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 7 

Abstract 8 

Single-cell ATAC-seq is a powerful tool to interrogate the epigenetic heterogeneity of cells. Here, 9 

we present a novel method to calculate the pairwise similarities between single cells by directly 10 

comparing their Tn5 insertion profiles instead of the binary accessibility matrix using a 11 

convolution-based approach. We demonstrate that our method retains the biological 12 

heterogeneity of single cells and is less affected by undesirable batch effects, which leads to more 13 

accurate results on downstream analyses such as dimension reduction and clustering. Based on 14 

the similarity matrix learned from epiConv, we develop an algorithm to infer differentially 15 

accessible peaks directly from heterogeneous cell population to overcome the limitations of 16 

conventional differential analysis through two-group comparisons. 17 

18 
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Introduction 19 

The expression of genes is regulated by a series of transcription factors (TFs) that bind to the 20 

regulatory elements of the genome. As the accessible chromatin covers more than 90% TF 21 

binding regions, many techniques, such as Assay for Transposase-Accessible Chromatin using 22 

sequencing (ATAC-seq), have been developed to detect the accessible states of chromatin1, 2. 23 

Recent technical advancements in ATAC-seq have made it possible to profile the chromatin states 24 

of single cells at a high-throughput manner3-5. However, both data processing and interpretation 25 

of single-cell ATAC-seq (scATAC-seq) data is more challenging than single-cell RNA-seq (scRNA-26 

seq) data owing to low DNA copy number and complexity of chromatin states1. 27 

Up to now, most methods cluster single cells based on a peak by cell matrix (e.g. Buenrostro 28 

et al. 20156). Unlike well-annotated RNA transcripts in the genome, the exact locus of regulatory 29 

elements is largely uncharacterized and must be learned from the data itself. However, learning 30 

cell type specific regulatory elements from cell mixtures is problematic. Given that there are no 31 

golden rules to define functional elements across the genome, the strategies to perform such 32 

task varied considerably in different studies6, 7, and its effect on downstream analyses is largely 33 

unknown. 34 

Detecting differentially expressed genes (or differentially accessible peaks for ATAC-seq, we 35 

call them DE peaks below) is another important task in single cell analysis. In a conventional 36 

pipeline, cells are first grouped into several clusters and subsequent differential analysis is 37 

performed by comparison between clusters. Thus, the resolution settings (e.g. number of 38 

clusters) may have strong effects on the identification of genes or locus accounting for the 39 

heterogeneity of cell population. Recently one method incorporated pseudotime as one predictor 40 

into the regression model to infer DE peaks, instead of performing two-group comparisons8. But 41 

it required cells to be properly embedded into one dimensional space (e.g. pseudotime through 42 

differentiation process), which greatly limits its application in complex cell population. Moreover, 43 

cells still need to be clustered into small groups (50~100 cells). Such processing step overcomes 44 

the sparsity of scATAC-seq data but reduces the sample size. In scRNA-seq, an alternative 45 

approach is to find highly variable genes instead of differentially expressed genes, which does not 46 

require the clustering of cell population to be defined. But this strategy cannot be applied to 47 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 14, 2020. ; https://doi.org/10.1101/2020.02.13.947242doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.13.947242
http://creativecommons.org/licenses/by-nc-nd/4.0/


scATAC-seq as the chromatin state is always binarized. Despite that, several state-of-the-art tools 48 

designed for scATAC-seq merge individual peaks into meta features (regulomes, topics, principal 49 

components, k-mers, etc.) to overcome the sparsity of data3, 9, 10. Subsequent differential analysis 50 

is performed on meta features instead of individual peaks. Such strategy may help reveal the 51 

epigenetic programs that governs the cell identities but lacks sufficient resolution for the 52 

dynamic change of individual peaks. 53 

Here, we introduce a novel tool, named epiConv, for scATAC-seq analysis. EpiConv addresses 54 

two important questions in scATAC-seq analysis, cell clustering and differential analysis. Unlike 55 

most of existing methods, epiConv learns the similarities (or distances) between single cells from 56 

their raw Tn5 insertion profiles by a convolution-based approach, instead of a binary accessibility 57 

matrix. We demonstrate that epiConv retains biological heterogeneity of single cells and is less 58 

sensitive to unwanted variations derived from multiple batches or sample preparing protocols. 59 

Utilizing the similarities learned by epiConv, we also develop an algorithm to infer DE peaks 60 

among single cells that can be directly applied to cell mixtures without resolving the intra 61 

population structure. 62 

 63 

Results 64 

Infer the similarity from Tn5 insertion profiles 65 

First, we give an overview of the algorithm that calculates the similarity between cells from 66 

their Tn5 insertion profiles (Fig. 1). Given two cells, A with m insertions and B with n insertions in 67 

one genomic region, we collapse the insertions into a continuous distribution across the genome 68 

by Gaussian smoothing as follows: 69 

𝑓𝐴𝑖(𝑥) =  
1

√2𝜋𝜎
exp (−

(𝑥−𝜇𝐴𝑖)2

2𝜎2 ), 𝑓𝐴(𝑥) = ∑ 𝑓𝐴𝑖(𝑥)𝑚
𝑖  70 

𝑓𝐵𝑗(𝑥) =  
1

√2𝜋𝜎
exp (−

(𝑥−𝜇𝐵𝑗)
2

2𝜎2 ) , 𝑓𝐵(𝑥) = ∑ 𝑓𝐵𝑗(𝑥)𝑛
𝑗  71 

Where μAi is the locus of insertion i in cell A, μBj is the locus of insertion j in cell B, 𝑓𝐴(𝑥) 72 

and 𝑓𝐵(𝑥) give the overall chromatin states of cell A and cell B in the given region. The similarity 73 

between A and B over the given region (SAB) is calculated by the convolution of 𝑓𝐴(𝑥) and 𝑓𝐵(𝑥) 74 

and can be solved analytically as follows:  75 
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𝑠𝐴𝐵 =  ∫ 𝑓𝐴(𝑥)𝑓𝐵(𝑥)𝑑𝑥 =  C ∙ ∑ exp (−
(𝜇𝐴𝑖 − 𝜇𝐵𝑗)

2

4𝜎2
)

𝑖,𝑗
 76 

Where C is an σ dependent constant. In this study, parameter σ is set to 100 bp. To save running 77 

time, long distance (> 4σ) is treated as infinity. Through weighted aggregation of the similarities 78 

from all informative regions across the genome and proper normalization with respect to 79 

sequencing depth, we can obtain the normalized similarity score between any two cells. 80 

Subsequent analyses such as dimension reduction or clustering can be performed on the 81 

similarity matrix. We also develop a simplified version of epiConv (epiConv-simp), which can be 82 

applied to binary accessibility matrix like existing methods. The simplified version does not 83 

perform as well as the full version but always generates similar results and runs much faster. In 84 

the benchmarking below, we show the results from both full and simplified versions. Other 85 

details of epiConv are provided in Methods section. 86 

 87 

Figure 1. An overview of the epiConv algorithm. 88 
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 89 

EpiConv outperforms other methods in cell lines data 90 

We evaluated the performance of epiConv on several datasets and compared it with 91 

cisTopic10, one stat-of-the-art method showing better performance than most existing clustering 92 

methods and Latent Semantic Indexing (LSI)3, which had been widely used in many studies. We 93 

first applied epiConv to the data from Buenrostro et al. 20156. Specifically, we mixed the data of 94 

four cell lines from hematopoietic lineages (K562, GM12878, HL-60 and TF-1) together and tested 95 

whether epiConv could cluster single cells correctly based on their biological identities. Given the 96 

apparent difference among cell lines, each method performed well in clustering single cells from 97 

the same cell line together (Fig. 2). However, we found that LSI could not clearly segregate drug-98 

treated and untreated K562 cells. CisTopic segregated treated and untreated K562 cells into two 99 

clusters but cells treated by different drugs were still mixed together. Both epiConv-full and 100 

epiConv-simp grouped K562 cells treated by different drugs into distinct clusters, yielding the 101 

best results. Notably, untreated K562 cells from four replicates were grouped into one cluster 102 

without obvious batch effects. Thus, the segregation of cells treated by different drugs were 103 

more likely to be attributed to their biological variations rather than batch effects. The simplified 104 

version of epiConv performed slightly worse than the full version for K562 cells but was still 105 

capable of segregating cells according to their treatment (Fig. 2b). 106 
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 107 

Figure 2. EpiConv performs better than other methods on cell lines data. (a) Embedding by 108 

epiConv full version. (b) Embedding by epiConv simplified version. (c) Embedding by cisTopic. (d) 109 

Embedding by LSI. 110 

 111 

EpiConv is less sensitive to batch effects 112 

Next, we applied epiConv to the data generated by droplet-based protocol from Satpathy et 113 

al. 20194. The authors reported detectable batch effects from LSI method that confounded 114 

downstream analyses. Here we asked whether epiConv could perform better. We tested the 115 

performance of epiConv on two datasets, one dataset containing cells from two batches of 116 

unsorted peripheral blood mononuclear cells (PBMCs), two batches of sorted CD4+CD45RA+ 117 

naïve CD4 T cells and two batches of sorted CD4+CD45RA- memory CD4 T cells (PBMC dataset), 118 

and the other dataset containing two batches of sorted CD34+ hematopoietic progenitors (CD34+ 119 

dataset). 120 

In PBMC dataset, the majority of cells from two replicates of memory CD4 T cells were 121 
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clustered into one tightly related group by epiConv and were close to a small fraction of unsorted 122 

PBMCs. Two replicates of naive CD4 T cells also showed similar results. Other unsorted PBMCs 123 

formed several groups without strong batch effects (Fig. 3a). On the contrary, cells were mostly 124 

clustered by batches for both cisTopic and LSI (Fig. 3b,c). These results showed that epiConv was 125 

less sensitive to the technical variations between multiple replicates even without dedicated 126 

steps to remove batch effects. To verify whether epiConv clustered single cells based on their 127 

biological identities, we marked single cells according to their annotations from Satpathy et al. 128 

20194. The results of epiConv were also largely consistent with the annotations and revealed all 129 

major lineages of PBMCs (T cells, NK cells, B cells and Monocytes) and several subpopulation of T 130 

cells (Fig. S1a-c). In CD34+ dataset, epiConv was still less sensitive to batch effects compared to 131 

cisTopic and LSI (Fig. 3d-f). We only found obvious batch effect for the HSC-MPP-LMPP cluster but 132 

cells from two replicates were still closer to each other than to other cell types (Fig. 3d). Based on 133 

the annotations from Satpathy et al. 20194, the results of epiConv were also consistent with our 134 

knowledge on hematopoietic differentiation (Fig. S1d-f). However, unlike most methods, epiConv 135 

grouped multipotent progenitors (HSC, MPP and LMPP) and other lineage restricted progenitors 136 

into several distinct clusters instead of a continuous differentiation trajectory, highlighting the 137 

difference of chromatin states between multipotent progenitors and lineage restricted 138 

progenitors. 139 

To demonstrate that the power of epiConv was not restricted to specific cell lineages or 140 

sample-preparing protocols, we combined scATAC-seq data of adult mouse brain from three 141 

experimental protocols, mouse cortex from 10x Genomics, whole mouse brain from droplet 142 

single-cell assay for transposase-accessible chromatin using sequencing (dscATAC-seq)5 and sci- 143 

protocols for chromatin accessibility (sci-ATAC-seq)7. The dataset contained single cells from 5 144 

batches, one from 10x Genomics, two from dscATAC-seq and two from sci-ATAC-seq. Consistent 145 

with previous results, epiConv performed better than cisTopic and LSI in removing batch effects 146 

(Fig. 3g-i) and agreed with the annotations from Cusanovich et al. 20187 and Lareau et al. 20195 147 

by clustering cells with the same identity together (Fig. S1g,j). CisTopic also largely agreed with 148 

the annotations from original articles (Fig. S1h,k) while LSI did not agreed with the annotations 149 

on excitatory neuron cells (Fig. S1i,l). As described from Lareau et al. 2019, the annotations were 150 

based on k-mer deviation scores (7-mers) using the chromVAR algorithm but the embedding of 151 
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LSI was also consistent with the annotations9. Thus, LSI might require a larger sample size to 152 

resolve the relationships between highly similar cells. Although we lacked direct evidence to 153 

evaluate which method performed best in clustering cells according to their cell identities, the 154 

results of epiConv could always be supported by the annotations from original article. Besides 155 

that, only epiConv was capable of clustering cells in a batch-independent manner. 156 

Finally, we compared the results between full and simplified versions of epiConv. The results 157 

of simplified version were highly consistent with full version and were also less sensitive to batch 158 

effects on the three datasets described above (Fig. S2). However, for CD34+ cells, epiConv-simp 159 

failed to reveal the intra-structure of CLP, Pro-B and Pre-B cluster (compare Fig. S2d with Fig. 160 

S1d). In conclusion, the performances of full version and simplified version are similar but 161 

sometimes the resolution of simplified version might be slightly lower. 162 

 163 

Figure 3. EpiConv is less sensitive to batch effects. (a-c) Embedding by epiConv full version, 164 

cisTopic and LSI for PBMC dataset. (d-f) Embedding by epiConv full version, cisTopic and LSI for 165 
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CD34+ dataset. The HSC-MPP-LMPP cluster in (d) is circled. (g-i) Embedding by epiConv full 166 

version, cisTopic and LSI for the integration of mouse brain data from dscATAC-seq, 10x Genomics 167 

and sci-ATAC-seq. 168 

 169 

EpiConv is scalable with large datasets 170 

As the full version of epiConv do pairwise comparisons between single cells, the step of 171 

insertions counting is slower than other methods but can be split into small jobs and run in 172 

parallel. Based on our tests, it requires 75 CPU hours for 50 million fragments from 5,000 cells 173 

(after removing low quality cells and fragments outside informative regions) and 2,400 CPU hours 174 

for 270 million fragments from 20,000 cells. The simplified version runs much faster and can be 175 

applied to large datasets. Based on our tests, the simplified version requires 17 hours and 520 GB 176 

RAM for the Mouse Cell Atlas dataset7 (81,173 cells and 436,206 peaks) with single thread, faster 177 

than cisTopic (48 hours) but slower than LSI (1 hour). The results of Mouse Cell Atlas dataset by 178 

epiConv-simp also largely agreed with the annotations from Cusanovich et al. 20187 (Fig. S3).  179 

Notably, a large proportion of cells were marked as unknown in the Mouse Cell Atlas dataset 180 

(Fig. 4a-c). In the results of cisTopic and LSI, these cells formed a large cluster of their own, 181 

showed close relationships with several clusters with known identities but did not overlap with 182 

them (Fig. 4a-b). However, unknown cells did not form a single cluster but were mixed with other 183 

known cell types in the results of epiConv-simp (mainly associated with 7 clusters with more than 184 

10% cells marked as unknown, Fig. 4c). This might suggest a large improvement of epiConv over 185 

cisTopic and LSI. In order to validate our findings, we aggregated the cells with known and 186 

unknown cell identities respectively for each cluster. Then we calculated the spearman 187 

correlation between the 14 aggregated samples over a set of highly accessible peaks (accessible 188 

in at least 1% cells from these 7 clusters). We found that 6 out of 7 unknown samples showed 189 

highest correlations with corresponding known samples within the same clusters (Fig. 4d), 190 

suggesting that epiConv assigned “unknown” cells to correct clusters. The only exception was the 191 

cluster that contained collecting duct, distal convoluted tubule and loop of henle. Unknown cells 192 

from this cluster did not show higher correlation (> 0.6) with any other samples. We thought that 193 

this might be due to the high level of heterogeneity between tubule cells. By these results, we 194 

confirmed that epiConv showed significant improvements over current methods on the Mouse 195 
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Cell Atlas dataset. 196 

 197 

Figure 4. EpiConv reveals the identities of unknown cells in Mouse Cell Atlas dataset. (a) 198 

Embedding by cisTopic. (b) Embedding by LSI. (c) Embedding by epiConv-simp. In (a-c), unknown 199 

cells and cells showing close relationships with them are colored according to the annotations 200 

from Cusanovich et al. 2018. Other irrelevant cells are colored in grey. Seven major clusters in (c) 201 

that contain high proportion of unknown cells are circled. (d) Spearman correlations between 202 

aggregated samples with known and unknown identities from 7 major clusters marked in (c). 203 

Unknown samples are sorted in the same order as corresponding known samples belonging to 204 

the same cluster. Numbers in the diagonal elements show the correlations between unknown 205 

samples and corresponding known samples. Endo I, endothelial I cells; Endo II, endothelial II 206 

cells; Ex. neurons, excitatory neurons; HSPC, hematopoietic progenitors; DCT, distal convoluted 207 

tubule; CD, collecting duct; Oligo, oligodendrocytes. 208 

 209 
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EpiConv detects differentially accessible peaks in cell mixtures 210 

In the section below, we aim to develop an algorithm to infer DE peaks directly from cell 211 

mixtures. Our algorithm compares the number of accessible cells among each cell’s neighbors 212 

with the frequency of accessible cells in cell mixture for each peak and turns the binary 213 

chromatin states into normalized z-scores, which show the enrichment of accessible cells among 214 

neighbors (we call it z-score below). If the number of cells showing high z-scores for one peak 215 

exceeds the threshold, we then consider the peak to be differentially accessible. Notably, the way 216 

of normalization may strongly affect the results of differential analysis. Although most studies 217 

adopt library size normalization (scaling the library size of single cells to be the same), few studies 218 

may use other strategies (e.g. scale the number of Tn5 insertions falling in promoters to be the 219 

same5). In this study, we do not want to address this question but modify our algorithm to be 220 

compatible with user-specified scaling factors in normalization. In this study, we try two 221 

normalization strategies: 1) set the scaling factors of all cells to be 1 (cell-norm); 2) set the scaling 222 

factors equal to the total number of insertions falling into peaks (lib-norm). In cell-norm strategy, 223 

the number of neighbors for each cell remains constant while the total library size of neighbors 224 

may vary. This strategy reflects the change of raw binary accessibility. In lib-norm strategy, the 225 

total library size of neighbors for each cell remains constant while the number of neighbors may 226 

vary. This strategy reflects the change of relative abundance of accessibility and can be 227 

considered as conventional library size normalization. When the library sizes do not vary between 228 

neighbors and non-neighbors for most cells, two strategies should give similar results. 229 

In order to test whether the algorithm could detect DE peaks in cell mixture, we first applied 230 

our method to one dataset of myoblast differentiation8. We found that although epiConv could 231 

reconstruct the differentiation process of myoblasts, where cells were roughly ordered by 232 

harvesting times (Fig. 5a; the results were similar for cisTopic, LSI and epiConv-simp, see Fig. S4a-233 

c), it was difficult to cluster cells. Using our algorithm, we detected 7,219 peaks to be 234 

differentially accessible (cell-norm strategy) during the differentiation process. To show the 235 

regulation pattern of DE peaks, we plotted heatmap of z-scores, where cells and DE peaks were 236 

embedded into one-dimensional (1D) space based on the similarity matrix and the spearman 237 

correlation of z-scores between peaks (Fig. 5b). The results showed approximately half peaks to 238 

be more accessible in the early stage of differentiation and others to be more accessible in the 239 
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later stage. The dynamic changes of z-scores along differentiation was consistent with merged 240 

scATAC-seq profiles by harvesting times, demonstrating the reliability of our algorithm (Fig. 5c). 241 

The results from cell-norm and lib-norm strategies showed some difference for the intermediate 242 

cell types as these cells had lower library sizes but they still agreed with each other on the global 243 

regulation patterns of peaks (up- or down-regulated through differentiation, Fig. S4d,e). As 244 

mentioned above, the binary accessibility profiles agreed better with the z-scores from cell-norm 245 

strategy (Fig. S4f). 246 

 247 

Figure 5. EpiConv detects differentially accessible peaks in cell mixtures. (a) Embedding of 248 
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myoblast single cells by epiConv-full. (b) Accessibility z-scores of myoblast single cells inferred by 249 

epiConv. (c) Accessibility profiles of aggregated myoblast bulk samples by harvesting times. Cells 250 

or aggregated samples in (b,c) are colored by harvesting times according to (a). (d) Accessibility z-251 

scores of HSC-MPP-LMPP single cells inferred by epiConv. (e) Accessibility Imputations of HSC-252 

MPP-LMPP single cells inferred by cisTopic. (f) Accessibility profiles of HSC, MPP and LMPP bulk 253 

samples. (g) Accessibility z-scores of CD34+ single cells inferred by epiConv. (h) Accessibility 254 

Imputations of CD34+ single cells inferred by cisTopic. (i) Accessibility profiles of CD34+ bulk 255 

samples. Peaks (y-axis) in (b,c), (d-f) and (g-i) are ordered according to 1D embedding by z-scores, 256 

respectively. Cells (x-axis) in (d,g) are ordered according to 1D embedding by epiConv and cells in 257 

(e,h) are ordered according to 1D embedding by cisTopic. HSC, hematopoietic stem cells; MPP, 258 

multipotent progenitors; LMPP, lymphoid-primed multipotent progenitors; CMP, common 259 

myeloid progenitors; BMP, basophil-mast cell progenitors; GMP, granulocyte-macrophage 260 

progenitors; MDP, monocyte-dendritic cell progenitors; pDC, plasmacytoid dendritic cells; MEP, 261 

megakaryocyte-erythroid progenitors; CLP, common lymphoid progenitors. 262 

 263 

Next, we want to test the sensitivity of our algorithm. We first clustered cells by density 264 

cluster algorithm11 and then applied our algorithm to the HSC-MPP-LMPP cluster in the CD34+ 265 

dataset described above (Fig. S5a). In order to prevent detecting differentially accessible peaks 266 

between replicates, we did not perform cross-batch analysis and applied our algorithm to cells in 267 

replicate 1. To our knowledge, few tools could detect DE peaks without known cell identities or 268 

differentiation trajectory but some methods were capable of revealing the dynamics of 269 

accessibility in single-cell resolution by imputation approach (e.g. cisTopic). So, we also included 270 

the imputations of cisTopic in our benchmarking (the cells from HSC-MPP-LMPP cluster also 271 

formed a cluster in the results of cisTopic, see Fig. S5b). Through our algorithm, we detected 272 

1,513 DE peaks (cell-norm strategy) within the HSC-MPP-LMPP cluster and compared the z-scores 273 

of them with the imputations of cisTopic and bulk ATAC-seq profiles (Fig. 5d-f). The dynamic 274 

changes of z-scores were highly consistent with the bulk ATAC-seq profiles of FACS-sorted HSCs, 275 

MPPs and LMPPs12. As there were no obvious local enrichment of cells with high or low library 276 

size in the HSC-MPP-LMPP cluster (Fig. S5c), the results from two strategies and binary 277 

accessibility profiles did not show conflictions with each other (Fig. S5d-f). All DE peaks were 278 
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properly ordered through the 1D embedding and agreed with their accessibility dynamics in both 279 

single-cell and bulk samples, suggesting that the co-accessible pattern between peaks could be 280 

revealed by z-scores. (Fig. 5d-f). Moreover, our results also showed gradual gain or loss of 281 

accessibility in a wide range of peaks through the continuous transition of cell states. Notably, the 282 

dynamic changes of accessibility did not completely match the clustering. These results 283 

demonstrated that inferring DE peaks directly from cell mixtures helped reveal proper clusters 284 

and intermediate cell states in a signature-driven manner instead of statistical ways. The 285 

imputation from cisTopic did not show strong confliction with bulk profiles but the pattern of 286 

gradual gain or loss of accessibility through x-axis (cells) and y-axis (peaks) was not obvious (Fig. 287 

5e). Some cells were highly accessible in LMPP unique peaks but also moderately accessible in 288 

HSC or MPP unique peaks, which did not agree with the bulk profiles. Moreover, the chromatin 289 

states of some cells were inaccessible for almost all peaks. We found that these cells might be 290 

intermediate cell types under the differentiation to GMP, as suggested by cisTopic (Fig. S5b). 291 

Thus, we concluded that cisTopic lacked sufficient resolution for the dynamic changes of 292 

individual peaks and some conflictions between cisTopic and our algorithm could be inherited 293 

from the results of clustering. 294 

We also applied our algorithm to all cells in replicate 1 from CD34+ dataset to test the 295 

scalability of our algorithm. Z-scores from lib-norm strategy agreed with cisTopic imputations and 296 

bulk samples (11,126 DE peaks, Fig. 5g-i). Similar with previous results on HSC-MPP-LMPP cluster, 297 

we also found a series of peaks that gradually gained or lost accessibility through differentiation 298 

(e.g. MDPs to cDCs, Fig. 5g). The z-scores did not fully capture the chromatin states of bulk 299 

samples for a few peaks (Fig. 5i). We found that it was derived from the difference between 300 

single-cell and bulk samples (data not shown), probably because there might be some batch 301 

effects between them. CisTopic showed similar imputations but was less likely to arrange cells 302 

with similar accessibility profiles together when embedding cells to 1D space (Fig. 5h). 303 

Interestingly, if cells were ordered according to the 1D embedding of epiConv, the cisTopic 304 

imputations of single cells were better revealed and almost identical to the results of z-scores 305 

(Fig. S5g). We suspected that the distance matrix inferred by cisTopic might be nosier than 306 

epiConv, which makes cisTopic perform worse than epiConv when embedding cells to 1D space. 307 

As the library size of single cells varied considerably between clusters (HSC-MPP-LMPP cluster 308 
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had a smaller library size, see Fig. S5c), cell-norm strategy selected another group of DE peaks 309 

(2,358 DE peaks, Fig. S5h,i). And as expected, the z-scores from these peaks agreed with binary 310 

accessibility profiles. These results demonstrated that different normalization strategies had 311 

strong effects on differential analysis when the library size of single cells varied considerably 312 

between major clusters. In fact, it was not difficult to find DE peaks between clearly segregated 313 

clusters and there were many existing methods that could perform such task. But we 314 

demonstrated that our algorithm was flexible enough to detect DE peaks at different scales and 315 

compatible with various normalization strategies. 316 

 317 

Discussions 318 

In this study, we developed a novel clustering algorithm for scATAC-seq data and compared 319 

it with two other methods, cisTopic and LSI. The most significant difference between our 320 

algorithm and others is that we calculated the distance between single cells using a convolution-321 

based approach instead of commonly used Euclidean-distance. The Euclidean-distance must be 322 

calculated from a matrix and easily suffers from data sparsity, which is the most remarkable 323 

feature of scATAC-seq data. However, as researchers have already gained a lot of experience on 324 

Euclidean-distance based algorithms through analyzing scRNA-seq data, most methods put their 325 

efforts on merging individual peaks into meta features to make Euclidean-distance applicable. 326 

Here, we demonstrated several advantages of convolution-based approach (performing better in 327 

integrated data from multiple sources and showing higher accuracy in some datasets). However, 328 

Euclidean-distance based approaches still have their advantages (e.g. much faster running speed 329 

with reasonable accuracy). Importantly, each method benchmarked in this study showed some 330 

unique patterns that other methods did not capture (see Fig. 4 and Fig. S1). Given that it is 331 

difficult to benchmark the accuracy of different methods in most datasets, we think that it would 332 

be better to compare results from multiple methods rather than relying on single method and 333 

our method proves to be one of the best candidates for scATAC-seq analyses. 334 

 335 
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Methods 336 

Informative region calling for epiConv. EpiConv takes processed fragments as input file. To call 337 

informative regions for epiConv, we first extended Tn5 insertions from both directions using the 338 

pileup command in MACS213 (-B --extsize 100). Then, we sorted all sites of the genome by their 339 

density in decreasing order and selected regions with cumulative density less than 70% of total 340 

insertions. These regions were extended from both directions by 100 bp and merged together if 341 

having any overlap. Tn5 insertions overlapping with these informative regions (~70% of total 342 

reads) were used for downstream analysis. We used such strategy instead of MACS2 because the 343 

proportion of reads used in downstream analyses could be easily specified through the threshold 344 

of cumulative density. Moreover, this strategy can always obtain some peaks, while MACS2 may 345 

fail when the number of cells is low (e.g. < 200, reported by Satpathy et al. 20194). The threshold 346 

of cumulative density is determined by the distribution of insertion length. Based on our 347 

preliminary analysis, fragments spanning one or more nucleosomes are nosier than fragments 348 

from nucleosome-free regions. Thus, the threshold should be close to the proportion of 349 

fragments from nucleosome-free regions. For the myoblast and mouse brain datasets, we set the 350 

threshold to 50% as they had higher proportion of fragments spanning one or more nucleosomes 351 

(data not shown). 352 

epiConv algorithm. In the results section, we described the algorithm to calculate the similarity 353 

between two cells over one region. Here assume that we have N cells and K regions, with the 354 

similarities between any two cells i and j over region k (sijk) being known. First, we weight each 355 

region as follows: 356 

𝑓𝑟𝑒𝑞𝑘 = √
2

𝑁(𝑁 − 1)
∑ 𝑠𝑖𝑗𝑘

𝑖𝑗
 357 

𝑤𝑘 = 𝑙𝑜𝑔10(1 + 𝑓𝑟𝑒𝑞𝑘
−1) 358 

The form of weight is similar to that used in LSI but the frequency is replaced by a pseudo-359 

frequency estimated from our convolution-based approach. We use such form of weight to 360 

increase the contribution of low-density regions to the similarity score. The similarity between 361 

cell i and j is calculated using a bootstrap approach. Assuming we perform L replicates (L = 30 in 362 

this study) and in each replicate we randomly sample some regions (12.5% of total informative 363 
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regions in this study). The similarity of sij is calculated as follows: 364 

𝑠𝑖𝑗 =
∑ 𝑙𝑜𝑔10(∑ 𝑠𝑖𝑗𝑘 ∙ 𝑤𝑘

2
𝑘∈𝑟𝑒𝑝𝑙

)𝑙

𝐿
− log10(𝑙𝑖𝑏𝑖 ∙ 𝑙𝑖𝑏𝑗) 365 

where libi and libj is the library size of cell i and j. We normalize the aggregated similarity by 𝑙𝑖𝑏𝑖 ∙366 

𝑙𝑖𝑏𝑗 because ∑ 𝑠𝑖𝑗𝑘 ∙ 𝑤𝑘
2

𝑘∈𝑟𝑒𝑝𝑙
 can be considered as the sum of 𝑙𝑖𝑏𝑖 ∙ 𝑙𝑖𝑏𝑗 random variables 367 

with identical distribution given the analytical form of similarity described above. Averaging the 368 

similarities from replicates helps reduce the noise compared to simple aggregation of similarities 369 

from all regions. 370 

In the simplified version, matrix is first binarized and TF-IDF transformed like LSI3 (In 371 

epiConv-simp, normalization with respect to sequencing depth and peak weighting are identical 372 

as LSI). Given TF-IDF matrix M and L bootstrap matrices 𝑀𝑟𝑒𝑝𝑙
 by randomly sampling peaks from 373 

M, the similarity matrix S can be calculated as follows: 374 

𝑆 =
∑ 𝑙𝑜𝑔10(𝑀𝑟𝑒𝑝𝑙

𝑇 ∙ 𝑀𝑟𝑒𝑝𝑙
)𝑙

𝐿
 375 

Where 𝑀𝑟𝑒𝑝𝑙

𝑇 ∙ 𝑀𝑟𝑒𝑝𝑙
 is the matrix product. Unlike LSI implemented in Cusanovich et al. 20153 376 

and Cusanovich et al. 20187, we do not filter any peaks. By adopting the formula above, the 377 

distance between two insertions 𝜇𝐴𝑖 − 𝜇𝐵𝑗 is considered as zero if they are in the same peak or 378 

infinite otherwise. Further steps are identical for full and simplified versions. 379 

Next, we denoise the similarities between cells by borrowing the information from their 380 

neighbors, which is called similarity blur. Given N cells and their similarity matrix S where sij is the 381 

similarity between cell i and j, we first transform S to a weight matrix W as follows: 382 

𝑤𝑖𝑗 = {
10𝑠𝑖𝑗 ∙ log10(𝑙𝑖𝑏𝑖), 𝑖 ∈ 𝑗′𝑠 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 

0,                                𝑖 ∉ 𝑗′𝑠 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 
 383 

Where j’s neighbors are the top 20 cells with highest similarities to j. For each column j, we scale 384 

the sum of column (excluding the diagonal elements) to a fraction parameter θ between 0 and 1 385 

and the diagonal elements of W are set to 1 − θ. Then the sum of each column is equal to 1. The 386 

matrix W defines how to mix the information from the cell itself and its neighbors, where θ 387 

proportion of information comes from its neighbors and the weight of each neighbor is 388 

determined by its similarity to cell j multiplied by its log10 library size, and 1 − θ proportion of 389 

information comes from cell j itself. In this study we set θ to 0.25. We create a similarity matrix S’ 390 

where its elements are equal to S except for the diagonal elements (the similarity of each cell to 391 

itself, which is not defined for S). The diagonal element s’jj is set to the 99th percentile of column 392 
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j, which can be used to approximate the similarity of cell j to itself. The blurred similarity matrix 393 

Sblurred is calculated by matrix product of S’ and W as follows: 394 

𝑆𝑏𝑙𝑢𝑟𝑟𝑒𝑑 =
𝑆′ ∙ 𝑊 + (𝑆′ ∙ 𝑊)𝑇

2
 395 

Given 𝑆′ ∙ 𝑊 is not a symmetrical matrix, we average 𝑆′ ∙ 𝑊 and (𝑆′ ∙ 𝑊)𝑇 to obtain the 396 

similarity matrix. As a proof of the reliability of our algorithm, the upper triangle and lower 397 

triangle of 𝑆′ ∙ 𝑊 are always close to each other. The distance matrix D is calculated by D =398 

−𝑆𝑏𝑙𝑢𝑟𝑟𝑒𝑑, which can be used for downstream analysis such as dimension reduction and 399 

clustering. 400 

Pre-processing of ATAC-seq data. We took the processed fragment file or peak by cell matrix as 401 

inputs if available. For the unprocessed data from Buenrostro et al. 20156 and bulk samples from 402 

Corces et al. 201612, we aligned raw reads to the hg19 genome using Bowtie214 (-X 2000 --no-403 

mixed --no-discordant) and removed reads with mapping quality <10 and duplicates using Picard 404 

tools. The start and end of the fragments were adjusted (+5 for forward strand and −4 for reverse 405 

strand). We called peaks using MACS213 (--nomodel --nolambda --keep-dup all --shift -200 --406 

extsize 400) and generated the count matrix by counting the number of Tn5 insertions falling in 407 

peaks. 408 

For the mouse brain dataset, we randomly sampled 2,000 cells from Channel 1 and Channel 409 

2 in Lareau et al. 2019 (dscATAC-seq)5, 1,000 cells from the mouse cortex data from 10x 410 

Genomics and 2,000 cells from two replicates of whole mouse brain in Cusanovich et al. 2018 411 

(sciATAC-seq)7. The dataset contains 5,000 cells in total. Data from Cusanovich et al. 2018 were 412 

converted from mm9 to mm10 using liftOver15. Data from 10x Genomics and Cusanovich et al. 413 

2018 were re-counted against the peaks called by Lareau et al. 2019 for data integration. 414 

For the myoblast dataset, we perform differential analysis on replicate 1 but validate our 415 

results by aggregated samples from both replicate 1 and replicate 2. Few outlier cells in replicate 416 

1 that did not cluster together with the majority of cells were excluded in differential analysis. 417 

Implement of cisTopic and LSI. In cisTopic, the number of topics is set to 20, 30, 40 and 50 and 418 

automatically decided by cisTopic. For the analysis of cell lines data from Buenrostro et al. 20156, 419 

in order to explore whether increased number of topics could provide higher resolution for K562 420 

cells, we increase the number of topics from 20 to 100 with a step of 10 but the optimal number 421 
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of topics is still decided by cisTopic. The imputation from cisTopic is obtained using the function 422 

predictiveDistribution(). In LSI, we use the scripts from Cusanovich et al. 20187, filter out peaks 423 

with frequency < 0.01 and use the top 50 components of singular value decomposition for 424 

dimension reduction. 425 

Differential analysis algorithm. The input data is a binarized peak by cell matrix and a distance 426 

matrix between cells. Here we use the peak by cell matrix from previous steps. For each single 427 

cell, we define k cells with highest similarities as its neighbors (including itself). Then for each 428 

peak, we test whether it is more likely to be accessible in the cell’s neighbors. This problem can 429 

be resolved using hypergeometric test, with cells accessible as black balls, cells inaccessible as 430 

white balls. The sampling times (�̂�, the adjusted number of neighbors) is calculated by the total 431 

scaling factor of all neighbors divided by the average scaling factors of all cells. By such definition, 432 

�̂� remains constant (�̂� = 𝑘) in cell-norm strategy while the total library size of �̂� neighbors 433 

(average library size multiplied by �̂�) remains constant in lib-norm strategy. The z-scores are 434 

calculated by the number of cells accessible among neighbors and z-normalized by corresponding 435 

mean and variance of the null distribution. 436 

In differential analyses in this study, the number of neighbors k is set to 5% of total cells. The 437 

number of neighbors k defines the size of potential clusters, which serves similar function as the 438 

number of clusters in conventional pipeline. However, the results demonstrated that our 439 

algorithm with fixed k could still detect DE peaks in clusters with a wide range of size. Here, k is 440 

set to 5% in order to make our algorithm more sensitive to DE peaks of small clusters. After 441 

obtaining the z-scores, we select peaks with z-score > 2 in at least 10% cells as DE peaks. For all 442 

cells from replicate 1 of CD34 dataset, we select peaks with z-score > 2 in at least 30% cells as we 443 

only want to detect DE peaks between major clusters and the criterion of 10% cells suggested 444 

most peaks to be differentially accessible, which was reasonable but not desired. All DE peaks are 445 

selected by z-scores from cell-norm strategy except for the CD34+ cells. As the results from two 446 

normalization strategies differs from each other for the CD34+ cells, we selected DE peaks based 447 

on z-scores from cell-norm and lib-norm strategies, respectively. 448 

In fact, it is not straightforward to choose a proper threshold for z-score. We find that peaks 449 

that do not satisfy the threshold described above may also show weak DE pattern. Here, we use 450 

the threshold of 10% cells with z-score >2 because selected peaks can be easily validated by bulk 451 
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samples. For general purpose, users can set the threshold manually to obtain appropriate 452 

number of DE peaks. 453 

Dimension reduction. We perform dimension reduction of single cells using the uniform 454 

manifold projection (UMAP) algorithm16 by feeding umap with the distance matrix learned by 455 

epiConv, cisTopic and LSI using default settings. The number of reduced components was set to 1 456 

for heatmaps and 2 for scatterplot of cells. We also embed DE peaks into 1D space by feeding 457 

umap with the distance matrix that is calculated by one minus spearman correlation of z-scores 458 

between peaks. 459 

Density clustering. We use the density clustering algorithm11 in R package densityClust to cluster 460 

single cells for CD34+ single cells. The thresholds of ρ and δ are manually adjusted to match the 461 

annotations from Satpathy et al. 20195. As differential analysis does not rely on the results of 462 

clustering, the thresholds of ρ and δ won’t affect downstream analyses. 463 

Bulk sample processing. For bulk samples of hematopoietic cells from Corces et al. 201612, we 464 

count the Tn5 insertions against the peaks called from Satpathy et al. 20195, normalize the counts 465 

by library size and average the normalized counts across all replicates for each cell type. For the 466 

myoblast dataset, we de-multiplex the reads, count the Tn5 insertions and normalize the counts 467 

by harvesting times. 468 

Data availability. The cell lines data of Buenrostro et al. 20156 is obtained from Gene Expression 469 

Omnibus (GEO) accession GSE65360. The data of Satpathy et al. 20194 is obtained from GEO 470 

accession GSE129785. The data of Lareau et al. 20195 is obtained from GEO accession 471 

GSE123581. The data of Cusanovich et al. 20187 is obtained from Mouse Cell Atlas 472 

(http://atlas.gs.washington.edu/mouse-atac/). The data of adult mouse cortex is obtained from 473 

10X Genomics website (https://support.10xgenomics.com/single-cell-474 

atac/datasets/1.2.0/atac_v1_adult_brain_fresh_5k). Myoblasts data8 is obtained from GEO 475 

accession GSE109828. EpiConv is available at Github (https://github.com/LiLin-biosoft/epiConv). 476 
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 527 

Figure S1. Comparisons of embedding by epiConv, cisTopic and LSI with cell annotations from 528 

original articles. (a-c) Embedding by epiConv-full, cisTopic and LSI for PBMC dataset, annotated by 529 

Satpathy et al. 2019. (d-f) Embedding by epiConv-full, cisTopic and LSI for CD34+ dataset, 530 

annotated by Satpathy et al. 2019. (g-l) Embedding by epiConv-full, cisTopic and LSI for the 531 

integration of mouse brain data from dscATAC-seq, 10x Genomics and sci-ATAC-seq, annotated by 532 

Cusanovich et al. 2018 (g-i) and Lareau et al. 2019 (j-l). 533 
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 535 

Figure S2. Embeddings of PBMC, CD34+ and mouse brain datasets by epiConv-simp. (a,b) 536 

Embedding by epiConv-simp for PBMC dataset, colored by batch (a) and annotations from 537 

Satpathy et al. 2019 (b). (c,d) Embedding by epiConv-simp for CD34+ dataset, colored by batch (c) 538 

and annotations from Satpathy et al. 2019 (d). (e-g) Embedding by epiConv-simp for mouse brain 539 
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dataset, colored by batch (e), annotations from Cusanovich et al. 2018 (f) and annotations from 540 

Lareau et al. 2019 (g). 541 
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543 

Figure S3. Embedding of Mouse Cell Atlas dataset by epiConv-simp. The corresponding cell types 544 

are colored in red and other cells are colored in grey.  545 
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 546 

547 

Figure S4. Embedding of myoblasts by different methods and results of differential analysis. (a) 548 

Embedding by cisTopic. (b) Embedding by LSI. (c) Embedding by epiConv-simp. (d) Accessibility z-549 

scores by cell-norm strategy, identical as Fig. 4b. (e) Accessibility z-scores by lib-norm strategy. (f) 550 

Binary accessibility profiles. 551 
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 553 

554 

Figure S5. Density clustering of CD34+ single cells and results of differential analysis. (a) 555 

Embedding by epiConv-full. Cells are colored by the results of density clustering. HSC-MPP-LMPP 556 

cluster examined in differential analysis is circled. (b) Embedding by cisTopic. Cells are colored 557 

according to (a). Cells under the differentiation to GMP that are marked in Fig. 5e are circled. (c) 558 

Embedding by epiConv-full, colored by library size. (d) Accessibility z-scores by cell-norm strategy 559 

for HSC-MPP-LMPP cluster, identical as Fig. 4d. (e) Accessibility z-scores by lib-norm strategy for 560 

HSC-MPP-LMPP cluster. (f) Binary accessibility profiles for HSC-MPP-LMPP cluster. (g) Accessibility 561 

imputations of HSC-MPP-LMPP single cells inferred by cisTopic, identical as Fig. 5e but cells (x-562 

axis) are ordered according to 1D embedding by epiConv. (h) Accessibility z-scores by cell-norm 563 

strategy for CD34+ single cells. (i) Binary accessibility profiles for CD34+ single cells. Peaks (y-axis) 564 
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in (h,i) are NOT the same as Fig. 5g-i and are selected by cell-norm strategy, independently. 565 
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