
Causal dynamical modelling predicts
novel regulatory genes

of FOXP3 in human regulatory T cells
Rucha Sawlekar∗†, Stefano Magni∗†, Christophe Capelle∗‡, Alexandre Baron‡, Ni Zeng‡,
Laurent Mombaerts†, Zuogong Yue§, Ye Yuan¶, Feng Q. He‖‡, and Jorge Gonçalves‖†∗∗

Abstract

Regulatory T cells (Tregs), characterized as a
CD4+CD25+FOXP3+ subset of T cells, are vi-
tal to the induction of immune tolerance and the
maintenance of immune homeostasis. While target
genes of Treg master regulator FOXP3 have been
identified, the upstream regulatory machinery of
FOXP3 still remains largely unknown. Here we dy-
namically model causal relationships among genes
from available time-series genome-scale datasets, to
predict direct or indirect regulatory genes of FOXP3
in human primary Tregs. From the whole genome,
we selected five top ranked candidates for further ex-
perimental validation. Following knockdown, three
out of the five candidates indeed showed significant
effects on the mRNA expression of FOXP3. Fur-
ther experiments showed that one out of these three
predicted candidates, namely nuclear receptor bind-
ing factor 2 (NRBF2), also affected FOXP3 protein
expression. These results open new doors to iden-
tify potential new mechanisms of immune related
diseases.
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Regulatory T cells (Tregs) are key players of the
immune system, which in turn plays a crucial role in
a wide range of diseases. It is well established that
the transcription factor FOXP3 is a master regula-
tor of Tregs. However, genes regulating FOXP3 are
still largely unknown and identifying them may be
vital for developing new immunotherapeutics. This
paper computationally screens the whole genome for
potential regulators of FOXP3, and then experimen-
tally validates them. Overall, the paper illustrates
how the combination of genome-wide time-series
data with dynamical modelling can identify a small
set of relevant causal interactions.

Tregs perform immunosuppression of self-reactive
lymphocytes to induce immunological self-tolerance
and maintain homeostasis [Josefowicz et al., 2012;
Kenneth et al., 2012; Li et al., 2015]. Tregs are
involved in different types of diseases, such as au-
toimmune diseases [Dejaco et al., 2006; Fehérvari
and Sakaguchi, 2004; Sakaguchi et al., 2006], cancer
[Franchina et al., 2018; Shang et al., 2015; Tanaka
and Sakaguchi, 2017], infectious diseases [Joosten
and Ottenhoff, 2008; Stephen-Victor et al., 2017],
neurodegenerative diseases [Baruch et al., 2015; He
and Balling, 2013] and others [Cools et al., 2007].

The transcription factor FOXP3 has been shown
to play a decisive role for the development and func-
tion of Tregs [Ziegler, 2006]. This gene is expressed
specifically in CD4+CD25+ Tregs [Hori et al., 2003;
Rudensky, 2011]. Altered expression of FOXP3 has
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been found in various types of autoimmune diseases
[Liu et al., 2013] and tumors [Cunha et al., 2012;
Martin et al., 2010; Szylberg et al., 2016]. Genetic
mutations in FOXP3 result in autoimmunity and in-
flammatory syndromes, both in humans and in mice
[Fontenot et al., 2003; Khattri et al., 2003; Mayer
et al., 2014; Mercer and Unutmaz, 2009]. Most of
the experimental evidence indicates that FOXP3
deficiency is responsible for IPEX (immunodysreg-
ulation polyendocrinopathy enteropathy X-linked)
syndrome which is a rare disease caused by dysfunc-
tion of Tregs [Bennett et al., 2001].
Target genes of FOXP3 have been identified

through intensive studies [Marson et al., 2007; Zheng
et al., 2007; Zheng and Rudensky, 2007]. Meanwhile,
progress in high-throughput technical developments,
such as ChIP-seq and ChIP-Chip, have started to
illuminate genetic and epigenetic mechanisms reg-
ulating expression or protein stability of FOXP3
[Chen et al., 2013; Floess et al., 2007; Fu et al.,
2012; Gao et al., 2015; Miyara and Sakaguchi, 2007;
Schmidt et al., 2012]. The majority of known up-
stream regulators of the expression of FOXP3 are
general regulatory genes, e.g. those controlling in-
terleukin signaling pathways (IL2, IL4, IL6 and so
on) and cell surface receptors (TGFB) [Lal and
Bromberg, 2009]. Those genes tend to regulate a
large number of genes far beyond FOXP3, which
might cause significant unwanted side effects when
being targeted.

More specific upstream genes regulating FOXP3
are still largely unknown. Identifying these regula-
tors of FOXP3 may be crucial for developing new
immunotherapeutics against autoimmune and other
related diseases. Unbiased experimental screening
of the whole genome for such upstream regulators
is almost impossible with current experimental ap-
proaches. However, such tasks can be efficiently
performed computationally. This is the goal of this
work.

The models trained in this work are based on
microarray data of the whole-genome mRNA ex-
pression in isolated human Tregs [He et al., 2012].
Tregs from two different donors were stimulated at
time zero with anti-CD3/-CD28/IL2, and measure-
ments were taken at time zero followed by sampling
every twenty minutes over a period of six hours (19
time points in total). After the pre-processing of
the data, as outlined in column 1 of Fig. 1a and
described in Supplementary Section 1.1, there were

13601 transcripts left, corresponding to 7826 genes.
A gene can correspond to multiple transcripts, each
measured by a separate probe set; from now on
for simplicity we will only use the term transcripts
and omit the term probe set. The role of the com-
putational modelling was to reduce this number
to 5 genes, reflecting our available experimental
resources for validation.
Existing models capture known regulations of

genes by FOXP3 [Carbo et al., 2013, 2015; Hong
et al., 2011; van den Ham and de Boer, 2008], so they
were not useful in finding novel regulators of FOXP3.
Hence, we need to fit new models from data that
capture causality, i.e. that identify those genes that
cause changes in FOXP3. Here, we take advantage
of a relatively large number of available time-series
Tregs samples to fit dynamical models. In particular,
ordinary differential equations are mathematical ab-
stractions that capture both dynamics and causality,
and help build testable hypotheses in experiments.
Our models take as inputs the time-series expression
values of the whole genome, i.e. each of the 13601
transcripts left after pre-processing of the data, and
FOXP3 as the single output (target).

There is always a trade-off on the choice of model
complexity. With rich data, models can be complex,
providing detailed information of mechanisms of ac-
tion. However, with limited data, complex models
can easily overfit and introduce bias, resulting in
large numbers of false negatives. In our case, with
only a single time-series experiment and limited
resources for validation, we consider the simplest
dynamical model: first-order linear time-invariant
(LTI) systems, a well established modelling strat-
egy [Dalchau, 2012; Herrero et al., 2012; Mombaerts
et al., 2019b, 2016; Müller et al., 2019]. Moreover,
to scale the method to the whole genome, we built
a large number of simple pairwise models (one per
transcript), testing whether each transcript on its
own could regulate FOXP3. A model associated
with a particular transcript is given by

dFOXP3(t)
dt

= a · FOXP3(t) + b · transcript(t) .

The left-hand side of the equation is the derivative
of FOXP3 expression over time, i.e. the rate of
change of the concentration of FOXP3. Finally,
we searched for parameters a, b that best fitted the
data. This procedure was repeated for all 13601
transcripts. Given the simplicity of the models,
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Figure 1: Causal dynamical modelling pipeline resulting in hypothesized regulators of
FOXP3 for subsequent in vitro testing. (a) Overview of the different stages of the computa-
tional approach, from raw time-series transcriptomic data to the resulting ranking of genes likely to
regulate FOXP3. The abbreviation ACT stands for activator, REP for repressor. (b) Fitness score versus
model number for each transcript paired with each of the two available FOXP3 transcripts. Two regimes
are visible: a group of models showing a steep decrease in fitness, and a much larger group showing an
almost linear decrease in fitness. The box on the top right corner of this panel shows a magnification of
the region with the top ranked models. The ranking of models directly translate in ranking the input
transcripts. The rank of the first 176 transcripts is reported as Tab. S1. (c) Overview of predicted
regulators of FOXP3 which were tested in vitro.
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high fit means high confidence that such regulation
of FOXP3 may indeed exist. This method was
summarised in column 2 of Fig. 1a and further
details are in Supplementary Sections 1.2 and 1.3.

Potential regulators of FOXP3 identified here may
or may not be transcription factors. Indeed, our
models can capture both direct or indirect regula-
tions of FOXP3. Indirect regulations involve other
molecules and typically require larger dimensional
models to capture the dynamics of intermediate
steps. To avoid increasing model complexity and
still consider indirect regulations, we introduced a
single time delay τ in the input signal

dFOXP3(t)
dt

= a ·FOXP3(t) + b · transcript(t− τ) .

Hence, each model had a total of three parameters.
Finally, transcripts were ranked according to how
likely they are to regulate FOXP3. This was il-
lustrated in column 3 of Fig. 1a and described in
Supplementary Section 1.3.
We decided to focus on the top 176 transcripts

(Tab. S1) out of 7030. Fig. 1b showed a significant
change in the rate of change of the fitness values, i.e.
a kink, after approximately the first 176 transcripts
(additional details are provided in Supplementary
Section 1.4). Of those, there were 161 distinct genes,
since 15 of the 176 transcripts corresponded to the
same genes. These genes covered fitness values
ranging from 62 to 46 (the higher the fitness value,
the better; 100 is perfect fit). Among the remaining
161 top ranked genes, FOXP3 is known to bind
the promoters of 59 genes [Sadlon et al., 2010], and
38 genes are reported to be differentially expressed
in human Tregs compared to CD4+CD25- effector
T cells (Teffs) [Sadlon et al., 2010]. For 15 genes,
both statements were true. As a first literature
validation test, this shows that the predicted top
ranked genes are indeed involved in the regulatory
pathways related to FOXP3, already supporting the
relevance of our prediction.

Next, we experimentally validated some of the 161
top ranked genes in primary human Tregs (Fig. 2a,
details in Supplementary Section 2). Considering
the available resources, we selected only 5 genes:
NCOA7, MAP1LC3B, NRBF2, PDE4D and RNF12
(Fig. 1c). The choice of these 5 genes was mostly
based on a smooth dynamical profile with rise and
fall dynamics ahead of FOXP3, and a diversity of

activity in different cell parts. The details of this
selection are provided in Supplementary Section 1.4.
Our experimental results showed a successful

knockdown of MAP1LC3B, NCOA7 and NRBF2
using siRNA specifically targeted against the corre-
sponding gene relative to a control scrambled siRNA
in primary human Tregs (Fig. 2b, c and d). Ex-
citingly, knockdown of MAP1LC3B, NCOA7 and
NRBF2 down-regulated the transcript expression of
FOXP3 in Tregs (Fig. 2b, c and d). The dynamics
of FOXP3 expression following siRNA treatment
was slightly different for the three candidates. For
the other two candidates, PDE4D and RNF12, al-
though we successfully knocked down their mRNA
expression, there was no clear effect on the mRNA
expression of FOXP3 (data not shown here).

Next, we tested the potential effect on protein pro-
duction. All our predictions were based on models
built from mRNA data, not protein expression. Due
to the limited availability of reliable antibodies on
MAP1LC3B, we performed Western Blotting analy-
sis to test the effects of knockdown of only NCOA7
and NRBF2 on the protein expression of FOXP3.
So far, we could only successfully demonstrate the
downregulation of NRBF2 protein expression. No-
tably, in line with the mRNA results, dowregulation
of NRBF2 protein expression indeed reduced the
expression of certain isoforms of the FOXP3 pro-
tein (Fig. 2e), possibly due to altered alternative
splicing [Allan et al., 2005]. All these experiments
have been successfully repeated in Tregs isolated
from peripheral blood of 6 to 8 healthy donors, de-
pending at which level (protein or mRNA or both)
the validation was performed. The effect was not
observed in 1 or 2 of the tested donors possibly due
to the heterogeneous nature of human individual
samples.

NRBF2 is known to regulate the activity of VPS34
[Lu et al., 2014]. Moreover, T-cell specific depletion
of VPS34, significantly impaired the maintenance
and the suppressor function of Tregs [Parekh et al.,
2013]. Our results, together with these published
works, already indicate that NRBF2 might be a
promising upstream regulator that modulates the
expression of FOXP3.

One limitation of our computational approach is
that, being based on a linear dynamics, it might
miss complex non-linear interactions. Furthermore,
since our method checks one transcript at a time
as a potential regulator of FOXP3, it might miss
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Figure 2: Experimental validation of predicted candidates. (a) Experimental scheme of the
knockdown experiments. The predicted candidate genes were knocked-down by siRNA transfection
in primary human Tregs for 24h, followed by CD3/CD28/human rIL-2 stimulation. (b) Quantitative
real-time PCR results for the knockdown of MAP1LC3B in human primary Tregs and the corresponding
FOXP3 expression. Control scrambled non-specific knockdown (si_NS) is shown in black and the specific
knockdown (si_MAP1LC3B) in red. Statistical significance was determined using Student t-test, *p<0.05,
**p<0.01 and ***p<0.001. (c) Quantitative real-time PCR results for the knockdown of NCOA7 in
human primary Tregs and the corresponding FOXP3 expression. Control knockdown (si_NS) is shown
in black and the specific knockdown (si_NCOA7) in red. (d) Quantitative real-time PCR results for
the knockdown of NRBF2 in human primary Tregs and the corresponding FOXP3 expression. Control
knockdown (si_NS) is shown in black and the specific knockdown (si_NRBF2) in red. (e) Western
Blot showing the protein expression of NRBF2 and FOXP3 in human primary Tregs transfected with
si_NCOA7, si_NRBF2 or control siRNA (si_NS). The bands of interest are highlighted by black (si_NS)
or red arrows (si_NRBF2).
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interactions requiring cooperativity among several
regulators at a time. Due to limited amount of
data available, however, higher model complexity
is likely to lead to overfitting and false positives.
Since the ground truth behind the biological system
that generated this data is unknown, the safest
route is to consider low complexity models, as we
did here. Moreover, many transcription factors are
regulated at the post-transcriptional level, which
are not captured by our models and predictions
(since the models are built on transcriptional data
alone).

In summary, we applied dynamic modelling tech-
niques to predict upstream regulatory genes of
FOXP3, the master regulator of Tregs. Then, we
experimentally validated the predicted effect of a
handful of genes. Silencing of any of the three genes
MAP1LC3B, NCOA7 and NRBF2 down-regulated
the transcript expression of FOXP3. Moreover,
dowregulation of NRBF2 protein expression reduced
the expression of FOXP3 protein. Although NRBF2
knockout mice do not show spontaneous autoim-
mune phenotypes, NRBF2 positively regulates the
autophagy process [Lu et al., 2014], which has been
widely associated with autoimmune diseases [Gi-
anchecchi et al., 2014]. Moreover, an integrative
meta-analysis from around 72 million functional
associations shows that NRBF2 is ranked as the
sixth candidate gene related to juvenile rheumatoid
arthritis [Rouillard et al., 2016], one of the classic
autoimmune diseases. Overall, our results enhance
our understanding of the upstream regulatory mech-
anisms of FOXP3, with the potential to develop
new immunotherapeutics. Our results are solely
derived from human primary T cells and therefore
guarantee their application potential in medicine.

Potential future developments include, but are not
limited to, the following: (1) to experimentally test
MAP1LC3B, NCOA7 and NRBF2 in vivo in ani-
mal models, for example using corresponding whole-
body or T-cell-specific knockout mice under home-
ostatic and pathological conditions; (2) to experi-
mentally investigate additional regulators of FOXP3
from the predicted list of top ranked genes; (3) to
apply the same computational approach to identify
regulators of CTLA4, another important gene of
relevance for Tregs, and (4) to use more complex
models capturing mechanistic details when, and if,
new time-series data capturing different experimen-
tal conditions become available, including single-cell

RNA-seq data [Chan et al., 2017] and [Ocone et al.,
2015].
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SUPPLEMENTARY MATERIAL

1 COMPUTATIONAL METHODS
DETAILS

1.1 Time-Series Data Normalisation and
Filtering

As shown in Fig. 1, first of all we obtained the
raw data corresponding to Tregs cells from the on-
line supplementary material of [He et al., 2012].
Therein, microarray measurements were performed
for every 20 min over the period of 6 h, after stim-
ulation by anti-CD3/CD28/human rIL2 at time 0
h on Treg cells from two donors (here referred to
as donor-1, donor-2). This data contained 54676
transcripts/probe sets for each donor, mapping var-
ious transcript variants of almost each gene in the
whole genome. For simplicity, we elsewhere only
use the term transcript and skip the more technical
term probe set, keeping in mind that they are in a
one-to-one relation, thus exchangable.

Before applying any system identification tech-
nique, these time-series data need to be pre-
processed. This involves normalising the data using
the gcrma algorithm [Wu and Irizarry, 2010] which
is implemented in MATLAB. For this and all the
other computational aspects of this work, MAT-
LAB versions R2016a, R2016b and R2017a were
used. The normalised data were then subject to
filtering. Firstly, we applied affymetrix flag filter,
where any transcript was removed if marked as ab-
sent in every measurement taken at each instant
of time. Conversely, we kept all the transcripts for
which at least one measurement taken at any in-
stant of time was marked with marginally present
or present. The second filter applied removed the
transcripts for which the average intensity (of the
mRNA expression, which depends on the normali-
sation used above) is <50, or the largest intensity
among measurements performed at any time is <100
(in the arbitrary units used by the gcrma algorithm).
After this filtering, 14712 transcripts were left for
donor-1 and 14472 transcripts for donor-2. The
intersection of these two ensembles led to a common
set of 13601 transcripts left.

1.2 One-2-one Method

Here, we used the methodology presented in [Mom-
baerts et al., 2019b] to identify candidates regula-
tors for FOXP3. This modeling strategy uses Linear
Time-Invariant (LTI) models to capture the dynam-
ics describing the rate of change of the selected
transcript with respect to another input transcript.
A linear modelling paradigm offers advantages when
data are scarce. In particular, although linear mod-
els do not provide detailed functioning of the whole
network, they are capable of identifying regulatory
interactions with a reliable degree of precision (see
below). A LTI model can be generally represented
by the following set of equations:

dx
dt (t) = Ax(t) +Bu(t)
y(t) = Cx(t) . (1)

The model investigates whether the rate of change
of the gene expression of a particular transcript
y(t) depends on the gene expression of another
transcript u(t). In particular, u(t) and y(t)
represented the time series of the gene expression
over time of a potential regulator of FOXP3 and
FOXP3, respectively. The variable x(t) represented
internal dynamics (translation, transcription, etc...)
that interacted with the modelled output and were
required for the behaviors observed, but were not
explicitly included in the model. The dimension of
the vector x(t) defines the model order: in general
it can be a 1-dimensional vector (direct regulation
or relatively slow dynamics compared to internal
dynamics), or a multi-dimensional vector (the
regulation happens through intermediate steps that
introduce delays and cannot be ignored).

Estimating a model involves finding A, B and C
which produce a vector y(t) as close as possible to
the real expression data. On the one hand, complex
nonlinear models have the potential to capture the
dynamical relationships between genes with great
precision. On the other hand, high complexity
can lead to overfitting (fitting noise instead of
dynamics) without sufficient data or detailed
knowledge such as the network topology or types
of nonlinear interactions. Here, we restricted the
model order to one as it was optimally estimated in
[Mombaerts et al., 2019b]. Hence, A, B and C were
scalars. Furthermore, since y is the measurement
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of a single state, C then consists of a scalar of
value 1. System identification was performed
using the function ’pem’ implemented in MAT-
LAB to minimise the prediction error [Ljung, 2003].

Each model was characterized by a perfor-
mance index that represents the capability of the
model to describe the input-output relationship.
To do so, we used the fitness:

fitness = 100 ∗

(
1 −

∑N
k=1

√
(yk − ŷk)2∑N

k=1
√

(yk − ȳk)2

)
(2)

where yk represented the data (output), ȳ the
average value of the data, and ŷk the estimated
output. MATLAB function compare can be used
to compute the fitness of the model. A fitness equal
to 100% corresponds to a perfect identification. A
high fitness suggests that most of the dynamics was
captured.

Then, to investigate the potential regulators
of FOXP3, a collection of 1st order LTI models was
estimated from each of the transcripts to FOXP3.
In each case, the parameters were estimated so
that they together provided the best possible fit
to FOXP3 time course data. This step took the
following form:

d[F OXP 3](t)
dt = a1[FOXP3](t) + b1u1(t)

d[F OXP 3](t)
dt = a2[FOXP3](t) + b2u2(t)

...

d[F OXP 3](t)
dt = an[FOXP3](t) + bnun(t)

(3)

where n corresponds to the amount of candidates.
Each model was characterized by a fitness metric
that ranges from 0% to 100%, representing its capa-
bility of describing the original regulatory system
between genes. A gene, therefore, would be further
considered as a regulator for FOXP3 if the model
obtained using one of its transcripts was capable of
reproducing the expression profile of FOXP3 with a
sufficient degree of precision, which should be char-
acterized by a high goodness of fit, as defined above.

Additionally, we derived the mathematical
expression of the dynamics of FOXP3 to explicitly
include a delay in the modelling, such that it took
the following form:

d[FOXP3](t)
dt

= a[FOXP3](t) + bu1(t−µu1) (4)

where µu1 is a delay chosen between 0 min and
100 min, with steps of 20 minutes. The choice
µu1 = 0 min reduces the models to the particular
case employed above.
A systematic comparison of our methodology

against state-of-the-art methods with data simu-
lating similar experimental conditions can be found
in [Mombaerts et al., 2019a].

1.3 Applying the One-2-one to our data:
All-2-one approach

For the system identification we only considered the
transcripts that were left after filtering, as described
above. Since, the number of transcripts differed
between the two donors, we collected the common
transcripts between the 14712 and 14472 transcripts
(last step of column 1 of Fig. 1a). Our All-2-one
algorithm used these remaining transcripts, one at
a time, as an input (regulatory gene, represented by
the variable ui (t) in Eq. (3)), for the system identifi-
cation technique described above as One-2-one (first
step of column 2 of Fig. 1a). As output target, the
two FOXP3 transcripts were used separately, one
at a time. In fact, out of 3 measured transcripts of
FOXP3, only two were considered here, because the
third transcript associated to FOXP3 got discarded
by the average intensity filter described earlier be-
cause of its very low expression. The All-2-one was
repeated for each donor which gave us a total of 4
sets of All-2-one results (i.e. each input towards the
two FOXP3 transcripts, for each of the two donors).
The results contained fitness score of each input
towards each output (second step of column 2 of
Fig. 1a) and an indication whether the regulatory
gene was tentatively an activator or a repressor of
the target gene.

Out of the 4 sets of All-2-one results, we now com-
bined the results of 2 FOXP3 transcripts within each
donor (third step of column 2 of Fig. 1a). Then we
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discarded any input transcript which corresponded
to two models (one in each donor) being inconsistent
in showing activation or repression towards any of
the FOXP3 transcripts (fourth step of column 2 of
Fig. 1a). In fact, this would reflect an inconsistency
between the inferred mathematical models. This
yielded 3515 transcripts of inputs in each donor.
Since there were two outputs, that meant 7030 mod-
els identified left (each with an associated fitness
score) in each donor.
Typically, the time passing between the expres-

sion of a regulatory gene and that of its target gene
is around 20 to 60 minutes. The One-2-one method
tended to attribute higher fitness to models where
the output signal follows the input signal pattern
with one time-point distance, which in our case cor-
responded to 20 minutes. Thus, in order to identify
regulations occurring over times longer than 20 min-
utes, we needed to modify the One-2-one method
by introducing time-delays in the input signals only,
Eq. (4). Thus, we ran a new round of All-2-one,
with delays of 0, 20, 40, 60, 80 and 100 minutes,
i.e. equivalent to moving each input signal to the
right by 20-100 minutes (first step of column 3 of
Fig. 1a). Here, for each input-output combination
(i.e. model), only the highest fitness score among all
6 delay cases was retained (second step of column 3
of Fig. 1a). Even though for completeness this pro-
cedure was repeated exactly the same way for each
donor, for the subsequent ranking we only utilised
the results of donor-2, because in this donor FOXP3
mRNA expression showed a dynamics much more
robust against noise. Eventually, these fitness scores
were used to rank the 7030 models of donor-2 in a
descending order (last step of column 3 of Fig. 1,
see Tab. S1 in Supplementary Material for the high
ranking part of the list of genes). This ranking was
the main result of our computational method and
higher the ranking of a gene, the more likely it is
to be involved in FOXP3 regulation.

1.4 Selection of Genes for Wet-Lab Exper-
iments

The above mentioned results corresponded to hy-
pothesizing several regulations, in particular the
higher the ranking of a gene, the more likely it is
to be involved in FOXP3 regulation. Genes which
received a high fitness score, and thus were ranked
in high positions in our list, were predicted to be

potential regulators of FOXP3.
Any threshold separating high and low ranked

genes would be somewhat arbitrary. However, plot-
ting the fitness score against the model number (Fig.
1b), we remarked that two regimes can be identified,
separated by a "knee" occurring after the first few
hundred models. The first regime corresponded to
higher fitness values, and the fitness value decreased
steeply with model number. The second regime cor-
responded to lower fitness values, and it decreased
almost linearly with the model number, until a final
kink where fitness went to zero.
The upper part of the fitness scores, before the

knee, corresponded to fitness values ranging from
62.14 to 45.78. These high fitness models included
176 models, which corresponded to approximately
2.5% of all models. We considered only these mod-
els as having a fitness high enough to represent a
potential regulator of FOXP3 worth investigating
further. The list of these 176 transcripts is reported
in the Supplementary Material as Tab. S1. These
176 transcripts corresponded to 161 genes, since in
15 cases two transcripts corresponded to the same
gene.
However, testing all of these 161 genes in vitro

is practically impossible, due to the intrinsic lim-
itations of available resources, and in practice we
could test only five of these regulations in vitro. We
thus needed to select five such promising regulatory
genes for further laboratory experimental valida-
tion. Since the fitness scores of these genes were
very close, we needed to choose which one to test
based on other criteria, knowing that any criterion
to select potential regulators will be somewhat ar-
bitrary, but with the goal of selecting genes that
were both likely to be regulators of FOXP3, and of
potential biological relevance.
We thus performed this selection of five genes

potentially regulating FOXP3 to be tested in vitro
by means of the following considerations. First,
transcripts were excluded when corresponding to
more than one Entrez gene ID (more than one gene
name due to the shared transcripts among genes)
based on the HG-U133 plus 2.0 array annotation
file (http://www.affymetrix.com/, version 24, 7
March 2008 [He et al., 2012]). Further, as already
mentioned, the data of donor-2 were of higher qual-
ity (less affected by noise) w.r.t. those of donor-1,
thus we only considered the data for donor-2 for
selection purposes. Next, we required a reasonably
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clean dynamics of the time series signals, and a rea-
sonable visually assessed dynamic behaviour. Fur-
thermore, as mentioned we introduced a time-delay,
and retained for each transcript only the model cor-
responding to the time-delay providing the highest
fitness for each transcript. We also considered this
delay information while performing our selection.
We observed the time-difference between the peak of
the candidate regulatory transcript and the peak of
FOXP3 transcripts of donor-2. The reason behind
this was that usually between the peak in mRNA
production for a regulating transcript, and the peak
of mRNA production of the regulated transcript,
there usually need to be a certain amount of time
which we considered to be reasonably between about
20 to 60 minutes to translate the mRNA of the first
transcript into protein, which needs the time to bind
to the promoter of the target transcript (FOXP3)
and regulate its expression.

Having in these ways lowered down the 161 genes
to a pull of 20, we performed a final selection on the
basis of biological significance (gene ontology, based
on http://amigo.geneontology.org/amigo, and
protein location inside/outside the nucleus, based
on https://www.uniprot.org/). On one hand, we
preferred genes related to transcription and located
in the nucleus, since the part of the regulatory path-
ways of FOXP3 which is largely unknown is pre-
dominantly the one occurring in the nucleus (see e.g.
Lal and Bromberg [2009]). On these criteria, we
selected 3 genes: NRBF2, NCOA7 and RNF12. On
the other hand, we also did not want to limit our-
selves to these predefined hypothesized functions
and locations, so for the remaining two slots we
selected genes representing different functions and
with proteins located outside the nucleus, namely
PDE4D and MAP1LC3B.
Thus based on all the criteria above we selected

5 regulatory genes for subsequent in vitro test,
namely NCOA7, NRBF2, RNF12, PDE4D and
MAP1LC3B.

1.5 Software Availability

The codes developed in MATLAB which imple-
ment our computational approach and perform
the described ranking of transcripts are available
online at https://github.com/StefanoMagni/
ModellingRegulatorsFOXP3.
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Rank Gene	Name Delay Fitness Rank Gene	Name Delay Fitness Rank Gene	Name Delay Fitness
1 ZNF331 100 62,14 60 TMEM186 0 50,46 119 SRSF7 100 47,79
2 C16orf72 40 61,91 61 FARS2 40 50,43 120 MAPKAP1 100 47,62
3 ANKRD49 40 61,40 62 CEP57 100 50,26 121 KLF4 100 47,60
4 ZNF331 100 60,49 63 APC 40 50,15 122 ZNF559 100 47,56
5 EXOC3L2 0 59,49 64 DPH5 80 50,14 123 LPIN2 40 47,53
6 SKI 40 58,27 65 LINC00909 40 50,08 124 NPRL2 100 47,53
7 PDE4D 80 58,19 66 IRS2 100 50,07 125 KIAA0391 100 47,53
8 RNF6 40 58,09 67 FLJ31306 20 49,91 126 TIPARP 100 47,52
9 BBX 40 58,06 68 SNRK 60 49,87 127 ING3 80 47,37
10 RNF144A 40 57,28 69 ZNF331 100 49,84 128 CBX4 100 47,36
11 PRKAR2A 40 57,25 70 MRPS31 100 49,76 129 FOCAD 100 47,30
12 MEF2D 100 57,17 71 C11orf21 100 49,73 130 FAM63B 40 47,25
13 IRS2 100 57,12 72 OSBPL7 100 49,72 131 OSBPL2 40 47,18
14 CCDC109B 40 56,79 73 ZSCAN16 40 49,72 132 DFFA 100 47,17
15 MTMR12 40 56,73 74 FAM13A 100 49,71 133 GCFC2 80 47,12
16 EHBP1 40 55,84 75 ZNF764 40 49,59 134 BCL11B 100 47,11
17 AGGF1 40 55,19 76 CYP2R1 40 49,52 135 RLIM 100 47,09
18 MEF2D 100 55,05 77 BCL11B 100 49,41 136 229447_x_at 100 47,00
19 DUSP7 100 54,88 78 RNF113A 100 49,32 137 PCYOX1 100 46,99
20 SRXN1 0 54,87 79 COA5 100 49,31 138 R3HDM2 100 46,98
21 OTUD4 0 54,77 80 CITED2 100 49,22 139 MKKS 100 46,96
22 RLIM 80 54,63 81 RIPK2 40 49,06 140 HINT1 100 46,94
23 MTHFD1 100 54,56 82 EGR1 80 49,01 141 HERC4 100 46,84
24 FAM162A 100 54,32 83 C1orf132 100 49,01 142 ATPAF1 100 46,79
25 TIPARP 100 54,10 84 CD44 40 48,99 143 UGP2 100 46,79
26 PAM 100 53,98 85 TM2D2 100 48,97 144 BUD13 40 46,75
27 CLUAP1 100 53,93 86 OXNAD1 100 48,90 145 FAM213B 100 46,74
28 C11orf73 100 53,89 87 DERA 100 48,87 146 RPL34 20 46,60
29 PEX19 100 53,61 88 PPIL3 100 48,84 147 CD33 100 46,60
30 ATF3 80 53,42 89 SNX20 100 48,75 148 203359_s_at 100 46,60
31 PRKAR2A 40 53,29 90 PEX19 100 48,63 149 METTL5 100 46,53
32 DUSP10 80 53,22 91 ZNF331 100 48,63 150 217317_s_at 100 46,45
33 FOCAD 100 52,88 92 C14orf166 100 48,63 151 FAM13A 100 46,44
34 FAM213B 100 52,87 93 FAM162A 100 48,63 152 SLC35F6 0 46,42
35 1562056_at 0 52,69 94 SLC46A3 40 48,60 153 DBR1 40 46,39
36 KIAA0232 40 52,26 95 CD164 20 48,56 154 MAP1LC3B 20 46,39
37 CBX4 100 52,13 96 NRBF2 60 48,55 155 ACYP2 0 46,35
38 MRPS22 40 51,66 97 ZNF350 60 48,54 156 NUDT15 100 46,34
39 PHF17 40 51,64 98 DERA 100 48,48 157 PDE4D 80 46,33
40 SNX18 80 51,57 99 THEM4 100 48,47 158 GOLGB1 40 46,32
41 CGRRF1 100 51,47 100 ZMYM4 100 48,42 159 SETD7 100 46,31
42 ABHD13 40 51,46 101 RPF1 100 48,39 160 NSMCE2 100 46,25
43 GLT8D1 100 51,40 102 CFLAR 0 48,36 161 MORF4L1 80 46,16
44 KIAA2018 40 51,32 103 PCYOX1 100 48,35 162 CASP6 100 46,15
45 MPPE1 40 51,29 104 DUSP1 100 48,33 163 ATG2A 100 46,13
46 GGNBP2 40 51,27 105 ACOX1 100 48,32 164 RBBP6 100 46,09
47 MOAP1 100 51,20 106 ING3 80 48,29 165 UBFD1 100 46,05
48 PTGER4 40 51,14 107 IRF1 100 48,23 166 222021_x_at 100 46,05
49 ZNF273 80 51,13 108 PIK3R1 100 48,17 167 KLF6 80 46,04
50 ENO2 20 50,98 109 KLF6 80 48,14 168 GDE1 80 45,99
51 HERPUD1 100 50,91 110 NCOA7 40 48,09 169 KDM2A 80 45,98
52 IKZF4 0 50,80 111 BNIP3 100 48,08 170 FAM162A 100 45,93
53 CGRRF1 100 50,77 112 SQRDL 100 48,04 171 GIMAP4 100 45,92
54 231061_at 40 50,76 113 S100A10 80 48,02 172 NCF2 100 45,91
55 ARG2 100 50,72 114 RNF6 40 48,02 173 DUSP7 100 45,90
56 CDS2 40 50,67 115 RBBP6 100 48,01 174 MRPL39 40 45,88
57 LPIN2 40 50,63 116 ZADH2 100 47,98 175 COQ5 100 45,83
58 FAM162A 100 50,61 117 KIF11 100 47,97 176 INPP4A 100 45,78
59 KLF4 100 50,55 118 TGS1 0 47,95

Table S1: Highest ranked 176 transcripts, corresponding to 161 genes, according to our
approach. First column: ranking, in descending order based on fitness scores. Second column: name
of the gene, or Affymetrix probe-ID (a unique identifier) where multiple probe-IDs were associated to
one name. Third column: delay (measured in minutes) corresponding to the model which received the
highest fitness for that transcript as a regulator of FOXP3, for the second donor. Fourth column: actual
value of the fitness score defined in Eq. (2), for that model (in percentage).
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2 EXPERIMENTAL SUBJECTS,
MODEL, METHODS DETAILS

2.1 Regulatory T Cell Sorting and Culture

Informed consent was obtained from healthy blood
donors through the Red Cross Luxembourg (RCL)
and study procedures were approved by the ethic
committee of the RCL. Buffy coats from healthy
male donors of unknown age were provided by the
RCL. Isolation of human Tregs was performed using
similar methods as we described elsewhere [Danilevi-
ciute et al., 2019]. The RosetteSepac Human CD4+
T cell Enrichment Cocktail (15062, Stemcell) was
added to undiluted blood at a concentration of 50
µl/ml and incubated for 30 min at 4 ◦C. The blood
was then diluted 2 times with FACS buffer (PBS
+ 2% FBS) and the CD4+ cells were isolated by
gradient centrifugation at 1200 g for 20 min, using
Lympoprep (07801, StemCell) and SepMateac-50
tubes (85450, Stemcell). Primary natural regula-
tory T cells (CD4+CD25highCD127low) were then
sorted on a BD Aria III Flow cytometry cell sorter
(BD Biosciences). CD4+ T cells were stained for 30
min with mouse monoclonal [RPA-T4] anti-human
CD4 FITC (555346, BD Biosciences) (dilution 1:20),
mouse monoclonal [M-A251] anti-human CD25 APC
(555434, BD Biosciences) (dilution 1:20), mouse
monoclonal [HIL-7R-M21] anti-human CD127 V450
(560823, BD Biosciences) (dilution 1:20) 4 ◦C fol-
lowed by 2 washing steps with FACS buffer (250 g,
10 min).

Sorted Treg were cultured in IMDM (21980-032,
ThermoFisher Scientific) complete medium, sup-
plemented with 10% heat-inactivated (56 ◦C, 45
min) fetal bovine serum (FBS) (10500-064, Ther-
moFisher Scientific), 1x Penicillin+Streptomycin
(15070-063, ThermoFisher Scientific), 1x MEM non-
essential amino acids (M7145, Sigma-Aldrich) and
1x β-mercaptoethanol (21985-023, ThermoFisher
Scientific) at 37 ◦C, 7.5% CO2. The medium was
further supplemented with 100 U/ml of recombinant
human IL2 (2238131, Novartis) for the culture of
Tregs. For a maximum duration of 6 weeks, the
Tregs were restimulated every 7 days with irradiated
Epstein Barr virus (EBV) (strain B95-8, VR-1491,
ATCC) transformed B cells (EBV-B cells), at a 1:1
ratio to expand and maintain the culture. A RS2000
X-Ray Biological Irradiator was used to irradiate
the EBV-B cells (Rad Source Technologies) for 30
minutes with a total of 90 Gy. On a regular basis,

the Tregs were characterized by Flow Cytometry for
their expression of CD4, CD25, FOXP3 and Helios
and discarded if the expression of FOXP3 and/or
Helios was apparently decreased.

2.2 Flow Cytometry for Treg Characterisa-
tion

Extracellular markers were stained in FACS buffer
for 30 min at 4 ◦C, followed by 3 washing steps (250
g, 10 min). Fixation, permeabilization and stain-
ing of intracellular markers was performed using
the True-Nuclear Transcription Factor Buffer Set
(424401, BioLegend) and following the manufuactur-
ers instructions. The antibodies used for the char-
acterisation are in the the following: mouse mono-
clonal [RPA-T4] anti-human CD4 BUV395 (564724,
BD Biosciences) (dilution 1:100 ), mouse mono-
clonal [M-A251] anti-human CD25 FITC (555431,
BD Biosciences) (dilution 1:100), mouse monoclonal
[22F6] anti-human Helios Pacific blue (137220, Bi-
oLegend) (dilution 1:100), mouse monoclonal [206D]
anti-human FOXP3 Alexa Fluor 647 (320114, Bi-
oLegend) (dilution 1:20). LIVE/DEAD® Fixable
Near-IR Dead Cell Stain (L10119, ThermoFisher
Scientific) (dilution 1:500).

2.3 Treg siRNA Knockdown and Stimula-
tion

The P3 Primary Cell 4D-Nucleofector X Kit L
(V4XP-3024, Lonza) was used for the knock-
down of the targeted genes, using 90 µl P3 Pri-
mary cell solution and 100 pmol of corresponding
si_RNA (resuspended in 10 µl RNAse-free H2O):
si_Non-Specific (si_NS or si_CTL) (sc-37007,
Santa Cruz), si_NRBF2 (SI00139118, Qiagen),
si_NCOA7 (SI02649668, Qiagen), si_MAP1LC3B
(SI04200735, Qiagen), si_PDE4D (SI05587666, Qi-
agen), si_RNF14 (SI00113582, Qiagen). The
Amaxa 4D-Nucleofector X System (Lonza) was
used to perform the electroporation and siRNA
transfection according to the manufacturers recom-
mended program for primary human T cells. Af-
ter transfection, the Tregs were transferred into a
12-well plate with pre-warmed complete medium,
supplemented with 100 U/ml IL-2, and kept at
37 ◦C for 24 h before being stimulated with 25
µl/ml of soluble antibodies (Immunocult Human
CD3/CD28 T Cell Activator) (10971, Stemcell)
in a 24-well plate for 5, 10 and 15 h.

15

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 14, 2020. ; https://doi.org/10.1101/2020.02.13.943688doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.13.943688
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.4 RNA Extraction

RNA was extracted using the RNeasy Mini Kit
(74106, Qiagen), following the manufacturers instruc-
tions and including the digestion of genomic DNA
with DNAse I (79254, Qiagen). The cells were lysed
in RLT buffer (Qiagen), supplemented with 1% beta-
Mercaptoethanol (63689, Sigma-Aldrich). The Nan-
oDrop 2000c Spectrophotometer (Thermo Fisher Sci-
entific) was used to measure the RNA concentration
and its quality was checked by assessing the RNA
integrity number (RIN) using the Agilent RNA 6000
Nano kit (5067-1511, Agilent) and the Agilent 2100
Bioanalyzer Automated Analysis System (Agilent),
according to the manufacturers protocol. Only the
samples with RIN of 8 or higher were considered for
further analysis.

2.5 cDNA Synthesis

A maximum of 500 ng of RNA was used for hu-
man cDNA synthesis, using the Superscipt IV First
Strand Synthesis System (18091050, ThermoFisher
Scientific) and following the manufacturers instruc-
tions. For the first step the mastermix contained
following components (per sample): 0.5 µl of 50 µM
Oligo(dT)20 primers (18418020, ThermoFisher Scien-
tific), 0.5 µl of 0.09 Uµl Random Primers (48190011,
ThermoFisher Scientific), 1 µl of 10 mM dNTP mix
(18427013, ThermoFisher Scientific) and RNAse free
water for a final volume of 13 µl in 0.2 ml PCR Tube
Strips (732-0098, Eppendorf). The reaction tubes
were transferred into a C1000 Touch Thermal Cycler
(Bio-Rad) or UNO96 HPL Thermal Cycler (VVR)
and subjected to the following program: 5 min at
65 ◦C, followed by 2 min at 4 ◦C. For the second
step, the reaction mix was supplemented with 40
U RNaseOUT Recombinant Ribonuclease Inhibitor
(10777019, ThermoFisher Scientific), 200 U Super-
Script IV Reverse Transcriptase (18090050, Ther-
moFisher Scientific), a final concentration of 5 mM
Dithiothreitol (DTT) (70726, ThermoFisher Scien-
tific) and 1x SSIV in a total reaction volume of 20
µl. The thermocycler program for the second step
was the following: 50 ◦C for 10 min, then 80 ◦C for
10 min and 4 ◦C until further usage. The obtained
cDNA was then 5x diluted with nuclease-free water
to a final volume of 100 µl.

2.6 Quantitative Real-Time PCR (qPCR)

The reaction mix per sample for quantitative real-
rime PCR (qPCR) contained: 5 µl of the LightCycler
480 SYBR Green I Master Mix (04707516001, Roche),
2.5 µl cDNA and 2.5 µl primers in a total reaction vol-
ume of 10 µl. The reaction was performed in a Light-
Cycler 480 (384) RT-PCR platform (LightCycler 480
(384), Roche), using the LightCycler 480 Multiwell
384-well plates (04729749 001, Roche) and LC 480
Sealing Foil (04729757001, Roche). The temperature
program for qPCR was the following: 95 ◦C for 5
min; 45 cycles of (55 ◦C for 10 s, 72 ◦C for 20 s, 95
◦C for 10 sec); meltingcurve (65-97 ◦C). The results
were analysed with the LightCycler 480 SW 1.5 soft-
ware. Primers used for qPCR: RPS9 (QT00233989,
Qiagen) as a reference gene, NRBF2 (QT00061936,
Qiagen), NCOA7 (QT00033922, Qiagen), FOXP3
(QT00048286, Qiagen), PDE4D (QT00019586, Qia-
gen) and MAP1LC3B (QT00055069, Qiagen).

2.7 Western Blotting

Proteins were separated in Novex WedgeWell 4-20%
Tris-Glycine Gels (XPO4202Box, Invitrogen), us-
ing the Novex Tris-Glycine SDS Running buffer
(LC2675-4, Invitrogen). The proteins were trans-
ferred (dry transfer) using an iBlot2 Gel Trans-
fer Device (IB21001, Invitrogen) and iBlot2 PVDF
stacks (IB24002, Invitrogen). After the transfer the
membranes were blocked in 5% milk in PBS with
0.2% Tween20 (PBS-T) for 1 h at room temper-
ature with gentle shaking before being incubated
overnight at 4 ◦C with the primary antibodies: rabbit
monoclonal [15H7L3] anti-human NRFB2 (702920,
ThermoFisher Scientific) (dilution 1:5000), rabbit
polyclonal [FL-335] GAPDH (sc-25778, Santa Cruz
Biotechnology) (dilution 1:200), mouse monoclonal
[206D] FOXP3 (320102, Biolegend) (dilution 1:100),
diluted in 5% BSA in PBS-T with 0.025% sodium
azide. The next day the membrane was washed three
times for 10 min before and after incubation with
secondary goat anti-rabbit HRP-coupled antibodies
(172-1019, Bio-Rad). The proteins were detected
using the Amersham ECL Prime Western Blotting
Detection Reagent (RPN2232, GE Healthcare Life
Sciences) and visualized on the ECL Chemocam Im-
ager (INTAS). If needed, the contrast and brightness
of the obtained whole picture was adjusted using the
Fiji ImageJ software.
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KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
mouse monoclonal [RPA-T4] anti-human CD4 FITC 
(dilution 1:20) 

BD Biosciences Cat# 555346 

mouse monoclonal [M-A251] anti-human CD25 APC 
(dilution 1:20) 

BD Biosciences Cat# 555434 

mouse monoclonal [HIL-7R-M21] anti-human 
CD127 V450 (dilution 1:20) 

BD Biosciences Cat# 560823 

mouse monoclonal [RPA-T4] anti-human CD4 
BUV395 (dilution 1:100 ) 

BD Biosciences Cat# 564724 

mouse monoclonal [M-A251] anti-human CD25 
FITC (dilution 1:100) 

BD Biosciences Cat# 555431 

mouse monoclonal [22F6] anti-human Helios Pacific 
blue (dilution 1:100) 

BioLegend Cat# 137220 

mouse monoclonal [206D] anti-human FOXP3 
Alexa Fluor 647 (dilution 1:20) 

BioLegend Cat# 320114 

LIVE/DEAD® Fixable Near-IR Dead Cell Stain 
(dilution 1:500) 

ThermoFisher 
Scientific 

Cat# L10119 

rabbit monoclonal [15H7L3] anti-human NRFB2 
(dilution 1:5000) 

ThermoFisher 
Scientific 

Cat# 702920 

Purified anti-human FOXP3 Antibody (dilution 
1:100) 

BioLegend Cat# 320102 

rabbit polyclonal [FL-335] GAPDH (dilution 1:200) Santa Cruz 
Biotechnology 

Cat# sc-25778 

goat anti-rabbit HRP-coupled antibodies Bio-Rad Cat# 172-1019 
Immunocult™ Human CD3/CD28 T Cell Activator StemCell Cat# 10971 
Bacterial and Virus Strains 
Epstein-Barr virus, strain B95-8 ATCC Cat# VR-1491 
   
   
Biological Samples   
Regulatory T cells, isolated from buffy coats from 
healthy male adults of unknown age. 

Center for Blood 
Transfusions, 
Red Cross 
Luxembourg 

http://www.croix-
rouge.lu/de/locations/c
entre-de-transfusion-
sanguine/ 

   
   
Chemicals, Peptides, and Recombinant Proteins 
Recombinant human Interleukin-2 Novartis Cat# 2238131 
   
   
Critical Commercial Assays 
RosetteSep™ Human CD4+ T cell Enrichment 
Cocktail 

StemCell Cat# 15062 

SepMate™-50 tubes StemCell Cat# 85450 
Lympoprep StemCell Cat# 07801 
True-Nuclear Transcription Factor Buffer Set BioLegend Cat# 424401 
P3 Primary Cell 4D-Nucleofector X Kit L  Lonza Cat# V4XP-3024 
RNeasy Mini Kit Qiagen Cat# 74106 
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Superscipt™ IV First Strand Synthesis System ThermoFisher 
Scientific 

Cat# 18091050 

LightCycler 480 SYBR Green I Master Mix Roche Cat# 04707516001 
Novex™ WedgeWell 4-20% Tris-Glycine Gels Invitrogen Cat# XPO4202Box 
Novex™ Tris-Glycine SDS Running buffer Invitrogen Cat# LC2675-4 
Amersham ECL Prime Western Blotting Detection 
Reagent 

GE Healthcare 
Life Sciences 

Cat# RPN2232 

Deposited Data 
   
   
   
Experimental Models: Cell Lines 
   
   
   
Experimental Models: Organisms/Strains 
   
   
   
Oligonucleotides 
Control siRNA Santa Cruz Cat# sc-37007 
Hs_NRBF2_3 FlexiTube siRNA Qiagen Cat# SI00139118 
Hs_NCOA7_7 FlexiTube siRNA Qiagen Cat# SI02649668 
Hs_MAP1LC3B_8 FlexiTube siRNA Qiagen Cat# SI04200735   
Hs_PDE4D_9 FlexiTube siRNA Qiagen Cat# SI05587666   
Hs_RNF12_1 FlexiTube siRNA Qiagen Cat# SI00113582 
Hs_RPS9_1_SG QuantiTect Primer Assay Qiagen Cat# QT00233989 
Hs_NRBF2_1_SG QuantiTect Primer Assay Qiagen Cat# QT00061936 
Hs_NCOA7_1_SG QuantiTect Primer Assay Qiagen Cat# QT00033922 
Hs_FOXP3_1_SG QuantiTect Primer Assay Qiagen Cat# QT00048286 
Hs_CTLA4_2_SG QuantiTect Primer Assay Qiagen Cat# QT01670550 
Hs_CD4_1_SG QuantiTect Primer Assay Qiagen Cat# QT00005264 
Hs_MAP1LC3B_1_SG QuantiTect Primer Assay Qiagen Cat# QT00055069   
Hs_PDE4D_1_SG QuantiTect Primer Assay Qiagen Cat# QT00019586 
Hs_RLIM_1_SG QuantiTect Primer Assay Qiagen Cat# QT00020524   
Recombinant DNA 
   
   
   
Software and Algorithms 
ImageJ Fiji https://imagej.net/Fiji/D

ownloads 
   
   
Other 
   
   
   

 

Table S2: Key Resources. Materials employed for the experimental methods described in the text.
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