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ABSTRACT 

Effective countermeasures against the recent emergence and rapid expansion of the 2019-Novel 

Coronavirus (2019-nCoV) require the development of data and tools to understand and monitor 

viral spread and immune responses. However, little information about the targets of immune 

responses to 2019-nCoV is available. We used the Immune Epitope Database and Analysis 

Resource (IEDB) resource to catalog available data related to other coronaviruses, including 

SARS-CoV, which has high sequence similarity to 2019-nCoV, and is the best-characterized 

coronavirus in terms of epitope responses. We identified multiple specific regions in 2019-nCoV 

that have high homology to SARS virus. Parallel bionformatic predictions identified a priori 

potential B and T cell epitopes for 2019-nCoV. The independent identification of the same 

regions using two approaches reflects the high probability that these regions are targets for 

immune recognition of 2019-nCoV. 

 

ONE SENTENCE SUMMARY 

We identified potential targets for immune responses to 2019-nCoV and provide essential 

information for understanding human immune responses to this virus and evaluation of 

diagnostic and vaccine candidates. 
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MAIN TEXT 

On December 31, 2019, the Chinese Center for Disease Control (China CDC) reported a 

cluster of severe pneumonia cases of unknown etiology in the city of Wuhan in the Hubei 

province of China. Shortly thereafter, public health professionals identified the likely causative 

agent to be a novel Betacoronavirus (2019-nCoV). In collaboration with the China CDC and 

public health centers in other countries, the WHO reports 24,363 confirmed cases worldwide, 

with 491 deaths, as of February 5, 2020.  Although the majority of cases have occurred in China, 

a small number have been confirmed in 24 other countries, including Japan, Thailand, South 

Korea, Singapore, Vietnam, India, the United States, Canada, Germany, France and the United 

Arab Emirates. These numbers are changing rapidly. For up-to-date information about the 2019-

nCoV outbreak, see the WHO website at https://www.who.int/emergencies/diseases/novel-

coronavirus-2019. 

The Immune Epitope Database and Analysis Resource (IEDB) is a repository of epitope-

related information curated from the scientific literature in the context of infectious disease, 

allergy and autoimmunity (1). The IEDB also provides bioinformatic tools and algorithms that 

allow for the analysis of epitope data and prediction of potential epitopes from novel sequences. 

The Virus Pathogen Resource (ViPR) is a complementary repository of information about human 

pathogenic viruses that integrates genome, gene, and protein sequence information with data 

about immune epitopes, protein structures, and host responses to virus infections (2). 

 Limited information is currently available about which parts of the 2019-nCoV sequence 

are recognized by human immune responses. Such knowledge is of immediate relevance, and 

would assist vaccine design and facilitate evaluation of vaccine candidate immunogenicity, as 

well as monitoring of the potential consequence of mutational events and epitope escape as the 

virus is transmitted through human populations. 

Although no epitope data are yet available for 2019-nCoV, there is a significant body of 

information about epitopes for coronaviruses in general, and in particular for Betacoronaviruses 

like SARS-CoV and MERS-CoV which cause respiratory disease in humans (3, 4). Here, we 

used the IEDB and ViPR resources to compile known epitope sites from other coronaviruses, 
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map corresponding regions in the 2019-nCoV sequences, and predict likely epitopes. We also 

used validated bioinformatic tools to predict B and T cell epitopes that are likely to be 

recognized in humans, and to assess the conservation of these epitopes across different 

coronavirus species. 

Coronaviruses belong to the family Coronaviradae, order Nidovirales, and can be further 

subdivided into four main genera (Alpha-, Beta-, Gamma- and Deltacoronaviruses). Several 

Alpha- and Betacoronaviruses cause mild respiratory infections and common cold symptoms in 

humans, while others are zoonotic and infect birds, pigs, bats and other animals. In addition to 

2019-nCoV, two other coronaviruses, SARS-CoV and MERS-CoV, caused large disease 

outbreaks that had high (10-30%) lethality rates and widespread societal impact upon emergence 

(Fig 1) (3, 4).  

The immune response to 2019-nCoV in humans awaits characterization, but human 

immune responses against other coronaviruses have been investigated. As of January 27, 2020, 

the  IEDB has curated 581 linear, and 81 as discontinuous, B cell epitopes that have been 

reported in the peer reviewed literature. In addition, 320 peptides have been reported as T cell 

epitopes (Table 1A). The vast majority of these epitopes are derived from Betacoronavirues, and 

more specifically from SARS-CoV, which alone accounts for over 60% of them. In terms of the 

host in which the various B and T cell epitopes were recognized (Table 1B), most epitopes 

(either B or T) were defined in humans or murine systems. Notably, all but two of the 417 B and 

T cell epitopes described in humans are from Betacoronaviruses, with 398 of them coming from 

SARS-CoV. 

Comparison of a consensus 2019-nCoV protein sequence to sequences for SARS-CoV, 

MERS-CoV and bat-SL-CoVZXC21 revealed a high degree of similarity (expressed as % 

identity) between 2019-nCoV, bat-SL-CoVZXC21 and SARS-CoV, but more limited similarity 

with MERS-CoV (Figure 1). In conclusion, SARS-Cov is the closest related virus to 2019-nCoV 

for which a significant number of epitopes has been defined in humans (and other species), and 

that also causes human disease with lethal outcomes. Accordingly, in the following analyses we 

focused on comparing known SARS-CoV epitope sequences to the 2019-nCoV sequence. 

We first assessed the distribution of SARS-derived epitopes as a function of protein of 

origin (Table 1C). In the context of B cell responses, most of the 12 antigens in the SARS-CoV 

proteome are associated with epitopes, with the greatest number derived from spike glycoprotein, 
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nucleoprotein and membrane protein (Table 1C). The paucity of B cell epitopes associated with 

the other proteins is likely because, on average, B cell epitope screening studies to date have 

probed regions constituting less than 20% of each respective sequence, including <1% of the Orf 

1ab polyprotein. By comparison, the complete span of the spike glycoprotein, nucleoprotein and 

membrane protein sequences have been probed at least to some extent in B cell assays. A similar 

situation was observed in the case of T cell epitopes. Here we only considered epitopes whose 

recognition is restricted by human (HLA) MHC, since MHC polymorphism typically results in 

different epitopes being recognized in humans and mice. 

B cell epitopes derived from SARS-CoV, were mapped back to a SARS-CoV reference 

sequence using the IEDB’s Immunobrowser tool (5). This tool combines all records available 

along a reference sequence and produces a Response Factor (RF) score that accounts for the 

positivity rate (how frequently a residue was found in a positive epitope) and the number of 

records (how many independent assays are reported). Dominant regions were identified 

considering residues stretches where the RF score was ≥0.3.  

Analyses of the spike glycoprotein, membrane protein and nucleoproteins are shown in 

Figure 2. In the case of the spike glycoprotein (Fig 2A), we identify five regions of potential 

interest (residues 274-306, 510-586, 587-628, 784-803 and 870-893), all representing regions 

associated with high immune response rates. Two regions were identified for membrane protein 

(1-25 and 131-152) (Fig 2B) and three regions were identified for nucleoprotein (43-65, 154-175 

and 356-404) (Fig 2C). Table 2 summarizes these analyses, identifying the specific regions 

associated with dominant B cell responses.  

Next, we aligned the SARS-CoV B cell epitope region sequences to the 2019-nCoV 

sequence to calculate the percentage identity between each of the SARS-CoV dominant regions 

and 2019-nCoV (Table 2). Of the ten regions identified, six had 90% or more identity with 

2019-nCoV, two were between 80-89% identical, and two had lower but still appreciable 

homology (69% and 78%). Because of the overall high level of sequence similarity of SARS-

CoV and 2019-nCoV we infer that the same regions that are dominant in SARS-CoV have high 

likelihood to also be dominant in 2019-nCoV, even if the actual sequences are different. 

In a similar analysis, T cell epitopes were also found to be predominantly associated with 

spike glycoprotein and nucleoprotein (Table 1C). However, in these cases, epitopic regions and 

individual epitopes were more widely dispersed throughout the respective proteins, which made 
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identification of discrete, dominant epitopic regions more difficult. This outcome is not 

unexpected since T cells recognize short peptides generated from cellular processing of viral 

antigens that can be derived from any segment of the protein. Table 3 shows a listing of the most 

dominant SARS-CoV individual epitopes identified to date in humans.   

We also aligned the SARS-CoV T cell epitope sequences and calculated for each epitope 

the percentage identity to 2019-nCoV. For each T cell epitope, Table 3 shows the antigen of 

origin, the epitope sequence, the homologous 2019-nCoV sequence, and corresponding 

percentage of sequence identity. Overall, the nucleocapsid phosphoprotein and membrane-

derived epitopes were most conserved (8/10 and 2/3, respectively, had ≥85% identity with 2019-

nCoV). The Orf1ab and surface glycoprotein epitopes were moderately conserved (3/7 and 

10/23, respectively, had ≥85% identity with 2019-nCoV), and Orf 3a epitopes were the least 

conserved.  

To define potential B cell epitopes by an alternative method, we used the predictive tools 

provided with the IEDB Analysis Resource. B cell epitope predictions were carried out using the 

2019-nCoV surface glycoprotein, nucleocapsid phosphoprotein, and membrane glycoprotein 

sequences, which, as described above, were found to be the main protein targets for B cell 

responses to other coronaviruses. In parallel, we performed predictions for linear B cell epitopes 

with Bepipred 2.0 (6), and for conformational epitopes with Discotope 2.0 (7). Both prediction 

algorithms are available on the IEDB B cell prediction tool page 

(http://tools.iedb.org/main/bcell/). A full list of B cell epitope prediction results per amino acid 

position per protein is provided in Table S1.   

Using Bepipred 2.0 and a cutoff of ≥0.55 (corresponding to a specificity cutoff of 80%) 

(6), the surface glycoprotein had the highest number of predicted B cell epitopes, followed by 

membrane glycoprotein and nucleocapsid phosphoprotein (Table S2). To predict conformational 

B cell epitopes, we used SWISS-Model (8) and a SARS-CoV spike glycoprotein structure (PDB 

ID: 6ACD) to map the 2019-nCoV spike glycoprotein. No templates were found to build reliable 

models of the nucleocapsid phosphoprotein and membrane glycoprotein. A list of amino acid 

positions having a high probability of being included in predicted B cell epitopes for the surface 

glycoprotein, based on analysis with the Discotope 2.0 algorithm, are shown in Table S1 (cutoff 

of ≥ -2.5 corresponding to 80% of specificity).  We then localized the relevant amino acid 

positions in the 3D-model, and mapped them onto the model structure, which allowed 
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identification of three relevant regions (444-449,  496-503, and 809-812) in the surface 

glycoprotein (Figure 3).  

To predict CD4 T cell epitopes, we used the method described by Paul and co-authors 

(9), as implemented in the Tepitool resource in IEDB (10). This approach was designed and 

validated to predict dominant epitopes independently of ethnicity and HLA polymorphism, 

taking advantage of the extensive cross-reactivity and repertoire overlap between different HLA 

class II loci and allelic variants. Here, we selected peptides having a median consensus percentile 

≤ 20, a threshold  associated with epitope panels responsible for about 50% of target-specific 

responses. Using this threshold we identified 241 candidates in the 2019-nCoV sequence (see 

Table S3).  

In previous experiments, we showed that pools based on similar peptide numbers can be 

generated by sequential lyophilization (11). These peptide pools (or megapools) incorporate 

predicted or experimentally-validated epitopes and allow measurement of magnitude and 

characterization of the phenotype of human T cell responses in infectious disease indications 

such as Bordetella pertussis, Mycobacteria tuberculosis, Dengue and Zika viruses (11-14). The 

2019-nCoV CD4 megapool covers all 10 predicted proteins, with the number of potential 

epitopes proportional to the size of each protein (Table S4).  

  In parallel, we also sought to define likely CD8 epitopes. Here a different approach was 

required since the overlap between different HLA class I allelic variants and loci is more limited 

to specific groups of alleles, or supertypes (15). Following a previously validated approach (16), 

we assembled a set of the 12 most prominent HLA class I alleles which have been shown to 

allow broad coverage of the general population, as described in the Methods (see also Table S5). 

We then performed HLA class I binding predictions using the Net MHC pan 4.0 EL algorithm 

(17) available at the IEDB. For each allele, we selected the top 1% scoring peptides in the 2019-

nCoV sequence, as ranked based on prediction. After eliminating redundancies and nested 

peptides, we obtained a final “in silico” megapool of 628 unique predicted epitopes. Table S6 

lists those unique predicted epitopes per protein, indicating for each their respective HLA 

restriction(s). 

The epitopes identified by homology to the experimentally defined SARS-CoV epitopes 

shown in Tables 2-3 were next compared with the epitopes identified by HLA-binding 

predicitons shown in Tables S2-S3 and S6. The epitopes independently identified in both 
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approaches are presumed to be the most valuable leads. We first compared B cell 

immunodominant regions identified in SARS-CoV, and mapped to the homologous 2019-nCOV 

proteins (Table 2), with the predicted linear (Table S2) and conformational (Table S1) B cell 

epitopes. Out of the five B cell immunodominant regions from the SARS spike glycoprotein that 

were mapped to 2019-nCOV, three regions overlapped with those identified by BebiPred 2.0, 

and one overlapped with the 809-812 region predicted by Discotope 2.0 (Table S1 and Fig 3). 

No overlap was observed for the five regions of SARS-CoV membrane protein and 

nucleoprotein that mapped to 2019-nCOV and those predicted by BebiPred 2.0. As stated above, 

no Discotope 2.0 prediction was available for those two proteins.   

When we compared the SARS-CoV T cell epitopes that mapped to 2019-nCOV (Table 

3) with the predicted CD4 and CD8 T cell epitopes (Table S3 and Table S6, respectively), we 

found that 12 of 17 2019-nCOV T cell epitopes with high sequence identity (≥90%) to the 

SARS-CoV were independently identified by the two methods. Another 7 of 16 epitopes with 

moderate sequence identity (70-89%), and 6 of 12 epitopes with low sequence identity (<70%) 

were also identified by both methods. The lack of absolute correspondence is not surprising, 

given that the experimental data is derived from a skewed set of HLA restrictions (largely HLA 

A*02:01), and that our HLA class I prediction strategy targeted a more limited set of alleles that 

were selected to represent the most frequent worldwide variants; at the same time, the class II 

predictions are expected to cover 50% of the class II responses (18).  

In conclusion, the use of available information related to SARS-CoV epitopes in 

conjunction with bionformatic predictions points to specific regions of 2019-nCoV which have a 

high likelihood of being recognized by human immune responses*. The observation that many B 

and T cell epitopes are highly conserved between 2019-nCoV and SARS-CoV is important.  

Protein regions that are conserved across relatively long evolutionary distances suggest that they 

are structurally or functionally constrained. Vaccination strategies designed to target the immune 

response toward these conserved epitope regions could generate immunity that is not only cross-

protective across Betacoronaviruses but also relatively resistant to ongoing virus evolution. 

 

* The corresponding peptide sets are being synthesized and will be made available for use by the 

scientific community upon request to the LJI team.   
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METHODS 

IEDB analysis of T and B epitopes derived from coronaviruses 

T and B cell epitopes for coronaviruses were identified by searching the IEDB at the end 

of January 2020. Queries were performed broadly for coronaviruses (taxonomy ID no. 11118), 

selecting positive assays in T cell, B cell and/or ligand contexts. Characteristics of each unique 

epitope (i.e., species, protein of provenance, positive assay type(s), MHC restriction) were 

tabulated, as well as the total number of donors tested and corresponding total number of donors 

with positive responses in B or T cell assays, and as a function of host. Finally, T or B cell assay 

specific response frequency scores (RF) were calculated broadly (i.e., any host), or for specific 

contexts (e.g., T cell assays in humans). Specifically, RF = [(r – sqrt(r)]/t, where r is the total 

number of responding donors and t is the total number of donors tested (11)). 

SARS-CoV (tax ID no. 694009) sequence epitope density was visualized with the IEDB 

Immunobrowser tool (5). To identity contiguous dominant regions, RF scores for each residue 

were recalculated to represent a sliding 10 residue window.  

 

Selection of coronavirus proteome sequences for comparison to 2019-nCoV 

All full-length protein sequences from SARS-CoV and MERS-CoV were retrieved from 

ViPR (https://www.viprbrc.org/brc/home.spg?decorator=corona) on 31 January 2020. In order to 

exclude sequences of experimental strains, sequences from “unknown,” mouse, and monkey 

hosts were excluded from analysis. Remaining sequences were aligned using the MUSCLE 

algorithm in ViPR. Sequences causing poor alignments in a preliminary analysis were removed 

before computing the final alignment. The consensus protein sequences of each virus group were 

determined from the final alignments using the Sequence Variation Analysis tool in ViPR. 

Protein sequences from natural virus isolates with sequences identical to the SARS-CoV and 

MERS-CoV consensus were selected for use in epitope sequence analysis. 

 

Determination of 2019-nCoV sequence conservation 

Each Wuhan-Hu-1 (MN908947) protein sequence was compared against the consensus 

protein sequences from SARS-CoV and MERS-CoV and the protein sequences from closest bat 

relative (bat-SL-CoVZXC21) using the BLAST algorithm (ViPR; 
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https://www.viprbrc.org/brc/blast.spg?method=ShowCleanInputPage&decorator=corona) to 

compute the pairwise identity between Wuhan-Hu-1 proteins and their comparison target.  

 

B cell epitope prediction on 2019-nCoV isolate  

Linear B cell epitope predictions were carried out on three different coronavirus proteins: 

surface glycoprotein (S), nucleocapsid phosphoprotein (N) and membrane glycoprotein (M) 

(IDs: YP_009724390.1, YP_009724397.2 and YP_009724393.1, respectively) as the 

homologous versions of these proteins are the primary targets of B cell immune responses for 

SARS-CoV.  We used the BebiPred 2.0(6) algorithm embedded in the B cell prediction analysis 

tool available in IEDB (19).  For each protein, the epitope probability score for each amino acid 

and the probability of exposure was retrieved. Potential B cell epitopes were predicted using a 

cutoff of 0.55 (corresponding to specificity greater than 0.81 and sensitivity below 0.3) and 

considering sequences having more than 7 amino acid residues. Structure-based antibody 

prediction was performed by using Discotope 2.0 (7), available in IEDB (19) and a positivity 

cutoff greater than -2.5 was applied (corresponding to specificity greater than or equal to 0.80 

and sensitivity below 0.39). Since no PDB structures are available in the Protein Data Bank 

(PDB) for the three 2019-nCoV proteins, a homology modeling approach was applied using 

SWISS-MODEL (8). Of the three proteins analyzed, only surface glycoprotein (S) had a PDB 

template that covered 0.93 of the entire protein based on the SARS-CoV spike glycoprotein 

(PDB ID: 6ACD) with a GMQE score of 0.72 and a QMEAN of -4.08; as such, it was the only 

model used for the structure-based B cell prediction. Additional information regarding the 

surface glycoprotein 2019-nCoV model are available in the SWISS-MODEL report 

(Supplementary Fig S1).   

 

T cell epitope prediction on a 2019-nCoV isolate. 

Epitope prediction was carried out using the ten proteins predicted for the reference 

2019-nCoV isolate, Wuhan-Hu-1. The corresponding protein accession identification numbers 

are: YP_009725255.1 (Orf 10), YP_009724397.2 (N), YP_009724396.1 (Orf 8), 

YP_009724395.1 (Orf 7a), YP_009724394.1 (Orf 6), YP_009724393.1 (M), YP_009724392.1 

(Envelope protein, E), YP_009724391.1 (Orf 3a), YP_009724390.1 (S), and YP_009724389.1 

(Orf 1ab).   
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For CD4 T cell epitope prediction, we applied a previously described algorithm that was 

developed to predict dominant HLA class II epitopes, using  a median consensus percentile of 

prediction cutoff  ≤20 as recommended (18). For CD8 T cell epitope prediction, we selected the 

12 most frequent HLA class I alleles in the worldwide population (20, 21), using a phenotypic 

frequency cutoff  ≥ 6%. The specific alleles included were: HLA-A*01:01, HLA-A*02:01, 

HLA-A*03:01, HLA-A*11:01, HLA-A*23:01, HLA-A*24:02, HLA-B*07:02, HLA-B*08:01, 

HLA-B*35:01, HLA-B*40:01, HLA-B*44:02, HLA-B*44:03. The 2019-nCoV protein 

sequences were run against this set of alleles using the NetMHCpan EL 4.0 algorithm and a size 

range of 8-14mers (17). For each HLA class I allele analyzed, we selected the top 1% epitopes 

ranked based on prediction score. To generate a final set for synthesis, duplicate peptides (i.e., 

those selected for multiple alleles) were reduced to a single occurance, and nested peptides were 

ensconced within longer sequences, up to 14 residues in length, before assigning the multiple 

corresponding HLA restrictions for each region.    
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FIGURE LEGENDS 

Figure 1. Comparison of 2019-nCoV (Wuhan-Hu-1) genome structure with its closest bat 

relative (bat-SL-CoVZXC21), Tor2 SARS-CoV and HCoV-EMC MERS-CoV. Above: CDS 

regions corresponding to homologous proteins between the four viruses are filled with the same 

color in the genome schematic to indicate homology; regions with no homology to the predicted 

2019-nCoV proteins are colored white.  Below: Table of pairwise protein similarities (expressed 

as % identity) between 2019-nCoV and the other three viruses. 

 

Figure 2. B cell immunodominant regions based on SARS-specific epitope mapping.  RF 

score for each amino acid position was calculated (see Methods), and plotted over the SARS-
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CoV consensus sequence of spike glycoprotein (A), membrane protein (B) and nucleoprotein 

(C). 

 

Figure 3. Model for 2019-nCoV surface glycoprotein structure based on the SARS-CoV 

spike glycoprotein structure (PDB: 6ACD). The calculated surface of the top 10 amino acid 

residues predicted to be B cell epitopes based on ranking performed with Discotope 2.0 are 

shown in red. The monomer is shown in the upper left, and the upper right and lower center 

present the trimer in two different orientations.   
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Table 1. IEDB inventory of coronavirus B and T cell epitopes 
A)             

  

    Coronavirus   

    Alpha Beta Gamma   

Epitope set Type   SARS-CoV MERS-CoV Other   Total 

B cell  Conformational 18 27 23 2 11 81 

Linear 81 405 5 60 30 581 

T cell   61 164 25 54 16 320 
 
 
B)             

  

    Coronavirusb   

    Alpha Beta Gamma   

Epitope set Host   SARS-CoV MERS-CoV Other   Total 

B cella Humans 0 306 16 0 0 322 

  Mice 62 154 9 58 20 303 

  Other 42 142 5 6 23 218 

  Tg mice 0 0 0 0 0 0 

T cell Humans 2 92 0 1 0 95 

  Mice 16 99 25 53 1 194 

  Other 46 1 0 0 15 62 

  Tg mice 0 29 0 0 0 29 
a. B cell includes both conformational and linear epitipes.  
b. Totals between A) and B) may not be equal as several epitopes are recognized in multiple species. 
 

C)             
  

SARS protein B cell T cell       
  

Spike glycoprotein 279 48       
  

Nucleoprotein 113 33       
  

Membrane protein 20 4       
  

Replicase polyprotein 1ab 8 9       
  

Protein 3a 2 7       
  

Envelope small membrane protein 2 0       
  

Non-structural protein 3b 2 0       
  

Protein 7a 2 0       
  

Protein 9b 2 0       
  

Non-structural protein 6 1 0       
  

Protein non-structural 8a 1 0       
  

a. T cell epitope total includes epitopes recognized in humans and/or transgenic mice.  
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Table 2. Dominant SARS-CoV B cell epitope regions 
SARS 2019 nCoV 

Sequence Max 
RF Sequence Proteina Mapped 

Start-End 
Identity 

(%) 

DAVDCSQNPLAELKCSVKSFEI
DKGIYQTSNF 

0.504 
DAVDCALDPLSETKCTLKS

FTVEKGIYQTSN 
S 287-317 69 

VCGPKLSTDLIKNQCVNFNFN
GLTGTGVLTPSSKRFQPFQQFG
RDVSDFTDSVRDPKTSEILDISP

CSFGGVSVIT 

0.745 

VCGPKKSTNLVKNKCVNF
NFNGLTGTGVLTESNKKFL
PFQQFGRDIADTTDAVRDP

QTLEILDITPCSFGGVSVI 

S 524-598 80 

GTNASSEVAVLYQDVNCTDVS
TAIHADQLTPAWRIYSTGNN 

0.709 
GTNTSNQVAVLYQDVNCT
EVPVAIHADQLTPTWRVYS

TGS 
S 601-640 78 

FSQILPDPLKPTKRSFIED 0.365 FSQILPDPSKPSKRSFIE S 802-819 89 
FGAGAALQIPFAMQMAYRFN

GIG 
0.367 

FGAGAALQIPFAMQMAYRF
NGI 

S 888-909 100 

MADNGTITVEELKQLLEQWNL
VIG 

0.460 MADSNGTITVEELKKLLEQ
WNLVI 

M 1-24 92 

PLMESELVIGAVIIRGHLRMA 0.457 PLLESELVIGAVILRGHLRI M 132-151 90 
PQGLPNNTASWFTALTQHGKE

E 
0.537 

RPQGLPNNTASWFTALTQH
GK 

N 42-62 95 

NNAATVLQLPQGTTLPKGFYA 0.543 
NNNAATVLQLPQGTTLPKG

F 
N 153-172 95 

KHIDAYKTFPPTEPKKDKKKK
TDEAQPLPQRQKKQPTVTLLP

AADMDD 
0.82 

NKHIDAYKTFPPTEPKKDK
KKKTDEAQPLPQRQKKQPT

VTLLPAADM 
N 355-401 90 

a. S= surface glycoprotein; M=membrane protein; N=nucleocapsid phosphoprotein     
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2020. ; https://doi.org/10.1101/2020.02.12.946087doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.12.946087
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

 
Table 3. Dominant SARS-CoV-derived T cell epitopes and corresponding regions in nCoV 

SARS 2019 nCoV 

Sequence RF 
score HLA restrictiona Sequence Proteinb Mapped 

Start-End 
Identity 

(%) 
VRGWVFGSTMN

NKSQSVI 
0.15 DRB1*04:01 

IRGWIFGTTLDSK
TQSLL 

S 101-118 50 

CTFEYISDAFSLD 0.21 DRB1*04:01 
CTFEYVSQPFLM

D 
S 166-178 62 

DAFSLDVSEKSGN 0.62 DRB1*04:01 QPFLMDLEGKQ
GN 

S 173-185 38 

TNFRAILTAFSPA
QDIW 

0.32 DRB1*04:01 
TRFQTLLALHRS
YLTPGDSSSGW 

S 236-258 17 

KSFEIDKGIYQTS
NFRVV 

0.40 
DRB1*04:01, 
DRB1*07:01 

KSFTVEKGIYQT
SNFRVQ 

S 304-321 78 

STFFSTFKCYGVS
ATKL 

0.50 DRB1*07:01, DR8 
SASFSTFKCYGV

SPTKL 
S 371-387 82 

KLPDDFMGCV 0.55 A*02:01 KLPDDFTGCV S 424-433 90 
NIDATSTGNYNY

KYRYLR 
0.29 Class II 

NLDSKVGGNYN
YLYRLFR 

S 440-457 56 

YLRHGKLRPFER
DISNVP 

0.16 DRB1*04:01 
YLYRLFRKSNLK

PFERDI 
S 451-468 58 

RPFERDISNVPFS 0.36 DRB1*04:01 KPFERDISTEIYQ S 462-474 54 
KSIVAYTMSLGA

DSSIAY 
0.15 

DRB1*04:01, 
DRB1*07:01 

QSIIAYTMSLGAE
NSVAY 

S 690-707 72 

SIVAYTMSL 0.29 A*02:01 SIIAYTMSL S 691-699 89 
TECANLLLQYGSF

CTQL 
0.50 DR8 

TECSNLLLQYGS
FCTQL 

S 747-763 94 

VKQMYKTPTLKY
FGGFNF 

0.20 DRB1*04:01 
VKQIYKTPPIKDF

GGFNF 
S 785-802 78 

ESLTTTSTALGKL
QDVV 

0.42 DRB1*04:01 
DSLSSTASALGK

LQDVV 
S 936-952 71 

ALNTLVKQL 0.29 A*02:01 ALNTLVKQL S 958-966 100 

VLNDILSRL 0.29 A*02:01 VLNDILSRL S 976-984 100 

LITGRLQSL 0.42 A*02:01 LITGRLQSL S 996-1004 100 
QLIRAAEIRASAN

LAATK 
0.20 DRB1*04:01 

QLIRAAEIRASAN
LAATK 

S 1011-1028 100 

SWFITQRNFFSPQI
I 

0.60 DRB1*04:01 
HWFVTQRNFYEP

QII 
S 1101-1115 73 

RLNEVAKNL 0.42 A*02:01 RLNEVAKNL S 1185-1193 100 

NLNESLIDL 0.29 A*02:01 NLNESLIDL S 1192-1200 100 

FIAGLIAIV 0.80 A*02:01 FIAGLIAIV S 1220-1228 100 
RFFTLGSITAQPV

KI 
0.18 B*58:01 

RIFTIGTVTLKQG
EI 

Orf 3a 6-20 40 

SITAQPVKI 0.29 B*58:01 TVTLKQGEI Orf 3a 12-20 22 

TLACFVLAAV 0.59 A*02:01 TLACFVLAAV M 61-70 100 

GLMWLSYFV 0.59 A*02:01 GLMWLSYFI M 89-97 89 

HLRMAGHSL 0.40 Class I HLRIAGHHL M 148-156 78 

ALNTPKDHI 0.29 A*02:01 ALNTPKDHI N 138-146 100 

LQLPQGTTL 0.29 A*02:01 LQLPQGTTL N 159-167 100 
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GETALALLLL 0.38 B*40:01 GDAALALLLL N 215-224 80 

LALLLLDRL 0.29 A*02:01 LALLLLDRL N 219-227 100 

LLLDRLNQL 0.42 A*02:01 LLLDRLNQL N 222-230 100 

RLNQLESKV 0.42 A*02:01 RLNQLESKM N 226-234 89 

TKQYNVTQAF 0.29 Class I TKAYNVTQAF N 265-274 90 

GMSRIGMEV 0.42 A*02:01 GMSRIGMEV N 316-324 100 

MEVTPSGTWL 0.42 B*40:01 MEVTPSGTWL N 322-331 100 

QFKDNVILL 0.50 A*24:02 NFKDQVILL N 345-353 78 

CLDAGINYV 0.42 A*02:01 CLEASFNYL Orf 1ab 2139-2147 56 

WLMWFIISI 0.42 A*02:01 WLMWLIINL Orf 1ab 2292-2300 67 

ILLLDQVLV 0.42 A*02:01 ILLLDQALV Orf 1ab 2498-2506 89 

LLCVLAALV 0.42 A*02:01 SACVLAAEC Orf 1ab 2840-2848 56 

ALSGVFCGV 0.42 A*02:01 SLPGVFCGV Orf 1ab 2942-2950 78 

TLMNVITLV 0.42 A*02:01 TLMNVLTLV Orf 1ab 3639-3647 89 

SMWALVISV 0.42 A*02:01 SMWALIISV Orf 1ab 3661-3669 89 
a. Restrictions defined only in HLA-transgenic mice are indicated by the italicized font. 
b. S= surface glycoprotein; M=membrane protein; N=nucleocapsid phosphoprotein. 
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