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Abstract 12 

Infectious diseases are one of the most important constraints to livestock agriculture, and 13 

hence food, nutritional and economic security in developing countries. In any livestock system, 14 

the movement of animals is key to production and sustainability. This is especially true in 15 

pastoralist systems where animal movement occurs for a myriad of social, ecological, economic 16 

and management reasons. Understanding the dynamics of livestock movement within an 17 

ecosystem is important for disease surveillance and control, yet there is limited data available on 18 

the dynamics of animal movement in such populations. The aim of this study was to investigate 19 

animal transfer networks in a pastoralist community in Kenya, and assess network-based strategies 20 

for disease control. We used network analysis to characterize five types of animal transfer 21 

networks and evaluated implications of these networks for disease control through quantifying 22 

topological changes in the network because of targeted or random removal of nodes. To construct 23 
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these networks, data were collected using a standardized questionnaire (N=164 households) from 24 

communities living within the Maasai Mara Ecosystem in southwestern Kenya. The median 25 

livestock movement distance for agistment (dry season grazing) was 39.49 kilometers (22.03-26 

63.49 km), while that for gift, bride price, buying and selling were 13.97 km (0-40.30 km), 30.75 27 

km (10.02-66.03 km), 31.14 km (17.56-59.08 km), and 33.21 km (17.78-58.49 km), respectively. 28 

Our analyses show that the Maasai Mara National Reserve, a protected area, was critical for 29 

maintaining connectivity in the agistment network. In addition, villages closer to the Maasai Mara 30 

National Reserve were regularly used for dry season grazing.  In terms of disease control, targeted 31 

removal of highly connected village nodes was more effective at fragmenting each network than 32 

random removal of nodes, indicating that network-based targeting of interventions such as 33 

vaccination could potentially disrupt transmission pathways and reduce pathogen circulation in the 34 

ecosystem. In conclusion, this work shows that animal movements have the potential to shape 35 

patterns of disease transmission and control in this ecosystem.  Further, we show that targeted 36 

control is a more practical and efficient measure for disease control.  37 

Keywords: Maasai Mara, Network analysis, Disease control, Animal transfer, Fragmentation 38 

index, Pastoralist Mobility 39 

 40 

 41 

Introduction 42 

Rangeland ecosystems in Africa, defined as areas  of natural or semi-natural vegetation in 43 

arid or semi-arid climates,  host large numbers of wildlife, livestock, and marginalized pastoralist 44 

populations (Homewood, 2004; Le Houerou, 2012).  Low rainfall and seasonally heterogeneous 45 

resources characterize such areas, which necessitates human and livestock mobility to utilize 46 
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spatiotemporally distributed resources (Swallow, 1994; Butt, 2010; Goldman and Riosmena, 2013; 47 

Turner and Schlecht, 2019). However, animal movements have been shown to impact disease 48 

patterns (Fevre et al., 2006; Altizer et al., 2011), especially among pastoral communities (Rajeev 49 

et al., 2017; Sintayehu et al., 2017; VanderWaal et al., 2017), where losses emanating from 50 

livestock diseases affect livelihoods, and their control has the potential to enhance household 51 

productivity and health outcomes (Marsh et al., 2016). Rangeland systems are especially at high 52 

risk for pathogen introduction and spread because grazing livestock interact with both wildlife and 53 

other livestock directly and indirectly through shared forage and water resources (Rajeev et al., 54 

2017). Thus, control of infectious diseases in livestock systems requires an understanding of 55 

interaction not only between herds but also in different locations (Bastos et al., 2000; Fevre et al., 56 

2006; zu Dohna et al., 2014; Machado et al., 2019; Omondi et al., 2019). 57 

Patterns of contact between livestock herds influences the spread of infectious pathogens 58 

(Fevre et al., 2006) and thus can be used to characterize epidemiological dynamics (Kao et al., 59 

2006; VanderWaal et al., 2016; VanderWaal et al., 2017) and develop targeted surveillance and 60 

control strategies (Bajardi et al., 2012; Frossling et al., 2014; Ribeiro-Lima et al., 2015). Herds 61 

with high rates of between-herd contacts have a higher risk of acquiring infections (VanderWaal 62 

et al., 2017). In addition, infections often propagate from a small number of actors (Woolhouse et 63 

al., 1997; Volkova et al., 2010), with so-called “super-spreaders” disproportionately contributing 64 

to transmission events (Lloyd-Smith et al., 2005). Thus, characterizing the underlying architecture 65 

of contact patterns within a population can help elucidate important drivers and pathways for 66 

disease transmission as well as critical points for surveillance and control (Bajardi et al., 2012; 67 

VanderWaal et al., 2016). 68 
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Pastoralists have adopted a strategy of complex livestock movement to maximize the 69 

utilization of seasonally available resources, leading to complex heterogeneous contact patterns 70 

and variability in disease outcomes (Dejene et al., 2016; Rajeev et al., 2017; Sintayehu et al., 2017; 71 

Turner and Schlecht, 2019). In such communities, livestock movement data is seldom available, 72 

and thus contact is difficult to characterize. Several studies have attempted to model livestock 73 

movement by analyzing sales records (Chaters et al., 2019), animal transaction records combined 74 

with questionnaire surveys (Motta et al., 2017), census of migrating pastoralists (Pomeroy et al., 75 

2019), Global Positioning System data loggers (VanderWaal et al., 2017), and ego-based 76 

approaches (Bronsvoort et al., 2004). However, none of the methods above captures the diversity 77 

of social drivers behind movements within pastoral cultural systems. For instance, in addition to 78 

buying and selling, Maasai pastoralists move animals, with or without the transfer of ownership, 79 

for instance for bride price payments, lending of animals between friends and families, gifts, and 80 

for seasonal access to pasture and water (Perlov, 1987 in (Aktipis et al., 2016). In pastoralist 81 

populations, moving or sharing animals is both a survival strategy, a relationship building exercise, 82 

and often a method of risk pooling (Aktipis et al., 2011; Aktipis et al., 2016). Pastoralists 83 

communities are known to use gifts of livestock as a means to build and enhance relationships (de 84 

Vries et al., 2006). The role that such livestock movements play in disease dissemination is seldom 85 

evaluated, but may be key to maximizing productivity of this management system (Sintayehu et 86 

al., 2017).  87 

Designing control strategies is complex, and traditional epidemiological approaches often 88 

fail to capture the dynamic, non-linear, and interconnected nature of pastoral systems (Benham-89 

Hutchins and Clancy, 2010). To further our understanding of cattle-associated movement 90 

dynamics, graph theory can be used to quantify within- and- between village movements such that 91 
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household actions, for instance buying/selling, connect different villages. Such between-village 92 

connections are expected to be important when developing disease surveillance and intervention 93 

strategies (Watts, 1987; Woolhouse et al., 1997; Sintayehu et al., 2017; Ahmed et al., 2018; Russell 94 

et al., 2018). In graph theory, networks are used to characterize interacting systems in which nodes 95 

(here defined as households or villages) are inter-connected through edges (here defined as 96 

movements (Craft and Caillaud, 2011; Danon et al., 2011; Silk et al., 2017; Sintayehu et al., 2017; 97 

Balasubramaniam et al., 2018; Ogola et al., 2018). In our study, a network edge is a potential route 98 

for transmission of pathogens between households through the movement of animals. Using 99 

network analysis, we can calculate centrality metrics to evaluate the importance of a node in 100 

connecting the network, investigate the propagation of a hypothetical disease, and assess the 101 

potential for targeted surveillance or control if a node is removed - a measure equivalent to 102 

vaccination or depopulation (Martinez-Lopez et al., 2009; Kinsley et al., 2019; Yang et al., 2019). 103 

In this study, our objective was to use network analysis to characterize different types of animal 104 

movement, and evaluate their potential role in disease transmission and control in a pastoralist 105 

community in Kenya. We hypothesized that villages proximal to Maasai Mara National Reserve 106 

will play an important role in the connectivity of the ecosystem, as measured by their centrality 107 

metrics, and that targeted control measures aimed at villages with the most connections will be 108 

more efficient at fragmenting the connectivity of the network than a non-targeted approach. This 109 

study advances our understanding of the movement dynamics of livestock within a pastoralist 110 

community characterized by variable animal transfer pathways and their role in network-based 111 

interventions for livestock disease surveillance and control.  112 

Material and Methods 113 
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Study site: This study examined the dynamics of livestock movement in pastoralist 114 

communities living within the Maasai Mara Ecosystem (MME) (Figure 1). MME is located in 115 

southwestern Kenya, and encompasses the 1,530 km2 MMNR, within which livestock grazing is 116 

banned and adjoining pastoral ranches where communal settlements, livestock grazing, and 117 

tourism are permitted (Bhola et al., 2012). The livestock movement dynamics of the communities 118 

in this ecosystem are driven by the Maasai Mara National Reserve (MMNR) due to the availability 119 

of forage within this wildlife conservation area during the dry season (Reid et al., 2003; Butt et al., 120 

2009). Rainfall in this ecosystem is largely bimodal, varying from 500 mm in the southeast to 1300 121 

mm in the northwest (Bartzke et al., 2018). These factors combine to create spatiotemporal 122 

heterogeneity in water and forage distribution, which influences wild herbivores and domestic 123 

stock movement within the ecosystem. This ecosystem is located within the larger Narok County, 124 

which is a 17,953 km2 area with more than one million cattle, 2.3 million sheep and goats, and a 125 

human population that is largely rural (KNBS, 2010).  126 

 127 

 128 

Figure 1: Map of the Maasai Mara Ecosystem. A. Map of Kenya with Narok County in red; B. 129 
Unique villages sampled in this study; C. Map of Narok County with households sampled marked 130 
in purple, dotted square represents an area equivalent to B. 131 

 132 
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Data collection 133 

This research is part of a larger study aimed at understanding zoonotic disease occurrence 134 

in the Maasai Mara Ecosystem, with all sampling conducted between November 2017 and June 135 

2019. We defined households as persons living within an abode for a period of one month prior to 136 

the sampling, and herds as groups of cattle, sheep and goats, and any other domestic stock owned 137 

by the respondent. We purposively sampled one hundred and sixty four households, targeting those 138 

within 20 kilometers of the Maasai Mara National Reserve. Pastoral cattle tend to move longer 139 

daily distances than small stock, with an average of 2-9 kilometers being the norm for grazing 140 

(Turner and Schlecht, 2019). For longer-term migration, or “travel mobility,” in pastoralist 141 

systems, the average distance moved ranges from 47-170 kilometers (Turner and Schlecht, 2019), 142 

with the wide variation indicative of an individual household’s cost-benefit valuation of the move.  143 

For this study, we defined five animal transfer pathways identified from an initial scoping 144 

survey in the ecosystem; agistment (defined as the temporary re-location of animals to access 145 

forage and water in other locations during the dry season, usually lasting 2-3 months, while 146 

maintaining a household in a single village), gift, bride price, buying, and selling. We interviewed 147 

a household respondent using a structured questionnaire, in which the respondent was asked to 148 

identify villages (by common name) from which they either sent or received animals through any 149 

of the aforementioned pathways over the last five years. The respondents were requested to name 150 

villages rather than specific household due to the logistical constraints of collecting locational data 151 

on households named by respondents. For each household interviewed and village named, 152 

locational data was recorded using a handheld Global Positioning System; a centroid was 153 

calculated to represent the location of villages in which multiple household locations were 154 

recorded. The University of Minnesota IRB (STUDY00000837), Kenya Wildlife Service 155 
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(KWS/BRM/5001), and the Narok County government (NCG/HEALTH/GEN/VOL.1/2) 156 

authorized this study. 157 

  158 

Data analysis 159 

Network construction: In graph theory, nodes can be partitioned into k independent sets or groups. 160 

A network with k ≥ 3 is a multipartite network, whereas those with one or two independent sets or 161 

groups are unipartite and bipartite networks, respectively (Jacoby and Freeman, 2016). We 162 

constructed a household-village bipartite network, where households are linked to villages to 163 

which they received or moved animals. In this study, a separate bipartite network was constructed 164 

for each type of contact. In a bipartite network B = {U, V, E}, where U and V are the disjoint set 165 

of nodes representing households and villages, respectively, and E is the linkage between nodes, 166 

such as E = {(u, v): u ∈ U, v ∈ V}. In this network, nodes in U can only connect to nodes in V, and 167 

no connections among nodes of the same type exist (Banerjee et al., 2017). This representation of 168 

contact is appropriate for the method by which data were collected for this project (households 169 

were asked about movements of animals to different villages). These data can be represented by 170 

an unweighted biadjacency matrix B= {U, V, E}, which is a (0, 1) matrix of size |U|×|V|; Buv =1 if 171 

there is an edge between u and v, or Buv = 0 when there is none. Thus, households are connected 172 

to other households indirectly based on villages to which they had common connections. In this 173 

sense, each set of nodes (villages and households) have independent properties that we can 174 

estimate to evaluate the roles played by each set. These properties will be evaluated at two levels, 175 

first, a household’s role within the network, and secondly the villages’ role in the network.  176 

 177 
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Network metrics: At the node-level, we calculated two centrality metrics: degree and betweenness. 178 

We also summarized the density and fragmentation index of the network as a whole (Table 1), and 179 

visualized network topology. All analysis were conducted using the igraph package (Csardi, 180 

2013). 181 

 182 

 183 

Table 1: Definition of network metrics 184 

 185 

 186 

Implications of node removal: We used two approaches for node removal, random and targeted. 187 

In random removal, we selected any 2, 5, or 10 nodes at random, calculated network-level metrics 188 

before and after removal, and repeated this process for 1,000 iterations to generate an expected 189 

distribution. For targeted removal, we selected top 2, 5, and 10 nodes based on degree, and 190 

recalculated the network-level metrics before and after removal (Albert et al., 2000; Holme et al., 191 

2002; Chen et al., 2007). We quantified the topological impact of removing nodes using the 192 

fragmentation index, F, which is the proportion of non-connected pairs of nodes in the network. F 193 

= 0 would represent a fully-connected,  non-fragmented network in which all pairs of nodes are 194 

Node-level Metrics Citation 
Degree Total number of unique nodes that sent or received an 

animal to/from a particular node. 
(Wasserman and 
Faust, 1994) 

Betweenness Number of times a node is located on the shortest path 
between any two pairs of nodes within the observed 
network 

(Wasserman and 
Faust, 1994) 

Network-level Metrics 
Density Number of observed contacts in the network relative to all 

possible contacts. 
(Wasserman and 
Faust, 1994) 

Fragmentation 
index 

Proportion of pairs of nodes that are disconnected (no 
paths exist connecting them) in the network. 

(Chen et al., 
2007) 
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connected through paths in the network, and F = 1 would represent a fully fragmented network 195 

where every node is isolated (Borgatti, 2006; Chen et al., 2007).  196 

 197 

Results 198 

We sampled 164 households in 67 unique villages (Figure 1 B) across the Maasai Mara Ecosystem, 199 

with 30% of the respondents being female (50/164), 70% male (114/164), and the median length 200 

of time they had lived in the area being 8 years (4 -100 years). Of the respondents interviewed, 201 

99% identified as pastoralists, though 12% also reported formal employment, and 4% were 202 

merchants involved in various trades.    203 

Network metrics and visualization: Five animal movement ‘reasons’ were examined; agistment, 204 

bride price, gift, buying, selling. The median livestock movement distance for agistment was 39.49 205 

kilometers (22.03-63.49 km), while that for gift, bride price, buying, and selling were 13.97 km 206 

(0-40.30 km), 30.75 km (10.02-66.03 km), 31.14 km (17.56-59.08 km), and 33.21 km (17.78-207 

58.49 km), respectively. For agistment, gift, bride price, buying and selling networks, network 208 

densities were 0.0038, 0.0023, 0.0022, 0.0082, and 0.0056, respectively. In addition, we 209 

summarized the degree of the villages and the households in our networks separately. The median 210 

household degrees in agistment, gift, bride price, buying and selling network node degrees were 2 211 

(interquartile range: 1-2), 1 (0-1), 1 (1-2), 2 (1-3), and 2 (1-3), respectively. We report the median 212 

degree for households only, as the interpretation of degree for villages is less straight forward 213 

because some villages were identified by a respondent but not sampled during questionnaire 214 

interviews. With that caveat, seven villages were shown to be important across all networks. These 215 

included Sekenani, Talek, Ololaimutia, Nkineji, Olesere, Nkoilale and Naikara (Table 2). Of the 216 
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villages evaluated, Maasai Mara National Reserve (though technically not a village) had the 217 

highest degree and betweenness for agistment (Table 2).  218 

 219 

Figure 2: Agistment Network: Bipartite network of agistment locations within the Maasai Mara 220 
ecosystem, with node sizes scaled by degree. Purple nodes are villages, while pale violet nodes are 221 
households. 222 
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 224 

Figure 3: Gift Network: Bipartite network of gift locations within the Maasai Mara ecosystem, 225 
with node sizes scaled by degree.  Purple nodes are villages, while pale violet nodes are 226 
households. 227 
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 228 

Figure 4: Buying Network: Bipartite network of major buying locations within the Maasai Mara 229 
ecosystem, with node sizes scaled by degree. Purple nodes are villages, while pale violet nodes are 230 
households. 231 
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fragmentation than random removal of nodes; the fragmentation indices for the targeted removals 239 

always exceeded the upper bounds of the 95% interval that was achieved through random 240 

removals. This result was consistent regardless of whether the top 2, 5, or 10 nodes  with highest 241 

degree were removed (Table 2). The biggest change in fragmentation was realized when five nodes 242 

were targeted for removal, with only a modest additional benefit in removing 10 nodes as opposed 243 

to five (complete list of figures are included in the supplementary materials).  244 

 245 

Figure 5: Bipartite network of agistment locations following targeted removal of top five villages. 246 
Purple nodes are villages, while pale violet nodes are households. 247 
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 248 

 249 

 250 

 251 

Table 2: Network metrics; degree and betweenness of the top 10 villages in the five networks evaluated in this study. * Not a village 252 
within the ecosystem but serves as an important hub in the network – this was only in the agistment network. Ψ Villages that are common 253 
across all evaluated networks. VILL = Village; DGR = degree; BETWN = betweeness. 254 

 255 

 256 

 257 

 258 

 259 

Agistment Gift Bride Price Buying Selling 

VILL DGR BETWN VILL DGR BETWN VILL DGR BETWN VILL DGR BETWN VILL DGR BETWN 

MMNR * 54 10348 Talek Ψ 13 2006 Nkoilale Ψ 7 836 Ololaimutia Ψ 72 6311 Ngoswani 91 7791 

Sekenani Ψ 19 7534 Sekenani Ψ 6 1645 Ololchora 7 677 Aitong 59 6293 Aitong 71 7538 

Talek Ψ 27 4646 Ololaimutia Ψ 8 1265 Olesere Ψ 6 580 Ngoswani 62 4899 Ololaimutia Ψ 47 3139 

Trans Mara 24 2718 Nkoilale Ψ 13 1225 Tanzania 5 471 Nkoilale Ψ 49 3496 Ewaso Ngiro 47 2062 

Ololaimutia Ψ 15 1905 Irbaan 5 1016 SekenaniΨ 6 454 Trans Mara 18 1673 Nkoilale Ψ 36 1627 

Ololorok 14 1822 Nkineji Ψ 9 993 Empopongi 4 451 Lolgorien 22 1138 Dagoretti 32 994 

Nkineji Ψ 8 1400 Olesere Ψ 10 858 Tipilikwani 5 444 Ol Pusimoru 24 754 Naikara Ψ 17 250 

Olesere Ψ 7 1047 Empopongi 8 709 Nkineji Ψ 3 314 Naikara Ψ 22 451 Lolgorien 4 26 

Nkoilale Ψ 4 914 Naikara Ψ 5 689 Megwara 4 313 Talek Ψ 11 370 Ol Pusimoru 3 8 

Mara North 6 707 Tipilikwani 6 614 Talek Ψ 4 224 Ewaso Ngiro 9 285 SekenaniΨ 2 6 

Naikara Ψ 5 521 
            

Tanzania * 12 483 
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 260 

 261 

 262 

Fragmentation of the network following targeted versus random node removal 
Reason Full Network Removal of 2 villages Removal of 5 villages Removal of 10 villages  

Targeted Random Targeted Random Targeted Random Targeted 
Buying 0.45 0.54 0.48 (0.45-0.59) 0.86 0.53 (0.47-0.67) 1.00 0.64 (0.51-0.82) 
Selling 0.47 0.71 0.49 (0.47-0.66) 0.94 0.56 (0.49-0.73) 1.00 0.75 (0.52-0.89) 

Agistment 0.51 0.61 0.54 (0.52-0.59) 0.81 0.58 (0.53-0.65) 0.90 0.64 (0.57-0.74) 
Gift 0.83 0.89 0.84 (0.83-0.87) 0.96 0.86 (0.83-0.91) 0.99 0.89 (0.85-0.94) 

Bride Price 0.93 0.97 0.94 (0.93-0.96) 0.99 0.95 (0.94-0.98) 1.00 0.97 (0.95-0.99) 
 263 

Table 3: Network metrics; fragmentation index of the five networks evaluated in this study following the removal of 2, 5 and 10 264 
nodes, with nodes removed either selected randomly or targeted based on degree.  For random removals, the median (95% confidence 265 
interval) fragmentation is reported, summarized across 1,000 iterations. 266 

 267 
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Discussion 268 

In this study, our goal was to characterize animal transfer networks in pastoralist communities 269 

in Kenya, and evaluate their potential role in disease control and management. As described in Table 270 

1, degree, betweenness, density, and fragmentation index are important measures of a network’s 271 

topology and for assessing potential impact of perturbing this topology for disease control 272 

(Wasserman and Faust, 1994; Chen et al., 2007). We showed that animals were moved the longest 273 

distances (median = 39.49 km) for agistment (movement of animals to forage and water during the 274 

dry season), followed by bride price, buying and selling, which were approximately similar (ranging 275 

between 30-33 km).  Finally, movement due to gifting was more localized (with the lowest median 276 

distance at 13.97 km). Thus this study shows that buying, selling and agistment driven movements 277 

potentially play a bigger role than gift and bride price in disease propagation risk (with respect to 278 

both higher network densities and longer distance  of movement). The protected area, Maasai Mara 279 

National Reserve, played an important role in connecting the ecosystem in that it was highly used for 280 

dry season grazing, as shown by its highest degree and betweenness.  In addition, our results support 281 

the hypothesis that villages proximal to Maasai Mara National Reserve (Sekenani, Talek, and 282 

Ololaimutia) were more connected in the ecosystem (highest centrality metrics). In all networks, 283 

targeted removal of villages served to better fragment the network than randomly removing nodes, 284 

highlighting the potential benefits of targeted disease control strategies. Thus, targeted removal, such 285 

as vaccination, may provide an efficient approach for disease control in the ecosystem.  286 

The fact that villages closer to MMNR were used regularly for dry season grazing is not a 287 

surprise given that, although grazing in the reserve is banned, it has been reported previously in the 288 

literature (Ogutu et al., 2009). In this study, respondents consistently identified the Maasai Mara 289 

National Reserve as a reservoir for forage during the dry season, even in the face of animal 290 

confiscation and fines levied by the County government (personal communication). The MMNR has 291 
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become especially attractive following  increased fencing of the ecosystem that has disrupted 292 

traditional animal foraging routes and grazing lands (Løvschal et al., 2017). Further, though buying 293 

and selling median distances were identical, a closer look at the network topology reveals more 294 

context. First, buying commonly includes transactions with villages outside Narok County (the study 295 

area). For instance, the respondents indicated that they bought their cattle from Tanzania, Kajiado, 296 

Kiserian, Emali, and Laikipia, all of which fall outside the county boundaries. This could be a strategy 297 

to acquire different or “better” livestock genetics (Ilatsia et al., 2012). On the contrary, selling of 298 

livestock mostly occurred in local markets. These included major markets such as Aitong, Nkoilale, 299 

Ololaimutia, Ewaso Ngiro, and Ol Pusimoru. In addition, a few farmers sold livestock in larger, peri-300 

urban markets (e.g. Dagoretti, Ngong and Ongata Rongai) serving the capital city of Nairobi, possibly 301 

as a means of getting higher returns (Alarcon et al., 2017). 302 

Network-based disease control relies on identifying a population’s contact structure and 303 

evaluating the role of the different nodes (e.g. villages, households, or farms) that could influence 304 

connectivity thus fragmenting the transmission network (Kiss et al., 2005; Tanaka et al., 2014).  To 305 

evaluate the efficiency of network-based control strategies, we compared the effect of random versus 306 

targeted removal of nodes on the networks’ topological structure using the fragmentation index. 307 

Random removal of nodes requires no prior information on the network structure, but has been shown 308 

to be an inefficient approach (Albert et al., 2000). In our study, targeted removal of village nodes 309 

outperformed random removal, demonstrating the utility of network analysis in identifying highly 310 

connected villages that could be used for more strategic disease control or surveillance. Here, node 311 

removal mimics vaccination or depopulation, depending on the disease and context of infectious 312 

disease control (Keeling and Eames, 2005; Bansal et al., 2010). Ideally, an efficient fragmentation 313 

strategy should be one that removes minimal number of nodes as it represents, for instance, the 314 

minimum number of villages to be vaccinated to prevent further spread of an infection (Chen et al., 315 
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2007). We demonstrated that the removal of the top five nodes with the highest degree was effective 316 

at fragmenting all the networks. The agistment network, however, was more robust to node removal 317 

in that the removal of top 5 or 10 villages resulted in fragmentation indices of 81% and 90%, whereas 318 

this value was close to 100% for the other networks in this study. This might be due to the fact that, 319 

we cannot remove MMNR from the network or that household decisions to move to a particular 320 

location is highly influenced by an individual household’s cost-benefit analysis of the move 321 

independent of other household decisions (Turner and Schlecht, 2019). This is unlike buying and 322 

selling, which follow the law of supply and demand, and sometimes are dictated by intermediaries 323 

(Alemayehu, 2011; Alarcon et al., 2017; Chaters et al., 2019).  324 

 Agistment, buying, and selling networks occur much more frequently with potentially greater 325 

implications for pathogen dissemination than gifting and bride price (Macpherson, 1995; Bett et al., 326 

2009). Anecdotally, we may conclude that the fragmentation of the selling network may serve to 327 

protect markets outside the Mara Ecosystem, such as Dagoretti, Ngong and Ongata Rongai. On the 328 

contrary, the fragmentation of the buying network leaves the markets in the neighboring counties 329 

connected to those in the Maasai Mara Ecosystem (Supplementary material) and may need to be 330 

considered when designing a comprehensive disease control strategy.  331 

Our study has several limitations. First, data were collected at a single time point, and 332 

temporal changes in a network’s topology is a common phenomenon, especially in pastoralist 333 

production systems (VanderWaal et al., 2017; Pomeroy et al., 2019). Secondly, respondents were 334 

asked about movements made during the last five years, which limits the temporal resolution of when 335 

movements occurred and introduces potential recall bias. Third, because data were collected in a 336 

defined geographical area, the results may not be readily generalizable to other areas. Finally, our 337 

network structure did not account for common areas of daily contact, such as congregation during 338 

daily herding and at water resources, which may be important for localized disease transmission. 339 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 13, 2020. ; https://doi.org/10.1101/2020.02.12.946467doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.12.946467
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

Thus, our networks may under-represent connectivity amongst villages, particularly at local scales. 340 

However, our networks do represent longer distance movements in the ecosystem, with 341 

corresponding implications for longer distance pathogen spread. 342 

 343 

Conclusions 344 

We have shown that the identification of highly connected villages could be beneficial in designing 345 

disease control programs that fragment potential transmission pathways in the livestock population. 346 

This fragmentation can be achieved through immunization of a node (node removal). Our findings 347 

demonstrate that even at a restricted spatial scale, network centrality measures may provide sufficient 348 

information to fragment networks, thus showing their utility not only for  disease control but also in 349 

developing targeted risk-based surveillance approaches. Our approach of identifying villages rather 350 

than households has multiple advantages including cost implications and protection of privacy. 351 

However, the use of bipartite networks also allows for the identification of household nodes that may 352 

be relevant in the connecting the ecosystem. There is need however, to incorporate disease data from 353 

households in the ecosystem and evaluate the network topologies with respect to real-world 354 

transmission dynamics. In addition, it may be useful to consider economic costs of the information 355 

gathering and integrate risk analysis as a way to enhance the utility and robustness of the realized 356 

networks as presented here. 357 

 358 
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