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 2 

Abstract 26 

One important neural hallmark of working memory is persistent elevated delay-period 27 

activity in frontal and parietal cortex. In human fMRI, delay-period BOLD activity in frontal and 28 

parietal cortex increases monotonically with memory load and asymptotes at an individual’s 29 

capacity. Previous work has demonstrated that frontal and parietal delay-period activity 30 

correlates with the decline in behavioral memory precision observed with increasing memory 31 

load. However, because memory precision can be influenced by a variety of factors, it remains 32 

unclear what cognitive processes underlie persistent activity in frontal and parietal cortex. Recent 33 

psychophysical work has shown that attractor dynamics bias memory representations toward a 34 

few stable representations and reduce the effects of internal noise. From this perspective, 35 

imprecision in memory results from both drift towards stable attractor states and random 36 

diffusion. Here we asked whether delay-period BOLD activity in frontal and parietal cortex 37 

might be explained, in part, by these attractor dynamics. We analyzed data from an existing 38 

experiment in which subjects performed delayed recall for line orientation, at different loads, 39 

during fMRI scanning. We modeled subjects’ behavior using a discrete attractor model, and 40 

calculated within-subject correlation between frontal and parietal delay-period activity and 41 

estimated sources of memory error (drift and diffusion). We found that although increases in 42 

frontal and parietal activity were associated with increases in both diffusion and drift, diffusion 43 

explained the most variance in frontal and parietal delay-period activity. In comparison, a 44 

subsequent whole-brain regression analysis showed that drift rather than diffusion explained the 45 

most variance in delay-period activity in lateral occipital cortex. These results provide a new 46 

interpretation for the function of frontal, parietal, and occipital delay-period activity in working 47 

memory. 48 
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Introduction 49 

Working memory – the ability to mentally retain and manipulate information to guide 50 

behavior – is crucial for many aspects of high-level cognition [1-3]. One prominent neural 51 

hallmark of working memory performance is persistent elevated delay-period activity in frontal 52 

and parietal cortex. Specifically, blood oxygen level-dependent (BOLD) activity in frontal and 53 

parietal cortex increases monotonically with memory load and asymptotes at an individual’s 54 

memory capacity [4, 5]. Activity in these networks is thought to reflect the engagement of 55 

control [6, 7]. For example, one recent study has demonstrated that persistent activity in parietal 56 

cortex tracks the demands of binding stimulus content to its trial-specific context, rather than 57 

memory load per se [8]. These signals have been shown to correlate with individual memory 58 

capacity [4, 5] and with memory precision [8-10]. In contrast, persistently elevated activity 59 

during the delay period is often absent in occipital cortex, despite the reliable representation of 60 

stimulus-specific information [8, 10-13]. 61 

Recent psychophysical work has shown that inaccuracies in working memory are due to 62 

both random error and systematic biases. For example, when subjects remember features drawn 63 

from a uniform stimulus space, their responses are not uniform. Instead, the responses “cluster” 64 

around a small number of specific values [14-16]. Further modeling work has demonstrated this 65 

clustering can be explained by attractor dynamics that pull memories to specific locations in 66 

mnemonic space (i.e. color memories are ‘attracted’ to red). While this induces systematic error 67 

into the memories, it also stabilizes memories near the attractors [16]. Thus, engaging attractor 68 

dynamics is thought to be especially beneficial when memory load is higher, because increased 69 

noise in stimulus representations can be counteracted by increasing drift towards a few stable 70 

representations. 71 
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Because load-related imprecision in working memory performance reflects both random 72 

diffusion and drift towards stable attractor states, it remains unclear which of these dynamics 73 

could account for load-sensitive delay-period activity in parietal and frontal cortex. In the current 74 

study, we analyzed data from an existing experiment in which subjects performed delayed recall 75 

for line orientation, at different memory loads, during fMRI scanning. We modeled subjects’ 76 

behavior using a discrete attractor model, and regressed the resultant load-sensitive estimates of 77 

drift and diffusion against load-dependent delay-period activity in parietal and frontal cortex. We 78 

found that an increase in frontal and parietal activity was associated with increases in both 79 

diffusion and drift. Furthermore, diffusion rather than drift explained the most variance in frontal 80 

and parietal delay-period activity. In comparison, a subsequent whole-brain regression analysis 81 

showed that drift rather than diffusion explained the most variance in delay-period activity in 82 

lateral occipital cortex. The results provided a novel interpretation of the functions associated 83 

with delay-period activity, suggesting frontoparietal control networks may be engaged to offset 84 

load-related diffusive noise while load-related drift is localized to occipital cortex. 85 

 86 

Results 87 

Behavioral performance 88 

 Subjects performed a delayed estimation task on line orientations. On different trials, 89 

subjects either remembered one orientation (1O), or three different orientations (3O). For 90 

subjects who participated in the fMRI sessions, we first plotted the distribution of their raw 91 

responses (n = 16), separately for 1O and 3O trials. Recall error, measured as the angular 92 

distance between the target orientation and response orientation, increased with increasing 93 

memory load, t(15) = 8.27, p = 5.68 × 10-7. Furthermore, similar to what has been previously 94 
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reported for color [14-16], subjects’ responses to orientation working memory also clustered 95 

around a small number of orientations (Figure 1B).  96 

To account for these clusters, we fit the behavioral data with the drift-diffusion model 97 

(DDM), which included drift towards attractor locations. For comparison, we also fit the 98 

‘diffusion-only’ model (DOM). Consistent with previous work on color working memory [16], 99 

the DDM provided a better fit to behavior than the DOM (difference in cross-validated log-100 

likelihood = 3.67). For the DDM, the diffusion and the drift parameters both increased with 101 

memory load (t(15) = 4.86, p = 0.0002 and t(15) = 2.43, p = 0.028, respectively), as did the 102 

diffusion parameter from the DOM (t(15) = 6.52, p = 9.67 × 10-6; Figure 1C). When we repeated 103 

these analyses on the full set of behavioral data (n = 30; including behavior-only subjects), all 104 

results were qualitatively similar to those reported above (the average difference in cross-105 

validated log-likelihood across folds was 6.56 between DDM and DOM). 106 

 107 

<Insert Figure 1 about here> 108 

 109 

BOLD signal change in IPS and PFC 110 

 We next examined the BOLD time course in IPS and in PFC during the working memory 111 

task, at the two memory loads. We observed the classic pattern of load-sensitive BOLD activity 112 

in both ROIs: signal intensity was sustained above baseline across the delay period in both load 113 

conditions (all ps < 0.001), with greater activity for the higher memory load condition (all ps < 114 

0.01, including the “late-delay” TR, at which BOLD-behavior analyses were carried out; Figure 115 

2A and 2B).  116 

 117 
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<Insert Figure 2 about here> 118 

 119 

 Modeling load-dependent BOLD activity with behavior at the ROI level 120 

 To relate load-dependent BOLD activity in parietal and frontal cortex to behavior, we 121 

fitted linear regression models with behavioral-model fitted parameters and subject as the 122 

independent variables, and BOLD activity as the dependent variable. We first used these 123 

regression models to calculate within-subject correlations (ANCOVAs) between behavioral 124 

parameters (drift and diffusion) and BOLD activity. The results indicated that BOLD activity in 125 

both ROIs correlated significantly with diffusion (IPS diffusion: r = 0.83, p = 0.00004; PFC 126 

diffusion: r = 0.79, p = 0.0002) and drift (IPS drift: r = 0.59, p = 0.012; PFC drift: r = 0.61, p = 127 

0.009; Figure 2C and 2D).  128 

Next, to evaluate the contribution of drift and diffusion, we found the regression model 129 

that best explained BOLD activity in the two ROIs. Comparison between the four models of 130 

interest indicated that Model 2 (BOLD ~ diffusion (DDM) + subject) explained the most 131 

variance in BOLD activity in both IPS and PFC ROIs, and showed the best model performance 132 

in terms of AIC and BIC (See Table 1 for a complete list of model comparisons).  133 

We also used stepwise regression to examine the relative contribution of drift and 134 

diffusion to the prediction of BOLD activity. Starting from Model 3 (BOLD ~ drift (DDM) + 135 

diffusion (DDM) + subject), stepwise regression removed drift from the model for both IPS 136 

(F(1,14) = 0.35, p = 0.564) and PFC (F(1,14) = 0.84, p = 0.376), but retained diffusion for both 137 

ROIs (diffusion vs. constant model: IPS: F(32,15) = 4.37, p = 0.003; PFC: F(32,15) = 4.36, p = 138 

0.003). Together, these results suggest the level of BOLD activity in both IPS and PFC is most 139 

strongly correlated with the amount of diffusive noise in memories. 140 
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 141 

<Insert Table 1 about here> 142 

 143 

Modeling load-dependent BOLD activity with behavior at the whole-brain level 144 

 Lastly, we performed a whole-brain linear regression analysis to explore the relative 145 

contribution of drift and diffusion to the BOLD activity of each voxel. Consistent with our ROI-146 

based results, we found significant clusters in bilateral IPS and left frontal cortex with load-147 

dependent BOLD activity that can be better explained by load-dependent changes in diffusion 148 

(Figure 3A, red clusters).  149 

  150 

 <Insert Figure 3 about here> 151 

 152 

Interestingly, we also observed clusters that showed higher brain-behavior correlation 153 

with drift (Figure 3A, green clusters). These clusters were most prominent in in the lateral 154 

occipital cortex (LO), in superior postcentral gyrus bilaterally and in right inferior precentral 155 

gyrus. Because of the known involvement of occipital cortex in visual working memory, we 156 

defined two anatomical ROIs for LO (LO1 and LO2) and repeated with them the ROI-based 157 

analyses as previously performed for IPS and PFC.  158 

Consistent with previous findings [8, 10-13], BOLD signal intensity in the two LO ROIs 159 

returned to baseline during the delay period, with late-delay period activity no different from 160 

baseline on 1O trials (LO1: t(15) = 0.300, p = 0.868; LO2: t(15) = 0.315, p = 0.845) and slightly 161 

below-baseline on 3O trials (LO1: t(15) = 2.754, p = 0.021; LO2: t(15) = 2.369, p = 0.043; 162 

Figure 3B and 3C). ANCOVAs between the behavioral parameters from the DDM and this 163 
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BOLD activity revealed trending correlations with drift (LO1: r = -0.48, p = 0.054; LO2: r = -164 

0.44, p = 0.081) and less so with diffusion (LO1: r = -0.44, p = 0.079; LO2: r = -0.34, p = 0.18; 165 

Figure 3D and 3E). Furthermore, stepwise regression on Model 3 removed diffusion from the 166 

model for both LO1 (F(1,14) = 0.59, p = 0.456) and LO2 (F(1,14) = 0.13, p = 0.727), while drift 167 

remained in models for both ROIs (drift vs. constant model: LO1: F(32,15) = 3.98, p = 0.005; 168 

LO2: F(32,15) = 4.2, p = 0.004). This result was opposite of what was observed in the IPS and 169 

PFC ROIs. 170 

 171 

Discussion 172 

 The results of this study provide a new account of the function of load-sensitive activity 173 

in IPS and PFC [4, 5]. First, consistent with previous work with color working memory, here we 174 

showed that attractor dynamics provided a better account of behavioral data of orientation 175 

working memory, compared with classic mixture models that did not take attractor biases into 176 

account. Next, and most importantly, the diffusion parameter from the discrete attractor model 177 

provided the best account of the load-sensitive delay-period activity of IPS and PFC. In contrast, 178 

in LO where aggregate levels of late delay-period activity were at or below baseline levels, load-179 

sensitive fluctuation in this activity was better explained by drift. Thus, our results provide the 180 

first evidence to our knowledge that load-related imprecision in working memory, known to 181 

entail increases in random diffusion and in drift towards stable attractor state, engages control-182 

related circuits of IPS and PFC and sensory-related circuits of LO, respectively. 183 

 By definition, working memory is guided by information specific to the current trial. 184 

Nevertheless, working memory is also often influenced by many other factors, such as sensory 185 

history [17] and prior knowledge. In working memory for color, the influence of prior 186 
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knowledge is reflected as clustered responses around a small number of specific color values, 187 

even when the distribution of sample colors is uniform [14-16]. The present results show that this 188 

phenomenon generalizes to another low-level visual feature, orientation, and these biases 189 

increased with increasing memory load. Together with those of Panichello et al. (2019), our 190 

results indicate that dynamical systems offer a useful framework within which to understand the 191 

influence of trial-nonspecific factors on working memory performance. 192 

Neurally, delay-period neural activity in IPS and PFC increased with increasing memory 193 

load, and we showed that this load-dependent change in BOLD activity was mainly related to 194 

load-dependent changes in diffusion rather than drift. Therefore, load-related activity change in 195 

IPS and PFC is likely related to random diffusion processes, rather than systematic biases 196 

towards attractors. The random noise could be related to noise in representations when memories 197 

are held in IPS/PFC or related to greater engagement of control processes when working memory 198 

has greater diffusion. For example, a recent study has found that delay-period activity in IPS is 199 

more sensitive to the demands of context binding than of memory load per se. By this account, 200 

increases in diffusion were likely due, at least in part, to increased interference between 201 

representations of stimulus content and stimulus context, which would be expected to place 202 

greater demands on a frontoparietal priority map controlling visually guided behavior [8]. In 203 

comparison, load-related activity in LO was more sensitive to load-related changes in drift to 204 

particular stimulus values, rather than diffusion. This result is consistent with the idea that prior 205 

knowledge shapes feature tuning in visual cortex, resulting in biased tuning responses to 206 

different visual features at early stages of cortical processing [18]. 207 

When considering these findings, it is important to not think of these factors as working 208 

in isolation. In frontoparietal cortex, for example, estimating drift is still necessary, as it allows 209 
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 10 

for a more accurate model of diffusion, that can better predict neural signals in these regions. 210 

Moreover, it is important to note that in terms of parameter fitting, the drift parameter relies 211 

inferring the shape of attractor landscape across the entire stimulus space, and therefore both the 212 

number of trials and the uniformity of target distribution can have a significant impact on the 213 

fitted outcome. It is possible that future studies acquiring more trials, and/or applying more 214 

uniformly distributed targets, will lead to improved model fit of drift, and increases in the 215 

variance explained by this parameter. 216 

In previous studies emphasizing stimulus-specific representations of visual working 217 

memory, we have argued that disparate patterns of results in frontoparietal versus occipital 218 

cortex are consistent with a functional distinction between these two regions, with the former 219 

more strongly associated with control and the latter with stimulus representation [8, 10]. Here, 220 

we see that stimulus-nonspecific factors, as reflected in the relationship between load-dependent 221 

changes in behavior (drift and diffusion) and delay-period activity, are also consistent with this 222 

distinction. Taken together, the results from higher-order frontal and parietal cortex and low-223 

level occipital cortex suggest that imprecision in working memory can be caused by a 224 

combination of effects of noise in parietal and frontal cortex, and of stimulus-related biases in 225 

occipital cortex. 226 

 227 

Method 228 

Subjects  229 

The results reported here are from analyses carried out on existing data collected for other 230 

purposes [19, 20]. Thirty individuals (10 males, mean age 20.7 ± 2.3 years) participated in the 231 

behavioral session of the study, and sixteen of these (8 males, mean age 20.6 ± 1.8 years) also 232 
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participated in two subsequent fMRI scanning sessions. All were recruited from the University of 233 

Wisconsin–Madison community. All had normal or corrected-to-normal vision, reported no 234 

neurological or psychiatric disease, and provided written informed consent approved by the 235 

University of Wisconsin–Madison Health Sciences Institutional Review Board. Anatomical 236 

scans from the fMRI session were also screened by a neuroradiologist, and no abnormalities 237 

were detected. All subjects were monetarily compensated for their participation. 238 

 239 

Stimuli and procedure 240 

All stimuli were created and presented using Matlab (MathWorks, Natick, MA) and 241 

Psychtoolbox 3 extensions [21, 22]. In the behavioral session, stimuli were presented at a 242 

viewing distance of 62 cm on an iMac screen, with a refresh rate of 60 Hz. Subjects registered 243 

behavioral responses on a trackball response pad. In the fMRI session, stimuli were projected 244 

onto a 60-Hz Avotec Silent Vision 6011 projector (Avotec, Stuart, FL), and viewed through a 245 

coil-mounted mirror in the MRI scanner at a viewing distance of 69 cm. Subjects registered 246 

behavioral responses on a MR-compatible trackball response pad (Current Designs Inc., 247 

Philadelphia, PA). 248 

There were three types of stimuli: oriented bars, color patches, or luminance patches. 249 

Each oriented-bar stimulus appeared as a black line (width = 0.08°) bisecting a white circle 250 

(radius = 2°). Line orientations were drawn from a pool of 9 orientations ranging from 0 to 160°, 251 

in 20° increments, with a random jitter of 1-5° added to each stimulus. Color patches were 252 

circular patches (radius = 2°) filled with one color drawn from a pool of 9 colors that were 253 

equidistant in CIEL*a*b color space (L = 70, a = 20, b = 38, radius = 60°), with a random jitter 254 

of 1-5°. Luminance patches were rendered as a gray circular patch (radius = 0.83°) inside a white 255 
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annulus (radius = 2°), and the luminance of the patches were drawn from 9 grayscale values from 256 

[0.03, 0.03, 0.03] to [0.97, 0.97, 0.97], in steps of 0.1175. Throughout the experiment, the 257 

background screen color was gray [0.5, 0.5, 0.5].  258 

 There were three different trial types. On “1O” trials, one oriented bar was presented at 259 

one of four possible locations (45°, 135°, 225°, 315° relative to central fixation, with an 260 

eccentricity of 5°) for 4 s. Stimulus offset was followed by a mask (white circle [radius = 2°] 261 

bisected by 18 black bars [width = 0.08°] intersecting at their midpoints and each differing in 262 

orientation from its neighbors by 10°; 0.25 s) and a delay period (7.75 s) during which subjects 263 

maintained central fixation. Recall was prompted by the onset of a stimulus circle appearing at 264 

the same location as the sample, a response wheel centered on fixation (inner radius = 7.2°, outer 265 

radius of 9.2°), and a cursor (a conventional “mouse” arrow) located at central fixation. Twenty 266 

oriented lines (radius = 1.8°, width = 0.05°, ranging in orientation from 0° to 171° in steps of 9°) 267 

were displayed with equal spacing along the response wheel, and subjects registered their 268 

memory of the sample orientation by moving the cursor to the appropriate location on the 269 

response wheel and registering that location with a button press. At the onset of the recall 270 

display, the stimulus patch was rendered with a randomly determined value rendered in the 271 

format of the sample stimuli, and as soon as the subject began to move the cursor (with the 272 

trackball) the stimulus patch took on the value corresponding to the location on the response 273 

wheel that was nearest to the cursor. Responses were required within 4 s, while the circle and 274 

wheel remained on the screen. The angle of rotation of the response wheel was randomized 275 

across trials, to prevent subjects from preparing their response during the delay period. 276 

  “3O” trials were similar to “1O” trials, except three oriented bars, each with a different 277 

orientation, were displayed in three of the four possible sample locations, and, at time 12 s, the 278 
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sample to be recalled was indicated by the location of the stimulus circle in the recall array. For 279 

each 3O trial, sample values were selected randomly, without replacement, from the pool of 9 280 

possible orientations (Figure 1A). 281 

 On “1O1C1L” trials, 1 oriented bar, 1 color patch, and 1 luminance patch were presented, 282 

and during the response stage subjects were tested, unpredictably, on their memory for one of 283 

these stimuli. The response wheel for color and luminance was the same size as the orientation 284 

wheel, but displayed 180 possible color or luminance values.  285 

 The behavioral session contained two blocks of 1O and 3O trials, and three blocks of 286 

1O1C1L trials. Each block contained 50 trials, and block order was counterbalanced across 287 

subjects. The 1O and 3O blocks contained 25 trials each for 1O and 3O, and the 1O1C1L blocks 288 

contained 17 probes of two of the three categories, and 16 of the remaining one. The selection of 289 

the categories was randomized across blocks, yielding 50 trials for each category across three 290 

blocks.  291 

 There were two fMRI scanning sessions. The first scanning session included four 18-trial 292 

blocks of 9 3O trials and 9 1O1C1L trials (with 3 probes each for orientation, color, and 293 

luminance), yielding a total of 36 trials for each of these load-of-3 trial types. These four blocks 294 

were followed by eight 18-trial blocks of 1O trials. The second session included twelve blocks of 295 

1O trials. To match the number of trials between conditions in fMRI data, two of the twenty 1O 296 

blocks were randomly selected for each subject for further analyses. 297 

We introduce the 1O1C1L condition here only for the completeness of experimental 298 

design. All subsequent analyses focused on 1O and 3O trials for load-related changes in 299 

behavioral and neural data.  300 

 301 
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Behavioral modeling 302 

 We fitted data from the behavioral session using a discrete attractor model [16]. This 303 

circular drift-diffusion model (DDM) fits the dynamic evolution of memories with two distinct 304 

processes: random noise (diffusion); and systematic drift towards one of several stable attractors. 305 

Notably, when the drift parameter is removed, the remaining diffusion-only model (DOM) is 306 

equivalent to a classic mixture model [23]. Both parameters are rates, with a unit of rad/s 307 

indicating the rate of diffusion and the maximum instantaneous drift rate. Unlike the Panichello 308 

et al. (2019) study, here we fitted behavioral data without separating out encoding and delay 309 

processes, because the length of memory delays was not manipulated in this experiment. The 310 

comparison between performance of the DDM and DOM models was evaluated by computing a 311 

10-fold cross-validated log-likelihood value. 312 

 313 

fMRI Data acquisition 314 

 Whole-brain images were acquired with a 3 Tesla GE MR scanner (Discovery MR750; 315 

GE Healthcare, Chicago, IL) at the Lane Neuroimaging Laboratory at the University of 316 

Wisconsin–Madison HealthEmotions Research Institute (Department of Psychiatry). Functional 317 

images were acquired with a gradient-echo echo-planar sequence (2 sec repetition time (TR), 25 318 

msec echo time (TE), 60° flip angle) within a 64 × 64 matrix (40 sagittal slices, 3.5mm 319 

isotropic). Each of the fMRI scans generated 215 volumes. A high-resolution T1 image was also 320 

acquired for each session with a fast spoiled gradient-recalled-echo sequence (8.2 msec TR, 3.2 321 

msec TE, 12° flip angle, 172 axial slices, 256 × 256 in-plane, 1.0 mm isotropic).  322 

 323 

fMRI Data preprocessing 324 
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Functional MRI data were preprocessed using AFNI (http://afni.nimh.nih.gov) [24]. The 325 

data were first registered to the first volume of the first run, and then to the T1 volume of the first 326 

scan session. Six nuisance regressors were included in GLMs to account for head motion 327 

artifacts in six different directions. The data were then motion corrected, detrended (linear, 328 

quadratic, cubic), converted to percent signal change, and spatially smoothed with a 4-mm 329 

FWHM Gaussian kernel. For the whole-brain analysis, the data were further aligned to the MNI-330 

ICBM 152 space [25]. 331 

 332 

Region of interest (ROI) definition 333 

We first defined anatomical ROIs using existing anatomical atlases, and warped them 334 

back to each subject’s structural scan in native space. Parietal anatomical ROIs were created by 335 

extracting intraparietal sulcus (IPS) masks IPS0-5 from the probabilistic atlas of Wang and 336 

colleagues [26], merging them, and collapsing over the right and left hemispheres. Lateral 337 

prefrontal cortex (PFC) anatomical ROIs were created by extracting masks of the superior, 338 

middle, and inferior frontal gyri supplied by AFNI, merging them, and collapsing over the right 339 

and left hemispheres. Lateral occipital anatomical ROIs were created by extracting masks for 340 

LO1 and LO2, from the probabilistic atlas of Wang and colleagues [26], merging them, and 341 

collapsing over the right and left hemispheres.  342 

To find the functionally activated voxels within the anatomical atlases, a conventional 343 

mass-univariate general linear model (GLM) analysis was implemented in AFNI, with sample, 344 

delay and probe periods of the task modeled with boxcars (4 sec, 8 sec, and 4 sec in length, 345 

respectively) that were convolved with a canonical hemodynamic response function. Across the 346 

whole brain, we identified the 2000 voxels displaying the strongest loading on the contrast [delay 347 
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- baseline], collapsing over all three conditions. The intersection of these 2000 voxels and the 348 

two anatomical masks defined the two functional ROIs in subsequent analyses: the IPS ROI and 349 

the PFC ROI. On average, the IPS functional ROI contained 463 ± 177 voxels, the PFC 350 

functional ROI contained 314 ± 86 voxels; the two anatomical LO ROIs contained 404 ± 57 and 351 

456 ± 69 voxels, respectively. 352 

 353 

Univariate analyses 354 

We calculated the percent signal change in BOLD activity relative to baseline for each 355 

time point during the working memory task; baseline was chosen as the average BOLD activity 356 

of the first TR of each trial. The BOLD signal change was averaged across trials within each 357 

condition, and across all voxels within each ROI. Statistical significance of BOLD activity 358 

against baseline was assessed using two-tailed, one-sample t-tests against 0, and the obtained p 359 

values were corrected across loads and time points using FDR (False Discovery Rate) [27]. 360 

Statistical difference of BOLD activity between 1O and 3O at each time point was assessed 361 

using two-tailed paired t-tests, and similarly the obtained p values were FDR corrected across 362 

time points.   363 

 364 

Brain-behavior correlation and model comparisons 365 

Following previous work [8-10], we used an analysis of covariance (ANCOVA) method 366 

to evaluate the correlated sensitivity to trial type (i.e., 1O vs. 3O) across pairs of task-related 367 

variables (i.e., BOLD activity vs. behavioral parameter). Unlike simple correlations, ANCOVA 368 

accommodates the fact that each subject contributes a value for each level of trial type. It 369 
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removes between-subject differences and assesses evidence for “within-subject correlation” 370 

between the two task-related variables [28].  371 

Mathematically, within-subject correlations were implemented as linear regression 372 

models, and were calculated for drift and diffusion separately, where subject is a dummy variable 373 

for trial types (1O and 3O) of each subject, and BOLD is BOLD signal from time 12 s (“late 374 

delay-period” activity): 375 

Model 1: BOLD ~ drift (DDM) + subject; 376 

Model 2: BOLD ~ diffusion (DDM) + subject; 377 

The within-subject correlation r for drift or diffusion was calculated as: 378 

r	 = 	
$SS&'()*	+'	&()),-(+.

$SS&'()*	+'	&()),-(+. +	SS0''+'
 379 

where SS stands for sum of squares. 380 

 To compare between the performance of different regression models, we included two 381 

more models, one full model that took both drift and diffusion into account, and one control 382 

model that used diffusion from the DOM model:  383 

Model 3: BOLD ~ drift (DDM) + diffusion (DDM) + subject; 384 

Model 4: BOLD ~ diffusion (DOM) + subject. 385 

Model performance was evaluated by comparing Akaike Information Criterion (AIC), 386 

Bayesian Information Criterion (BIC), and adjusted R2 (explained variance of the model after 387 

adjusting for the number of predictors) of each model. 388 

 Lastly, we performed stepwise regression to evaluate the contribution of the drift and 389 

diffusion parameters to the prediction of BOLD activity. The regression model started with 390 

Model 3, after the initial fit, the predictors in the model were examined one by one, and the 391 

predictor with a p > 0.10 in the F test after removal was removed. 392 
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 393 

Whole-brain regression analysis 394 

 To explore brain areas that showed activity sensitive to either the drift or diffusion 395 

parameter, we used a whole-brain exploratory analysis to find voxels with activity that can be 396 

best explained by either drift or diffusion. To this end, all subjects’ data were first normalized to 397 

the MNI-ICBM 152 space [25], and for each voxel we fit Models 1 and 2 to the BOLD activity 398 

of that voxel. The model with a higher adjusted R2 for each voxel was selected as the best fitting 399 

for that voxel, and we used the p-value of the selected model (F-test on regression vs. constant 400 

model) for statistical significance. To correct for multiple comparisons, we applied the False 401 

Discovery Rate (FDR) method to the p-values of the selected model across voxels. To avoid 402 

overinterpretation, we also applied a threshold in model selection using BIC [29], such that only 403 

voxels with a significant p-value after correction, and in which the drift or diffusion model 404 

outperformed the other by a BIC >= 2, remained in the final report. Therefore, we identified 405 

voxels with load-dependent BOLD activity that could be better explained by load-dependent 406 

changes in drift, or in diffusion, at the whole-brain level. Results from the whole-brain analysis 407 

were displayed on the cortical surface reconstructed with FreeSurfer 408 

(http://surfer.nmr.mgh.harvard.edu; [30, 31]) and visualized with SUMA in AFNI 409 

(http://afni.nimh.nih.gov) [24]. 410 

  411 
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Figure Legends 412 

Figure 1A. Trial sequence of the fMRI task and Behavioral performance 413 

A. For the data analyzed in the current study, participants remembered either one orientation 414 

(1O), or three orientations (3O). Sample stimuli were presented on the screen for 4 s, followed 415 

by a brief mask period of 0.25 s. After a delay of 7.75 s, participants rotated the needle of the 416 

response wheel to indicate the remembered orientation at the probed location. 417 

B. The raw response distribution of 1O and 3O trials, indicated by the gray histograms. The 418 

black lines indicate the envelope of target distribution, and pink and green lines indicate the 419 

envelope of response distribution, for 1O and 3O trials separately. 420 

C. Model-free and model-based behavioral performance. From left to right panel shows mean 421 

error, diffusion from the DOM model, drift from the DDM model, and diffusion from the DDM 422 

model. Error bars indicate ± 1 SEM. 423 

 424 

Figure 2. BOLD activity and brain-behavior correlations in IPS and PFC 425 

A. Trial-averaged BOLD activity in the IPS functional ROI. B. Time course of BOLD activity in 426 

the PFC functional ROI. Pink and green lines correspond to the 1O and 3O conditions, 427 

respectively. Error bars indicate ± 1 SEM. C. Within-subject correlations between behavioral 428 

parameter from DDM (drift and diffusion plotted separately) and IPS BOLD activity, at “late 429 

delay” time point (12 s). D. within-subject correlations between behavioral parameter (drift or 430 

diffusion) and PFC BOLD activity. In each plot, data from each subject are plotted in a different 431 

color, and the “1” and “3” symbols correspond to values from 1O and 3O trials, respectively. 432 

Lines illustrate the best fit of the group-level linear trend (i.e., the within-subject correlation) in 433 

relation to individual subject data.  434 
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 435 

Figure 3. Whole-brain regression analysis with drift and diffusion and ROI-based results in 436 

LO 437 

A. Whole-brain regression with drift and diffusion. Green denotes voxels showing load-438 

dependent BOLD activity that can be better explained by load-dependent changes in drift, and 439 

Red denotes voxels showing load-dependent BOLD activity that can be better explained by load-440 

dependent changes in diffusion. For visualization purposes, results were clusterized at a 441 

threshold of 20 voxels. The left two panels show results from the left hemisphere, and the right 442 

two panels show results from the right hemisphere. The significance of the regression models 443 

was corrected using the FDR method at p < 0.05. 444 

B. Trial-averaged BOLD activity in the LO1 anatomical ROI. C. Time course of BOLD activity 445 

in the LO2 anatomical ROI. Pink and green lines correspond to the 1O and 3O conditions, 446 

respectively. Error bars indicate ± 1 SEM. D. Within-subject correlations between behavioral 447 

parameter from DDM (drift and diffusion plotted separately) and LO1 BOLD activity, at “late 448 

delay” time point (12 s). E. within-subject correlations between behavioral parameter (drift or 449 

diffusion) and LO2 BOLD activity. In each plot, data from each subject are plotted in a different 450 

color, and the “1” and “3” symbols correspond to values from 1O and 3O trials, respectively. 451 

Lines illustrate the best fit of the group-level linear trend (i.e., the within-subject correlation) in 452 

relation to individual subject data.  453 

 454 

Table 1: Comparison between different regression models 455 

Model adjusted R2 AIC BIC 

IPS    
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Model 1 0.237 29.3792 54.2967 

Model 2 0.635 5.7543 30.6718 

Model 3 0.619 6.9660 33.3493 

Model 4 0.580 10.2552 35.1757 

PFC    

Model 1 0.412 14.1163 39.0338 

Model 2 0.659 -3.2714 21.6461 

Model 3 0.652 -2.8174 23.5658 

Model 4 0.566 4.3899 29.3075 

 456 
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Figure 2 582 
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Figure 3 594 
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