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Abstract 
Motivation: Accurately determining the atomic structure of proteins represents a fundamental problem 
in the field of structural bioinformatics. A solution would be significant as protein structure information 
could be utilized in the medical field, e.g. in the development of vaccines for new viruses. This paper 
focuses on predicting the protein structure based on 3D images of the proteins captured through cryo-
genic electron microscopes (cryo-EM). A fully automated computationally efficient protein structure 
prediction method would be particularly beneficial in the field of cryo-EM as the technology allows re-
searchers to photograph multiple large protein complexes in a single study, which means that a fast 
prediction method could allow for a high throughput of derived protein structures. We present a deep 
learning approach, DeepTracer, for predicting locations of the backbone atoms, secondary structure 
elements, and the amino acid types. In order to connect the predicted amino acids into chains, we 
applied a modified traveling salesman algorithm. 
Results: We trained our deep learning model on experimental cryo-EM density maps and tested it on 
a set of 50 density maps. We found that our new approach predicted protein structures with an average 
RMSD value of 1.18 and a coverage of 87.5%. Furthermore, we detected secondary structure infor-
mation for 87.2% of amino acids correctly. We also showed preliminarily that 25.2% of amino acid types 
could be predicted directly from the 3D cryo-EM density map, considering 20 different types in total. 
Finally, we noted that the prediction runtime of DeepTracer is significantly improved compared to other 
methods. It predicts a large protein complex structure of more than 30,000 amino acids in only 2 hours. 
Availability: The repository of this project will be published. 
Contact: dongsi@uw.edu  
Supplementary information: Supplementary data will be available at Bioinformatics online. 

 
 

1 Introduction 
Proteins represent an essential building block in all organisms. They per-
form crucial functions such as DNA replication, responding to stimuli, and 
many more [1]. Each protein consists of a sequence of the same 20 kinds 
of amino acids, while all amino acids are made up of a carbon, carbon-
alpha (Cα), and nitrogen atom, as well as a side chain which determines 
the amino acid type and is connected to the Cα atom. The functionality of 
a protein is determined through its structure, defined by the three-dimen-
sional (3D) arrangement of the amino acids that make up the protein [2]. 

As a consequence, knowledge about the structure of a protein helps to gain 
a deeper understanding about its behavior. This can be particularly useful, 
e.g., in the development of new vaccines and drugs for new viruses such 
as Novel Coronavirus (2019-nCoV) [3]–[5], as the surface proteins of a 
virus determine how it will interact with a person [6], [7]. Therefore, it is 
fundamentally important to be able to accurately predict the 3D structure 
of a protein. 

There are two main approaches to predict protein structures: homology 
modeling and de novo structure prediction. They differ in such that ho-
mology modeling requires structural knowledge about a homologous pro-
tein for its prediction while de novo methods do not. This limits the 
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application range of homology modeling, since homologues proteins must 
be obtained first before making predictions, which is why we aim at the 
more challenging de novo structure prediction. Traditionally, research on 
de novo protein structure prediction was focused on inferring the 3D struc-
ture through the protein’s amino acid sequence [8]. This approach is ben-
eficial as the determination of the sequence is relatively straightforward. 
Methods that follow this approach either use geometric calculations to es-
timate the protein structure [9], [10], or they use deep learning techniques, 
such as Google’s AlphaFold [11]. While these methodologies have led to 
impressive results, their accuracy is naturally limited as the amino acid 
sequence does not completely contain the protein’s structural information, 
especially for very large protein complexes [12]. 

Throughout the last decade, technological advancements in cryogenic 
electron microscopy (cryo-EM) have provided a new approach to solve 
the structure determination problem. Cryo-EM allows researchers to cap-
ture 3D images of large protein complexes by cooling them to cryogenic 
temperatures without the need of a costly crystallization of the protein 
[13]. In recent years the resolution of these images has increased to a near-
atomic level which led to an exponential gain in popularity of the technol-
ogy [14]. A 3D image captured through cryo-EM is an electron density 
map (see Fig 1). It represents the volume of the protein complex through 
a 3D grid of voxels. Each voxel stores the electron density value, meaning 
the probability that an electron is present, for its location. Latest develop-
ments in the field of cryo-EM have allowed researchers to capture many 
high-resolution density maps from large protein complexes in the course 
of a single study [15]. This makes the ability to predict protein structures 
from cryo-EM maps fully automatically even more significant as it allows 
for a very high throughput of protein structures derived from cryo-EM 
maps.  

 

Fig 1. EMD-6272 (rotavirus VP6) Density Map (left) and its corresponding solved 
structure PDB-3j9s depicted in ribbon (center) and backbone view (right). 

The structure of a protein can be estimated from its density map, intui-
tively by placing the amino acids in such way that the resulting structure 
fits well into the density map. While this sounds like a simple task it be-
comes very challenging due to lower local resolutions as well as noise 
created through errors in the cryo-EM. Currently, there are several existing 
methods that perform protein structure predictions based on cryo-EM data 
such as Phenix and Rosetta [16], [17]. They both use conventional algo-
rithms to place and connect the amino acids of the protein. However, they 
often struggle to identify amino acids as such and, therefore, tend to have 
a low coverage on large protein complex [18]. Furthermore, their long 
runtime is a problem. The prediction of small density maps can take up to 
several days rendering the method practically useless for the prediction of 
large proteins. The C-CNN method, another protein structure prediction 
application which utilizes deep learning techniques, achieves better results 
in terms of coverage [18]. However, it requires some manual input and the 
runtime could be further improved. Additionally, it predicts the location 

of Cα atoms without information about their amino acid type. Therefore, 
we present the DeepTracer, a new fully automated method for the predic-
tion of protein structures from cryo-EM density maps, with the goal of 
improving the runtime by applying a 3D U-Net in combination with a 
modified travelling salesman algorithm and having the ability of recog-
nizing the amino acid type from 3D cryo-EM density maps. 

The functionality of our new DeepTracer is explained in the Methods 
section. In the Results section, the DeepTracer is applied on a test set of 
30 density maps in order to assess and compare its accuracy with other 
methods. The implications of the project and possible future work is ex-
amined in Discussion. Finally, we recapture our findings in the Conclusion 
section. 

2 Methods 
The full prediction pipeline of the DeepTracer includes many different 
steps. In this section we will look at the major ones and explain how they 
create a protein structure based of a density map. We begin by looking at 
the 3D U-Net which predicts confidence maps that show where e.g. atoms 
might be or where which secondary structure is likely to be present. Next, 
we will examine how the DeepTracer uses this information to place the 
actual amino acids, as well as how it connects them into chains to form 
the protein structure. Finally, we discuss how secondary structure infor-
mation can be used to refine predicted α-helices. 

A. 3D U-Net Deep Learning Model 

The deep learning model represents the central entity in the structure pre-
diction. Its job is to predict not only the locations of amino acids but also 
secondary structure positions and amino acid types. To explain its realiza-
tion, we start by looking at its architecture. Then, we move on to the data 
collection and preprocessing steps and finally describe the model’s train-
ing process. 

The U-Net model gets its name from the U-shape of its architecture 
which is optimized for segmentation tasks on medical images [19]. The 
detailed architecture of the model can be seen in Fig 2. The cryo-EM den-
sity maps are fed to the 64# input layer. The output layer has the same 64# 
shape with N different channels. The number of channels depends hereby 
on what the U-Net is predicting (e.g. the secondary structure U-Net has 
three channels for loops, sheets, and helices).  

 

Fig 2. Architecture of the U-Net as used by the DeepTracer. The blue boxes show the 
output maps of the different layers where the dimensions of the maps are depicted on the 
left and the number of channels is depicted on top. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 13, 2020. ; https://doi.org/10.1101/2020.02.12.946772doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.12.946772
http://creativecommons.org/licenses/by/4.0/


DeepTracer 

As mentioned above, the U-Net should predict multiple things, including 
the amino acid positions, secondary structure elements, as well as the 
amino acid types. Therefore, the model consists of three parallel U-Nets 
as shown in Fig 3. The first one is responsible for predicting the amino 
acid positions. As the Ca atom of each amino acid is central to its position 
we can reduce this task to only predicting the Ca atoms of the protein 
structure. Additionally, this U-Net also predicts the backbone location of 
the protein, which is defined as the position of all Ca, C, and N atoms of 
the structure. This prediction will later on be useful in order to connect the 
amino acids into chains. Thus, the output of the Cα atoms U-Net has two 
channels. The second U-Net is responsible for predicting the secondary 
structure elements and, therefore, its output has three channels, one for 
each structural element (α-helix, loop, and sheet). Finally, the third U-Net 
is tasked to predict the amino acid types of the protein structure. Since 
there are 20 different types of amino acids occurring in nature its output 
has the same number of channels. In Fig 4 we can see an example output 
for each of the U-Nets with the density map from Fig 1 as input. 

 

Fig 3. Architecture of the deep learning model, which includes three parallel U-Nets. 
The blue boxes show the input and output maps of the model, with their dimensions noted 
to the left and the number of channels marked below. 

 

Fig 4. Example output confidence maps of the model for the EMD-6272 density map. 
(A) and (B) are both the output of the Cα atom U-Net and show the Cα atom locations (A) 
as well as the backbone of the protein (B). (C) shows the output of the secondary structure 
U-Net with a-helices in yellow, loops in purple, and sheets in red. In (D) we can see the 
output of the amino acid type U-Net where each color represents a different type of amino 
acid. 

Now that we have looked at the architecture of the model, we can continue 
with the data collection. In order for the deep learning model to learn com-
mon noises and errors present in cryo-EM density maps we decided to 
train the U-Net using experimental data rather than density maps 

simulated from solved structures such as [18]. We downloaded the density 
maps from the EMDataResource website [20] in combination with their 
solved protein structures which function as the ground truth for the train-
ing process. We obtained the solved structures from the RCSB Protein 
Data Bank [21]. Since this paper is focused on high resolution maps, we 
only used density maps with a resolution of 4Å or better. In total we used 
411 different density maps to build the training and validation sets. 

The preprocessing steps can be split into preparing the cryo-EM density 
maps and creating the different labels based on the solved structures. For 
the experimental density maps we have to make sure that the voxel size 
equals one, meaning that every voxel measures 1Å. Furthermore, we need 
to adjust the dimensions of the map to the 64# input dimensions of the 
model as seen in Fig 2. This is done by splitting the maps into several 64# 
big cubes. In order to avoid errors at the borders of the cubes we overlay 
them partly such that we only use the 50# center voxels of each cube to 
reconstruct the output maps to the original dimensions of the density map. 
By splitting the 411 density maps that we collected in this manner, we 
retrieve 16,070 training examples. To create the labels that the model can 
be trained on, we use the solved structure to create masks by filtering out 
the corresponding atoms and setting all voxels within a certain distance to 
those atoms to one. For the Cα mask we filter only the Cα atoms of the 
protein structure and set all directly neighboring voxels around them to 
one. The backbone mask is created similarly except that we use all Cα, C, 
and N atoms. To generate the secondary structure masks, we filter out all 
atoms for each structural element and set all voxels within a distance of 
two around each filtered atom to one. Finally, to create the amino acid type 
masks we filter out all atoms for each amino acid type and set all neigh-
boring voxels to one for each atom. In total this gives us 25 different masks 
for each training example (Cα mask, backbone mask, three secondary 
structure masks, and 20 amino acid type masks). 

B. Placing Cα atoms 

As mentioned above, the determining factor for the position of an amino 
acid is the position of its Cα atom. In order to place the Cα atoms in the 
3D space we use the Ca atoms confidence map as well as the backbone 
confidence map. The backbone map is used to identify different chains 
and the Ca atoms map to find the locations of the Ca atom. 

Before we place any Cα atoms, we try to identify separate chains in the 
protein structure. This will help us later when connecting the atoms and 
improves the runtime of the connection process. In order to discern the 
chains, we identify connected areas of voxels that have a confidence value 
of 0.5 or higher. An example of the chains identified from a backbone 
prediction can be seen in Fig 5. We can now mask all other confidence 
maps with each chain area that we identified in order to continue the pre-
diction independently for all chains. 

 

Fig 5. Backbone prediction of EMD-0478 density map (human TPC2 channel) (human 
TPC2 channel) with identified chains marked in different colors. 
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Next, we place the actual Cα atoms in two simple steps, using the 
masked Cα confidence maps. First, we find the initial atom locations by 
calculating local minima in the confidence map within a neighborhood of 
one voxel and a minimum value of 0.6. The value of 0.6 was chosen after 
some testing as it produced the most accurate results. This gives us a list 
of voxel indices. However, as atoms can have floating point coordinates, 
we try to improve this initial location by calculating the center of mass for 
3# cubes around each local minimum. The resulting values are used as the 
coordinates for the Cα atoms of the protein structure. 

C. Tracing Backbone 

In this prediction step, we use the predicted Cα atoms and connect them 
into chains using a travelling salesman algorithm (TSP) [22]. However, 
instead of using the Euclidean distances between atoms to measure the 
total length of the path, we use a custom confidence score that expresses 
how confident we are that two atoms share a connection. The task of the 
TSP algorithm is then to connect the atoms into chains such that they max-
imize the sum of all confidence scores. 

The calculation of the confidence score between two atoms takes two 
factors into consideration: The Euclidean distance between them, as well 
as the average confidence of voxels that lay in between the atoms in the 
backbone prediction. Let 𝑝(𝑥, 𝜇, 𝜎) be the normal probability density 
function at 𝑥 with mean 𝜇 and standard deviation 𝜎, 𝑑/,0 the Euclidean 
distance between atoms a and b, and 𝑏/,0 the average backbone confidence 
between atoms a and b.  We define the confidence score as shown in equa-
tion 1. The constant 3.8 was chosen as the mean for the distances between 
two atoms as this corresponds to the average distance found in nature. The 
standard deviation parameters of 5 and 0.3 where selected based on test 
runs. They were intentionally chosen higher than in the distribution found 
in solved structures, in order to cut some slack for prediction inaccuracies. 

𝒄(𝒂, 𝒃) = 6
𝒑8𝒅𝒂,𝒃,𝟑.𝟖,𝟓>
𝒑(𝟑.𝟖,𝟑.𝟖,𝟓)

× 𝒑8𝒃𝒂,𝒃,𝟏,𝟎.𝟑>
𝒑(𝟏,𝟏,𝟎.𝟑)

, 𝒅𝒂,𝒃 < 𝟏𝟎
𝟎, otherwise

       (1) 

In order to apply the TSP algorithm, we also need to specify a start/end 
point. However, we do not know yet at which atom the chain will start and 
end. Therefore, we add a new atom that is connected to every other atom 
with a confidence of 1. This atom is then specified as the start/end and 
later on removed from the actual chain. An example of the application of 
the TSP on a list of Cα atoms can be seen in Fig 6. 

 

Fig 6. Predicted Cα atoms for EMD-4054 density map (major capsid protein) (major 
capsid protein) in blue before (left) and after (right) the backbone tracing step com-
pared to the true structure in pink. 

  
1 https://docs.scipy.org/doc/scipy/reference/generated/scipy.opti-
mize.minimize.html  

D. Helix Refinement 

The last prediction step is responsible for refining modelled α-helices. 
Here for, we can exploit the fact that the shape of an α-helix has a general 
definition which is valid across proteins [23]. Since the U-Net predicts the 
confidence of secondary structure elements, as shown in Fig 4, we know 
which amino acids belong to an α-helix based on the confidence of their 
region in space. We combine this knowledge of α-helix locations and their 
shape attributes in order to adjust the appropriate Cα atoms to better fit the 
shape of a natural α-helix structure.  

For an α-helix which centers around the z-axis, we can use Equation 2 
to model its shape where the variables s and r represent the initial shift and 
rotation of the helix. The values 2.11 and 1.149 are constants that define 
the radius and pitch of the helix to best match those of an α-helix. 

𝒙 = 𝟐. 𝟏𝟏 × 𝒔𝒊𝒏(𝟏. 𝟏𝟒𝟗 × 𝒕) − 𝒔 + 𝒓 
𝒚 = 𝟐. 𝟏𝟏 × 𝒄𝒐𝒔(𝟏. 𝟏𝟒𝟗 × 𝒕) − 𝒔 + 𝒓											            (2)		

𝑧 = 𝑡 
Equation 2 however, cannot be used to describe an α-helix which does 

not center around the z-axis or whose shape is not a straight cylinder. Since 
this is the case for most α-helices, it is necessary to adjust the equation in 
such way that it will address these issues. With the aim of doing so, we 
first locate the screw axis, the center line around which the helix winds 
itself, for each α-helix. This is achieved by calculating the centroid of con-
secutive intervals of the α-helix and then connecting them to approximate 
the true curve. An example of an α-helix and its calculated screw axis can 
be seen in Fig 7. 

 

Fig 7. α-Helix extracted from the backbone prediction of the EMD-8515 density map 
in tan color and its screw axis in teal color. 

Now that we know the location and shape of the screw axis for the α-
helix, we need to incorporate this information into Equation 2. This is 
achieved by interpreting t as the distance that we travelled on the screw 
axis and use the unit direction vector of the screw axis at a certain point t 
as the new z axis. Next, we can find the new y-axis by calculating the cross 
product of the x-axis and the new z-axis and then normalizing it. Finally, 
we can get the new x-axis by calculating the cross product of the new z 
and y-axis and normalizing it again. By concatenating the three new axes 
we can get a rotation matrix RM with which we can calculate the point of 
the α-helix for any value t as shown in Equation 3. 

α-helix(𝑡) = screw-axis(𝑡) + RMa
2.11 × 𝑠𝑖𝑛(1.149 × 𝑡) − 𝑠 + 𝑟
2.11 × 𝑠𝑖𝑛(1.149 × 𝑡) − 𝑠 + 𝑟

0
i (3) 

Now, we need to know the values t at which we have to insert Cα atoms. 
Since we know that an α-helix has a rise of 1.5Å per residue [23] we can 
increase t in steps of 1.5 and add a new Cα atom at α-helix(t). 

In the final step we minimize the average distance from the Cα atoms 
of the refined α-helix to the Cα atoms of the original prediction. This is 
done by applying a minimization algorithm1 over the variables s and r to 
try different initial shifts and rotations. The final results of the α-helix re-
finement step are shown in Fig 8. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 13, 2020. ; https://doi.org/10.1101/2020.02.12.946772doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.12.946772
http://creativecommons.org/licenses/by/4.0/


DeepTracer 

 

Fig 8. α-Helix extracted from the prediction of the EMD-8515 density map. (Top) Orig-
inal prediction before the helix-refinement step. (Center) α-Helix after the refinement. (Bot-
tom) Direct comparison of original prediction in tan color, refined prediction colored in 
teal, and the solved structure (PDB-5u70) in pink color. 

Results 
In order to gain a better understanding about the performance of the Deep-
Tracer we will apply it to a test set of 30 experimental density maps and 
evaluate the predictions using different metrics. Additionally, we will 

compare its performance against Phenix, as well as the C-CNN backbone 
prediction method. 

We measure the accuracy of a predicted protein structure by comparing 
it to its corresponding solved structure using the following metrics. First, 
the root-mean-square deviation (RMSD) value describes the average dis-
tance between atoms of the predicted and solved protein structure. This 
gives us an idea how close the predicted atoms are to their correct counter 
parts. However, this does not give us any information about the percentage 
of atoms that we have correctly identified. For this purpose, we calculate 
the coverage value, which expresses the percentage of atoms in the solved 
structure that lay within 3Å of a predicted atom. Finally, we evaluate the 
false-positive percentage which is the number of atoms that were predicted 
further than 3Å from any atom in the solved structure, divided by the total 
number of predicted atoms. In addition to the metrics that we use to com-
pare the other methods to the DeepTracer, we also calculate the secondary 
structure and amino acid type accuracy. We cannot evaluate these for the 
other methods as they utilize the U-Net confidence maps rather than the 
predicted protein structure. The secondary structure accuracy is defined as 
the percentage of atoms from the solved structure whose secondary struc-
ture type equals the one predicted by the U-Net for its location. The amino 
acid type accuracy is calculated in the same way. In Table 1, we can see 
the test results for all 30 density maps. 

Table 1. Prediction results of the Phenix, C-CNN, and DeepTracer methods for 30 experimental density map.  

EMDB ID PDB ID Res. (Å) Native 
Cα2 

FP %3 Coverage %4 RMSD SSE %5 AA %6 

C-CNN Deep-
Tracer Phenix C-CNN Deep-

Tracer Phenix C-CNN Deep-
Tracer 

Deep-
Tracer 

Deep-
Tracer 

2513 4ci0 3.4 893 3.5 3.6 62.5 96.6 91.5 1.33 1.06 1.13 84.99 35.05 
3061 5a63 3.4 1223 3.0 5.3 73.9 95.6 91.0 1.15 1.10 1.14 90.02 29.44 
3121 5aco 4.4 2415 10.4 19.6 57.0 83.4 78.6 1.63 1.45 1.38 73.20 12.89 
3222 5flu 3.8 2119 1.1 4.7 62.0 86.6 82.0 1.76 1.60 1.56 70.60 8.82 
3238 5fn3 4.1 1318 3.6 8.9 56.1 79.5 74.1 1.50 1.48 1.51 79.21 9.18 
3601 5n8o 3.9 1433 6.6 7.1 50.0 85.8 86.8 1.29 1.37 1.30 72.77 20.67 
3785 5odv 4.0 4968 10.0 12.4 40.1 91.5 89.8 1.73 1.46 1.40 82.77 21.36 
4054 5lij 4.2 152 1.3 1.4 84.2 90.8 88.2 1.44 1.44 1.28 71.05 - 
4062 5ljv 3.6 1950 3.8 2.9 48.3 95.8 91.9 1.21 1.10 1.06 81.85 33.95 
4128 5lzp 3.5 6182 0.8 2.9 77.1 93.2 88.9 1.13 1.16 1.17 87.45 27.71 
5623 3j9i 3.3 5978 0.8 2.1 72.4 95.9 92.0 0.87 1.05 0.92 87.77 36.95 
5778 3j5p 3.3 2368 1.2 5.1 55.6 74.7 68.1 1.15 1.29 1.49 77.58 17.27 
5995 3j7h 3.2 4088 1.5 1.9 72.9 96.9 93.4 1.12 1.10 0.99 82.85 29.55 
6224 3j9c 2.9 423 0.5 5.9 71.9 95.3 95.7 0.99 1.05 0.87 75.89 29.31 
6239 3j9d 3.3 746 1.9 2.4 74.8 98.1 94.8 0.99 1.01 1.02 78.28 34.18 
6240 3j9e 3.3 520 0.2 0.9 69.4 83.5 79.6 0.82 1.02 1.06 85.96 32.50 
6272 3j9s 2.6 397 0.0 2.5 88.9 99.0 97.0 0.69 0.85 0.87 88.16 31.49 
6324 3ja7 3.6 5136 2.0 4.5 69.4 83.2 87.0 1.13 1.30 1.31 81.31 26.69 
6346 3jaf 3.8 1710 1.5 3.8 72.8 91.7 88.0 1.10 1.20 1.12 85.26 13.92 
6408 3jb6 3.3 1731 1.3 2.6 79.3 96.6 92.5 0.83 0.97 1.11 88.85 36.45 
6488 3jby 3.7 1802 14.4 8.0 57.3 92.6 87.6 1.18 1.19 1.20 85.85 25.14 
6551 3jcf 3.8 1745 1.3 3.5 74.2 93.8 92.1 1.15 1.17 1.35 87.97 23.50 
6630 3jcz 3.3 2976 0.6 2.5 66.1 91.8 90.4 1.05 1.09 1.13 81.49 32.53 
6631 3dj0 3.5 2976 1.9 2.3 59.5 89.4 88.8 1.07 1.16 1.19 80.44 25.44 
6676 5wq8 3.3 7440 1.3 4.2 54.2 80.7 80.6 0.93 1.12 0.97 79.09 30.36 
6703 5x58 3.2 3159 5.2 9.1 53.1 84.5 82.5 1.27 1.31 1.21 75.63 24.12 
6744 5xno 3.5 854 25.9 28.3 55.4 85.7 80.7 1.22 1.25 1.33 82.55 17.68 
6770 5xsy 4.0 1312 7.4 8.5 68.5 88.7 88.0 1.21 1.32 1.41 86.81 20.96 
7063 6b7n 3.3 2898 4.1 7.2 71.3 96.4 89.6 1.21 1.14 1.08 81.19 18.12 
8015 5gaq 3.1 2592 0.5 1.1 79.2 99.0 93.2 1.10 0.91 0.77 84.84 25.54 
Avg.    3.9 5.8 67.1 90.5 87.5 1.10 1.19 1.18 81.72 25.20 

  
2 Number of Cα atoms in the solved protein structure 
3 Percentage of atoms that were predicted further than 3A away from any 
atoms in the solved structure  
4 Percentage of atoms from the solved structure that lay within 1A of a 
predicted atom 

5 Percentage of atoms from the solved structure for which the U-Net cor-
rectly predicted the secondary structure 
6 Percentage of atoms from the solved structure for which the U-Net cor-
rectly predicted the amino acid type (missing entries indicate that the 
solved structure did not contain amino acid type information) 
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In order to get a better idea of the implications of the results we take a 
closer look at the protein structures predicted by the DeepTracer and Phe-
nix for the EMD-6272 density map (rotavirus VP6) and compare them to 
the solved structure (see Fig 9). We can see in the highlighted areas that 
the DeepTracer incorrectly connected amino acids in two cases. However, 
all predicted amino acids are still connected as a single chain. In compar-
ison to that the prediction of Phenix is fragmented into multiple chains. 
Furthermore, amino acids appear to be missing from the prediction ex-
plaining the coverage difference of 8.1% (see Table 1). The predicted sec-
ondary structure elements in the Phenix prediction, particularly for sheets, 
appear also much less accurate than the ones made by the DeepTracer. 
Another noteworthy observation, although not a fair comparison as Phenix 
predicts more than just the backbone structure, is that the prediction 
runtime of Phenix for the EMD-6272 map was 1 hour and 45 minutes 
while the runtime of the DeepTracer for the same map was 40 seconds. 

 

Fig 9. Solved PDB-3j9s protein structure (blue) and predictions by the DeepTracer 
(green) and Phenix (yellow) for EMD-6272 density map (rotavirus VP6). Highlighted 
areas show where the DeepTracer connected the amino acids incorrectly. 

As mentioned in the introduction, a central goal of the DeepTracer was to 
improve the runtime of protein structure predictions. This makes it possi-
ble to predict ever larger density maps which allows for a more versatile 
application of the method. In order to compare the runtime of the Deep-
Tracer with the C-CNN method we measure the execution time of each 
method for the prediction of multiple density maps. A scatter plot of the 
measured times is depicted in Fig 10.  

 

Fig 10. Scatter plot of prediction runtimes (y-axis) of the DeepTracer (blue) and the 
C-CNN method (red) for various density maps against the number of predicted atoms 
(x-axis). In order to see the runtimes more clearly, we use a logarithmic scale with a base 
of 4. 

In order to evaluate the runtime of the DeepTracer for larger proteins we 
predicted the EMD-4903 density map (echovirus 1 intact particle). The 
number of predicted atoms for this map was 32,446. The execution of the 
end-to-end prediction pipeline of the DeepTracer took only two hours. As 
a point of comparison, the expected runtime of the C-CNN method for the 
same density map is more than 5 days assuming the trend in Fig 11 con-
tinues for larger proteins. The original density map next to the prediction 
of the DeepTracer can be seen in Fig 11. 

 

Fig 11. Density map (left) of EMD-4903 (echovirus 1 intact particle) and its predicted 
protein structure (right), containing more than 30,000 atoms. 

In addition to the location and secondary structure of amino acids, the 
DeepTracer also predicts their types. As reported in Table 1 we assigned 
the correct type out of the 20 possible amino acid types with an accuracy 
of 25.2%. In order to get a better idea of what that result means we look at 
a specific structure prediction. For the EMD-6272 density map, we pre-
dicted the correct amino acid type for 31.49% of amino acids. Note that 
this is predicted solely from 3D map without using any genetic infor-
mation of the protein. In Fig 12 we can see an extract of the amino acid 
sequence as predicted by the DeepTracer, compared to the sequence of the 
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solved structure. The sequence was created by walking along the predicted 
chain of amino acids and noting down the type of each amino acid. The 
predicted amino acids from 3D could potentially be utilized for the refer-
ence of future full-atom structure prediction. 

ASP GLU ALA ALA THR LEU PHE PRO TRP TRP ASN ASP ARG GLU GLU 
PHE PHE TYR TYR PHE SER SER ASN TRP PRO PRO ASN HIS PRO ARG 
ASP SER THR VAL ASN ILE ARG ARG PRO LEU ALA ASN ALA SER VAL 
THR VAL VAL PRO THR LEU THR ILE LYS ILE THR SER ALA VAL THR 
ASN ASP PRO VAL THR SER LYS PRO ASN ILE MET ILE ALA THR VAL 
GLU GLU THR ILE ARG SER HIS ALA VAL THR ILE ALA THR VAL PHE 
PRO PRO PRO PHE LYS TRP ASN GLU LEU VAL SER TYR PHE TYR ARG 
ARG GLU GLU LEU LEU GLN ARG VAL TYR VAL VAL ALA SER LEU ARG 
ALA GLU ILE PRO ARG ARG ARG 
PRO ALA VAL ALA ALA LEU PHE PRO ASN ALA GLN PRO PHE GLU HIS 
HIS HIS TYR SER CYS ALA ILE ASN ALA ALA ASN THR GLN GLN PHE 
GLU HIS ILE VAL GLN LEU ARG ARG VAL LEU THR THR ALA THR ILE 
THR LEU LEU PRO ASP LEU THR LEU ARG ILE GLU SER ALA VAL CYS 
GLU SER VAL LEU ALA ASP ALA SER GLU THR MET LEU ALA ASN VAL 
THR SER VAL ARG GLN GLU TYR ALA ILE PRO VAL GLY PRO VAL PHE 
PRO PRO GLY MET ASN TRP THR ASP LEU ILE ASN TYR TYR SER ARG 
ARG GLU ASP ASN LEU GLN ARG VAL PHE THR VAL ALA SER ILE ARG 
SER MET LEU VAL LYS LYS LYS 

Fig 12. Extract of the amino acid sequence predicted by the DeepTracer for the EMD-
6272 density map (top) compared to the sequence of the solved structure PDB-3j9s 
(bottom). Correctly predicted amino acids are highlighted in red. 

3 Discussion 
The final goal of the DeepTracer is to accurately predict the complete pro-
tein structure from high resolution cryo-EM density maps. In this section 
we evaluate how close we are to this goal, based on the results presented 
in the previous section, as well as discuss what further work is necessary. 

When looking at the results reported in Table 1, we can note a couple 
of things. First, we see that the percentage of false positives predicted by 
the DeepTracer has increased by 1.9% compared to the C-CNN method. 
This can be explained through the manual thresholding which reduces 
noises in the experimental density maps and is utilized in the C-CNN 
method. However, considering that this step introduces manual effort to 
the prediction process, this is an acceptable concession as our new method 
is fully automated. Next, we see that the coverage percentage of the Deep-
Tracer beats Phenix by over 20%. However, it still lacks behind the C-
CNN method by 3%. On the contrary, Phenix performs best for RMSD, 
beating the DeepTracer by 0.08 and the C-CNN method by 0.09. If we 
compare the DeepTracer to Phenix based on these two metrics, we can see 
that the coverage improvements significantly outweigh the small deterio-
ration in RMSD. However, compared to the C-CNN method there is no 
significant difference regarding the RMSD and coverage. As mentioned 
in the introduction, we wanted to focus not only on the prediction accu-
racy, but also on the runtime of the predictions. And here we can discern 
immense differences. For the prediction of smaller structures. the C-CNN 
method took at least 20 minutes while the DeepTracer ran small predic-
tions in a matter of seconds. However, the bigger implications lay in the 
prediction of larger proteins. For around 6000 atoms the C-CNN method 
took over 24 hours to finish, whereas the DeepTracer only needed around 
20 minutes, for some even less than 5 minutes. Particularly, the trendline 
is interesting as it gives us an idea of how the methods will behave for 
very large proteins. The C-CNN trendline seems almost linear above 2000 
predicted proteins and the runtime seems to quadruple when 6000 pre-
dicted atoms are reached. If this trend continues then we could expect a 
75-fold runtime increase in order to predict 100,000 atoms. The runtimes 
of DeepTracer, however, seem to remain flat once a certain number of 
atoms is reached which would mean that very large proteins could be 

predicted within a reasonable runtime. This can be explained by the chain 
identification step that is applied before the prediction of any atom. While 
larger proteins consist of more chains than smaller ones, the number of 
atoms in the chains does not necessarily grow. As each chain is processed 
separately this means that if the chain lengths remain constant and only 
the number of chains gets larger the runtime grows linearly with the num-
ber of chains. 

In addition to the false-positive percentage, the coverage, and the 
RMSD we also calculated the secondary structure and amino acid type 
accuracy for the DeepTracer using the confidence maps predicted by U-
Net. We can see that the secondary structure prediction performs well with 
an average accuracy of 81.72%. We also show that deep learning could 
discern different types of amino acids based on the density maps. Particu-
larly, as this is only the preliminary stage of predicting amino acid type 
directly from 3D cryo-EM density map. It gives promise for future im-
provements through a more elaborate training of the U-Net with more 
data. Furthermore, we plan to include the amino acid sequence as an input 
parameter, so that we can map the predicted sequence with the input se-
quence and refine our prediction. For this sequence mapping work, an 
amino acid type prediction accuracy of around 30% from 3D could be al-
ready helpful. Particularly, as we can see from Fig 12 that the U-Net tends 
to correctly predict the type of consecutive amino acids, likely due to high 
local resolutions. As it is very unlikely that this happens by chance, we 
can use this information to map the input sequence to our 3D backbone 
atom and amino acids prediction. 

4 Conclusion 
In this paper, we presented the DeepTracer, a fully automated tool which 
can accurately predict backbone protein structures based on 3D cryo-EM 
density maps. In terms of accuracy, we were able to outperform the estab-
lished structure prediction method Phenix by over 20% in structure cov-
erage with only a slight RMSD increase of 0.08. Compared to the deep 
learning-based C-CNN method we achieved a slightly better RMSD by a 
margin of 0.01 with a slightly decreased coverage of 3%. In contrast with 
the C-CNN method, this fully automated method requires no manually set 
parameters. And the vastly reduced runtime allows us to predict protein 
structures within minutes instead of days. This is significant, as it allows 
the researchers to apply the DeepTracer on very large density maps and 
expect results maximally within a couple of hours. Furthermore, we 
achieved preliminary results in the amino acid type prediction from 3D 
with an accuracy of 25.2%. This gives promise to the incorporation of 
amino acid sequence into the prediction pipeline. Since the predicted 
amino acids from 3D could potentially be utilized for the reference of fu-
ture full-atom structure prediction. In the future, we expect to use the 
amino acid type information to extend the functionality of the DeepTracer 
such that it can predict the protein full atom structure, including the side 
chains of the amino acids. 
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