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ABSTRACT 
 

Single-cell RNA sequencing (scRNA-seq) provides high-dimensional measurement of 

transcript counts in individual cells. However, high assay costs limit the study of large numbers 

of samples. Sample multiplexing technologies such as antibody hashing and MULTI-seq use 

sample-specific sequence tags to enable individual samples (e.g., different patients) to be 

sequenced in a pooled format before downstream computational demultiplexing. Critically, no 

study to date has evaluated whether the mixing of samples from different donors in this manner 

results in significant changes in gene expression resulting from alloreactivity (i.e., response to 

non-self immune antigens). The ability to demonstrate minimal to no alloreactivity is crucial to 

avoid confounded data analyses, particularly for cross-sectional studies evaluating changes in 

immunologic gene signatures,. Here, we compared the expression profiles of peripheral blood 

mononuclear cells (PBMCs) from a single donor with and without pooling with PBMCs isolated 

from other donors with different blood types. We find that there was no evidence of alloreactivity 

in the multiplexed samples following three distinct multiplexing workflows (antibody hashing, 

MULTI-seq, and in silico genotyping using souporcell). Moreover, we identified biases amongst 

antibody hashing sample classification results in this particular experimental system, as well as 

gene expression signatures linked to PBMC preparation method (e.g., Ficoll-Paque density 

gradient centrifugation with or without apheresis using Trima filtration).  
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INTRODUCTION 

Recent advances in single-cell RNA sequencing (scRNA-seq) technologies have 

dramatically increased assay throughput from ~102 to 104-106 cells per experiment1. However, 

traditional applications of scRNA-seq workflows (e.g., 10x Genomics) require individual samples 

to be processed in parallel, which translates to prohibitively-high assay costs for population-

scale studies requiring large numbers of samples. Several scRNA-seq sample multiplexing 

technologies have been developed which enable users to circumvent this limitation by 

processing samples in a pooled format2-8. By avoiding the usual requirement for processing 

distinct samples individually, these technologies increase scRNA-seq cell and sample 

throughput while minimizing technical confounders (e.g., doublets and batch effects). Two main 

types of sample multiplexing approaches have been described: (i) in silico genotyping using 

single nucleotide polymorphisms (SNPs) and (ii) tagging cell membranes with sample-specific 

DNA barcodes using lipid-modified oligonucleotides (LMOs; e.g., MULTI-seq)2 or DNA-

conjugated antibodies3,4 (e.g., BD single-cell multiplexing kit (SCMK)9). Despite the increasing 

popularity of sample multiplexing, direct measures of transcriptional changes induced by mixing 

human samples from different individuals during scRNA-seq sample preparation have not been 

performed. Determining the extent to which these changes might occur is critical, as they would 

confound cross-sectional data interpretation. 

 

Mixing-specific transcriptional responses could theoretically occur during sample preparation 

when peripheral blood mononuclear cells (PBMCs) from blood-type-mismatched donors are 

mixed together prior to scRNA-seq. It is well known that co-culturing PBMCs from donors with 

different blood types causes a rapid and potent allogeneic response10-12. During the allogeneic 

response, T lymphocytes are stimulated through T-cell receptor binding to ‘non-self’ major and 

minor histocompatibility complex proteins expressed by foreign antigen-presenting cells. These 

immunomodulatory interactions are triggered following in vitro co-culture of blood-type-

mismatched immune cells and in in vivo contexts such as organ transplantation and graft-vs-

host disease. Although samples are maintained on ice during scRNA-seq sample preparation, it 

is unclear whether the allogeneic response would occur at low temperatures or whether transient 

periods of warming (e.g., during droplet emulsion at room temperature) are sufficient to drive 

alloreactivity. Directly assessing whether alloreactivity will confound downstream scRNA-seq 
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analyses is a critical benchmark for large-scale immunological studies13 and sample-multiplexing 

experiments, writ large. 

 

Here, we performed scRNA-seq using the 10x Genomics platform on PBMC samples 

isolated from eight blood-type-mismatched donors pooled under conditions where cells from a 

single donor were processed in isolation or after donor pooling. Donor identities for each cell 

were assigned using SCMK and MULTI-seq data, as well as in silico genotyping classifications 

using souporcell14. We did not observe significant changes in global gene expression profiles 

linked to donor mixing. Moreover, we did not observe any statistically-significant changes in the 

expression of genes associated with alloreactivity in CD4+ T-cells. As a result, we conclude that 

pooling samples during sample preparation for 10x Genomics-based scRNA-seq does not result 

in any detectable alloreactivity at the RNA level.  

 

STUDY DESIGN 

To assess whether mixing PBMC donors causes alloreactivity during scRNA-seq, we 

performed a cross-sectional study of PBMCs isolated from 8 healthy donors with different blood 

types (Fig. 1; Experimental Methods). Donors were selected based on the diversity of blood 

types (e.g., A, B, O, and Rhesus factor +/-) and PBMC samples were tagged with donor-specific 

MULTI-seq2 and SCMK DNA barcodes9. PBMCs were mixed for 30 minutes at 4°C prior to 
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emulsion across four droplet microfluidics lanes (10x Genomics) at room temperature. We 

anticipated that any allogeneic response would theoretically occur during the 30-minute pooled 

incubation and emulsions steps. We hypothesized that if co-incubation of blood-type-

mismatched PBMCs for 30 minutes at 4°C causes detectable alloreactivity, then mixed and 

unmixed donor A PBMCs would exhibit more variable gene expression profiles than what is 

observed due to technical variation.  

 
RESULTS 

MULTI-seq classifies PBMCs more accurately than SCMK 

 To assess the performance of MULTI-seq and SCMK, we compared the results of three 

distinct demultiplexing workflows on donor A-H PBMCs from microfluidic lane #3: (i) 

deMULTIplex, (ii) demuxEM, and (iii) souporcell. deMULTIplex2 and demuxEM4 are algorithms 

that function on sample barcode count matrices, while souporcell is an in silico genotyping 

pipeline that functions on gene expression data14. MULTI-seq and SCMK classifications were 

largely consistent with the souporcell results (Fig. 2A) – e.g., amongst cells classified as donors 

A-H using souporcell, 99.9% and 99.0% of donor classifications were consistent for MULTI-seq 

and SCMK, respectively. However, while 1.5% of cells remained unclassified following MULTI-
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seq demultiplexing, 36.2% of cells remained unclassified after SCMK demultiplexing. This 

decrease in classification efficiency was also observed when compared to the demuxEM results 

(Table 1). 

 

To assess whether cells that remained unclassified following SCMK demultiplexing were 

randomly distributed throughout the scRNA-seq data, we computed the frequency of unclassified 

cells in each PBMC cell type. This analysis revealed that T lymphocytes and NK cells were 

especially likely to remain unclassified in SCMK data (Fig. 2B). Moreover, activated CD4+ T-

cells were particularly prominent among the unclassified CD4+ T-cells (Fig. 2C; Fig. S2A). For 

these reasons, MULTI-seq donor classifications were used for all subsequent gene expression 

analyses. 

 

Trima apheresis introduces biologically-relevant confounders into PBMC scRNA-seq data  
 

The PBMCs that were used in this study came from whole blood that was processed using 

Ficoll-Paque density gradient centrifugation. Notably, these samples either underwent (donors 

D-H) or did not undergo (donors A-C) apheresis using Trima filtration, a method to enhance 

leukocyte yield during sample preparation15,16. Initial inspection of MULTI-seq donor 

classifications revealed that PBMCs predominantly clustered according to processing method – 

e.g., Trima vs. Ficoll (Fig. S3A). Upon sub-clustering classical monocytes and NK cells, we 

observed that Trima and Ficoll classical monocytes expressed variable levels of the histone 

component gene HIST1H1C, as well as two genes involved in monocyte differentiation, MNDA 

and CEBPB (Fig. S3B, left)17. Moreover, we observed that Trima and Ficoll NK cells differentially 

expressed the immune cytokine IFNG, cytolytic genes GZMA and PRF1, and the stress marker 

JUN (Fig. S3B, right)18. These results suggest that apheresis using Trima filters induces 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 16, 2020. ; https://doi.org/10.1101/2020.02.12.946509doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.12.946509


 6 

confounding changes in gene expression patterns associated with differentiation state, cytolytic 

activity, and stress across multiple PBMC cell types. These signatures are consistent with prior 

observations19 and should be accounted for in future analyses. Thus, to avoid these confounding 

effects when comparing donor- and mixing-specific expression profiles, we restricted our 

subsequent analyses to PBMC samples processed without Trima filtration. 

 

Mixing blood-type-mismatched PBMCs during scRNA-seq sample preparation does not cause 
a detectable allogeneic transcriptional response  
 
To assess whether mixing PBMCs induces alloreactivity during multiplexed scRNA-seq sample 

preparation, we compared the expression profiles of mixed and unmixed donor A PBMCs. 

Mapping the densities of mixed and unmixed donor A sample classifications onto PBMC gene 

expression space (Fig. 3A, top left) did not reveal any qualitative shifts in global gene expression 

profiles (Fig. 3A, bottom). Notably, such shifts in classification densities were observed when 

including PBMCs from donors B and C (Fig. 3A, top right), suggesting that natural inter-donor 

variation is more pronounced than variation due to PBMC mixing.  
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Next, we focused on CD4+ T-cells because of their known involvement in alloreactivity10-12 

and their relatively large prevalence in our scRNA-seq dataset. As was observed in the full 

dataset, mixed and unmixed donor A cells were similarly clustered together in CD4+ T-cell gene 

expression space (Fig. 3B). To quantify the magnitude of gene expression variability between 

mixed and unmixed donor A CD4+ T-cells, we used Jensen-Shannon Divergence (JSD)20 and 

hierarchical clustering to compute sample-level differences in gene expression space between 

the following groups: unmixed donor A, mixed donor A, donor B, and donor C (Computational 

Methods). This analysis reinforced the observation that CD4+ T-cells clustered predominantly 

by donor (average inter-donor JSD = 0.948; Fig. 3C). Moreover, we computed the average JSD 

due to PBMC mixing (mixed-vs-unmixed donor A JSD = 0.012) and technical noise (unmixed 

donor A JSD = 0.0098).  

 

To determine whether the increased JSD for mixed CD4+ T-cells relative to technical 

replicates was significant, we performed a permutation test. Specifically, we reasoned that if the 

observed JSD differences were smaller than JSD values computed after randomly swapping 

donor A labels (n = 100 iterations), then gene expression variability due to mixing would be on-

par with technical variability between droplet microfluidic lanes. Indeed, the average permuted 

JSD between donor A cells was 0.025 and was smaller than the experimental JSD only 15 times 

out of 100, suggesting that we could not reject the null hypothesis that differences between 

mixed and unmixed donor A PBMCs were on-par with technical noise (p=0.85). Similar 

conclusions were drawn when classical monocytes were analyzed (Fig. S2B, S2C). 

 

Finally, we performed Gene Set Enrichment Analysis21,22 to determine whether certain 

pathways involved in immune activation and/or alloreactivity were enriched in mixed relative to 

unmixed donor A CD4+ T-cells. This analysis revealed that there was no statistically-significant 

enrichment of relevant gene sets in the mixed donor A CD4+ T-cells (Supplemental Table 1). 

Moreover, mixed and unmixed donor A CD4+ T-cells expressed genes that are known to be 

differentially expressed by lymphocytes during an allogeneic response10-12 at similar levels (Fig. 

S2D). Collectively, these results demonstrate that mixing PBMCs from different donors under 

multiplexed scRNA-seq sample preparation conditions does not result in a detectable allogeneic 

transcriptional response. 
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DISCUSSION 
 

Sample multiplexing approaches for scRNA-seq are being increasingly utilized by the single-

cell genomics field to reduce assay costs while improving data breadth and quality. However, 

the impact of pooling distinct donor cells during scRNA-seq sample preparation on gene 

expression patterns has not yet been described. Here, we used the 10x Genomics scRNA-seq 

platform to directly compare the gene expression profiles of PBMCs prepared for sequencing 

alone or after mixing with blood-type-mismatched PBMCs for 30 minutes at 4°C. We found no 

detectable evidence of global changes in gene expression profiles (quantified using Jensen-

Shannon Divergence and semi-supervised hierarchical clustering), gene signature-level 

differences (using Gene Set Enrichment Analysis), or following interrogation of previously-

reported marker genes linked to alloreactivity. Although PBMCs actively participating in an 

allogeneic response were not included in this study, these results demonstrate that neither 

lymphocytes (e.g., CD4+ T-cells) or myeloid cells (e.g., classical monocytes) respond to mixing 

with blood-type-mismatched PBMCs in a fashion that is qualitatively or quantitatively distinct 

from technical noise. 

 

In addition to the alloreactivity analysis, we found that donor-classified cells in the SCMK 

demultiplexing results were biased against activated CD4+ T-cells. This finding contrasts with 

the original Cell Hashing report3, where PBMCs were systematically demultiplexed following 

incubation with a panel of DNA-conjugated antibody selected for their uniform targeting of all 

known PBMC cell populations. Notably, the exact antigens targeted by the commercial SCMK 

reagents we used in this study are unknown, but our findings would suggest that the “universal” 

antigens targeted by the antibodies in this kit are not truly universal. Thus, users should exercise 

caution before using these reagents, for example by testing the uniformity of antibody binding 

using flow-cytometry prior to single cell library prep. In any case, validation of surface antigen 

expression across all cells in a given experimental system and/or careful data quality-control is 

necessary to avoid systematically-biased interpretations. 

 

Collectively, this study provides support for future donor-multiplexed scRNA-seq studies of 

PBMCs. Our results illustrate that alloreactivity can be disregarded as a potential scRNA-seq 

data confounder in large-scale, cross-sectional single-cell genomics experiments. Moreover, our 
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results demonstrate how PBMC preparation method (e.g., Ficoll-Paque density gradient 

centrifugation with or without Trima filtration) and sample multiplexing technology (e.g., SCMK) 

can introduce confounding variables into scRNA-seq data. 

 
EXPERIMENTAL METHODS 
 
scRNA-seq sample preparation: PBMCs were provided by the Vitalant Research Institute. 
PBMCs were thawed at 37°C and washed one time with warm media (RPMI (Corning, Cat#10-
040-CV), supplemented with 10% FBS (VWR, Cat#97068-085) and Benzonase (1:1000, Sigma-
Aldrich, Cat#E1014)) and one time with 2% FBS in PBS (Ca++ and Mg+ free, Corning, Cat#21-
031-CV) before counting cells (Nexcelom K2). Live cells were then enriched using a dead-cell 
removal kit (STEM Cell, Cat#17899). Live cells were then washed with PBS and labeled with 
LMOs, as described previously2. LMOs were then quenched while washing cells with 1% BSA 
in cold PBS. Cells were then incubated with 5ul human Fc Block with 95ul 2% FBS in PBS at 
4°C for 15 mins before staining with SCMK and AbSeq antibodies (BD Biosciences) at 4°C for 
60 min. Notably, AbSeq data was not analyzed in this study. Cells were then washed twice by 
using 0.04% BSA (Non-acetylate, Sigma-Aldrich; B6917)) in cold media before incubation for 30 
minutes at 4°C either alone (e.g., donor A) or in a pooled format (e.g., donors A-D or A-H). 
Finally, cells were isolated via droplet emulsion across four 10x Genomics microfluidic lanes 
(V2).  
 
Next-generation sequencing and library preparation: cDNA expression, MULTI-seq, and SCMK 
libraries were prepared as described previously2 or according to supplier recommendations. 
Notably, following size-selection of MULTI-seq and SCMK oligos after cDNA amplification, two 
separate sample-index PCRs were performed for the MULTI-seq and SCMK oligos using 
separate i7 indices. cDNA expression and SCMK libraries were pooled and sequenced on a 
single NovaSeq 6000 lane. MULTI-seq libraries were sequenced separately using the MiSeq 
(V3). 
 
COMPUTATIONAL METHODS 
 
scRNA-seq, MULTI-seq, and SCMK data pre-processing: Following next-generation 
sequencing, cDNA expression FASTQs were pre-processed and read-depth normalized using 
Cell Ranger (v3.0.0). FASTQs were aligned to the hg19 reference transcriptome. MULTI-seq 
and SCMK FASTQs were pre-processed using the ‘MULTIseq.preProcess’ function in the 
‘deMULTIplex’ R package2. Notably, because the MULTI-seq and SCMK barcode sequences 
are 8 and 40 nucleotides in length, respectively, the Hamming Distance alignment threshold 
applied to SCMK data was increased to 5 (default = 1) to account for the increased probability 
of random sequencing errors. 
 
scRNA-seq data quality-control: Raw gene expression matrices were quality-controlled using 
Seurat23,24 (Fig. S1). First, cells with fewer than 250 RNA unique molecular identifiers (UMIs) 
and genes with fewer than 3 UMIs across all cells were discarded. This parsed dataset 
comprised of 20,353 cells and 17,908 genes was then normalized using ‘SCTransform’ prior to 
unsupervised clustering and dimensionality reduction using PCA and UMAP. We then removed 
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3,726 low-quality cells selected via membership in clusters associated with low total RNA UMIs 
and/or high proportions of mitochondrial gene expression (Fig. S1A).  
 

Next, we split the cleaned dataset by lane-of-origin and applied DoubletFinder25 to each 
data subset. Notably, DoubletFinder was run on each lane independently to ensure that 
representative artificial doublets were constructed for each lane (e.g., multi-donor doublets were 
not generated for the unmixed data subsets). Moreover, we did not use MULTI-seq, SCMK, or 
souporcell classification results for doublet detection because each approach would produce 
different results for each lane (e.g., no doublets detected for single-donor datasets). 
DoubletFinder parameters were kept constant for each lane (e.g., pN = 0.25, pK = 0.01), 
resulting in the removal of 1,287 heterotypic doublets (Fig. S1B).  

 
PBMC cell type annotation: We annotated a final dataset of 15,340 cells using previously-
established PBMC cell type marker genes23,24 (Fig. 1C) and identified most major cell types 
found in peripheral blood: CD4+ T lymphocytes (IL7R+CD8A-), CD8+ T lymphocytes (CD8A+), 
NK cells (SPON2+), B lymphocytes (MS4A1+), classical monocytes (CD14+), non-classical 
monocytes (FCGR3A+), and dendritic cells (CLEC10A+). Upon sub-clustering 6,879 CD4+ T-
cells, we identified three subtypes using marker genes described previously21,22 (Fig. S3A): 
activated (SELL-lo, CREM-hi, GPR183-hi), naïve (SELL-hi, CREM-lo, GPR183-lo), and memory 
(SELL-hi, CREM-lo, GPR183-hi). 
 
Sample demultiplexing: Cells were assigned into donor groups using three different workflows. 
First, MULTI-seq and SCMK barcode count matrices were fed into the ‘classifyCells’ and 
‘findThresh’ functions in the ‘deMULTIplex’ R package2. Second, MULTI-seq and SCMK barcode 
count matrices and the raw .h5 file (from Cell Ranger) were fed into ‘demuxEM’ (p=8), an 
alternative sample classification pipeline written in Python4. Third, position-sorted BAM files 
(from Cell Ranger) were fed into the in silico genotyping pipeline, souporcell (k=8)13. Notably, all 
methods were only applied to the 8-donor scRNA-seq data to enable robust comparisons. Upon 
verifying result consistency between in silico genotyping and MULTI-seq classification results, 
MULTI-seq classifications were used for all downstream analyses.  
 
JSD analysis: To perform global comparisons of gene expression profiles between mixed and 
unmixed PBMCs, we performed the following workflow. First, CD4+ T-cells and classical 
monocytes were computationally down-sampled to include equal numbers of cells from the 
following groups: unmixed donor A, mixed donor A, donor B, and donor C. Second, UMAP 
embeddings were computed following the pre-processing workflow described above. Third, the 
UMAP embedding coordinates for each PBMC group were used to compute group-wise 2-
dimensional kernel density estimations with the ‘kde2d’ function in the ‘MASS’ R package26. 
Fourth, a JSD matrix representing the divergence between each sample group was computed 
from the kernel density estimation results using the ‘JSD’ function in the ‘philentropy’ R 
package27. Fifth, hierarchical clustering was performed on the JSD matrix using the ‘hclust’ 
function in the ‘stats’ R package. Differences in JSD between groups were presented after 
scaling from 0-1. To establish variability due to algorithm performance, the JSD calculation 
workflow was repeated after randomly permuting donor A classifications 100 times.   
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DATA AND CODE AVAILABILITY 
 
All code used for single cell analysis and data visualization is available via Github 
(github.com/chris-mcginnis-ucsf/PBMC_Allo). Submission of raw cDNA expression, MULTI-
seq, and SCMK data to GEO is in process, for inquiries contact authors. 
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