1.2-second window after the first bout onset. Thick 

lines represent box-filtered responses, with a filter length of 9 trials. div, Four criteria that 

represent change in bout-triggered responses during important transitions of the experimental 

protocol. dv, Statistically significant criteria that were used to assign barcodes to individual 750 

ROIs. Barcode 0-0+ assigned to ROI 1 means that this ROI did not change its bout-triggered 

response in the beginning of the adaptation phase, decreased the response during the adaptation 

phase, did not change the response in the beginning of the post-adaptation phase, and increased 

the response back during the post-adaptation phase. In contrast, ROI 2 was assigned with a 

barcode +0--, as it as it increased its response when lagged reafference was first introduced, 755 

did not significantly change during the adaptation phase, and decreased the response when the 

reafference condition was set back to normal and during the rest of the post-adaptation phase. 

dvi, First-bout-triggered fluorescence averaged across respective blocks of 10 trials. e, 

Clustering of ROIs using barcodes. ei, Barcodes of all ROIs pooled from imaged larvae. eii, 

Within-fish fractions of ROIs assigned to different clusters. Only clusters containing, on 760 

average, at least 2 % of ROIs in at least one experimental group are shown. Magenta rectangles 

indicate 0-0+ cluster, which was the only cluster that was significantly enriched in lag-trained 

adapting larvae (* - p = 0.015 and 0.006 for comparisons of lag-trained adapting larvae with 

normal-reafference control and with lag-trained non-adapting, respectively; Mann-Whitney U 

test with two-tailed alternative). fi (top), First-bout-triggered responses of all 0-0+ ROIs pooled 765 
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from lag-trained adapting larvae. fi (bottom), First-bout-triggered responses of 0-0+ ROIs, 

averaged within each lag-trained adapting larva. Solid line and shaded area represent mean ± 

s.e.m. across larvae. fii, First-bout-triggered fluorescence of 0-0+ ROIs, averaged across 

respective blocks of 10 trials and across ROIs within each lag-trained adapting larva. Colored 

lines and shaded areas represent mean ± s.e.m. across larvae. g, Anatomical location of 0-0+ 770 

ROIs in the cerebellum. Color codes for percentage of larvae with 0-0+ ROIs in a given voxel 

of the reference cerebellum. 

Fig. 7: A cerebellar internal model calibrates a feedback controller involved in 

sensorimotor control 

a, Schematic diagram of the feedback controller that can implement acute reaction to 775 

unexpected perturbations in reafference. Cerebellar internal model monitors the efference 

copies of motor commands and resulting sensory consequences and learns their transfer 

function. It calibrates some intrinsic parameters of the controller according to consistent 

environmental features that can be learned by an internal model. Wavy line denotes the 

teaching signal used by the internal model to learn the transfer function. The orange arrow 780 

denoting the influence of the cerebellum over the feedback controller was drawn towards the 

premotor circuits to highlight that cerebellar output effectively modifies the final motor output 

of the controller. It is possible that this modification is achieved through changing parameters 

in the upstream parts of the OMR circuitry and is mediated by other cerebellar outputs. b, 

Mapping of the crucial functional nodes involved in acute reaction and long-term adaptation 785 

onto the larval zebrafish brain. See details in the text. 
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Methods 

Experimental Model 

Zebrafish husbandry 790 

All experiments were conducted on larval zebrafish (Danio rerio) at 6 - 8 days post-fertilization 

(dpf) of yet undetermined sex. All animal procedures were performed in accordance with 

approved protocols set by the Max Planck Society and the Regierung von Oberbayern (TVA 

55-2-1-54-2532-82-2016). 

Both adult fish and larvae were maintained at 28 °C on a 14/10 hours light/dark cycle, unless 795 

otherwise specified. Adult zebrafish were housed in a zebrafish facility system with constantly 

recirculating water with a daily 10% fresh water exchange. The system fish water was 

deionized and adjusted with synthetic salt mixture (Instant Ocean) to 600 µS conductivity, with 

the pH value adjusted to 7.2 using NaHCO3 buffer solution. The water was filtered over bio-, 

fine- and carbon filters and UV-treated during recirculation. Adult zebrafish were fed twice a 800 

day with a mixture of Artemia and flake feed. 

To obtain larvae for experiments, one male and one female (in some cases, three male and three 

female) adult zebrafish were placed in a mating box in the afternoon and kept there overnight. 

The embryos were collected in the following morning and placed in an incubator that was set 

to maintain the above light and temperature conditions (Binder, Germany). Embryos and larvae 805 

were kept in 94 mm Petri dishes at a density of 20 animals per dish in Danieau’s buffer solution 

(58 mM NaCl, 0.7 mM KCl, 0.4 mM MgSO4, 0.6 mM Ca(NO3)2, 5 mM HEPES buffer) until 

1 dpf and in fish water from 1 dpf onwards. The water in the dish was changed daily. 
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Zebrafish strains 

Purely behavioral experiments were conducted using wild-type Tupfel long-fin (TL) zebrafish 810 

strain or transgenic Tg(PC:epNtr-tagRFP) line that was used for PC ablation (see below). 

Efficiency of PC ablation was evaluated using the progeny of Tg(PC:epNtr-tagRFP) zebrafish 

outcrossed to fish expressing GCaMP6s in PC nuclei and RFP in PC somata (Tg(Fyn-

tagRFP:PC:NLS-GCaMP6s)) 27. This allowed evaluating effects of the ablation protocol on 

the morphology of both cell nuclei and somata. These larvae were homozygous for nacre 815 

mutation, which introduces a deficiency in mitfa gene that is involved in development of 

melanophores 50. As a result, homozygous nacre mutants lack optically impermeable 

pigmented spots on the skin, which enables brain imaging without invasive preparations. 

Whole-brain functional imaging experiments were conducted using transgenic zebrafish strain 

with pan-neuronal expression of GCaMP6s (Tg(elavl3:GCaMP6s)) 24. PC functional imaging 820 

experiments were conducted using zebrafish that expressed GCaMP6s specifically in PCs 

(Tg(PC:-GCaMP6s)) 27. In both experiments, the animals were also homozygous for nacre 

mutation 

A Z-stack of larval zebrafish reference brain used for anatomical registration of the whole-

brain functional imaging data was previously acquired in our laboratory by co-registration of 825 

23 confocal z-stacks of zebrafish brains with pan-neuronal expression of GCaMP6f 

(Tg(elavl3:GCaMP6f)) 51, homozygous for nacre mutation. For anatomical registration of PC 

functional imaging data, the red channel of one confocal stack of Tg(Fyn-tagRFP:PC:NLS-

GCaMP6s) was used as a reference. 
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Targeted pharmaco-genetic ablation of PCs 830 

To perform targeted ablation of PCs, we employed Ntr/MTZ pharmaco-genetic approach that 

has been successfully used in zebrafish 52–54. This method is based on treating the animals 

expressing nitroreductase (Ntr) in a cell population of interest with prodrug metronidazole 

(MTZ). Ntr converts MTZ into a cytotoxic DNA cross-linking agent leading to death of cells 

of interest. To this end, we generated a transgenic line that expressed enhanced Ntr (epNtr) 54 835 

under the PC-specific carbonic anhydrase 8 (ca8) enhancer element 55. epNtr fused to tagRFP 

(similar to Tabor et al., 2014) was cloned downstream to the aforementioned PC-specific 

enhancer and a basal promoter. This construct (abbreviated as PC:epNtr-tagRFP) was injected 

into nuclei of single cell stage TL embryos heterozygous for nacre mutation, at a final 

concentration of 20 ng/ul together with 25 ng/ul tol2 mRNA. Larvae showing strong RFP 840 

expression in PCs were raised to adulthood as founders and outcrossed to TL fish to gain a 

stable line. 

Ablation-induced changes in behavior were tested using the progeny of a single founder. The 

embryos obtained from a PC:epNtr-tagRFP+/- fish outcrossed to a TL fish were screened for 

red fluorescence in the cerebellum at 5 dpf, and 10 RFP-positive (PC:epNtr-tagRFP+/-) and 10 845 

RFP-negative (PC:epNtr-tagRFP-/-) larvae were kept in the same Petri dish to ensure 

subsequent independent sampling. At 18:00, most of the water in the dish was replaced with 

10 mM MTZ solution in fish water, and larvae were incubated in this solution overnight in 

darkness for 15 hours. The next morning at 9:00, animals were allowed to recover in fresh fish 

water. The next day, behavior of 7 dpf MTZ-treated larvae was tested in a respective behavioral 850 

protocol. After the experiment, the animals were screened for red fluorescence once again to 

reassess their genotype after mixing positive and negative larvae in one Petri dish. PC:epNtr-
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tagRFP-/- and PC:epNtr-tagRFP+/- siblings constituted treatment control and PC ablation 

experimental groups, respectively. 

Efficiency of PC ablation protocol was evaluated using progeny of Tg(PC:epNtr-tagRFP) fish 855 

outcrossed to Tg(Fyn-tagRFP:PC:NLS-GCaMP6s) fish, homozygous for nacre mutation. 

These larvae underwent the same ablation protocol, and z-stacks of their cerebella in RFP and 

GFP channels were acquired under the confocal microscope (LSM 700, Carl Zeiss, Germany) 

before and after the ablation (at 5 and 7 dpf, respectively). 

Closed-loop experimental assay in head-restrained zebrafish larvae 860 

All experiments were conducted using head-restrained preparations of 6 – 8 dpf zebrafish 

larvae, similar to 21. For behavioral experiments, each larva was embedded in 1.5 % low 

melting point agarose (Invitrogen, Thermo Fisher Scientific, USA) in a 35 mm Petri dish. For 

functional imaging experiments, larvae were embedded in 2.5 % agarose in custom 3D-printed 

plastic chambers (Form 2, Standard Clear Resin V4, Formlabs, USA), with glass coverslips 865 

sealed on the front and left sides of the chamber, at the entry points of the frontal and lateral 

laser excitation beams, and the agarose around the head was removed with a scalpel to avoid 

scattering of the beams (see Light-sheet microscopy in Methods below). After allowing the 

agarose to set, the dish/chamber was filled with fish water and the agarose around the tail was 

removed to enable unrestrained tail movements that were subsequently used as behavioral 870 

readout. 

A dish/chamber with an embedded larva was then placed onto the screen of the custom-built 

behavioral or functional imaging rig (Figs. 1c, 3a, 6a). In the behavioral rig, the screen with the 

dish was illuminated from below by an infrared (IR) light-emitting diode (LED) (not shown in 

Fig. 1c). A square black-and-white grating with a spatial period of 10 mm was projected onto 875 
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the screen by a commercial Digital Light Processing (DLP) projector (ASUS, Taiwan). Larvae 

were imaged through a macro objective (Navitar, USA) and an IR-pass filter with an IR-

sensitive camera (Pike, Allied Vision Technology, Germany, or XIMEA, Germany) at 200 

frames per second. The functional imaging rig was built in a similar way, with the two 

differences: 880 

1. IR LED illuminating the screen with the chamber was directed from above (not shown in 

Figs. 3a, 6a) and the image was reflected on a hot mirror to reach a camera (XIMEA, 

Germany). 

2. DLP projector used to provide visual stimulation (Optoma, USA) was mounted with a red-

pass filter to avoid bleed-through of the green component of the visual stimulus in the light 885 

collection optics. 

Stimulus presentation and tail tracking were controlled by the open-source, integrated system 

for stimulation, tracking and closed-loop behavioral experiments (Stytra) 56. Larvae were 

presented with the grating moving in a caudal to rostral direction at 10 mm/s. Experiments were 

performed in closed-loop (similar to 21), as described below. Before starting an experiment, 890 

two anchor points enclosing the tail were manually selected. The tail between the anchor points 

was automatically divided into 8 equal segments, and the angle of each segment with respect 

to the longitudinal reference line was measured by Stytra in real time. The cumulative sum of 

the segment angles constituted the final tail trace (top green trace in Fig. 1d). Sliding standard 

deviation of the tail trace with a time window of 50 ms was computed in real time, referred 895 

hereafter as vigor. Vigor is a parameter that is close to zero when larvae do not move their tail 

and increases when they do, and can be therefore used to estimate the forward velocity that 

head-restrained larvae would have reached if they were freely swimming. To compute 

estimated velocity, the vigor was multiplied by a factor that was optimized during the initial 
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calibration phase of each experiment (see Experimental protocols in Methods below) so that 900 

that the median estimated velocity during a typical bout was 20 mm/s (bottom green trace in 

Fig. 1d), which corresponds to a freely swimming condition. Swimming bouts were 

automatically detected in real time by comparing current estimated fish velocity with a set 

threshold of 2 mm/s. To provide behaving larvae with visual reafference, the estimated velocity 

was subtracted from the initial grating velocity during detected bouts (bottom magenta trace in 905 

Fig. 1d). As a result, larvae could experience the sensory consequences of their own swimming, 

despite being head-restrained. The initial and actually presented grating velocities, tail trace, 

vigor, estimated fish velocity, reafference condition (see below), and a binary variable denoting 

whether the fish was performing a bout or not at each acquisition frame constituted the raw 

data saved after each experiment (Fig. 1d). 910 

Importantly, such closed-loop assay enables the experimenters to control and manipulate the 

reafference that animals receive when they swim and hence to study how perturbations in 

reafference affect behavior. The reafference perturbations used in this study can be grouped 

into three distinct categories (Fig. 2a): 

1. The first type of perturbation, which has been previously used in the literature 21,22, is called 915 

gain change. In the closed-loop experimental assay, the gain parameter was used as a 

multiplier that converts the estimated swimming velocity of the larva into presented 

reafference. Therefore, the actual forward velocity of a swimming larva was proportional 

to gain. If the gain was set to zero, the tail movements had no influence over the grating 

speed, so larvae did not receive any reafference. This reafference condition as therefore 920 

referred as the open-loop condition. If the gain was 1, the median velocity of the larva 

during a typical bout was 20 mm/s, referred as the normal reafference condition. The gain 

values used in the experiments included 0, 0.33, 0.66, 1, 1.33, 1.66, and 2. 
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2. The second type of perturbation was called lag¸ and this corresponds to delaying the 

reafference with respect to the bout onset. When the lag was greater than zero, normal 925 

visual reafference with gain 1 was presented with a certain delay after the bout had started. 

The lag values used in the experiments included 0 ms lag (corresponds to the normal 

reafference condition), 75 ms, 150 ms, 225 ms, 300 ms, and infinite lag (i.e. reafference 

never arrives after the bout onset, which is equivalent to the open-loop condition). In the 

shunted lag version of this condition, the reafference was set to 0 upon termination of the 930 

bout. 

3. The third type of perturbation was called gain drop, and this corresponds to dividing the 

first 300 ms of a bout into four 75-ms segments and setting the gain during one or more of 

these segments to zero. Therefore, gain drop conditions were labelled using four-digit 

barcodes, where each digit represents the gain during corresponding bout segment. For 935 

example, the gain profile 1100 denotes that the gain during bout segments 3 and 4 (i.e. from 

150 ms to 300 ms after the bout onset) was set to zero, and during the rest of the bout, it 

was set to one. Gain drop conditions used in the experiment included 1111 (normal 

reafference condition), 0111, 0011, 0001, 0000, 1110, 1100, and 1000. 

No combinations of reafference conditions were used, e.g. if the gain was different from 1, the 940 

lag was automatically set to 0 ms, or if the lag was greater than 0 ms, the gain was set to 1, and 

in both cases the gain drop was set to the normal 1111. 

Note that reafference conditions listed above and presented in Fig. 2a are redundant. For 

example, the gain drop profile 0011 is exactly the same as 150 ms shunted lag, or gain 0 is 

exactly the same is infinite lag. Reafference conditions are presented in a redundant way to 945 

highlight that infinite lag makes a logical sense at the end of the list of lag conditions, and gain 
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0 makes a logical sense in the beginning of the gains list. The exact non-redundant list of all 

reafference conditions (18 conditions in total) is presented below: 

• normal reafference (gain 1, 0 ms lag, and gain drop 1111); 

• open-loop (gain 0 or infinite lag); 950 

• gains: 0.33, 0.66, 1.33, 1.66, 2 (0 ms lag and gain drop 1111); 

• lags and shunted lags: 75 ms, 150 ms, 225 ms, 300 ms (gain 1); 

• gain drops: 1110, 1100, 1000 (0 ms lag). 

Experimental protocols 

General structure of experimental protocols 955 

All experimental protocols used in this study had a similar general structure. Each protocol 

consisted of trials. Each trial consisted of a 15-second presentation of the grating moving in a 

caudal to rostral direction at 10 mm/s, preceded and followed by 7.5-second periods of the 

static grating (30 seconds in total, see top magenta trace in Fig. 1d). Trials were grouped into 

four phases, unless otherwise specified (Fig. 4a): 960 

1. Calibration phase (trials 1:10). During this phase, the multiplier defining how vigor is 

converted into estimated fish velocity was automatically calibrated so that the median 

velocity during an average swimming bout was 20 mm/s. Reafference condition during this 

phase was set to normal. This calibration was implemented to equalize velocity estimation 

across fish. In addition, during this phase, larvae were able to get used to the experimental 965 

environment and bring their swimming behavior to a stable level. All parameters recorded 

during this phase were not analyzed in this study. 
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2. Pre-adaptation phase (trials 11:20). During this phase, reafference condition was set to 

normal. This phase was used to record the baseline level of behavior, before any 

perturbations in reafference were introduced. 970 

3. Adaptation phase (trial numbers depend on particular experimental protocol, see below). 

During this phase, larvae experienced perturbations in visual reafference. 

4. Post-adaptation phase (last 10 trials unless otherwise specified). During this phase, 

reafference condition was again set to normal. This phase was introduced to measure how 

the adaptation phase affected the baseline behavior. 975 

Acute reaction protocol 

This experiment was designed to probe the space of acute reactions to different unexpected 

perturbations in reafference and to test whether a feedback control mechanism can implement 

these reactions. The adaptation phase of the protocol consisted of 210 trials, and reafference 

condition for each bout performed during this phase was randomly selected from the list of 18 980 

possible reafference conditions (see above; see also Fig 2a). Bouts performed during other 

experimental phases were not included in the analysis. 

Whole-brain functional imaging protocol 

The protocol started with 2 minutes of no visual stimulation (projector presenting a black 

square) to record spontaneous activity. This was followed by a calibration phase, a pre-985 

adaptation phase and an adaptation phase (40 trials). Post-adaptation phase was omitted. In 

four out of six imaged larvae, the calibration phase was omitted because behavior under the 

light-sheet setup was less consistent than under purely behavioral rigs, and calibration of the 

swimming velocity often failed due to insufficient number of bouts performed during this 

phase. For these larvae, the multiplier defining how vigor converts into estimated swimming 990 
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velocity was set manually to a value resulting from successful calibration in the other two 

larvae. During the adaptation phase, reafference condition for each bout was randomly set to 

either normal or open-loop. In addition, two 350-ms pulses of reverse grating motion (rostral 

to caudal direction) at 10 mm/s were presented during each static grating period (5 and 10 s 

after the grating stopped moving). Responses to these pulses were not analyzed in this study. 995 

Furthermore, the difference in bout-triggered responses between normal reafference and open-

loop condition was also not analyzed. 

Long-term adaptation protocol 

This experiment was designed to test if larval zebrafish are able to adapt their behavior in 

response to a long-lasting and consistent perturbation in reafference. The adaptation phase of 1000 

the protocol consisted of 210 trials, and reafference condition for all bouts performed during 

this phase was set to 225 ms lag (Fig. 4a). This reafference condition was chosen because it 

elicited robust acute reaction (Figs. 2cii). In normal-reafference control larvae, reafference 

condition during the whole experiment (including the adaptation phase) was set to normal. 

PC functional imaging protocol 1005 

Experimental protocol used for PC functional imaging experiment was a modified version of 

the long-term adaptation experiment (Fig 6b). The adaptation phase was shortened from 210 

trials to 50 trials to ensure stable recordings from PCs throughout the whole experiment. Such 

shortening was possible because long-term adaptation effects could already be observed after 

50 trials of adaptation (Fig. 4c). On the other hand, the post-adaptation phase was prolonged 1010 

from 10 trials to 50 trials to allow larvae to bring their behavior back to the original level after 

the adaptation. 
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Behavioral data analysis 

Analysis of the behavioral data was performed in MATLAB (MathWorks, USA). 

Tail trace was z-scored and interpolated together with the grating speed trace to a time array 1015 

with a sampling period of 5 ms. For each swimming bout automatically detected by Stytra 

during the experiment, individual tail flicks were detected. One tail flick was defined as a 

section of the tail trace between two adjacent local extrema, with the magnitude greater than 

0.14 rad and the duration not greater than 100 ms. Automatically detected onsets and offsets of 

the bouts were then corrected to coincide in time with the beginning of the first tail flick and 1020 

the end of the last flick, respectively. 

Only bouts that occurred while the grating was moving forward were considered for further 

analysis. For each bout, its duration and duration of the subsequent interbout was measured. If 

a bout was the last in a trial, the corresponding interbout duration was replaced with a NaN 

value. All bouts that were shorter than 100 ms, or had a subsequent or preceding interbout 1025 

shorter than 100 ms were also excluded from the analysis as potential tail tracking artifacts. 

If there was at least one block of 10 consecutive trials without any bouts, this animal was 

excluded from further analysis. The final numbers of included animals are listed below: 

• Acute reaction experiments: 100 TL larvae (wild-type experimental group), 28 

Tg(PC:epNtr-tagRFP)-/- larvae (treatment control group), and 39 Tg(PC:epNtr-tagRFP)+/- 1030 

larvae (PC ablation group); 

• Long-term adaptation experiments: 

○ normal-reafference control animals: 103 TL larvae, 85 Tg(PC:epNtr-tagRFP)-/- 

larvae, and 83 Tg(PC:epNtr-tagRFP)+/- larvae, 
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○ lag-trained animals: 100 TL larvae, 85 Tg(PC:epNtr-tagRFP)-/- larvae, and 90 1035 

Tg(PC:epNtr-tagRFP)+/- larvae. 

To analyze the temporal dynamics of the tail beat amplitude within individual bouts, a 

parameter termed bout power was computed as described below. A 1.1-second long section of 

the tail trace was selected for each bout, starting from 100 ms before the onset of that bout. The 

values of the tail trace after the bout offset were replaced with zeros to exclude subsequent 1040 

bouts that could occur within this time window. In addition, the median baseline value 

computed for the 100 ms window before the bout onset was subtracted from the section. 

Resulting sections of the tail trace were then squared and referred to as bout power. 

To present the results of acute reaction experiments, we averaged the metrics obtained for each 

bout (its duration, subsequent interbout duration and power profiles) across bouts within each 1045 

reafference condition in each larva. Bout and interbout duration is presented as mean ± s.e.m. 

across larvae. Bout power profiles are presented as median across larvae. 

To identify the time points, at which mean bout power depended on reafference condition, 

Kruskal-Wallis test was used (significance level 5%; Bonferroni correction for the total number 

of 220 tested time points). According to the test results, the bout power curves were then 1050 

divided into ballistic and reactive periods (from 0 to 220 ms after the bout onset and from 220 

ms onward, respectively) and the areas below the curves within these two periods were 

measured for each bout for each larva. 

To present the results of the long-term adaptation experiments, we analyzed the aforementioned 

parameters only for the first bout in each trial. First bout duration in each trial is presented as 1055 

mean ± s.e.m. across larvae. To quantify the effects observed in the long-term adaptation 

experiments (acute reaction, back-to-baseline effect and the after-effect), we divided all trials 
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of the protocol into blocks of 10 and computed the mean value of respective parameter within 

each block. We then normalized computed values across fish by subtracting the corresponding 

baseline values obtained during the pre-adaptation phase. These quantifications are presented 1060 

as median ± quartiles across larvae. To determine statistical significance of the observed 

differences between experimental groups, we used Mann-Whitney U test with two-tailed 

alternative with significance level of 5 %. 

In the long-term adaptation experiments performed under the light-sheet microscope, the lag-

trained animals were sub-divided into adapting and non-adapting based on magnitude of the 1065 

back-to-baseline effect. If the first bout duration averaged across the last 10 trials of the 

adaptation phase was less than that for the first 10 trials of the adaptation phase by at least 40 

ms, this larva was considered adapting. To determine statistical significance of the long-term 

adaptation effects in lag-trained adapting larvae, we used Mann-Whitney U test with one-tailed 

alternative (with significance level of 5 %) because the alternative hypothesis was already 1070 

known from the main long-term adaptation experiment. 

Feedback control model of acute reaction 

To test whether acute reaction can be explained by a simple feedback controller that does not 

involve computation of expected sensory reafference (i.e. forward internal models), we 

developed a model that does not perform these computations (Fig. 2b) and tested its ability to 1075 

adapt its output to perturbations in reafference (Fig. 2c). 

The model was developed and tested in MATLAB (MathWorks, USA). The input of the model 

was current velocity of the moving grating, and the output was a binary variable representing 

swimming velocity of the model. For simplicity, we did not set out to model individual tail 

flicks and approximated the swimming behavior of the zebrafish larvae by a binary motor 1080 
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output that equaled 20 mm/s when the model was swimming and 0 otherwise. This was possible 

due to the discrete nature of zebrafish swimming behavior at larval stage. Since in this study 

we mainly focused on duration of bouts and interbouts, this simplification did not limit the 

ability to compare the model behavior with behavior of the real larvae. 

To design the model, we used the results of the acute reaction experiment as a starting point 1085 

(Fig. 2c-e). Thus, since larval zebrafish reacted to changes in visual stimulus with a fixed delay 

of 220 ms (Fig. 2e), the input of the model at a given time point was the grating velocity 220 

ms before that point. We then assumed that forward motion of the grating should have a 

positive influence on the motor output, whereas reverse motion should have a negative 

influence. This assumption was based on the fact that if the grating was moving forward during 1090 

a bout (as under open-loop or low gain conditions), this bout was significantly longer than 

under normal reafference condition, when the grating was moving backwards (compare cases 

for high and low gains in Fig. 2ci). To implement this notion in the model, the input signal was 

split into forward and backward components by positive and negative rectification. This was 

performed by two respective nodes of the model: forward and reverse velocity sensors. 1095 

Rectified signals were then recombined together with independent positive and negative 

weights (𝜔𝜔𝑓𝑓 and 𝜔𝜔𝑟𝑟, respectively). We then proceeded from the fact that when a larval zebrafish 

was presented with a forward moving grating, it performed a swimming bout only after a 

certain latency period (for example, see Figs. 1d, 4b), suggesting that it integrates sensory 

evidence of the forward grating motion in time until the level of integrated signal reaches a 1100 

motor command threshold. We therefore introduced a leaky velocity integrator (VI) that 

integrated recombined output of the velocity sensors with a time constant 𝜏𝜏𝑠𝑠. Output of the VI 

can be interpreted as motivation or sensory drive to swim because it increases with longer or 

faster forward motion of the stimulus, decreases with backwards motion, and drives activity in 
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the motor part of the controller (see below). Activity of the VI was not allowed to be less than 1105 

0 (no sensory drive) or greater than 1 (maximum sensory drive). The sensory drive was then 

fed forward to the motor output generator (MOG), and this process can be interpreted as 

translation of the sensory input signal into motor coordinates. Accordingly, activity of the 

MOG was called motor drive. Whenever the motor drive reached a threshold 𝑡𝑡ℎ𝑟𝑟, it activated 

the motor command generator (MCG), and the output of the model was set to 20 mm/s instead 1110 

of 0. To ensure that the swimming bouts performed by the model do not last forever, we 

introduced a leaky motor integrator (MI) that integrated the output of the MCG in time with an 

input weight 𝜔𝜔𝑚𝑚 and a time constant 𝜏𝜏𝑚𝑚. Output of the MI can be interpreted as a metric of 

“tiredness” that encapsulates possible reasons for bout termination even when high sensory 

drive incites to continue swimming. This is the case, for example, under open-loop reafference 1115 

condition, when the grating is moving forward and the sensory drive accumulates even though 

fish swims and tries to reduce the sensory drive. To implement the inhibitory influence of this 

“tiredness” on the motor output of the model, the MI inhibited the MOG with a weight 𝜔𝜔𝑖𝑖, thus 

reproducing a self-evident fact that the longer a bout had been so far, the sooner it would stop. 

In simple words, if the model was “tired” it had less motor drive to continue swimming, even 1120 

if the sensory drive was strong. Activity of the MI was not allowed to be greater than 1 

(maximum “tiredness”), and it could not inhibit the MOG below 0 (motor drive could not be 

negative). Finally, to ensure that bouts can last for some time once started in cases when the 

sensory drive to continue swimming becomes too low immediately after bout onset (for 

example, under high gain conditions when larvae receive a lot of reafference), we introduced 1125 

a self-excitation loop to the MCG with a weight 𝜔𝜔𝑠𝑠 (see Extended Data Fig. 1 for formal 

mathematical description of the model). 
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Therefore, in total, the model had eight parameters. The input and output of the model, as well 

as activity of its nodes in an example trial with normal reafference are presented in Extended 

Data Fig. 1. 1130 

To evaluate the ability of the model to acutely react to different perturbations in reafference, it 

was tested in a shorter version of the acute reaction experimental protocol. The protocol was 

shortened to save the computation time required for fitting the model. One trial consisted of 

300 ms of static grating followed by 9.7 seconds of the grating moving in a caudal to rostral 

direction at 10 mm/s. The reafference condition of the first bout was always normal, and the 1135 

reafference condition of the second bout was chosen from a list of 18 reafference conditions 

used in the acute adaptation experiment (see Closed-loop experimental assay in head-restrained 

zebrafish larvae in Methods above). If the model initiated a third bout, the trial was terminated, 

and the duration of the second bout and subsequent interbout constituted the final output of the 

model in that trial. If the model did not initiate the third bout, the final output of the model in 1140 

that trial was replaced with NaN values. 

The parameters of the model were fitted to training datasets obtained for each larva that 

participated in the acute reaction experiment (N = 100) using a custom-written genetic 

algorithm. To obtain the training datasets, 18 arrays of bout durations and 18 arrays of interbout 

durations were generated for each larva, each array corresponding to one reafference condition. 1145 

Average values of randomly selected 50 % from each array constituted the training datasets, 

the remaining 50 % were used as test datasets. 

The optimization algorithm minimized the mean absolute error (absolute difference between 

the output array of the model and a training dataset, normalized by the training dataset) and 

resulted in sets of the model parameters, each optimized to fit one larva. To present the results, 1150 
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mean ± s.e.m. of the final output arrays of models across all sets of parameters, and of the test 

datasets across all larvae were computed (Fig. 2c-d). 

Light-sheet microscopy 

Functional imaging experiments were employed in this study for two purposes: to test the main 

assumption of the feedback control model (the existence of the sensory integration in the larval 1155 

zebrafish brain) and to test whether activity of PCs can represent the output of an internal 

model. Respectively, there were two types of functional imaging experiments: whole-brain 

imaging experiments and PC imaging experiments. Both were performed using a custom-built 

light-sheet microscope (Figs. 3a, 6a). 

For the whole-brain imaging (Fig 3a), a beam coming from a 473 nm laser source (modulated 1160 

laser diodes, Cobolt, Sweden) was split with a dichroic mirror and conveyed to two orthogonal 

scanning arms. Each scanning arm consisted of a pair of galvanometric mirrors (Sigmann 

Electronik, Germany) that allowed vertical and horizontal scanning of the beam, a line diffuser 

(Edmund Optics, USA), a scan lens (Thorlabs, USA), a paper screen to protect the fish eyes 

from the laser, a tube lens (Thorlabs, USA), and a low numerical aperture objective (Olympus, 1165 

Japan). The emitted fluorescence was collected through a water immersion objective 

(Olympus, Japan) mounted on a piezo (Piezosystem Jena, Germany), band-pass filtered (AHF 

Analysentechnik, Germany), and focused on a camera (Orca Flash v4.0, Hamamatsu Photonics 

K.K., Japan) with a tube lens (Thorlabs, USA). 

The piezo, galvanometric mirrors, and camera triggering were controlled by a custom-written 1170 

Python program. The light-sheets were created by horizontal scanning of the laser beams at 

800 Hz. The light-sheets and the collection objective were constantly oscillating along the 

vertical axis with a saw tooth profile of frequency 1.5 Hz and amplitude of 250 µm. At each 
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oscillation, 35 camera frames were acquired at equally timed intervals, with an exposure time 

of 5 ms. The resulting volumetric videos had a voxel size of 0.6 x 0.6 x 7 µm, and a sampling 1175 

rate of 1.5 Hz per volume. 

For the PC imaging experiments, the frontal scanning arm was removed because the whole 

cerebellum could be illuminated using only the lateral beam (Fig. 6a). The sampling rate was 

increased to 4 or 5 Hz due to smaller volume of imaging. 

Functional imaging data analysis 1180 

Behavioral data acquired during the imaging experiment were analyzed as described in 

Behavioral data analysis in Methods above. This section describes analysis of the imaging data. 

Whole-brain functional imaging data analysis 

To analyze the functional imaging data, we first preprocessed them in Python, similar to Kist 

et al., 2017. To correct the data for motion artifacts and potential drift, they were aligned to an 1185 

anatomical reference generated by averaging the first 1000 frames of each plane. For each 

volume in time, the translation with respect to the reference volume was computed by cross-

correlation using the register_translation function from the scikit-image Python package. 

Before the alignment, the reference volume and volumes to be registered were filtered with a 

Sobel filter after a Gaussian blur (with the standard deviation of 3.3 voxels) to emphasize image 1190 

edges over absolute pixel intensity. Volumes for which the computed shift was larger than 15 

voxels (generally due to large motion artefacts caused by vigorous tail movements of the 

embedded fish) were discarded and replaced with NaN values. For subsequent registration of 

the imaging data to a common reference brain (see below), a new anatomical stack was 

computed for each animal by averaging the first 1000 frames of the aligned planes. 1195 
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To segment the imaged volume into regions of interest (ROIs), a "correlation map" was 

computed, where each voxel value corresponded to the correlation between the fluorescence 

time-trace of that voxel and the average trace of eight adjacent voxels in the same plane. Then, 

based on the correlation map, individual ROIs were segmented in each plane with the following 

iterative procedure. Growing of each ROI was initiated from the voxel with the highest 1200 

intensity in the correlation map among the ones still unassigned to ROIs, with a minimum 

correlation of 0.3 (seed). Adjacent voxels were then gradually added to the growing ROI if 

eligible for inclusion. To be included, adjacent voxels’ correlation with the average 

fluorescence time-traces of all voxels assigned to the ROI up to that point had to exceed a set 

threshold. The threshold for inclusion was 0.3 for the first iteration and increased linearly as a 1205 

function of distance to the seed, up to a value of 0.35 at 3-µm distance. Additional criteria for 

minimal and maximal ROI area (9-28 µm2) ensured that the ROIs matched approximately the 

size of neuron somata. After segmentation, the fluorescence time-trace of each ROI was 

extracted by summing fluorescence of all voxels that were assigned to that ROI during 

segmentation. 1210 

Subsequent analysis steps were performed in MATLAB (MathWorks, USA). To de-noise the 

traces, a low-pass Butterworth filter with a cutoff frequency of 0.56 Hz was applied to each 

trace. This frequency corresponds to the half-decay time of the calcium indicator GCaMP6s 

expressed by the imaged larvae (1.8 s; 58), and fluorescence oscillations at frequency higher 

than that were unlikely to result from biological events. In addition, to correct for potential 1215 

slow drift, the drifting baseline of each trace was computed by applying a low-pass Butterworth 

filter with a cutoff frequency of 3.3 mHz; and this baseline was then subtracted from the trace. 

The traces were then z-scored for subsequent analysis. 
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The strategy of subsequent analysis was aimed to identify velocity integrators within the larval 

zebrafish brain and included two steps. 1220 

The first step was aimed to identify ROIs that responded to the forward moving grating. Since 

this stimulus reliably triggers swimming behavior, it was important to disambiguate ROIs with 

responses to the forward moving grating from ROIs with motor-related activity. To this end, 

we computed the average grating- and bout-triggered fluorescence for each trace. To do this, 

we selected 5 second-long sections of the trace, starting from one second before the respective 1225 

trigger. To avoid contamination of triggered responses by activity resulted from other events, 

we only considered triggers that did not have any other triggers in the preceding second, and if 

another trigger occurred within the selected time window, all fluorescence values after this 

another trigger were replaced with NaN values. In addition, we subtracted the baseline, defined 

as mean fluorescence before the trigger within the selected time window, from each triggered 1230 

trace. We then computed the average traces and s.e.m. across corresponding triggers for each 

trace. To identify ROIs with sensory- and motor-related activity (referred hereafter as sensory 

and motor ROIs), we computed the mean values of average grating-triggered fluorescence 

within the time window from 0 to 4 s after the grating onset, and of average bout-triggered 

fluorescence within the time window from 0 to 2 s after the bout onsets. Obtained values were 1235 

referred to as sensory and motor scores. To determine statistical significance of these scores, 

we used the following bootstrapping procedure. For each trace, we formulated a null-

hypothesis that observed responses to grating and bout onsets were not related to these triggers 

and were rather observed by chance. To test this hypothesis against the one-tailed alternative 

that the scores are greater than expected from chance, each trace was divided into 84 sections, 1240 

each 23 second-long, and the sections were randomly shuffled 1000 times. For each shuffling, 

sensory and motor scores were computed to build the null-distributions of the scores. The null-
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hypothesis was tested with a significance level of 5 % with a Bonferroni correction for multiple 

comparisons applied independently for each larva. Namely, if a score for a given trace was 

greater than the 𝑛𝑛𝑡𝑡ℎ percentile of respective null-distribution, it was considered significant, 1245 

where 𝑛𝑛 = 100 − 5/𝑚𝑚 and 𝑚𝑚 is a number of ROIs detected in that larva. ROIs were defined 

as sensory if they had a significant sensory score. If in turn, an ROI had a significant motor 

score, and if its sensory score was less than the 95th percentile of respective null-distribution, 

it was defined as a motor ROI. This additional criterion for definition of a motor ROI was 

introduced because almost all sensory ROIs continued to increase their grating-triggered 1250 

fluorescence during swimming bouts. As a result, many sensory ROIs had a significant motor 

score, so this parameter alone could not be used to define motor ROIs. 

The second step was aimed to identify whether some of the sensory ROIs integrate sensory 

evidence of the forward moving grating in time. To this end, we fitted a leaky integrator model 

to average grating-triggered fluorescence of sensory ROIs by iterating over a range of time 1255 

constants from zero to ten seconds, with 100 ms steps, and identifying the time constant 

resulting in the highest correlation between the model and the triggered average trace. The 

leaky integrator trace was additionally convolved with a GCaMP6s kernel, modeled as an 

exponential function with a half-decay time of 1.8 s 58. Sensory ROIs for which the time 

constant was zero were referred to as velocity sensors, whereas ROIs with positive time 1260 

constants were termed velocity integrators. 

To compare the location of ROIs assigned to the aforementioned functional groups across 

larvae and to present the ROIs in the context of gross larval zebrafish neuroanatomy, the 

imaging data was registered to a common reference brain using the free Computational 

Morphometry Toolkit 59. To this end, affine volume transformations were computed to align 1265 

the anatomical stacks from each larva to the reference brain. Computed transformations were 
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then applied to each ROI to identify its coordinates in the reference space. To present the final 

ROI maps, binary stacks with ROIs of a given functional group were summed across larvae, 

and the maximum projections along dorsoventral and lateral axis were computed. In addition, 

to identify the anatomical regions with experiment-related activity, the regions annotated in the 1270 

Z-Brain atlas 60 were registered to our reference brain using the same procedure. 

If an ROI was assigned to one of the three aforementioned functional groups (sensors, 

integrators or motor ROIs), it was referred to as active ROI. To determine whether anatomical 

location of active ROIs was consistent across larvae, we first formulated a null-hypothesis for 

each ROI. The hypothesis stated that active ROIs that spatially overlap with this ROI in a 1275 

population of larvae (i.e. ROIs that occupy the very same anatomical region in the brain) are 

equally likely to be either sensors, or integrators, or motor ROIs. According to this null-

hypothesis, the probability of a given active ROI to be assigned to any functional group is 1/3. 

We then tested this null-hypothesis for each ROI against the one-tailed alternative that a given 

ROI was more likely to be assigned to its actual functional group than to the other two groups 1280 

with a significance level of 5%. Rejection of the null-hypothesis can be interpreted as that in 

the brain region corresponding to this ROI, the probability of finding active ROIs of the same 

functional group in a population of larvae is greater than that of finding active ROIs of the other 

two groups. To test the null-hypothesis, we first calculated the number of larvae that had any 

active ROIs overlapping with the original ROI and the number of larvae that had an overlapping 1285 

ROI assigned to the same functional group as the original ROI. Then, the probability of this 

observation given the null-hypothesis was inferred using maximum likelihood estimation. If 

this probability was less than 5 %, the null-hypothesis was rejected and the anatomical region 

corresponding to the original ROI was concluded to be consistent across larvae. 
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PC functional imaging data analysis 1290 

PC functional imaging data was pre-processed in Python. Before entering data in the analysis 

pipeline, data was previewed blindly with respect to experimental condition and behavioral 

performance. Data that showed any sign of drifting during the whole duration of the experiment 

were discarded, to avoid any confounding effect in the subsequent analysis. After this selection, 

N = 25 larvae were kept out of the original 50 (N = 8 normal-reafference control larvae and N 1295 

= 17 lag-trained larvae). Lag-trained larvae were further sub-divided into adapting (N = 9) and 

non-adapting (N = 8) as described in Behavioral data analysis in Methods above. 

Compared with the whole-brain data, cerebellum imaging data were smaller and PC labelling 

was sparser, so this dataset was better suited for signal extraction using Suite2p 61. Suite2p was 

used for plane-wise alignment of the data and ROIs segmentation; after these steps, the raw 1300 

extracted fluorescence was used in subsequent analyses, bypassing the spike deconvolution 

part of the Suite2p pipeline. Parameters used for the extraction were the Suite2p default values 

for 2p detection, except for expected cell size and temporal resolution that were adjusted 

according to the imaging settings. Manual curation was performed on each fish, blindly with 

respect to experimental group and behavioral performance, to exclude artifactual ROIs 1305 

segmented from the skin visible in the imaging. 

Subsequent analysis steps were performed in MATLAB (MathWorks, USA). We first 

modelled a motor regressor by convolving the binary variable representing whether the fish 

was performing a bout or not at each acquisition frame with a GCaMP6s kernel, modeled as an 

exponential function with a half-decay time of 1.8 s 58 (Extended Data Fig. 6a). This regressor 1310 

was processed in the same way as fluorescence traces of real ROIs, as described below. 
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To correct for potential slow drift, each trace was high-pass filtered using a Butterworth filter 

with a cutoff frequency of 3.3 mHz. The traces were then z-scored for subsequent analysis. 

Subsequent analysis steps are illustrated in Fig. 6d. We first computed the first-bout-triggered 

fluorescence for each trace in each trial by selecting 2.2 second-long sections of the trace, 1315 

starting from one second before the first bout. The baseline, defined as mean fluorescence 

before the first bout onset within the selected time window, was subtracted from each triggered 

trace. We then computed first-bout-triggered responses by averaging the triggered traces within 

the time window from 0 to 1.2 s after the first bout onsets. These responses were then averaged 

within the block of 10 trials, similarly to the first bout duration (see Behavioral data analysis 1320 

in Methods above). 

We used these averaged responses to define the four criteria for each trace, which represented 

how much the responses have changed during important transitions of the experimental 

protocol. 

1. Criterion 1 was computed as the difference between the first 10 trials of the adaptation 1325 

phase and 10 trials of the pre-adaptation phase. 

2. Criterion 2 was computed as the difference between the last 10 trials and the first 10 trials 

of the adaptation phase. 

3. Criterion 3 was computed as the difference between the first 10 trials of the post-adaptation 

phase and the last 10 trials of the adaptation phase. 1330 

4. Criterion 4 was computed as the difference between the last 10 trials and the first 10 trials 

of the post-adaptation phase. 

Statistical significance of computed criteria was determined using the following bootstrapping 

procedure. For each trace we formulated a null-hypothesis that observed changes in bout-
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triggered responses were not related to transitions in the experimental protocol and were rather 1335 

observed by chance. To test this hypothesis against the two-tailed alternative, the trials 

(excluding the calibration phase) were randomly shuffled 100’000 times. For each shuffling, 

criterion 1 was computed to build the null-distributions of the criteria. The null-hypothesis was 

tested with a significance level of 5 %. Namely, if a given criterion was greater than the 97.5th 

percentile of the null-distribution for that ROI, it was considered significantly high, and if it 1340 

was less than the 2.5th, it was considered significantly low. This allowed to assign 4-digit 

barcodes to each ROI, each digit corresponding to one criterion, and all ROIs were clustered 

using these barcodes. 

To identify activity profiles that were differentially represented in lag-trained adapting larvae 

compared to non-adapting and normal-reafference control groups, we computed the fractions 1345 

of ROIs assigned to each cluster within each larva. Statistical significance of observed 

differences in fractions was determined using Mann-Whitney U test (two-tailed alternative, 

significance level 5 %). 

To study whether the activity of the cluster 0-0+ could be explained by motor activity of the 

larvae, we modelled an artificial ROI, which linearly codes for motor activity of a larva (motor 1350 

regressor), and processed it in exactly the same way as we processed the real ROIs (Extended 

Data Fig. 6a). As expected, bout-triggered responses of the motor regressors were markedly 

similar to the behavior of the larvae (Extended Data Fig. 6b-c), showing an acute increase in 

response to unexpected presentation of lagged reafference (dark-blue arrows in Extended Data 

Fig. 6a-c). Importantly, this acute reaction was not observed in response profiles of 0-0+ ROIs 1355 

(Extended Data Fig. 6d). Finally, we were able to find ROIs whose activity actually showed an 

acute reaction and was in general similar to the motor regressor (Extended Data Fig. 6e, see 

also activity profile of the ROI 2 shown in Fig. 6d in blue). Therefore, changes in bout-triggered 
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responses of 0-0+ ROIs cannot be fully explained by a motor component and rather reflect the 

output of a recalibrating internal model. 1360 

To compare the location of ROIs across larvae, the imaging data was registered to a common 

reference cerebellum similarly to the whole-brain imaging data (see above). To present the 

final maps of 0-0+ ROIs, we first applied 3D Gaussian blur with standard deviation of 1 µm to 

the binary stacks with these ROIs. The stacks were then summed across larvae, and the 

maximum projections along the dorsoventral axis were computed. 0-0+ ROIs were detected 1365 

more frequently in the medial cerebellum (Extended Data Fig. 7 – top row). To estimate the 

statistical significance of the observed spatial clustering, we randomly sampled the same 

number of ROIs in each larva, computed the maps as described above, repeated this 100 times, 

and computed the final maps by averaging across 100 iterations. We observed a similar spatial 

pattern (Extended Data Fig. 7 – bottom row). Therefore, the spatial clustering of 0-0+ ROIs 1370 

was not above chance level. 
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Extended Data Figure Titles and Legends 

Extended Data Fig. 1: Behavior of the feedback control model of acute reaction 1375 

Behavior of the model in an example trial, where reafference condition was set to normal for 

simplicity. Magenta traces represent input of the model (grating speed, where positive values 

correspond to motion in a caudal to rostral direction); green trace represents output of the model 

(binary swimming variable representing current swimming velocity); orange traces represent 

output of respective nodes. Vertical shaded bars indicate swimming bouts performed by the 1380 

model in this trial. Seven small Greek letters and 𝒕𝒕𝒕𝒕𝒕𝒕 denote eight parameters of the model: 

𝝎𝝎𝒇𝒇 - output weigh of forward velocity sensor, 𝝎𝝎𝒕𝒕 - output weigh of reverse velocity sensor, 𝝉𝝉𝒗𝒗 

- time constant of the velocity integrator, 𝝎𝝎𝒊𝒊 - inhibitory output weigh of the motor integrator, 

𝝎𝝎𝒔𝒔 - feedforward self-excitation weight of the motor command generator, 𝒕𝒕𝒕𝒕𝒕𝒕 - threshold of 

the motor output command, 𝝎𝝎𝒎𝒎 - input weight of the motor integrator, 𝝉𝝉𝒎𝒎 - time constant of 1385 

the motor integrator. Δt denotes sensory processing delay of 220 ms, t - current time point. 

[𝑥𝑥]+ = 𝑚𝑚𝑚𝑚𝑥𝑥(𝑥𝑥, 0) - positive rectification of 𝑥𝑥; [𝑥𝑥]− = 𝑚𝑚𝑚𝑚𝑛𝑛(𝑥𝑥, 0) - negative rectification of 𝑥𝑥; 

𝑚𝑚𝑚𝑚𝑛𝑛(𝑥𝑥, 1) - saturation of 𝑥𝑥 at 1. 

Extended Data Fig. 2: Anatomical location of sensory- and motor-related ROIs is 

consistent across fish 1390 

a, Selected anatomical regions in the larval zebrafish reference brain. tel - telencephalon, di - 

diencephalon, fb - forebrain, mb - midbrain, hb - hindbrain. Presented images are maximum 

projections along dorsoventral or lateral axis. In all panels, ro - rostral direction, l - left, r - 

right, c - caudal, d - dorsal, v - ventral; scale bars: 100 µm. Colored areas depict brain regions 

that contained large fractions of motor- and sensory-related ROIs (Fig. 3): Thal - thalamus, 1395 

preT - pretectum, OT - optic tectum, nMLF - nucleus of the medial longitudinal fascicle, DRN 

- dorsal raphe nucleus and surrounding reticular formation, IO - inferior olive. These 
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anatomical regions were annotated in the Z-Brain atlas 60 and registered to our reference brain. 

b, Brain areas that consistently contain motor ROIs (green), sensors (blue) and integrators (red) 

across imaged larvae (N = 6; see Functional imaging data analysis in Methods for details). 1400 

Presented images are sum projections along dorsoventral or lateral axis. Note that rostral and 

dorsal parts of the midbrain do not contain colored areas because these regions were blocked 

from the scanning laser beams by eye-protecting screens shown in Fig. 3a. c, Same is in b, but 

represented as maximum projections of 5 µm-thick optical slices of the reference brain along 

the dorsoventral axis. Numbers above the images denote distance from the dorsal surface of 1405 

the reference brain in µm. 

Extended Data Fig. 3: Treatment of Tg(PC:epNtr-tagRFP) larvae with metronidazole 

ablates the PCs 

Morphology of PC nuclei (a) and somata and membranes (b) before ablation (5 dpf) and after 

recovery from the ablation (7 dpf, when the animals’ behavior was tested). Each image is a 1410 

maximum projection of 20 confocal slices, each 1 µm-thick, along the dorsoventral axis in an 

example larva: ro - rostral direction, l - left, r - right, c - caudal, d - dorsal, v - ventral; scale 

bars: 100 µm. Small gray brains illustrate location of the PCs, shown in orange, within the 

larval zebrafish reference brain. After ablation, the signal in PCs was much fainter than before, 

so the contrast of the stack acquired after ablation was manually boosted to visually match the 1415 

stack obtained before the ablation. 

Extended Data Fig. 4: Acute reaction is not impaired after PC ablation 

Mean bout duration (top) and interbout duration (bottom) in treatment control group (black, N 

= 28 larvae), and PC ablation group (orange, N = 39 larvae) tested in the acute reaction 

experiment (Fig. 2) as a function of reafference condition. To obtain data for one larva, all bout 1420 

and interbout durations were averaged within each reafference condition. Mean ± s.e.m. across 
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larvae is shown. Note that PC-ablated animals demonstrated acute reaction to perturbed visual 

reafference similarly to the control group. 

Extended Data Fig. 5: Long-term adaptation effects are detectable in the light-sheet 

functional imaging experiment 1425 

a, Protocol of the long-term adaptation experiment used in the light-sheet experiment (repeated 

from Fig. 6b for convenience). b, First bout duration in each trial in normal-reafference control 

larvae (i; N = 8), lag-trained non-adapting larvae (ii; N = 8), and lag-trained adapting larvae 

(iii; N = 9). Solid lines and shaded areas represent mean ± s.e.m. across larvae. Blue arrow 

indicates increase of first bout duration in the beginning of the adaptation phase (acute 1430 

reaction), cyan arrow indicates decrease of bout duration by the end of the adaptation phase 

(back-to-baseline effect), and orange arrow indicates decrease of bout duration in the post-

adaptation phase (after-effect). c, Quantification of the acute reaction (i), back-to-baseline 

effect (ii) and the after-effect (iii). Each gray dot represents first bout duration in one fish, 

averaged across 10 trials and normalized by subtracting the baseline value obtained during the 1435 

pre-adaptation phase. Black and red lines represent median and quartiles across larvae; n.s. - p 

≥ 0.05, * - p < 0.05 (Mann-Whitney U test with one-tailed alternative). 

Extended Data Fig. 6: Activity of 0-0+ ROIs cannot be explained by behavior 

a, Z-scored activity of a motor regressor in four trials in an example lag-trained adapting larva 

(see Functional imaging data analysis in Methods for details). Vertical shaded bars indicate 1440 

first swimming bout in each trial. In all panels, color-code for experimental phases is the same 

as in Fig. 6. In a-c and e, blue arrows indicate acute reaction of behavior (b) or of bout-triggered 

responses (a, c, e). b, First bout duration in each trial in an example larva shown in a (top) and 

averaged across all lag-trained adapting larvae (N = 9) (bottom). In b-e (bottom left), thin gray 

lines represent individual larvae, thick black lines represent mean across larvae. c, First-bout-1445 
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triggered responses of a motor regressor shown in a (top left), first-bout-triggered responses of 

all motor regressors averaged across larvae (bottom left), first-bout-triggered activity of an 

example motor regressor, averaged across respective blocks of 10 trials (top right), and first-

bout-triggered activity of all motor regressors, averaged across respective blocks of 10 trials 

(bottom right). In c-e (bottom right), thick colored lines and shaded areas represent mean ± 1450 

s.e.m. across lag-trained adapting larvae. d,e, First-bout-triggered activity of 0-0+ ROIs (d) 

and of ROIs with significant criterion 1 (e). Panels are organized in the same way as in c. To 

compute bout-triggered responses for one larva, responses of all ROIs from respective cluster 

detected in that larva were averaged. 

Extended Data Fig. 7: 0-0+ ROIs represent a spatially distributed subpopulation of PCs 1455 

Top, anatomical location of 0-0+ ROIs in normal-reafference control larvae (N = 8), lag-trained 

non-adapting larvae (N = 8) and lag-trained adapting larvae (N = 9). Color codes for percentage 

of larvae with ROIs in a given voxel of the reference cerebellum. Scale bar: 100 µm. Bottom, 

anatomical location of randomly sampled ROIs. In each larva, instead of taking 0-0+ ROIs, 

the same number of random ROIs was sampled. This was repeated 100 times, and presented 1460 

images are averages across 100 iterations. Note that randomly sampled ROIs in lag-trained 

adapting larvae appear more often in the medial cerebellum, similarly to 0-0+ ROIs, indicating 

that this spatial clustering of 0-0+ ROIs is not above the chance level. 
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