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Recent advances in synthetic post-translational protein circuits are significantly impacting the
landscape of biomimicry engineering. However, designing sustained dynamic phenomena in these
circuits remains an outstanding challenge. Inspired by the KaiABC system regulating the circadian
clock in cyanobacteria, we develop two experimentally realizable post-translational oscillators. The
oscillators rely on a small number of components interacting only through reversible binding and
phosphorylation/dephosphorylation reactions.

INTRODUCTION

Protein oscillators play a major regulatory role
in organisms ranging from prokaryotes to humans.
In most biological cases, the oscillation is realized
through transcription/translation cycles. Few ex-
amples of purely post-translational oscillators have
been found in biology [1, 2]. At the same time, post-
translational protein circuits are increasingly sought
after for synthetic applications, since they have the
potential to exhibit faster response to environment
changes, allow for more direct control over the cir-
cuit behavior, be directly coupled to a functional
output, and can be employed in contexts that don’t
include the vast genetic apparatus [3–5]. While sig-
nificant recent work has enabled the design of post-
translational protein-based logic gates [4, 5], engi-
neering dynamic phenomena such as oscillations in
a post-translational context remains an outstanding
challenge [6, 7].

The best-studied example of biological post-
translational protein oscillators is the KaiABC sys-
tem in cyanobacteria [8]. By placing only the pro-
teins KaiA, KaiB, and KaiC in a test tube, along
with abundant ATP, the KaiC proteins collectively
get sequentially phosphorylated and dephosphory-
lated, forming an oscillatory cycle [9, 10]. While the
KaiC proteins generally exist in a hexameric state,
monomers are shuffled among the hexamers during
only a certain phase of the oscillatory cycle [11]. The
KaiABC system demonstrates that protein oscilla-
tors need not use transcription/translation cycles or
large numbers of components to achieve oscillatory
behavior.

Motivated by the KaiABC system, we set out to
design a protein-based oscillator that could be re-
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constituted in vitro using only a small number of
components at relatively high copy numbers, so that
any resulting oscillations are not stochastic. In order
to facilitate the future translation of this theoretical
study to an experimental system, we base the archi-
tecture of our system on biochemical constraints and
on a design space navigable through computational
protein design. We constrain the kinetic reaction
network to only include three protein species, and
only allow reversible binding and phosphorylation-
dephosphorylation enzyme reactions.

The simplest such system, a protein with one
phosphorylation site being modified by a kinase and
a phosphatase, cannot yield oscillations regardless
of parameter choices [7]. When two phosphoryla-
tion sites are included, oscillations are possible only
under the assumption that each of the four possi-
ble phosphorylation states has significantly different
rates of subsequent phosphorylations and dephos-
phorylations [7]. While biology seems to have de-
signed a system in KaiABC capable of undergoing
the many conformational changes necessary to im-
plement this form of oscillations [9], the design of
even two (let alone several) protein structures from
the same sequence remains a significant challenge for
the field of computational protein design [12].

These challenges are not unique to molecules with
two phosphorylation sites. For example, since oscil-
lations for molecules with two phosphorylation sites
are effected by enzyme sequestration [7], we con-
sider a molecule containing a single phosphorylation
site alongside a kinase- or phosphatase-sequestering
domain (or a binding domain for an external com-
pound that itself contains an enzyme-binding do-
main). Such systems are capable of producing
oscillations–but only if phosphorylation and binding
accompany a significant conformational change in
the molecule that modifies the rate constants of sub-
sequent reactions. Even assuming such a conforma-
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tional change were designed, we have found no evi-
dence of sustained oscillations in such systems within
the parameter regimes of typical binding/unbinding
rate constants and typical kinase and phosphatase
activity (i.e. the catalytic rate and Michaelis con-
stants kcat and KM , discussed further below). See
Fig. S1 for further discussion.

Systems which focus on modifications to the en-
zymes themselves are therefore more likely candi-
dates for the production of experimentally realiz-
able oscillations. Biology has found several ways
to tie phosphorylation to enzymatic activity. The
most straightforward conceptually, having the activ-
ity of an enzyme dependent on its phosphorylation
state [13] remains a challenge to implement in the
context of computational protein design [14]. How-
ever, the field has achieved remarkable success in
the design of protein-protein interactions [15] which
can be modified by phosphorylation [16, 17]. Boot-
strapping off of this success, we consider proteins
which self-assemble into multimeric functional en-
zymes, motivated in part by the success of using split
proteases to implement post-translational protein-
based logic gates [4, 5]. In our design, when the pro-
teins’ binding interfaces are phosphorylated, their
self-assembly is impededed, reducing the concentra-
tion of functional enzymes available in the system.

Here, we describe two design schema for such
self-assembly based post-translational protein oscil-
lators. Our designed oscillators include only three
protein species, and only allow reversible binding
and phosphorylation-dephosphorylation enzyme re-
actions. We first consider self-assembly into closed
symmetric homomultimers of specified size, and then
discuss a similar system of one-dimensional un-
bounded assembly (fibers). These two system are
described schematically in Fig. 1a and b respec-
tively.

RESULTS

Self-assembly based protein oscillators are able
to function within experimental constraints

The main components of our oscillators are two
proteins, which we call κ and ρ. Each individual
protein of type κ(ρ) has two complementary parts
of a split kinase(phosphatase) and a phosphoryla-
tion site. When the respective sites are dephos-
phorylated, copies of protein κ(ρ) can self-assemble
into a functional kinase(phosphatase), which we call
K(P ). Thus, self-assembled kinases inhibit the self-
assembly of new proteins while self-assembled phos-
phatases counteract the inhibition (Fig. 1c). The
resulting circuit topology (Fig. 1d) is analogous to

that used in the dual-feedback genetic oscillator [18].
We treat the self-assembled enzyme as only one func-
tional protein because the copies of the enzyme are
all colocalized. In addition to the proteins κ and ρ,
we include a constitutive phosphatase P̃ ; without it,
a stable fixed point where all proteins are phospho-
rylated can preclude oscillations.

Because we are motivated by experimental feasi-
bility, we consider only physically realizable parame-
ters for our models. Binding rates kb are typically in
the range 10−2−100 µM−1s−1 [19] with dissociation
constants kd typically in the 10−3 − 103 µM range
[20]. Both of these quantities can be tuned based
on the geometry, energy, and symmetry of the bind-
ing interface between the proteins, which we assume
here to be designed de novo. Less straightforward
to design are the Michaelis constants and catalytic
rates of the kinase and phosphatase, especially since
these depend strongly not only on the enzyme but
on the substrate. Mutational screens can be used
to adjust the parameters but predicting the effect of
a mutation on kcat or KM is highly nontrivial [21].
We were unable to find studies measuring kinase and
phosphatase rates on the same substrate. Instead,
as a standard to demonstrate physical realizability,
we consider the parameters for sample Ser/Thr en-
zymes: wildtype λ-PPase (phosphatase) acting on
pNPP (kcat = 2.0 × 103 s−1; KM = 1.0 × 104µM)
and wildtype MST4 (kinase) acting on the short
peptide chain NKGYNTLRRKK (kcat = 3.1 s−1;
KM = 14µM) [21, 22]. We assume throughout that

the constitutive phosphatase P̃ behaves identically
to the self-assembled P .

To determine if the two systems are capable
of producing oscillations within experimental con-
straints, we numerically integrated their respective
kinetic equations within the parameter ranges out-
lined above. Our results, presented in Fig. 2,
demonstrate a significant portion of parameter space
in each system capable of admitting sustained oscil-
lations. To our knowledge, these systems represent
the first synthetic frameworks for experimentally re-
alizable post-translational protein oscillators.

Bounded self-assembly can yield oscillations
whose behavior is well-predicted by simple

limits

To find how the system parameters determine the
characteristics of the oscillations, we seek simpli-
fied analytically tractable formulae that clarify the
fundamentals of the oscillations. To this end, we
consider concentrations which are low compared to
the Michaelis constants, such that the concentration
of enzymatic intermediates can be neglected. This
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FIG. 1. Model and oscillations overview. A: Bounded self-assembly (Eqn. 1). Monomers contain two halves
of a split enzyme: either kinase (red; top) or phosphatase (blue; bottom). Monomers can self-assemble into multimers
of specified size (here, tetramers are pictured, corresponding to n = m = 4). Kinase (phosphatase) multimers can
(de)phosphorylate the monomers. A constitutive phosphatase is also able to dephosphorylate the monomers (not
pictured). Phosphorylated monomers cannot participate in the self-assembly. B: Unbounded self-assembly (Eqn.
9). In this model, self-assembly of the kinase and phosphatase monomers is into unbounded fibers of arbitrary length.
In addition, we assume the final monomer of each fiber can get phosphorylated by a kinase multimer, at which point
it can no longer rejoin the fiber until it is dephosphorylated. C: Oscillation schematic. A sample oscillation of the
simplified bounded self-assembly model (Eqn. 1) using arbitrarily chosen parameters satisfying experimental con-
straints. The system starts with self-assembled kinases and phosphatases (top right). The phosphatases disassemble
much faster than the kinases, and get phosphorylated by the latter (bottom right). The kinases slowly disassemble,
enabling the gradual dephosphorylation and self-assembly of the phosphatase monomers (bottom left). Once kinase
levels fall below a critical threshold, the assembled phosphatases are able to rapidly promote their own self-assembly
through dephosphorylation faster than the kinases can disrupt it (top left). Kinase monomers are then able to
self-assemble and return the system to its initial state (top right). D: Oscillator topology. By phophorylating
monomers, kinase multimers (red; top) inhibit their own and phosphatase multimer (blue; bottom) self assembly.
Similarly, phophatase multimers counteracts this inhibition, as does constitutive phosphatase (center).

approximation, like others we will consider, is not
obeyed by all oscillating solutions found numerically
(Fig. 2) but is nonetheless useful in clarifying the
fundamentals of a large swath of the oscillations.
We find that, in contrast to well-known examples
from other systems which rely on enzyme sequestra-
tion to achieve oscillations [6, 7], neglecting enzyme
sequestration does not preclude oscillations for our
systems. In order to reduce our systems further to
only two differential equations, we assume a separa-
tion of timescales between the self-assembly and the
enzymatic activity.

For the first system we’ll describe of all-or-nothing
bounded self-assembly (Fig. 1a), we assume that
phosphorylation/dephosphorylation reactions equi-
librate much faster than self-assembly. After ac-
counting for conservation laws and the approxi-
mations described, we arrive at the following two-
dimensional system of equations:

dK

dt
= kbκ

(
κtot − nK
1 + ηκ

K
P+1

)n
− kuκK

dP

dt
= kbρ

(
ρtot −mP
1 + ηρ

K
P+1

)m
− kuρP

(1)

where we’ve normalized all concentrations (including

binding rates) by dividing by P̃ . We briefly define
the parameters: n(m) is the number of monomers in
a multimer of κ(ρ); kbκ is the binding rate for κ into
its multimeric state, kuκ is the respective unbinding
rate, and kdκ the inverse ratio of the two; ηKκ is
the specificity constant kcat/KM for the kinase K
acting on κ, ηPκ is the same for the phosphatase P ,
and ηκ = ηKκ/ηPκ; κtot is the total concentration
of monomeric κ added to the system, a conserved
quantity. Similar quantities are defined for ρ.

In order to describe the oscillatory behavior of the
system, we seek the eigenvalues of the Jacobian in
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FIG. 2. a: Bounded two-state self-assembly oscillations. Numerical integration of Eqn. S1 (Fig. 1A)
displays parameter regimes leading to oscillations within experimental constraints. Each subplot shows the location
of oscillating parameter sets as a function of kdκ and kdρ for given kbκ and kbρ; the latter two are varied for each
subplot. Aside from experimental constraints (see main text for discussion) we set n = m = 2, κtot = ρtot = 10µM,

and P̃tot = 10−4µM. Blue points denote parameter sets leading to sustained oscillations; yellow points to steady state.
Below the plot we show a few example trajectories in K − P phase space. We show that even minor variations in
parameters can yield qualitatively different dynamics. In these trajectories, the values of the concentrations and time
are omitted for clarity, but can be found in Fig. S2. b: Unbounded incremental self-assembly oscillations.
Numerical integration of Eqn. 9 (Fig. 1B) displays parameter regimes leading to oscillations within experimental
constraints. Eqn. 9 was used in place of the full system of equations (Eqn. S3) because of the infinite-dimensionality
of the latter. ρtot sets the concentration-scale.

the vicinity of a fixed point (K?, P ?). Oscillations
require coupling between the equations, motivating
the approximations that in the oscillatory regime,
ηκK

? � P ?+ 1 (and same for ηρ), κtot � nK?, and
ρtot � mP ?. The fixed point in these limits is given
by

P ?(n+1) = γ (P ? + 1)
m

K? = αP ?(n/m)
(2)

where γ and α are unitless constants defined by

γ =
kmdκ
kn+1
dρ

(
ηκ
κtot

)nm(
ρtot
ηρ

)(n+1)m

α =
k
n/m
dρ

kdκ

(
ηρκtot
ηκρtot

)n
.

(3)

We constrain ourselves to m ≤ n+1 so that within
our approximations there is no more than one phys-

ical fixed point in the system as long as P̃ > 0, sim-
plifying our analysis. (When no solutions to Eqn. 2
exist, our assumptions leading to it break down).

Sustained oscillations in the system typically cor-
respond to complex eigenvalues of the Jacobian with
positive real parts. However, following the Poincaré-
Bendixson Theorem, as long as our system has a
single fixed point, instability of the fixed point must
imply oscillations even if they are beyond the linear
regime. Translated into constraints on P ?, instabil-
ity of the fixed point gives a lower bound:

P ? >
(n+ 1)kuκ + kuρ

(m− 1)kuρ − (n+ 1)kuκ
(4)

The upper bound on P ? is given by self-
consistency with the previous assumptions we made
(those leading to Eqn. 2).

Because Equation 2 can’t be solved for P ? for
general n,m, we consider the approximation that
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FIG. 3. a: Onset of oscillations. Numerical in-
tegration demonstrates consistency with Eqn. 5 for
the appearance of oscillations in the appropriate limits.
Each point represents a random set of parameters, sam-
pled within the experimentally realizable limits as de-
scribed in the main text, with n = m = 2. Oscillating
(blue) and non-oscillating (yellow) parameter sets can be
well-separated by unitless combinations of parameters.
Dashed lines show where the unitless parameters on the
axes equal unity. b: Oscillation frequency. Numer-
ical integration demonstrates Eqn. 6 correctly predicts
the frequency of oscillations in the linear regime around
the fixed point (dashed line represents ω2 = ω2

pred), but
is not predictive outside this regime.

P ? = γ1/(n+1−m) � 1, equivalent within the con-
straint m < n + 1 to γ � 1. This approximation
is most accurate for small values of m, since fewer
terms are neglected. The approximation is moti-
vated by the intuition that oscillations require P to
be non-negligible compared to P̃ ; indeed, an oppo-
site self-consistent solution, in which P ? � 1, is in-
compatible with oscillations.

In this limit, oscillations can be found when

ν ≡ (m− 1)kuρ
(n+ 1)kuκ

> 1. (5)

We verify that the approximate formula given by
Equation 5 is valid in describing Eqn. 1 by com-
paring it to oscillations found by random parame-
ter searches in panel a of Fig. 3. We numerically

integrate the unitful version of Eqn. 1 with ran-
dom parameters chosen to satisfy the experimental
constraints described previously (including setting
ηκ = ηρ) and with n = m = 2. We constrain con-
centrations κtot and ρtot to be within 10−3−102µM,
while we set the bounds of P̃ to 10−8 − 10−2µM.
For each parameter set, we numerically estimate
the fixed point using Python’s scipy.optimize.root
function. We only show parameter sets estimated
to agree with the approximations described before
Eqn. 2 (with > 5× substituted for �). We found
no oscillations in ∼ 2.5 × 104 parameter sets which
violate any of these assumptions (e.g. for which
ηKK

? < P ? + 1). Each blue (yellow) point in the
figure corresponds to a single parameter set found to
produce (not produce) oscillations starting from ini-
tial conditions of (K,P ) = (0, 0). Oscillations are al-
most exclusively found in the quadrant γ > 1, ν > 1.
Values of γ slightly less than unity are also found to
produce oscillations, as shown in the figure.

In contrast to intuition from other systems which
signifies that higher order nonlinearities increase the
parameter range producing oscillations [6], here we
found that more non-linear self-assembly (i.e. higher
values of n and m) makes oscillations less frequent.

We next seek to predict how system parameters
tune the frequency of resulting oscillations when
they appear. Within the linear regime around the
fixed point, in the limit of Eqn. 5, the frequency of
oscillations ω is predicted to be

ω2
pred = − 1

4
[(n+ 1)kuκ + (m− 1) kuρ]

2

+ nmkuκkuρ.
(6)

We compare Eqn. 6 to the true squared fre-
quency for those parameter sets found to produce
oscillations through numerical integration in panel
b of Fig. 3. We make no constraints on the fixed
points of the parameter sets considered here. The
x-axis shows the predicted squared frequency while
the y-axis shows the true squared frequency. For
ω2
pred > 0, the two formulae agree (dashed line).

For ω2
pred < 0, ω2

pred is no longer predictive since
the oscillations cannot be understood through lin-
ear stability analysis of the fixed point. Oscillations
found within experimental constraints for Eqn. 1
have periods ranging from fractions of a second to
> 1 day (Fig. S3). For oscillations found for the full
system of equations plotted in Fig. 2a, we find pe-
riods within a slightly more constrained range than
for the simplified system but still spanning orders of
magnitude, between ∼ 1 minute and > 1 day (not
shown).
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Unbounded self-assembly can yield oscillations
within experimental constraints in an opposite

limit

We next consider the second system in which in-
dividual species κ and ρ can self-assemble incremen-
tally into one-dimensional unbounded fibers (Fig.
1b). While in the previous system, no phosphory-
lation sites are accessible in the multimeric state, in
this system, one is (corresponding to the final pro-
tein in the fiber). An n-mer of species X, Xn, can
be created either from binding two smaller molecules
Xm and Xn−m, or from the spontaneous breaking of
a bond of a larger molecule. A molecule of Xn can
be destroyed either by binding to any other molecule
or breaking any of its n − 1 bonds. The equations
for self-assembly of species X are therefore given by

dXn

dt
= kbX

(
n−1∑
m=1

XmXn−m − 2Xn

∞∑
m=1

Xm

)

+ kuX

(
2

∞∑
m=n+1

Xm − (n− 1)Xn

) (7)

As in the first system, each protein of type κ(ρ) in-
cludes a split kinase(phosphatase). We assume when
a multimer is phosphorylated its final monomer dis-
sociates from the fiber and cannot reassociate in its
phosphorylated state. A less stringent assumption,
that the phosphorylated monomer doesn’t dissociate
automatically but merely prevents new monomers
from binding to that end of the molecule, appears
to be incompatible with oscillations, at least in both
separation-of-timescales limits.

While the limit considered for the first system, of
fast phosphorylation/dephosphorylation compared
to self-assembly, is no longer applicable for this sys-
tem, we find oscillations in the opposite limit, of
fast self-assembly compared to enzymatic activity.
At steady-state, Xn is given by:

Xn =
kuX
kbX

(
x

1 + x+
√

1 + 2x

)n
(8)

where x = 2kbXXtot/kuX = 2Xtot/kdX . The same
steady state is reached even if self-assembly involves
binding and unbinding only a single monomer at a
time.

The concentrations of phosphorylated monomers
as a function of time are given by κp and ρp. The
total amount of kinase present is given by K =∑∞
i=2 κi, and similarly for phosphatase. Since only

the phosphorylation site of the final monomer in a
multimer is exposed, the total number of available
phosphorylation sites in the κ species is given by

∑∞
i=1 κi (and similarly for ρ). After neglecting inter-

mediates as previously, the system can be described
by two differential equations for k = 2(κtot−κp)/kdκ
and p = 2(ρtot− ρp)/kdρ (as in Eqn. 1 we normalize

concentrations by P̃ ):

dk

dt
=

−2ηKκk

1 +
√

1 + 2k
K + ηPκ

(
2κtot
kdκ

− k
)

(P + 1)

dp

dt
=

−2ηKρp

1 +
√

1 + 2p
K + ηPρ

(
2ρtot
kdρ

− p
)

(P + 1)

K = kdκ
k2

(1 +
√

1 + 2k)(1 + k +
√

1 + 2k)

P = kdρ
p2

(1 +
√

1 + 2p)(1 + p+
√

1 + 2p)
.

(9)
Unlike in the previous system for which the fre-

quency and onset of oscillations can be determined
by simple formulae by taking a limit of the two-
dimensional system, no such limits give similarly
straightforward results for Eqn. 9. Instead, we an-
alyze Eqn. 9 through random parameter searches
(Fig. 2b). We chose to analyze this two-dimensional
system directly rather than the full equations (Eqn.
S3) because of the infinite-dimensionality of the lat-
ter. As shown in the figure, we find that increased
values of κtot/ρtot and decreased values of P̃tot/ρtot
lead to more robust oscillations in this system. The
periods of oscillations found ranged from < 1 minute
to > 1 day (Fig. S3).

DISCUSSION

In summary, we have presented two post-
translational protein-based oscillators motivated by
the biological KaiABC system. Both systems we
present rely on split kinase and phosphatase self-
assembling to form functional enzymes, and on that
self-assembly being inhibited by phosphorylation of
the split monomers. The two systems differ mainly
in the nature of the self-assembly as all-or-nothing
into bounded structures of specified size or incre-
mental into unbounded one-dimensional fibers.

Both systems are capable of producing os-
cillations within experimental constraints, using
experimentally-determined wildtype values for ki-
nase and phosphatase activity and for a range of de-
signed self-assembly rates. We have shown that nei-
ther complex reactions nor large number of species
are necessary to achieve oscillations: both networks
we present use only three protein species interact-
ing only through reversible binding and phosphory-
lation/dephosphorylation reactions, and the result-
ing oscillations can be understood as arising from a
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minimal system of two differential equations in both
cases. Although the systems we described shared
much in common, they only produced oscillations in
limits which precluded oscillations in the other sys-
tem: the first oscillates when self-assembly is much
slower than enzymatic reactions; the second when it
is much faster.

Our work paves the way towards the rational de-
sign and experimental realization of protein-based
far-from-equilibrium dynamic systems. The models
described here were designed to be feasible to synthe-
size experimentally, and are guiding an implementa-
tion in the test tube that is currently underway.
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SUPPLEMENTARY MATERIAL

Full kinetic equations

We denote the concentration of phosphorylated (monomeric) κ by κp (and similarly for ρ). The concentra-
tion of the enzyme-substrate complex comprised of κ and K bound is denoted κ ·K. Binding, unbinding, and
catalytic rate constants for the enzyme-substrate complexes are given by kbKκ, kuKκ, and kcKκ, respectively.
We use similar conventions for all other enzyme-substrate complexes. The full equations for the first system
are:

dκ

dt
= − n(kbκκ

n + kuκK)− kbKκκK + kuKκκ ·K + kcPκ(κp · P + κp · P̃ )

dρ

dt
= −m(kbρρ

m + kuρP )− kbKρρK + kuKρρ ·K + kcPρ(ρ
p · P + ρp · P̃ )

dK

dt
= kbκκ

n − kuκK − kbKκκK + (kuKκ + kcKκ)κ ·K − kbKρρK + (kuKρ + kcKρ)ρ ·K

dP

dt
= kbρρ

m − kuρP − kbPκκpP + (kuPκ + kcPκ)κp · P − kbPρρpP + (kuPρ + kcPρ)ρ · P

dκp

dt
= − kbPκκp(P + P̃ ) + kuPκ(κp · P + κp · P̃ ) + kcKκκ ·K

dρp

dt
= − kbPρρp(P + P̃ ) + kuPρ(ρ

p · P + ρp · P̃ ) + kcKρρ ·K

dκ ·K
dt

= kbKκκK − (kuKκ + kcKκ)κ ·K

dρ ·K
dt

= kbKρρK − (kuKρ + kcKρ)ρ ·K

dκp · P
dt

= kbPκκ
pP − (kuPκ + kcPκ)κp · P

dρp · P
dt

= kbPρρ
pP − (kuPρ + kcPρ)ρ

p · P

dκp · P̃
dt

= kbPκκ
pP̃ − (kuPκ + kcPκ)κp · P̃

dρp · P̃
dt

= kbPρρ
pP̃ − (kuPρ + kcPρ)ρ

p · P̃

dP̃

dt
= − kbPκκpP̃ + (kuPκ + kcPκ)κp · P̃ − kbPρρpP̃ + (kuPρ + kcPρ)ρ · P̃ .

(S1)

Making only the Michaelis-Menten approximation for enzymatic reactions and accounting for conservation
laws, the equations can be reduced to the following four-dimensional system of equations:

dK

dt
= kbκκ

n − kuκK

dP

dt
= kbρρ

m − kuρP

dκ

dt
= − n(kbκκ

n + kuκK)− ηKκκK + ηPκκ
p(P + P̃ )

dρ

dt
= −m(kbρρ

m − kuρP )− ηKρρK + ηPρρ
p(P + P̃ )

κtot = κ+ κp + nK + (n+ 1)
κK

KMKκ

+
κp(P + P̃ )

KMPκ

+ n
ρK

KMKρ

ρtot = ρ+ ρp +mP +
ρK

KMKρ

+ (m+ 1)
ρpP

KMPρ

+
ρpP̃

KMPρ

+m
κpP

KMPκ

(S2)
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The full equations describing the second system are:

dκn
dt

= kbκ

(
n−1∑
m=1

κmκn−m − 2κn

∞∑
m=1

κm

)
+ kuκ

(
2

∞∑
m=n+1

κm − (n− 1)κn

)

+
∞∑
m=2

(kcKκκn+1 · κm − kbKκκnκm + kuKκκn · κm) + δn,1kcPκ

(
κp · P̃ +

∞∑
m=2

κp · ρm

)
dρn
dt

= kbρ

(
n−1∑
m=1

ρmρn−m − 2ρn

∞∑
m=1

ρm

)
+ kuρ

(
2

∞∑
m=n+1

ρm − (n− 1)ρn

)

+
∞∑
m=2

(kcKρρn+1 · κm − kbKρρnκm + kuKρρn · κm) + δn,1kcPρ

(
ρp · P̃ +

∞∑
m=2

ρp · ρm

)
dP̃

dt
= − kbPκκpP̃ + (kuPκ + kcPκ)κp · P̃ − kbPρρpP̃ + (kuPρ + kcPρ)ρ

p · P̃

dκp

dt
= kcKκ

∞∑
n=1

∞∑
m=2

κn · κm − kbPκκp
(
P̃ +

∞∑
m=2

ρm

)
+ kuPκ

(
κp · P̃ +

∞∑
m=2

κp · ρm

)
dρp

dt
= kcKρ

∞∑
n=1

∞∑
m=2

ρn · κm − kbPρρp
(
P̃ +

∞∑
m=2

ρm

)
+ kuPρ

(
ρp · P̃ +

∞∑
m=2

ρp · ρm

)
dκn · κm

dt
= kbKκκnκm − (kuKκ + kcKκ)κn · κm

dρn · κm
dt

= kbKκκnκm − (kuKκ + kcKκ)κn · κm
dκp · ρm

dt
= kbPκκ

pρm − (kuPκ + kcPκ)κp · ρm

dκp · P̃
dt

= kbPκκ
pP̃ − (kuPκ + kcPκ)κp · P̃

dρp · ρm
dt

= kbPρρ
pρm − (kuPρ + kcPρ)ρ

p · ρm

dρp · P̃
dt

= kbPρρ
pP̃ − (kuPρ + kcPρ)ρ

p · P̃ .

(S3)

Within the Michaelis-Menten approximation and after accounting for conservation laws, these equations
become:

dκn
dt

= kbκ

(
n−1∑
m=1

κmκn−m − 2κn

∞∑
m=1

κm

)
+ kuκ

(
2

∞∑
m=n+1

κm − (n− 1)κn

)
+ ηKκ(κn+1 − κn)K + δn,1ηPκκ

p(P + P̃ )

dρn
dt

= kbρ

(
n−1∑
m=1

ρmρn−m − 2ρn

∞∑
m=1

ρm

)
+ kuρ

(
2

∞∑
m=n+1

ρm − (n− 1)ρn

)
+ ηKρ(ρn+1 − ρn)K + δn,1ηPρρ

p(P + P̃ )

K =
∞∑
n=2

κn; P =
∞∑
n=2

ρn

κtot = κp +
∞∑
n=1

nκn +
∞∑
n=2

κn

∞∑
m=1

(
(n+m)κm
KMKκ

+
nρm
KMKρ

) +
κp(P + P̃ )

KMPκ

ρtot = ρp +
∞∑
n=1

nρn +
∞∑
n=2

κn

∞∑
m=1

mρm
KMKρ

+
∞∑
n=2

ρn(
nκp

KMPκ

+
(n+ 1)ρp

KMPρ

) +
ρpP̃

KMPρ

.

(S4)
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FIG. S1. Reaction networks giving oscillations outside of experimentally realizable regime. See text for
discussion.

In order to arrive at Eqn. 9, we assume a separation of timescales between the self-assembly and the
enzymatic activity. In particular, we assume that self-assembly reactions equilibrate much faster than phos-
phorylation/dephosphorylation; the opposite limit does not seem to allow oscillations. We can then write
the dynamics of the system only in terms of the phosphorylated monomers κp and ρp.

dκp

dt
= ηKκ

∞∑
n=1

κnK − ηPκκp(P + P̃ )

dρp

dt
= ηKρ

∞∑
n=1

ρnK − ηPρρp(P + P̃ )

(S5)

where K and P are as defined in Eqn. 9. Writing these equations in terms of k and p and normalizing
concentrations by P̃ , we arrive at Eqn. 9.

Other oscillation schemes attempted

Before trying self-assembly based oscillations, we tried implementing oscillations based on phosphorylations
or binding events accompanying a conformational change in the molecule. Such conformational changes can
be difficult to design, but the recently-published LOCKR system [23, 24] demonstrates one way in which
binding can accompany a conformational change. We considered a molecule A which can be phosphorylated
or bind to another molecule. We assume that when it is bound or phosphorylated, the molecule undergoes a
conformational change; in the language of the LOCKR system, it opens. We assume that the rate of binding
of any molecule to the closed state A? can be smaller than the analogous binding rate to the open state, but
no other asymmetries between the rates of analogous reactions are allowed. We did not make simplifying
assumptions such as the Michaelis-Menten approximation when considering these systems.

We found oscillations are possible if A can bind, and thus sequester, free kinases (Fig. S1a). Oscillations
are also possible if A can bind a separate “key” peptide b, which itself either binds free kinase (K) or
phosphatase (P ) molecules. Finally, oscillations can also be found if b, either alongside or instead of binding
kinase or phosphatase, can itself get phosphorylated. We assume phosphorylated b is inert, except in that
it can interact with phosphatase to get dephosphorylated (Fig. S1b). However, we found no evidence of
possible oscillations within the experimental limits considered in this paper, after trying for each network
2× 106 random parameter sets logarithmically distributed within the acceptable ranges.

Numerical search for oscillations

In order to determine if a parameter set leads to oscillations, we numerically integrated the dif-
ferential equations. For bounded self-assembly, we used initial conditions of (K,P ) = (0, 0),
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and for unbounded, (k, p) = (2κtot

kdκ
, 2ρtotkdρ

). We integrated up to a time determined by the in-

verse of the minimum timescale in the system. For bounded self-assembly, we integrated up
to a time tmax = 103/min

(
kuκ, kuρ, kbκκ

n−1
tot , kbρρ

m−1
tot

)
, while for unbounded, we used tmax =

107/min (ηKκκtot, ηKρκtot, ηPκρtot, ηPρρtot). For the full system of equations for bounded self-assembly,

we used initial conditions corresponding to fully unphosphorylated and unbound κ, ρ, and P̃ , and integrated

up to tmax = 104/min
(
kuκ, kuρ, kbκκ

n−1
tot , kbρρ

m−1
tot , kcKκ, kcPκ, kcKρ, kcPρ, kbKκκtot, kbPκP̃tot

)
. We set the

enzyme dissociation constants kuKκ, kuPκ, kuKρ, kuPκ equal to their respective catalytic rate constants,
since the former are largely unspecified by constraints on binding rates and Michaelis constants. Our results
are largely insensitive to this assumption. In all cases, the prefactors for tmax were determined by applying
an order of magnitude larger prefactor and finding no new oscillating solutions.

To determine if the results of the numerical integration can be labeled as oscillations, we used a set of
heuristics. We verified these heuristics by plotting solutions found by them to produce oscillations and
finding no evidence of false positives. These heuristics considered the behavior of a single system component
(e.g. K for bounded self-assembly). First, we determined whether the number of inflection points in the
solution is greater than 10. Second, to weed out decaying oscillations, whether the smallest amount by which
the component changed between inflection points and the amount it changed between an arbitrarily chosen
set of inflection points (between the fifth and sixth) is within 2×. Also to weed out decaying oscillations,
we measured the amount the component changed between a set of inflection points around the 3tmax/4
mark–let’s call this amount x3/4–and between the penultimate and final inflection point, x1. We verified
that |(x3/4−x1)/x1| < 1, meaning that the relative change in oscillating height was no more than 100%. We
also considered whether the solver required sampling points at a significant frequency (to weed out numerical
oscillations): we used the criterion that the third-to-last sampled time point was within 5% of the second-to-
last sampled time point. To further root out spurious numerical oscillations we measured the period of the
oscillation in two ways–as the time between the third-to-last and last inflection point, and as between the
fifth-to-last and third-to-last–and verified that they differed by no more than 1%. Finally, we examined the
numerical solution by eye for all parameter sets found to produce oscillations, in order to verify that even
if our heuristics produce false negatives (of which we have found almost no evidence) our results contain no
false positives.
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FIG. S2. Example trajectories. Trajectories displayed in Fig. 2 are shown. We show the parameters used for
each trajectory, the values of K and P along the trajectory, and time along the trajectory. For trajectories showing
sustained oscillations (all but the lower left) one oscillation cycle is shown.

FIG. S3. Oscillation periods. Random parameters logarithmically distributed within the experimental regime were
sampled for Eqns. 1 (bounded self-assembly; blue) and 9 (unbounded self-assembly; orange). The periods of resulting
oscillations are histogrammed logarithmically, showing a possible range of periods spanning orders of magnitude, from
fractions of a second (minute) for bounded (unbounded) self-assembly, to > 1 day.
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