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Abstract: 20	

Genotype-based diagnostics for antibiotic resistance represent a promising alternative to 21	

empiric therapy, reducing inappropriate and ineffective antibiotic use. However, because 22	

such assays infer resistance phenotypes based on the presence or absence of known 23	

genetic markers, their utility will wane in response to the emergence of novel resistance. 24	

Maintenance of these diagnostics will therefore require surveillance designed to ensure 25	

early detection of novel resistance variants, but efficient strategies to do so remain to be 26	

defined. Here, we evaluate the efficiency of targeted sampling approaches informed by 27	

patient and pathogen characteristics in detecting genetic variants associated with 28	

antibiotic resistance or diagnostic escape in Neisseria gonorrhoeae, focusing on this 29	

pathogen because of its high burden of disease, the imminent threat of treatment 30	

resistance, and the use and ongoing development of genotype-based diagnostics. We 31	

show that incorporating patient characteristics, such as demographics, geographic 32	

regions, or anatomical sites of isolate collection, into sampling approaches is not a reliable 33	

strategy for increasing variant detection efficiency. In contrast, sampling approaches 34	

informed by pathogen characteristics, such as genomic diversity and genomic 35	

background, are significantly more efficient than random sampling in identifying genetic 36	

variants associated with antibiotic resistance and diagnostic escape. 37	

  38	
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Introduction: 39	

Nucleic acid-based diagnostics that enable rapid pathogen identification and 40	

prediction of drug susceptibility profiles can improve clinical decision-making, reduce 41	

inappropriate antibiotic use, and help address the challenge of antibiotic resistance 1-3. 42	

However, the sensitivity of such diagnostics may be undermined by undetected genetic 43	

variants 4-12. Pathogen surveillance programs aimed at early detection of novel variants 44	

are crucial to ensuring the clinical utility and sustainability of these diagnostics. 45	

Use of traditional nucleic acid amplification tests (NAATs) for pathogen 46	

identification and genotype-based diagnostics for antibiotic resistance can select for 47	

genetic variants that escape detection 13. Mutations and/or deletions at the NAAT target 48	

locus that cause an amplification failure have arisen in Neisseria gonorrhoeae, Chlamydia 49	

trachomatis, Staphylococcus aureus, and Plasmodium falciparum, resulting in false 50	

negative diagnostic errors only detected when using another diagnostic platform 5-7,11. 51	

Diagnostic escape associated with genotype-based diagnostics for antibiotic resistance 52	

are the result of resistance-conferring variants (e.g., mutations or accessory genes) not 53	

accounted for in the diagnostic’s panel of resistance markers 4 and require phenotypic 54	

testing to be uncovered.  55	

 We recently presented a framework to quantify the sampling rate for early 56	

detection of novel antibiotic resistance variants, defining the number of isolates that would 57	

need to undergo confirmatory phenotyping from those predicted by genotype to be 58	

susceptible 14. Underlying this model are assumptions of unbiased sampling across a 59	

population and independence among all isolates. However, these assumptions may not 60	

hold in practice, as some subsets of the population (e.g., demographics and/or 61	
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geographic regions) may be more likely to be sampled than others, and clonal 62	

transmission may result in repeated sampling of closely related isolates 15-18. The real-63	

world application of this model may also be challenging for pathogens with high case 64	

incidence, such as N. gonorrhoeae, as the cost of phenotyping required by this model for 65	

timely detection of novel resistance variants is likely to be high 14. 66	

 Implementing a practical surveillance system thus requires improving efficiency 67	

over unbiased testing by prioritizing samples in which novel diagnostic escape variants 68	

are most likely to be found. There are numerous hypotheses for how to focus sampling 69	

and most quickly identify these variants. Novel variants may be more likely to emerge or 70	

spread in certain anatomical niches, demographics, or geographic regions 19-22, some of 71	

which may be systematically under-sampled 23 and thus may provide a basis for sampling 72	

priority. Data on such characteristics may be obtained from metadata recorded during 73	

clinical encounters. Alternatively, they may be inferred from pathogen genomic data. 74	

Isolates or clades that are genetically divergent from the majority of isolates in a 75	

population may reflect travelers, their contacts, or otherwise under-sampled lineages 24-76	

27. Some pathogen genomic backgrounds may be more conducive to the evolution of 77	

novel resistance mechanisms 28, and markers of these genomic backgrounds (e.g., 78	

variants associated with a range of resistance mechanisms and/or resistance to other 79	

drugs) may help improve sampling efficiency. Similarly, given historical patterns of 80	

antibiotic use, novel resistance may emerge on a background of existing resistance 29. 81	

Thus, genetic markers of resistance to certain drugs may facilitate identification of 82	

lineages more likely to have experienced selective pressures leading to emergence of 83	

novel resistance variants. 84	
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Here, we test the performance of sampling strategies informed by these 85	

hypotheses using N. gonorrhoeae surveillance data. N. gonorrhoeae offers a useful 86	

model, given the increasing drug resistance and recent focus on developing sequence-87	

based resistance diagnostics 2,30. We present targeted sampling approaches informed by 88	

patient (i.e., demographics, anatomical site of isolate collection, geographical region, 89	

recent travel history, or sex worker status) and pathogen (i.e., phylogenetic or genomic 90	

background) information. We assess the efficiency of each of these strategies to detect 91	

rare (<10% prevalence) resistance variants associated with current or recent first-line 92	

recommended antibiotics (i.e., azithromycin [AZM] and extended spectrum 93	

cephalosporins [ESCs]), as well as rare genetic variants associated with diagnostic 94	

escape, across five genomic surveys with various demographic, geographic, and 95	

temporal ranges. We show that phylogeny- and genomic background-aware sampling 96	

approaches can increase the detection efficiency of known variants over random 97	

sampling, whereas patient feature-based sampling approaches do not. Our results 98	

suggest that implementation of such targeted sampling approaches into surveillance 99	

programs may reduce the number of cases of novel resistance that occur before it is 100	

detected, as well as the resources required to undertake surveillance, compared to 101	

random sampling of a population. 102	

 103	

Results: 104	

Composition of the datasets. 105	

The datasets (Table 1) were biased across patient demographics and/or geographic 106	

regions (Tables S1 and S2). Isolates from men and men who have sex with men (MSM) 107	
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were overrepresented in datasets 1 and 2 compared to overall gonorrhea incidence in 108	

men and MSM in the US and Australia, respectively, during the study periods (Table S2, 109	

P < 0.001 for both datasets by chi-squared test of men vs. women and MSM vs. non-110	

MSM in dataset vs. reported incidence). Dataset 4 was comprised exclusively of isolates 111	

from men 31. While it is difficult to estimate the prevalence of pharyngeal gonococcal 112	

infections, as they tend to be asymptomatic 32, pharyngeal isolates represented 4% and 113	

18% of isolates with reported anatomical site of collection in datasets 1 and 2, 114	

respectively. This suggests either sampling bias across anatomical sites in at least one 115	

of the datasets or substantial variation across the two study populations in prevalence of 116	

pharyngeal gonococcal infections. Similarly, the geographic distribution of isolates in 117	

dataset 3 was significantly different from the reported case incidence across countries 118	

(Table S2, P < 0.001 by chi-squared test of prevalence for each of the countries in dataset 119	

3 vs. the reported overall incidence for each of the countries). 120	

 121	

Table 1. Summary of datasets. 122	
Dataset Temporal 

range Nisolates 
Geographic 

range Metadata available SRA study 
ID/Reference 

1 2011-2015 896 New York, NY, 
US 

Gender, sexual behavior, 
anatomical site of isolation  

ERP011192 
[Mortimer et al., 
2020, in 
preparation] 

2 2016-2017 2186 Victoria, 
Australia 

Gender, sexual behavior, 
anatomical site of 
isolation, travel history, 
sex worker status 

SRP185594	33	

3 2013 1054 Europe Country of sample 
collection ERP010312 34 

4 2015 244 Japan Prefecture of sample 
collection DRP004052 31 

5 2014-2015 398 New Zealand N/A SRP111927 35 

 123	

Targeted sampling based on patient characteristics. 124	

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 13, 2020. ; https://doi.org/10.1101/2020.02.12.946533doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.12.946533


We investigated whether sampling evenly across demographic groups (demography-125	

aware sampling), anatomical sites of isolate collection (niche-aware sampling), and 126	

geographic regions (geography-aware sampling) increased detection efficiency of 127	

resistance variants by ameliorating some of the demographic, niche, or geographic 128	

sampling biases. We further investigated whether preferentially sampling patients with 129	

recent overseas sexual encounters or recent sex work, two characteristics hypothesized 130	

to be associated with the introduction and/or increased transmission of resistance 19,21,22, 131	

increased the detection efficiency of resistance variants. To do so, we simulated and 132	

compared the detection efficiency of three genetic resistance variants (Table 2) using 133	

each of these targeted sampling strategies and random sampling.  134	

 135	

Table 2. Summary by dataset of the prevalence and distribution of the genetic markers 136	
of resistance and resistance phenotypes tested. 137	

Variant 
 Genetic Phenotypic 

 RplD G70D 
23S rRNA 

C2611T (2-4 
alleles) 

penA XXXIV CRO-RS 
(³0.12 µg/mL) 

CFX-R (>0.25 
µg/mL) 

Drug  AZM 36 AZM 37 ESCs 38 N/A N/A 

Prevalence 
of variant in 
dataset 

1 10.04%a 0.11% 5.25% 1.47% 0.11% 
2 1.14% 1.24% 1.69% 0% 0% 
3 2.47% 0.95% 15.68%a 1.04% 0.76% 
4 11.07%a 1.23% 0.41% 6.56% 8.20% 
5 0.75% 0.50% 2.26% 0.25% 0% 

Phylogenetic 
D statistic 
for variant in 
dataset 

1 -0.18 17.50 -0.29 N/A N/A 
2 -0.10 0.46 -0.24 N/A N/A 
3 0.05 0.30 -0.20 N/A N/A 
4 -0.16 1.83 1.81 N/A N/A 
5 0.83 1.12 -0.15 N/A N/A 

aGiven the >10% prevalence of RplD G70D in datasets 1 and 4 and penA XXXIV in 138	
dataset 3, these variants were excluded from sampling simulations. 139	
AZM, azithromycin; ESC, extended-spectrum cephalosporin; CRO-RS, ceftriaxone 140	
reduced susceptibility; CFX-R, cefixime resistance 141	
 142	

The detection efficiency was not improved by demography-, niche-, geography-143	

aware sampling compared to random sampling for any of the resistance variants (Table 144	
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S3, Fig. 1). In several cases, detection efficiency significantly decreased in demography- 145	

or geography-aware sampling compared to random sampling, reflecting enrichment of 146	

the resistance variant in the overrepresented demographic or geographic region. 147	

However, no significant association between a given resistance variant and demographic 148	

group was observed across both dataset 1 and dataset 2, and no demographics or 149	

geographic regions were significantly enriched for all variants (Table S1), suggesting that 150	

preferential sampling of any of these demographics or geographic regions would not be 151	

a reliable strategy for increasing novel variant detection efficiency. For example, while 152	

penA XXXIV was significantly enriched in MSM compared to men who have sex with 153	

women and women who have sex with men (MSW/WSM) patients in dataset 2 (P < 0.003, 154	

Fisher’s exact test), there was no significant difference in the proportions of MSM and 155	

MSW/WSM with penA XXXIV in dataset 1 (P = 0.461, Fisher’s exact test). Similarly, while 156	

the AZM-R-associated RplD G70D mutation in dataset 3 was at highest prevalence in 157	

patients from Malta and Greece (10% and 6.25%, respectively) and absent from patients 158	

from Denmark, the AZM-R-associated 23S C2611T variant was at highest prevalence in 159	

patients from Denmark (5.45%) and absent from patients from Malta or Greece.  160	
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 161	
Figure 1. The impact of demography-, niche-, and geography-aware sampling on 162	
the detection efficiency of genetic resistance variants. Dot plots showing the 163	
detection efficiency (with lines indicating the mean and 95% confidence intervals from 164	
100 simulations) for resistance variants RplD G70D (A-B), 23S rRNA C2611T (C-D), and 165	
penA XXXIV (E-F) in datasets 1 and 2. In datasets 1 and 2, targeted sampling was 166	
informed by demographic (gender and sexual behavior) and anatomical site of isolate 167	
collection (niche) information (A, C, and E), and in datasets 3 and 4, targeted sampling 168	
was informed by country or prefecture of sample collection (B, D, and F). Dot colors 169	
indicate the sampling approach, and asterisks indicate a significant difference (P < 0.05 170	
by Mann-Whitney U test) in detection efficiency between the demography-, niche- or 171	
geography-aware approach compared to random sampling (*P < 0.05, **P < 0.01, ***P < 172	
0.001; red asterisks indicate significantly lower detection efficiency of demography- or 173	
geography-aware approaches compared to random sampling).  Note that sampling 174	
simulations were not performed for RplD G70D in datasets 1 and 4 or for penA XXXIV in 175	
dataset 3 as prevalence of the variants in these datasets was >10%. n.s., not significant 176	
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at a = 0.05; M, men; W, women; MSM, men who have sex with men; MSW, men who 177	
have sex with women; WSM; women who have sex with men. 178	

 179	

Isolates from patients with recent overseas sex were associated with significantly 180	

longer terminal branches compared to patients that had only engaged in sex locally (Fig. 181	

S1), in support of the hypothesis that international travel may be associated with the 182	

importation of novel or divergent strains, or, more generally, that isolates from travelers 183	

may be more likely to be associated with under-sampled lineages. Preferentially sampling 184	

from patients with recent overseas sex significantly improved detection efficiency of the 185	

RplD G70D mutation and the penA XXXIV allele, as these were at marginally higher 186	

prevalence in isolates from patients with recent overseas sex compared to those from 187	

patients who had only engaged in sex locally (3.03% overseas vs. 0.98% local and 2.02% 188	

overseas vs. 1.67% local, respectively, P = 0.090 and 0.683, respectively, by Fisher’s 189	

exact test for both variants). In contrast, the 23S C2611T mutation was exclusively 190	

present in isolates from patients who had engaged in sex locally (Tables S1 and S4). 191	

Similarly, while the 23S C2611T mutation was marginally enriched in isolates from 192	

patients who had engaged in recent sex work compared to patients who had not (2.33% 193	

in sex workers vs. 1.31% in non-sex workers, P = 0.327 by Fisher’s exact test), and thus 194	

preferentially sampling from sex workers significantly improved detection efficiency of this 195	

variant compared to sampling from the full patient population, detection efficiencies for 196	

the RplD G70D mutation and the penA XXXIV allele were not significantly improved by 197	

preferentially sampling from sex workers (Tables S1 and S4).  198	

Together, these results suggest that while targeted sampling based on patient 199	

characteristics may increase detection efficiency of some novel variants, it is difficult to 200	

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 13, 2020. ; https://doi.org/10.1101/2020.02.12.946533doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.12.946533


predict which groups to target for all potential novel variants.  201	

 202	

Targeted sampling based on genetic diversity. 203	

To assess whether preferential sampling of lineages that are divergent from those that 204	

have been previously sampled may increase detection efficiency of genetic resistance 205	

variants over random sampling, we simulated phylogeny-aware sampling using two 206	

methods: 1) maximization of the phylogenetic distance covered with each isolate sampled 207	

(distance maximization) and 2) even sampling across phylogenetic lineages (clonal 208	

group).  209	

While the distance maximization approach increased detection efficiency 210	

compared to random sampling for some variants, there were numerous instances in 211	

which this approach, which led to preferential sampling of isolates associated with long 212	

branches, substantially decreased detection efficiency (Fig. 2, Table S5).  213	
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 214	

Figure 2. The impact of phylogeny-aware sampling on the detection efficiency of 215	
genetic resistance and diagnostic escape variants. Scatter dot plots showing the 216	
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detection efficiency (with lines indicating the mean and 95% confidence intervals from 217	
100 simulations) for resistance variants RplD G70D (A), 23S rRNA C2611T (B), and penA 218	
XXXIV (C) in datasets 1-5. Note that sampling simulations were not performed for RplD 219	
G70D in datasets 1 and 4 or for penA XXXIV in dataset 3 as prevalence of the variants in 220	
these datasets was >10%. Maximum-likelihood phylogenies produced from 221	
pseudogenome alignments (with predicted regions of recombination removed) of isolates 222	
from dataset 4 (D) and dataset 2 (E). Presence or absence of the 23S rRNA C2611T 223	
mutation (in at least 2/4 alleles) and the mosaic penA XXXIV allele is indicated by colored 224	
rings. Scatter dot plots showing the detection efficiency (with lines indicating the mean 225	
and 95% confidence intervals from 100 simulations) for diagnostic-associated variants 226	
16S rRNA C1209A (F), N. meningitidis-like porA (G), cppB deletion (H), and DR-9A 227	
G168A (I) in all datasets in which the variant was present. Dot colors in A-C and F-I 228	
indicate the sampling approach, and asterisks indicate a significant difference (P < 0.05 229	
by Mann-Whitney U test) in detection efficiency between the phylogeny-aware approach 230	
compared to random sampling (*P < 0.05, **P < 0.01, ***P < 0.001; red asterisks indicate 231	
significantly lower detection efficiency of the phylogeny-aware approach compared to 232	
random sampling, and green asterisks indicate significantly higher detection efficiency of 233	
the phylogeny-aware approach compared to random sampling). n.s., not significant at a 234	
= 0.05. 235	
 236	

The clonal group sampling approach prevents repeated sampling of very closely 237	

related isolates until all unique phylogenetic clusters have been sampled. Thus, for both 238	

rare variants that are clonally distributed and rare variants that are more randomly 239	

dispersed throughout the phylogeny (e.g., penA XXXIV and 23S rRNA C2611T mutations, 240	

respectively, Table 2), this approach increases detection efficiency in cases where 1) 241	

there is substantial clonality among isolates and 2) a substantial proportion of variant-242	

positive isolates do not occur in clonal lineages dominated by variant-negative isolates 243	

(Fig. 2E). In such datasets, effectively collapsing large variant-negative lineages into a 244	

single representative increases the effective prevalence of the variants and thus the 245	

detection efficiency of the clonal group approach compared to random sampling. The 246	

clonal group sampling approach significantly decreased detection efficiency in only one 247	

instance (i.e., the 23S rRNA C2611T variant in dataset 4, Table S5), where all isolates 248	
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with the variant appeared in large clonal lineages of predominately variant-negative 249	

isolates (Fig. 2D).  250	

In cases where the clonal group sampling approach did not perform better than 251	

random sampling, adjusting the threshold for clonal grouping and/or a marginal increase 252	

in the prevalence of variant-positive isolates could elevate the relative performance of this 253	

targeted approach. We chose 134 SNPs as an example threshold for clonal grouping, as 254	

it represents the lower 95% confidence interval of the mean of SNP distances between 255	

each CFX-R resistant and the closest susceptible isolate in datasets 1-5 (see Methods). 256	

In the case of the 23S rRNA C2611T variant in dataset 4, the average prevalence of the 257	

variant across clonal groups (i.e., the total number of variant-positive isolates, counting 258	

each variant-positive isolate as [1 / [1 + the total number of additional isolates that are £ 259	

134 SNPs of the isolate]], divided by the number of clonal groups) is 0.005, lower than 260	

the actual prevalence of 0.012. However, if the threshold for clonal grouping was lower in 261	

this instance (e.g., 50 SNPs), the effective prevalence of the variants would be 0.020, 262	

greater than the actual prevalence of 0.012. Similarly, using the 134 SNP threshold, if 263	

one additional isolate that was > 134 SNPs from any other isolates in this dataset had the 264	

23S rRNA C2611T mutation, the average prevalence of the variant across clonal groups 265	

would be 0.036, greater than the actual prevalence of 0.016, and thus the clonal group 266	

approach would outperform random sampling. 267	

To further assess the performance of phylogeny-aware sampling in the context of 268	

rare genetic variants that may have emerged in response to diagnostic pressure, we 269	

simulated random and phylogeny-aware sampling to assess detection efficiency of an 270	

additional set of variants. Specifically, we assessed a panel of N. gonorrhoeae diagnostic 271	
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escape variants: the 16S rRNA C1209A mutation, the N. meningitidis-like porA, and the 272	

cppB deletion, all of which have been previously associated with diagnostic failure 7-10 273	

and were present in one or more of datasets 1-5 at low prevalence (Table 3). The G168A 274	

mutation in the primer binding region of DR-9A, the target of the COBAS 4800 CT/NG 275	

(Roche) diagnostic, has not previously been documented but was present in 0.1% of 276	

strains from dataset 2. All of the diagnostic-associated variants assessed appeared in 277	

divergent backgrounds and were thus detected more efficiently by phylogeny-aware 278	

sampling compared to random sampling (Fig. 2F-I, Table S6). Like the results from the 279	

simulations based on resistance variants, the distance maximization approach maximized 280	

detection efficiency for some of the diagnostic-associated variants, but superiority of this 281	

approach to random sampling was not consistent across all variants. However, the clonal 282	

group approach performed significantly better than random sampling for all diagnostic-283	

associated variants across all datasets.  284	

 285	
Table 3. Summary of the potential diagnostic escape variants assessed. 286	

Variant Diagnostic 
assay 

Documented 
association with 
diagnostic failure 

Prevalence in dataset 
1 2 3 4 5 

16S rRNA 
C1209A (4 
alleles) 

Aptima GC 
Combo Yes 7 0.11% 0.09% 0% 0% 0% 

N. meningitidis-
like porA In-house 39,40 Yes 8,9 0.11% 0.05% 0% 0% 0% 

cppB deletion  In-house 41,42 Yes 10 1.12% 0.05% 0.47% 0% 7.29% 

DR-9A G168A  Roche COBAS 
4800 CT/NG No 0% 0.09% 0% 0% 0% 

 287	
 288	

The relative performance of the clonal group sampling approach compared to 289	

random sampling was generally consistent across multiple thresholds based on 290	

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 13, 2020. ; https://doi.org/10.1101/2020.02.12.946533doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.12.946533


pseudogenomes (i.e., £ 134 SNPs, £ 422 SNPs, and fastBAPS groups); relative 291	

performance of clonal group sampling using MLSTs, however, was less consistent and 292	

was significantly worse than random sampling for several variants (Fig. S2, Tables S5-293	

S6). Together, these results suggest that preferentially sampling isolates that, based on 294	

whole genome sequencing (WGS), are phylogenetically divergent from those that have 295	

previously been sampled may increase detection efficiency of novel resistance variants. 296	

 297	

Targeted sampling based on genetic markers. 298	

Multiple drug resistance is more common in pathogenic bacteria than one would expect 299	

from the product of frequencies of resistance to individual drugs 43,44. This suggests that 300	

novel resistance mechanisms might be more likely to arise and spread in bacterial strains 301	

that are already resistant to other drugs, a phenomenon that has been documented in N. 302	

gonorrhoeae 45. It may therefore be fruitful to look for novel resistance variants for one 303	

drug in genetic backgrounds that are resistant to other drugs. It may be similarly effective 304	

to sample preferentially isolates with genetic markers that have been associated with a 305	

range of resistance mechanisms (e.g., through epistatic interactions with other genetic 306	

variants) within and/or across different antibiotics when screening for a novel resistance 307	

variant. For example, as ciprofloxacin was the recommended first-line therapy for 308	

uncomplicated gonorrhea through 2005 in the United Kingdom 46, 2007 in the United 309	

States 47, and more recent years in other countries 48-50, we investigated whether 310	

resistance to ESCs is significantly more likely to occur in the background of genotypic 311	

ciprofloxacin resistance (i.e., in strains with the GyrA S91F mutation). Similarly, as 312	

mutations at positions 120 and/or 121 in PorB, the major outer membrane protein in 313	
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gonococci, have been associated with resistance to a range of drugs from multiple 314	

classes 51, we investigated whether resistance to ESCs is significantly more likely to occur 315	

in strains with PorB 120 and/or 121 mutations. Isolates with CRO-RS and CFX-R were 316	

significantly more likely to have the GyrA S91F mutation and the PorB G120 and/or A121 317	

mutations than the wild-type GyrA S91 or wild-type PorB G120/A121 (P < 0.001, Fisher’s 318	

exact test, Fig. 3A-B). Further, both GyrA S91F and PorB G120 and/or A121 mutations 319	

occurred across a range of ESC resistance locus haplotypes (Fig. 3C-D). For all datasets 320	

with CRO-RS or CFX-R isolates, detection efficiency of both variants was significantly 321	

increased by only sampling isolates with the GyrA S91F mutation or the PorB G120 and/or 322	

A121 mutations (Fig. 3E-F, Table S7). Together, these results suggest that preferential 323	

sampling of isolates with certain genetic markers, including markers of resistance to 324	

previous first-line antibiotics, may increase the detection efficiency of novel resistance 325	

variants. 326	
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 327	

Figure 3. The impact of genomic background-aware sampling on the detection 328	
efficiency of phenotypic resistance variants. Bar charts showing the proportions of 329	
ceftriaxone reduced susceptibility (CRO-RS) isolates, ceftriaxone susceptible (CRO-S) 330	
isolates, cefixime resistant (CFX-R) isolates, and cefixime susceptible (CFX-S) isolates 331	
with GyrA S91F and GyrA S91 wild-type alleles (A) and with PorB G120 and/or A121 332	
mutations and PorB G120 and A121 wild-type alleles (B) across datasets 1-5. Bar charts 333	
showing the number of (C) CRO-RS and (D) CFX-R isolates with each haplotype, along 334	
with heatmaps showing the presence or absence of the GyrA S19F mutation, the PorB 335	
G120 and/or A121 mutations, and other alleles at loci previously associated with 336	
extended spectrum cephalosporin resistance. Bar colors in (C) and (D) indicate the 337	
dataset from which the isolates were derived. Scatter dot plots showing the detection 338	
efficiency (with lines indicating the mean and 95% confidence intervals from 100 339	
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simulations) for CRO-RS (E) and CFX-R (F) in all datasets in which the variant was 340	
present. Dot colors in E-F indicate the sampling approach, and asterisks indicate a 341	
significant difference (P < 0.05 by Mann-Whitney U test) in detection efficiency between 342	
the phylogeny-aware approach compared to random sampling (*P < 0.05, **P < 0.01, 343	
***P < 0.001; green asterisks indicate significantly higher detection efficiency of the 344	
genomic background-aware approach compared to random sampling). 345	
 346	

Discussion 347	

 With sequencing becoming more integral to routine pathogen surveillance and 348	

diagnostics, it is important to ensure that models mapping genotypic information to 349	

expected pathogen phenotype and/or clinical outcome are comprehensive and current 52. 350	

In the case of genotype-based diagnostics, sustained phenotypic surveillance is crucial 351	

for identifying resistance variants that have recently emerged and/or increased in 352	

prevalence from previously undetected levels. While effective incorporation of patient 353	

metadata into surveillance strategies may be challenging, availability and incorporation 354	

of information on pathogen characteristics (e.g., pathogen genomic data) into surveillance 355	

programs may ultimately decrease the cost of surveillance to maintain the sensitivity of 356	

these diagnostic tools. 357	

 Collection of patient metadata, including demographic and geographic information, 358	

is crucial to understanding the epidemiology of drug resistance. However, it may be 359	

difficult to obtain data on the relevant patient features, and the predictive power of such 360	

features may rapidly decay because of patient mobility and interactions 53. While 361	

availability of patient metadata varied across the datasets assessed, our results suggest 362	

that while incorporation of patient metadata into sampling strategies may increase 363	

detection efficiency for some novel resistance variants, it may be difficult to generalize for 364	

all potential novel resistance variants. It is possible that targeted sampling based on 365	
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patient characteristics may be more reliable in the context of pathogens, antibiotic, and/or 366	

patient characteristics not assessed here.  367	

Incorporation of WGS into routine pathogen surveillance by public health agencies 368	

54,55 may facilitate use of genomic information in phenotypic sampling strategies, 369	

particularly with emerging metagenomic approaches that do not require bacterial culture 370	

56. Our results show that phylogeny-aware sampling, particularly the clonal group 371	

approach, which reduces the amount of repeated sampling of closely related isolates, 372	

significantly improved detection efficiency over random sampling for multiple resistance 373	

and diagnostic-associated variants. Further, identification of and preferential sampling of 374	

isolates with genetic markers that are consistently predictive of resistance across a range 375	

of mechanisms, including those associated with resistance to other drugs, may 376	

supplement phylogeny-aware sampling to further optimize detection efficiency of novel 377	

variants. However, the utility of sampling based on genetic markers of other resistance 378	

mechanisms will likely vary substantially across different drugs and be influenced by 379	

future treatment guidelines.  380	

While the clonal group sampling approach increased detection efficiency for the 381	

resistance and diagnostic escape variants assessed here, it may be difficult to determine 382	

the most effective and reliable metric or threshold for clonal grouping, especially as this 383	

is likely to vary across different clinical populations, antibiotics, and bacterial species. 384	

Detection efficiency was generally consistent across the two SNP thresholds and 385	

fastBAPS groupings based on WGS. However, performance of the clonal group approach 386	

using MLSTs was inconsistent and, in some instances, worse than random sampling, 387	

likely due to the shortcomings of MLST compared to WGS-based approaches in 388	
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distinguishing between AMR variant-positive clades and more distantly-related variant-389	

negative clades in species such as N. gonorrhoeae 34. This suggests that this approach 390	

is sensitive to similarity thresholds and that a low SNP threshold based on WGS 391	

assemblies may be the most appropriate approach, particularly in a population where 392	

there is expected to be substantial clonality among isolates and thus, even with a low 393	

threshold, detection efficiency will be improved by the clonal group approach. More 394	

broadly, surveillance incorporating WGS rather than MLST loci alone may further promote 395	

NAAT sustainability by enabling screening for variants with previously undetected 396	

mutations in target loci, such as the N. gonorrhoeae DR-9A G168A variants, that may be 397	

associated with diagnostic escape. 398	

 We have assessed these targeted sampling approaches in detection of multiple 399	

resistance variants across a range of populations, but these represent only a fraction of 400	

resistance mechanisms in a single species. These findings may extend to other antibiotics 401	

and bacterial species. For example, given the high degree of clonality among M. 402	

tuberculosis isolates and the significant variation in prevalence of drug resistance and 403	

resistance-conferring genotypes across clonal groups 57,58, the clonal group sampling 404	

approach may similarly improve detection efficiency of novel resistance variants in M. 405	

tuberculosis. For species in which drug resistance is primarily acquired through gene 406	

acquisition, it is unclear if phylogeny-aware sampling based on the core genome will 407	

improve detection efficiency of novel variants. K-mer distances 59,60 may provide a more 408	

practical alternative generalizable to more resistance mechanisms associated with gene 409	

acquisition. Further, the requirement of confirmatory phenotyping to identify novel 410	

resistance may not extend to pathogens that are expected to be associated with reliably-411	
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identifiable treatment failures, as for these pathogens, identification of treatment failure 412	

likely represents the most efficient method of novel resistance variant detection 61. 413	

However, for other pathogens, such as N. gonorrhoeae 62, treatment failures may go 414	

undetected for reasons including partial abatement of symptoms or long treatment 415	

regimens. Ultimately, as genotype-based diagnostics for antibiotic resistance become 416	

available for more species, it will be important to assess the efficiencies of these 417	

approaches across pathogens with different clinical, epidemiological, and evolutionary 418	

paradigms. 419	

Since we lack the datasets to assess targeted sampling of variants from the time 420	

they first emerged in a population, any associations we observed between the variants 421	

and patient or pathogen features do not necessarily reflect those around the time of 422	

emergence. Thus, more longitudinal epidemiological and genomic studies, particularly 423	

after the implementation of genotype-based diagnostics, are necessary to better 424	

characterize patterns of novel resistance emergence and inform targeted surveillance 425	

approaches. 426	

The phylogeny-aware sampling approaches presented here are based on the 427	

assumption that genomic data will be available for the pool of potential isolates from 428	

incident cases that may undergo confirmatory phenotyping. However, using information 429	

on isolate features to increase surveillance efficiency may be feasible even in the absence 430	

of mass prospective sequencing. For example, under the general assumption that novel 431	

resistance variants are more likely to appear in underrepresented lineages, phylogeny-432	

aware surveillance could be paired with a diagnostic approach such as genomic neighbor 433	

typing 56, where any isolates with either susceptible or low confidence calls that appear 434	
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to be divergent from the genomes in the reference database would be prioritized for 435	

confirmatory phenotyping. Similarly, a diagnostic that predicts AMR phenotypes through 436	

a combination of transcriptomic and genomic typing 63 may facilitate targeted surveillance 437	

by identifying isolates with ambiguous predictions (e.g., isolates with transcriptional 438	

signatures of resistance that lack known genomic markers of resistance) that could be 439	

prioritized for confirmatory phenotyping.  440	

Advances in diagnostics, extensive sequencing of clinical isolates, and large 441	

collections of clinical and pathogen data together provide new opportunities for integrating 442	

data streams and optimizing surveillance efforts. As marker-based point-of-care AMR 443	

diagnostics are developed and implemented, optimization of surveillance systems will 444	

require assessments like those modeled here of species-, drug-, and population-specific 445	

factors that may affect the emergence and distribution of diagnostic escape resistance 446	

variants, as well as how the diagnostic itself may complement surveillance efforts.  447	

 448	

Methods: 449	

Dataset preparation and phylogenetic reconstruction 450	

See Table 1 for details of the N. gonorrhoeae datasets and Tables 2 and 3 for the 451	

variants assessed. Raw sequencing data were downloaded from the NCBI Sequence 452	

Read Archive. Genomes were assembled using SPAdes v3.13 64 with default 453	

parameters and the careful option to minimize the number of mismatches. Assembly 454	

quality was assessed using QUAST v4.3 65, and contigs <500 bp in length and/or with 455	

<10x average coverage were removed. Isolate reference-based pseudogenomes were 456	

constructed by mapping raw reads to the NCCP11945 reference genome (RefSeq 457	
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accession number NC_011035.1) using BWA-MEM v7.12 66, the Picard toolkit v2.8 458	

(http://broadinstitute.github.io/picard) to identify duplicate reads, and Pilon v1.22 67 to 459	

determine the base call for each site, with a minimum depth of 10 and a minimum base 460	

quality of 20.  461	

Loci in Tables 2 and 3 were extracted from the genome assemblies using blastn 462	

68 followed by MUSCLE alignment using default parameters 69 to assess the presence 463	

or absence of the resistance variants. Presence or absence of mutations in the multi-464	

copy 16S and 23S rRNA genes and the repetitive DR-9A and DR-9B regions 70 was 465	

assessed using BWA-MEM, the Picard toolkit, and Pilon, as above, to map raw reads 466	

to a single 16S rRNA allele, a single 23S rRNA allele, a single DR-9A region, and a 467	

single DR-9B region from the NCCP11945 reference isolate and determine the 468	

mapping quality-weighted percentage of each nucleotide at the site of interest. Isolate 469	

metadata and resistance variant profiles are given in Table S1. 470	

Gubbins v2.3.4 71 was used with default parameters to identify and mask 471	

recombinant regions from the pseudogenomes and build maximum likelihood 472	

phylogenies from the non-recombinant pseudogenome alignments for each dataset 473	

through RAxML v8.2.12 72. Pairwise phylogenetic distances were calculated after removal 474	

of predicted recombinant regions using the ape package in R. Phylogenetic distributions 475	

of genetic resistance variants were assessed by estimating the phylogenetic D statistic 73 476	

using the caper package in R. Bayesian analysis of population structure was performed 477	

on the pseudogenome alignments for each dataset using fastBAPS 74. Multilocus 478	

sequence types (MLSTs) were assigned using the PubMLST database 479	

(https://pubmlst.org/neisseria/). 480	
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 481	

Sampling approaches 482	

For each sampling approach/dataset/variant combination, 100 simulations were carried 483	

out with isolate sampling continuing until variant detection. We defined ‘detection 484	

efficiency’ as 1 minus the fraction of isolates sampled prior to variant detection (excluding 485	

any samples for which the presence or absence of the variant could not be determined). 486	

Because the purpose of this study was to compare the rare variant detection efficiency 487	

between random sampling and targeted sampling approaches, we did not evaluate RplD 488	

G70D in datasets 1 and 4 or for the penA XXXIV allele in dataset 3, as the prevalence of 489	

these variants in these datasets was > 10%.	490	

In demography-aware sampling (datasets 1 and 2), the first isolate was selected 491	

at random, and each successive isolate was randomly selected from alternating 492	

demographic groups (men vs. women and men who have sex with men [MSM] vs. men 493	

who have sex with women [MSW] or women who have sex with men [WSM]). For 494	

anatomical site (niche)-aware sampling (datasets 1 and 2), the first isolate was selected 495	

at random, and each successive isolate was randomly selected from alternating 496	

anatomical sites of isolate collection (i.e., cervix, urethra, rectum, and pharynx). For 497	

geography-aware sampling (datasets 3 and 4), the first isolate was selected at random, 498	

and each successive isolate was randomly selected from alternating geographic regions 499	

(countries or prefectures). For geography- and distance-aware sampling (datasets 3 and 500	

4), the first isolate was selected at random, and each successive isolate was selected 501	

randomly from the region (country or prefecture) with the largest product of geographic 502	

distances from previously sampled regions, only re-sampling from a given region after all 503	
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regions had been sampled in that round. For travel history- and sex work-aware sampling 504	

(dataset 2), isolates were selected at random either limiting the pool to isolates from 505	

patients who had recently engaged in overseas sex or sex work, respectively 33. 506	

For phylogeny-aware sampling (datasets 1-5), the first isolate was selected at 507	

random, and each successive isolate was either selected to maximize the product of 508	

phylogenetic distances from each of the previously sampled isolates (“distance 509	

maximization”) or selected randomly with the exception of ensuring even sampling across 510	

phylogenetic groups (“clonal group”; i.e., isolates £ 𝑁 SNPs from a previously sampled 511	

isolate that were excluded from future sampling until all “clonal groups” had been 512	

sampled). SNP cutoffs tested for the clonal group approach included 1) 134 SNPs, the 513	

lower 95% confidence interval of the mean SNP distance across datasets 1-5 between 514	

each isolate with phenotypic cefixime resistance (CFX-R), azithromycin resistance (AZM-515	

R), and/or ceftriaxone reduced susceptibility (CRO-RS, >0.25 µg/mL, >1 µg/mL, and 516	

³0.12 µg/mL, respectively) and the closest susceptible isolate, and 2) 422 SNPs, the 517	

lower 95% confidence interval of the mean SNP distance  across datasets 1-5 between 518	

each isolate with the RplD G70D mutation, the 23S rRNA C2611T mutation, and/or the 519	

penA XXXIV allele and the closest isolate without the resistance variant. The clonal group 520	

sampling approach was further tested by alternating sampling across fastBAPS and 521	

MLST groups. 522	

For genomic background-aware sampling, isolates were selected at random either 523	

limiting the pool to isolates with genotypic ciprofloxacin resistance (i.e., the GyrA S91F 524	

mutation) or to isolates with a mutation at PorB G120 and/or PorB A121, which have been 525	

associated with a range of resistance pathways in multiple classes of antibiotics 51. 526	
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Genomic background-aware sampling was assessed in detection of CRO-RS (datasets 527	

1 and 3-5; dataset 2 had no CRO-RS isolates) and CFX-R (datasets 1 and 3-4; datasets 528	

2 and 5 had no CFX-RS isolates). 529	

 530	
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