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Abstract (250 words or less) 33 

Targeted amplicon sequencing methods, such as Genotyping-in-Thousands by 34 

sequencing (GT-seq), facilitate rapid, accurate, and cost-effective analysis of hundreds of genetic 35 

loci in thousands of individuals. Development of amplicon sequencing panels is non-trivial, but 36 

studies describing detailed workflows of GTseq panel development are rare. Here, we develop a 37 

dual-purpose GT-seq panel for walleye (Sander vitreus), outline a generalized workflow for 38 

panel development, and discuss trade-offs associated with different development and genotyping 39 

approaches. Our GT-seq panel was developed using an ascertainment set consisting of restriction 40 

site-associated DNA data from 954 individuals sampled from 23 populations in Minnesota and 41 

Wisconsin, USA. We then performed simulations to test the utility of all loci for parentage 42 

analysis and genetic stock identification and designed 600 primer pairs to maximize joint 43 

accuracy for these analyses. We conducted three rounds of primer optimization to remove loci 44 

that overamplified, yielding a final panel of 436 loci. We also explored different approaches for 45 

DNA extraction, multiplexed polymerase chain reaction (PCR) amplification, and cleanup steps 46 

during the GT-seq process and discovered the following: (1) inexpensive Chelex extractions 47 

performed well for genotyping, (2) the exonuclease I and shrimp alkaline phosphatase (Exo-48 

SAP) procedure included in some current protocols did not improve results substantially and was 49 

likely unnecessary, and (3) it was possible to PCR amplify panels separately and combine them 50 

prior to adapter ligation. Well-optimized GT-seq panels are valuable resources for conservation 51 

genetics and our workflow and findings should aid in their construction in myriad taxa.     52 

 53 

 54 

 55 
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Introduction 56 

  The development of genotyping-by-sequencing (GBS) methods has allowed collection of 57 

data from thousands of markers across a genome, enabling research that was not possible using 58 

traditional genetic approaches (Davey et al., 2011; Narum et al., 2013). For example, studies 59 

using thousands of markers genotyped with restriction site-associated DNA (RAD) sequencing 60 

have shown improved sensitivity for detecting inbreeding depression (Hoffman et al., 2014), 61 

increased resolution for determining complex phylogenies (Wagner et al., 2013), and allowed 62 

researchers to observe selection on introduced alleles (Bay et al., 2019). Many genetic analyses, 63 

however, can be conducted efficiently with genotypes from tens to hundreds of single nucleotide 64 

polymorphisms (SNPs) (Anderson & Garza, 2006), making more expensive approaches such as 65 

RAD-seq unnecessary (Meek & Larson, 2019). Two such analyses that have been widely used in 66 

conservation genetics and molecular ecology for decades, are parentage analysis and genetic 67 

stock identification (GSI). 68 

  Parentage analysis involves assigning offspring to putative parents by comparing 69 

genotypes at multiple loci, while GSI infers the natal origins of individuals by leveraging 70 

baseline allele frequency estimates from populations or reporting groups. These techniques were 71 

first conducted using allozyme markers genotyped with protein electrophoresis. Although these 72 

analyses were groundbreaking, they often lacked statistical power except in cases of highly 73 

diverged stocks or simple pedigrees. The adoption of highly variable microsatellite markers in 74 

the 1990s greatly increased statistical power, allowing these two techniques to become widely 75 

adopted (Luikart & England, 1999). Despite the advances made possible by microsatellites, 76 

problems associated with homoplasy (Garza & Freimer, 1996), locus discovery (Navajas et al., 77 
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1998), and reproducibility among laboratories led researchers to explore the potential of biallelic 78 

SNPs for GSI and parentage analysis (Seeb et al., 2011). 79 

  Although SNPs are less powerful than microsatellites on a per marker basis, SNPs are 80 

more abundant in the genome, generally have low genotyping error rates, and can be genotyped 81 

using SNP panels capable of efficiently screening a large number of samples (Brumfield et al., 82 

2003; Morin et al., 2004).  Early SNP panels were constrained, however, in the availability of 83 

molecular markers suitable for genotyping and genotyping costs associated with 5’ exonuclease 84 

chemistry (Seeb et al., 2011). These constraints were significantly lessened with the proliferation 85 

of next-generation sequencing (NGS) technology. For example, methods such as RADseq 86 

facilitate quick and affordable discovery of thousands of candidate loci, which can then be 87 

selected among for specific purposes.  88 

 As SNP discovery has become less prohibitive, methods of selecting the most 89 

informative SNPs for a given study have advanced (Storer et al., 2012). Previous research has 90 

shown that information content will vary among SNPs depending on the context within which 91 

they are applied and location within the genome (i.e. coding or non-coding regions). For 92 

example, Ackerman et al. (2011) found that SNPs under diversifying selection provide increased 93 

accuracy and precision in GSI of sockeye salmon (Oncorhynchus nerka) from the Copper River, 94 

Alaska. Previous studies have shown that GSI accuracy is generally positively correlated with 95 

differentiation (e.g., FST) and, to a lesser extent, diversity (e.g., heterozygosity) (Ackerman et al., 96 

2011; Bradbury et al., 2011; Storer et al., 2012). Studies of SNP selection methods for parentage 97 

analysis, however, have found that high diversity is the most important attribute to consider 98 

when creating a panel (Baetscher et al., 2018). More recently, analytical techniques have shifted 99 

towards consideration of closely linked SNPs (i.e. microhaplotypes), which effectively increases 100 
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the diversity at a locus and has proven useful for parentage and GSI tests (Baetscher et al., 2018; 101 

McKinney, Seeb, et al., 2017; Reid et al., 2019). While genotyping microhaplotypes would 102 

require independent assays for each SNP at a locus using previous 5′ exonuclease methods, NGS 103 

technology has enabled the joint genotyping of multiple SNPs within single reads, making 104 

microhaplotype data easily obtainable through a simple modification in analytical approach.  105 

  One recently developed GBS method that improves upon previous high-throughput 106 

genotyping technologies, such as 5′ exonuclease chemistry, is Genotyping-in-Thousands by 107 

sequencing (GT-seq). This method enables genotyping hundreds of SNPs in thousands of 108 

individuals on a single NGS lane through the use of highly-multiplexed polymerase chain 109 

reaction (PCR) (Campbell et al., 2015). GT-seq does not require an allele-specific probe, can 110 

genotype multiple SNPs within an amplicon using a single primer pair, and is substantially less 111 

expensive than 5′ exonuclease chemistry, especially in the context of genotyping thousands of 112 

individuals.  113 

  Despite its benefits, GT-seq is not yet widely used outside of salmonids. Early 114 

applications to non-model organisms, however, have shown great promise for this method’s 115 

versatility, including the ability to reveal dispersal and mating patterns in a complex environment 116 

(Baetscher et al., 2019), provide insight to the ecological and evolutionary dynamics of 117 

secondary contact (Reid et al., 2019), and understand population diversity in systems that are 118 

heavily influenced by climate change (Pavinato et al., 2019). Pedigree analysis in wild 119 

populations is highly dependent upon the ability to genotype large sample sizes to increase the 120 

likelihood of detecting kin relationships, toward which GT-seq is ideally suited. Moreover, GT-121 

seq has proven capable of generating high-quality genotypes from low-quality DNA samples 122 
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(Natesh et al., 2019; Schmidt et al., 2019), making it a viable approach for monitoring 123 

endangered or elusive species.  124 

  While GT-seq panels have been developed to maximize accuracy for GSI (McKinney et 125 

al., 2019) or parentage (Baetscher et al., 2018) analyses, the potential for developing dual-126 

purpose panels is largely unexplored. Moreover, developing GT-seq panels is a relatively 127 

involved task and, to this point, there are limited resources providing standardized workflows 128 

and guidelines for efficient panel construction (Campbell et al., 2015; McKinney et al., 2019). 129 

For example, there are many decision points in panel development related to primer selection, 130 

multiplexing approaches, laboratory protocols, and analysis parameters that have yet to be 131 

addressed. We used walleye (Sander vitreus) from Minnesota and Wisconsin, USA, as a test case 132 

to investigate various tradeoffs associated with GT-seq panel development and optimization and 133 

leveraged our collective experience to provide guidelines for researchers developing GT-seq 134 

panels.  135 

  Walleye are an apex predator and one of the most prized sportfish throughout their native 136 

and introduced range. Recently, many walleye populations have declined across the Midwestern 137 

United States (Embke et al., 2019; Hansen et al., 2015; Rypel et al., 2018), prompting increases 138 

in stocking efforts relative to already large and long-term regional stocking programs that have 139 

existed for decades. Genetic studies have been used to guide these efforts by informing 140 

broodstock selection and general stocking practices. Genetic variation in walleye from this 141 

region was first characterized by Fields et al. (1997), who found geographic-based patterns of 142 

genetic structure, but limitations related to sample size and molecular marker choice resulted in 143 

the use of contemporary watershed boundaries as genetic management units. This research was 144 

later expanded upon by Hammen and Sloss (2019), who attempted to further define genetic 145 
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structure in the Ceded Territory of Wisconsin, approximately the northern third of the state, and 146 

test whether significant genetic structure existed between distinct hydrological basins within this 147 

region. Once again, constraints associated with available molecular markers used in a system 148 

with not only low differentiation, but also extensive stocking precluded definition of fine-scale 149 

structure. This system provides an excellent model for applying genomic techniques to 150 

discriminate populations and evaluate hatchery programs using parentage analysis.  151 

  Like many intricacies of genomics research, GT-seq panel development is a process that 152 

is at once broadly generalizable to non-model organisms and highly specific to the taxa it is 153 

applied to. While the overarching steps (Fig. 1) will remain constant, there are many decision 154 

points within that will require informed thought and decision. Using walleye, a species with few 155 

well-established genomic resources, as a model, we examined the methods inherent to GT-seq 156 

panel development in a manner that identifies critical decision points in the process and 157 

illuminates the nuances associated with them. Our overarching goal was to design a dual-purpose 158 

GT-seq panel optimized for parentage analysis and GSI in walleye. The creation of this panel 159 

allowed us to address the following specific objectives: (1) investigate the tradeoffs between 160 

choosing markers for parentage analysis versus GSI, (2) explore the most efficient way to design 161 

an optimized panel, and (3) evaluate various laboratory approaches to maximizing the efficiency 162 

of GT-seq genotyping. We provide an in-depth discussion of our experiences designing the panel 163 

and outline important topics that should aid researchers in designing future GT-seq panels.  164 

Materials and Methods 165 

Sample collection 166 

  Tissue samples were collected from adult walleye from 23 inland lakes across Wisconsin, 167 

Minnesota, and the St. Louis River (border water) (Fig. 2a, Table 1) and stored in 95% ethanol 168 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2020. ; https://doi.org/10.1101/2020.02.13.948331doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.13.948331
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

until DNA extraction. We obtained samples from as many major drainages as possible across the 169 

two states, with an emphasis on the Wisconsin and Chippewa River drainages in Wisconsin, 170 

which were difficult to differentiate using microsatellites (Hammen & Sloss, 2019); in 171 

Minnesota, sampling focused primarily on major sources of wild broodstock for stocking 172 

programs. Samples were collected by the Wisconsin and Minnesota Departments of Natural 173 

Resources using fyke nets or electrofishing. Sampling took place during the spring spawning 174 

runs of April 2015 and 2017 and fall surveys in August and September of 2015 and 2017. 175 

Stocked individuals may be tagged, or fin clipped; we inspected all sampled individuals for tags 176 

or fin clips to avoid as many individuals as possible that were of stocked origin as possible.  177 

Preparation of RAD sequencing libraries 178 

  Genomic DNA was extracted in a 96-well format with Qiagen DNeasy Blood and Tissue 179 

Kits. Extracted DNA was quantified using a Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen, 180 

Waltham, MA) and normalized to 20ng/µl. DNA was then prepared for RADseq library 181 

preparation following the BestRAD protocol (Ali et al., 2016). Briefly, DNA was digested in a 2 182 

µl reaction with the restriction enzyme SbfI, and biotinylated barcode adaptors were ligated to 183 

the 5’ cut ends. DNA shearing was conducted using a 12.5 µl fragmentase reaction. Library 184 

preparation was conducted using an NEBNext Ultra DNA Library Prep Kit for Illumina (NEB, 185 

Ipswich, MA), with a 12-cycle PCR enrichment. RAD library quality was inspected on a 2% 186 

agarose gel before undergoing a final AMPure XP (Beckman Coulter, Indianapolis, IN) 187 

purification and quantification on a Qubit 2.0 Fluorometer (ThermoFisher Scientific, Waltham, 188 

MA). Libraries were sequenced using paired-end (PE) 150 technology on a HiSeq 4000 189 

(Illumina, San Diego, CA) at the Michigan State University Genomics Core Facility or 190 
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Novogene Corporation, Inc. (Davis, CA). Sequencing was conducted to achieve a target of over 191 

one million retained reads per individual. 192 

Analysis of RAD data to discover SNPs 193 

  Loci were identified and genotyped in STACKS v.2.2 (Rochette et al., 2019) without 194 

using gapped alignments. Raw reads were demultiplexed and barcodes were trimmed in 195 

process_radtags (parameter flags: -e SbfI, -c, -q, -filter_illumina, -r, --bestrad). RAD-tags were 196 

assembled into putative RAD loci with ustacks using the bounded model (bound_high =  0.05, --197 

disable-gapped) and allowing for a maximum of three nucleotide mismatches (-M = 3) and four 198 

stacks per locus (-max_locus_stacks = 4), as well as a minimum depth of three (-m = 3). The 199 

calling of haplotypes from secondary reads was disabled (-H). A catalog of consensus loci was 200 

assembled in cstacks using the two individuals with the highest number of retained reads from 201 

each population, allowing a maximum of three mismatches between sample loci (n = 3, --202 

disable-gapped). After matching all samples against the catalog in sstacks (--disable-gapped), 203 

data were oriented by locus with tsv2bam, and individual genotypes were called in gstacks, with 204 

paired-end reads incorporated. Genotypes were exported in variant call format (vcf) using 205 

populations, with loose filtering parameters (SNPs present at > 5% of individuals, minimum 206 

minor allele frequency of > 0.005).  207 

  Comprehensive filtering of individuals and genotypes was conducted in vcftools v0.1.15 208 

(Danecek et al., 2011) by: 1) removing individuals missing > 20% of SNP calls, 2) removing 209 

SNPs that were missing in > 20% of individuals, and 3) removing SNPs that were not in the first 210 

140 base pairs of the RAD-tag, effectively reducing the dataset to include SNPs detectable using 211 

single-read (SR) 150 sequencing to simplify downstream amplicon design; to control for 212 

genotyping error, SNPs with a minor allele count ≤ 3 were also removed. Putative duplicated loci 213 
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were identified in HDplot (McKinney, Waples, et al., 2017) (H > 0.5, -7 < D < 7) and removed 214 

with vcftools. Retained individuals and SNPs were used to form whitelists for input into 215 

populations that output a filtered vcf of multi-SNP haplotypes, which was then filtered to remove 216 

loci with more than 10 alleles and used in simulations for locus selection. We also estimated 217 

single-SNP FIS across all populations using diveRsity v1.9.90 (Keenan et al., 2013) and excluded 218 

any SNPs with FIS values > 0.2 or < -0.2 from locus selection. Additionally, loci with a SNP in 219 

the first 10 base pairs of the RAD-tag were excluded to allow room for forward primer design. 220 

Analysis of population structure, locus selection, and panel assessment 221 

  To understand population structure in our system and ensure that selected loci could 222 

facilitate accurate parentage assignment and GSI, we evaluated patterns of genetic divergence 223 

using pairwise FST (Table S1) estimated in Arlequin v3.5.2 (Excoffier & Lischer, 2010) and 224 

constructed a dendrogram (Fig. 2b) using Nei’s distance in poppr v2.8.2 (Kamvar, Tabim, & 225 

Grünwald, 2014). These analyses facilitated identification of population pairs that would be 226 

challenging to discriminate and supported historical data suggesting several populations were 227 

founded from hatchery sources located outside of their drainage basin (Escanaba Lake, Sanford 228 

Lake, and Lake Millicent in Wisconsin); these populations were removed from simulations of 229 

panel accuracy to ensure that selected loci would best represent the natural genetic patterns of the 230 

region.  231 

  After initial population genetic analyses, loci were selected for primer development by 232 

constructing several test panels from the RAD data and simulating assignment accuracy for 233 

parentage and GSI. Previous research suggested that choosing loci with greater genetic 234 

differentiation (e.g., FST) should maximize accuracy for GSI (Ackerman et al., 2011; Storer et 235 

al., 2012), while choosing loci with higher diversity (e.g., heterozygosity and number of alleles) 236 
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maximizes accuracy for parentage (Baetscher et al., 2018). We therefore constructed the test 237 

panels using single-SNP FST estimated in diveRsity v1.9.90 (Keenan et al., 2013) as well as 238 

expected heterozygosity at a multi-SNP haplotype (HE_mhap ) and the number of alleles at a locus 239 

estimated in adegenet v2.1.1 (Jombart & Ahmed, 2011). All simulations were conducted with 240 

genotypes coded as multi-SNP haplotypes. 241 

  GSI accuracy for each panel was assessed via 100% simulations implemented in rubias 242 

(Moran & Anderson, 2018) using the assess_reference_loo function (mixsize = 200, reps = 243 

1000). Populations were aggregated into reporting units based on hydrological basins (Table 1). 244 

Collections within a simulation were drawn from a Dirichlet distribution with all parameters 245 

equal to 10 (i.e., each simulation’s prior contained approximately equal proportions of each 246 

population for the given reporting unit). Individuals were assigned to reporting groups if they 247 

had a cumulative probability of > 70%. Unfortunately, limited sample sizes in some reporting 248 

units prevented creation of separate training and holdout datasets as suggested by Anderson 249 

(2010), thus assignment accuracies presented here may be upwardly biased and would need to be 250 

reassessed more thoroughly for populations involved in an applied study.  251 

  Parentage simulations were run in CKMRsim (Anderson, 252 

https://zenodo.org/record/820162), which employs a variant of the importance-sampling 253 

algorithm of Anderson and Garza (2006) that allows for more accurate estimates of very small 254 

false-positive rate (FPR: per-pair rate of truly unrelated individuals being inferred as related) 255 

relative to those obtained using standard Monte Carlo methods (Baetscher et al., 2018). 256 

Parentage analyses were conducted following the methods of Baetscher et al. (2018), whereby 257 

log-likelihood ratios between a tested relationship and the hypothesis of no relationship are 258 

computed from the calculated probabilities of genotype pairs for related individuals simulated 259 
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from allele frequency estimates. Distributions of simulated log-likelihood ratios are then used to 260 

compute FPRs. Using this approach, we estimated FPRs for parent-offspring (PO), full-sibling 261 

(FS), and half-sibling (HS) relationships at false-negative rates (FNR: per-pair rate of truly 262 

related individuals being inferred as unrelated) ranging from 0.01 to 0.1. 263 

  Panels of 600 unique loci were iteratively selected, choosing loci based first on rank 264 

FST then rank HE_mhap, and their utility was tested by conducting GSI tests and parentage 265 

simulations. We ultimately defined three panels of 600 loci that best described the tradeoffs 266 

between markers selected based on FST and heterozygosity. Loci in these panels were chosen by 267 

selecting 1) the top 600 loci based on FST, 2) the top 300 loci based on FST and 300 based on 268 

HE_mhap, and 3) the top 600 loci based on HE_mhap. These panels are hereafter referred to as 269 

FST_600, Composite_600, and Diversity_600, respectively. Through further testing, we determined 270 

that a variation of the Composite_600 panel, with 250 loci based on HE_mhap and 350 loci based on 271 

FST, delivered optimal performance for GSI and parentage analyses and proceeded to design 272 

primers for the selected loci. 273 

Primer Design   274 

  To design PCR primers for the selected loci, their consensus sequences were subset 275 

from the STACKS catalog into a FASTA file for import into Geneious Prime® 2019.1.1 276 

(https://www.geneious.com). The vcf file produced in the vcftools step containing all SNPs and 277 

alleles within a consensus sequence was included to ensure primers were properly designed (i.e., 278 

should a SNP fall within a primer binding region, a degenerate nucleotide could be inserted or 279 

the primer re-designed). Primer pairs were iteratively designed, with optimal target parameters 280 

defined as a primer length of 20 bp, product size of 140 bp to facilitate genotyping with SR 281 

chemistry, Tm of 60° C, GC content of 50%, and no more than four of the same base repeated 282 
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consecutively (i.e., poly-X repeats). Primers identified as matching one or more off-target sites, 283 

which could lead to amplification of multiple products, were redesigned. Given that not all 600 284 

candidate loci initially identified were suitable candidates for primer development, we continued 285 

to iteratively select loci and design associated primers until we reached our target of 600 loci. 286 

Unfortunately, the loci selected for primer design were based on data containing a subset of 287 

individuals with discordant encoded and true identities as a result of transposition of barcodes 288 

during demultiplexing. Despite these discrepancies, the effect was likely minor as only 8% of 289 

individuals were incorrectly assigned to reporting units prior to simulation. Simulation results 290 

shown here were conducted using corrected data. 291 

GT-seq optimization  292 

  GT-seq was conducted following the methods of Campbell et al. (2015), with 293 

modification to the multiplex thermal cycling conditions (95 °C hold for 15 min; five cycles of 294 

95 °C for 30 s, 5% ramp to 57 °C for 2 min, 72 °C 30 s; and 10 cycles of 95 °C for 30 s, 65 °C 295 

for 30 s, and 72 °C 30 s) and post-normalization dual-sided SPRI size-selection and purification 296 

(0.6X plus 0.4X) to further restrict the product size range (e.g., primarily  toward removal of 297 

primer inter-hybridization). Final library quality control consisted of confirmation of 298 

amplification and barcoding by SYBR Green-based RT-qPCR (Stratagene Mx3005P QPCR 299 

System, Agilent, Santa Clara, CA), visualization on a 2% agarose E-Gel (Invitrogen, Carlsbad, 300 

CA), and quantification using picogreen. Libraries were then sequenced at the University of 301 

Wisconsin-Madison Biotechnology Center (UWBC) DNA Sequencing Facility on a MiSeq 302 

(Illumina) using 2 × 150 bp flowcells.  303 

  Demultiplexed amplicon sequencing data were processed using GTscore v1.3 304 

(McKinney et al., 2019). GTscore generates in-silico primer-probe sequences from a catalog of 305 
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loci generated in STACKS, that are then matched to amplicon sequences and call genotypes for 306 

individual SNPs as well as multi-SNP haplotypes. GTscore also enables separation of on-target 307 

sequence reads (i.e., reads containing both an in-silico primer and associated probe) from reads 308 

produced as a result of primer cross-hybridization. Primer-probe file development was 309 

accomplished with sumstatsIUBconvert.pl by obtaining the IUB code information for each SNP 310 

from the sumstats.tsv file produced in the STACKS pipeline, converting catalog sequences 311 

produced in the STACKS pipeline to FASTA sequences using catalog2fasta.pl, and merging 312 

IUB code information with the catalog.fasta using fasta2IUB.pl. This primer-probe file was then 313 

input for AmpliconReadCounter.pl, along with an individual’s fastq file, to produce read count 314 

summaries of primers and probes. 315 

  Overall, we conducted three rounds of panel optimization to identify and remove loci 316 

that had disproportionately high amplification rates (i.e., “overamplifiers”) and ensure that our 317 

panel was capable of delivering a high proportion of on-target reads for each locus as well as 318 

homogeneous amplification rates among loci. The first round of optimization used DNA from a 319 

single walleye from Sanford Lake, WI, while the second and third rounds were conducted on 320 

subsets of 24 individuals from each of four populations (96 individuals total) originally included 321 

in the RADseq study: Delavan Lake, Medicine Lake, and the Wolf River in Wisconsin and the 322 

Pine River in Minnesota. Upon completing the final optimization, the characteristics of retained 323 

loci were compared to those of loci culled from the panel. This was done by performing a 324 

Welch’s two sample t-test (α = 0.05) between the GC:AC ratio of primers that were retained and 325 

those culled and between the GC:AC ratio of DNA templates retained and culled, based on the 326 

first 140 bp of the template as this was the region in which SNPs were targeted. 327 
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 GT-seq libraries from each round were collectively analyzed for PCR accuracy 328 

and uniformity. Accuracy was measured by calculating the proportion of reads containing in-329 

silico primer sequences (total reads) relative to those that also contained in-silico probes. 330 

Uniformity of amplification among loci was determined by calculating the proportion of total 331 

reads that were allocated to the top 10% of loci, based on locus read counts (prop_reads_T10); if 332 

amplification was perfectly uniform across loci, we would expect prop_reads_T10 to account for 333 

exactly 10% of total reads. Given that amplification rates vary substantially within a panel, we 334 

compared among locus performance by plotting the relative log10 abundance of total and on-335 

target reads at each locus in descending order, which facilitated visual identification of 336 

overamplifiers. As among-locus amplification rates evened out after the first optimization, the 337 

on-target proportion of reads at each locus became a factor in retaining or excluding loci during 338 

the second optimization.  339 

Testing methodological modifications and performance analysis   340 

  During panel optimization, we compared the quality of GT-seq libraries prepared 341 

from DNA extracted with Qiagen DNeasy and a more cost-effective chelating resin-based 342 

procedure. Performance of libraries was compared using Bonferroni corrected (α = 0.016) 343 

Tukey’s HSD for the number of on-target reads and the proportion of total reads that were on-344 

target, after determining whether significant differences existed among libraries via a one-way 345 

ANOVA (α = 0.05). DNA was extracted from the 96 test individuals twice, first using Qiagen 346 

DNeasy and again with a 10% Chelex 100 (200-400 mesh; Bio-Rad, Hercules, CA) solution 347 

containing 1% each of Nonidet P-40 and Tween 20 (Millipore Sigma, St. Louis, MO). 348 

Additionally, we aimed to further reduce the cost per sample by evaluating the need for certain 349 

library preparation steps. Specifically, we compared results with and without the exonuclease I 350 
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and shrimp alkaline phosphatase (ExoSAP) procedure included in Campbell et al. (2015) to 351 

remove PCR inhibitors and free nucleotides. GT-seq was therefore conducted on all individuals 352 

in triplicate: 1) Qiagen with ExoSAP, 2) Chelex with ExoSAP, and 3) Chelex without ExoSAP, 353 

and all tests were sequenced on the same MiSeq lane. Finally, we tested whether the number of 354 

loci that could be genotyped simultaneously could be increased by conducting multiple PCRs. 355 

We accomplished this by dividing our optimized primer panel into two non-overlapping primer 356 

pools before multiplex PCR amplification. We then merged PCR products from the separate 357 

pools prior to the barcoding PCR. The sequencing performance of this joint panel was then 358 

compared to the single multiplex containing the full panel using a Welch’s two sample t-test (α = 359 

0.05). 360 

  We examined genotype concordance between RADseq and GT-seq across GT-seq 361 

read depths using the fully optimized panel in the third round. Genotypes were called using 362 

PolyGen (McKinney et al., 2018), an extension of the GTscore pipeline that uses the same 363 

maximum-likelihood algorithm as STACKS v1 for diploid, bi-allelic loci. Because low read 364 

depths can lead to high estimates of genotyping error, thereby increasing rates of allelic dropout 365 

(Catchen et al., 2013), genotypes were only compared if they had greater than 60× coverage in 366 

RADseq. We then modeled the relationship between GT-seq read depth and genotype 367 

concordance using only read depths with more than 30 genotypes to ensure that estimates of 368 

genotype concordance at a given depth had adequate sample sizes.  369 

  As a final proof of concept, we tested the optimized panel on a sample of 570 walleye 370 

obtained from Escanaba Lake, WI, using the methods described above to estimate the variance in 371 

read depth among loci within a pool. We retained only loci present in more than 70% of 372 

individuals and individuals genotyped at more than 70% of loci. 373 
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Results 374 

Analysis of ascertainment dataset 375 

   A total of 954 individuals from 23 populations were RAD sequenced, with an average of 376 

42 individuals per population (Table 1). Sequencing yielded 1,313,358 retained reads on average 377 

per individual (range = 8,941 - 8,176,163). Initial sequence data were used to identify 682,223 378 

putative SNPs. After passing sequence data through quality filters, 839 individuals and 20,597 379 

SNPs were retained (Table S2).  380 

  Population estimates of HO (0.144 - 0.179), allelic richness (1.498 - 1.674), and FIS (-381 

0.050 - 0.017) were relatively similar across locations (Table 1). Populations from Minnesota 382 

had slightly lower diversity, which may be due to ascertainment bias as 14 of the 23 populations 383 

were from Wisconsin. The highest genetic differentiation was observed between populations 384 

from Minnesota and Wisconsin, with further structuring by drainage basin within each state (Fig. 385 

2b, Table S1). Structuring was higher in Minnesota, with most populations showing a relatively 386 

high degree of isolation (average FST = 0.07, Table 2). Structure in Wisconsin was shallower 387 

(average FST = 0.03, Table 2) and only loosely correlated with drainage basins. From these 388 

results, we constructed 13 reporting groups to facilitate GSI to identifiable genetic units (Table 389 

1). All the reporting groups from Minnesota contained single populations, whereas in Wisconsin, 390 

while the Rock-Fox and Wolf River groups contained single populations, the Wisconsin and 391 

Chippewa River groups each contained five populations. Some single populations in the 392 

Wisconsin and Chippewa Rivers were distinctly identifiable (e.g., Eau Claire River, Medicine 393 

Lake), but we grouped these populations within their drainage basin of origin as the panel will 394 

likely be used this way for management purposes. 395 

Locus selection and panel assessment 396 
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  GSI accuracy was similar among the three panels, with < 1% difference in average 397 

accuracy between the panel with loci chosen based solely on differentiation (FST_600) and the 398 

panel based solely on diversity (Diversity_600) (Fig. 3, Table 3). Average assignment accuracy 399 

was > 90% for nine of the 13 reporting units in all panels (Fig. 3a). The remaining four reporting 400 

units had average assignment accuracies ranging from 78% to 86%. Three of these units (upper 401 

Chippewa River, WI; St. Louis River, MN/WI; and Red Lake, MN) are known to have admixed 402 

stocking histories, while the fourth, North Fork Crow River, MN, included Lake Koronis, which 403 

had the fewest individuals retained after filtering (n = 15). Misassigned individuals from the St. 404 

Louis River, MN, and Red Lake, MN groups primarily assigned to the Pike River, MN, an 405 

unsurprising result given that fish from the Pike River contributed to the recovery of the 406 

collapsed walleye fishery in Red Lake (Logsdon et al., 2016) and fish in the St. Louis River 407 

watershed. Misassignments from the Upper Chippewa basin primarily assigned to the Upper 408 

Wisconsin basin due to the lower differentiation described previously. 409 

  The populations with the lowest assignment accuracies were found in the Chippewa 410 

River and Wisconsin River reporting groups (Table S3, S4, S5), particularly in northern 411 

Wisconsin near the headwaters of the Chippewa and Wisconsin River drainages, and included 412 

Big Arbor Vitae Lake (FST_600 accuracy = 74%), Manitowish Lake (FST_600 accuracy = 58%), and 413 

Turtle Flambeau Flowage (FST_600 accuracy = 63%). A large portion (> 10%) of the simulated 414 

individuals from these populations could not be assigned to any population, providing further 415 

support for the genetic similarity of these two reporting groups. A high proportion of individuals 416 

from Big Arbor Vitae Lake were assigned to Manitowish Lake (12%) and vice versa, from 417 

Manitowish Lake to Big Arbor Vitae Lake (20%). Most misassignments in the Turtle Flambeau 418 

Flowage were to Kawaguesaga Lake (16%).  Populations with high misassignment rates also 419 
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tended to have short branch lengths in the dendrogram and were often located near the root of a 420 

clade (Fig. 2b). Furthermore, the two populations from the upper Chippewa basin (Manitowish 421 

Lake and Turtle Flambeau Flowage) had lower pairwise FST values, on average, relative to 422 

populations from the upper Wisconsin basin than they did with other populations from the upper 423 

Chippewa basin.  424 

  The Diversity_600 panel had the highest accuracy for assigning kin relationships, the 425 

Composite_600 panel showed intermediate performance and the FST_600 panel had the lowest 426 

accuracy rate (Fig. 3b, Table 3). For all panels, FPRs were < 10-20 for PO and FS relationships, 427 

indicating all panels would perform adequately for reconstructing most relationships in most 428 

study systems. Inter-panel performance did, however, range widely, from an FPR of 4.68 × 10-34 429 

for FST_600 to 2.74 × 10-80 for Diversity_600 panel at an FNR of 0.01. Within panels, FPR was 430 

inversely related to FNR.  431 

  Primers were designed using a modified Composite_600 panel, with 250 loci chosen 432 

based on HE_mhap and 350 chosen based on FST, as this panel delivered the best joint accuracy for 433 

GSI and kinship analyses (Fig. 3, Table 3). Of the initial 600 loci initially selected for primer 434 

design, 100 were not suitable for primer design, and thus, iterative selection of loci meeting 435 

primer design requirements was continued until the targeted number of FST and diversity markers 436 

was met. 437 

GT-seq optimization 438 

  Initial amplification and MiSeq sequencing of all 600 loci yielded 4,655,071 reads 439 

containing intact i7 barcode sequences, with 4,150,910 reads (89%) matching in-silico primer 440 

sequences. Locus specificity was considered via the proportion of total reads that were on-target, 441 

which was 1,031,707 (24.9%) (Table 4). In terms of amplification uniformity among loci, 442 
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prop_reads_T10 accounted for 3,526,201 (85.0%) of the 4,150,910 total reads. A cutoff of 3,000 443 

reads per locus was then visually identified (Fig. 4a); loci producing more than 3,000 reads (n = 444 

123) were deemed overamplifiers and discarded prior to further optimization.  445 

  For the second round of optimization, the remaining 477 primers pairs produced 446 

12,653,262 reads containing intact i7 barcode sequences, and 9,347,591 (74%) matched in-silico 447 

primer sequences. Locus specificity improved, with 3,268,293 (35.0%) of the total reads 448 

successfully aligning to in-silico probe sequences (Table 4). Improvement was also observed in 449 

the uniformity of amplification across loci, with prop_reads_T10 equating to 72.5% (6,776,302) 450 

of total reads. Because locus performance was less variable in this round of testing, the 451 

individual on-target proportion of reads at a locus was also considered while culling undesirable 452 

loci. As such, loci visually identified as overamplifiers were again discarded if they did not 453 

display high on-target read proportions (n = 41, Fig. 4b). 454 

  The third GT-seq test was used to determine the functional performance of the panel and 455 

aimed to target 858 SNPs across 436 loci (Fig. 4c). This test produced 7,282,101 reads with 456 

intact i7 barcodes, and 6,827,424 (94%) matched to in-silico primers. Locus specificity of primer 457 

pairs improved greatly in this test, as 6,262,523 (91.7%) of the total reads were also on-target 458 

(Table 4). Likewise, the variation in amplification rates across loci decreased as evidenced by 459 

prop_reads_T10 decreasing to 36.6% (2,148,932) of the total reads.  460 

  Upon completion of panel optimization, a small but significant difference was observed 461 

between the GC content of primers that were retained (mean = 49.2%) and primers that were 462 

removed (mean = 51.4%, df = 602, t = 5.4, p < 0.001). Similar differences were found when 463 

comparing the GC content of the DNA template; significantly higher GC proportions were 464 

present in templates that were culled from the panel (mean = 47.8%) than templates that were 465 
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retained (mean = 45.5%, df = 359, t = 3.8, p < 0.001). Additionally, a total of 88 primer pairs in 466 

the original panel contained at least one degenerate nucleotide, 72 (81%) of which were in the 467 

forward primer. After optimization, 56 of the initial 88 (64%) were retained. In comparison, of 468 

the 512 initial primer pairs that did not have degenerate primers, 380 (74%) were retained. The 469 

average FST for the most informative SNP at a locus and the average HE_mhap did not change 470 

appreciably between the initial and fully optimized panels (Table 4). 471 

Methodological modifications and performance analysis 472 

  Significant differences for on-target read counts and the proportion of total reads that 473 

were on-target were detected among genomic DNA extraction and purification method 474 

combinations. Subsequent analysis using Tukey’s HSD revealed that Chelex-extracted DNAs 475 

produced the highest on-target read count, and Qiagen-extracted DNAs with ExoSAP-476 

purification produced the lowest (Fig. 5, p < 0.001).  While the proportion of on-target reads did 477 

not differ between Chelex with ExoSAP and Qiagen with ExoSAP, both methods produced a 478 

significantly lower proportion of on-target reads than the Chelex-only library (Fig. 5, p < 0.001). 479 

Additionally, when comparing results from the full panel of 436 primer pairs to those obtained 480 

using the same panel divided into two unique multiplexes of 209 and 227 primer pairs (n = 436) 481 

and repooled prior to barcoding, no significant differences were found in total primer reads (df = 482 

860, t = 0.10, p = 0.92), on-target reads (df = 858, t = 0.16, p = 0.87), or the proportion of total 483 

reads that were on target (df = 806, t = 0.66, p = 0.51).  484 

  A total of 4,063 genotypes across 406 loci (820 SNPs) could be used in comparisons 485 

between GT-seq data and those obtained from the original RAD study. Of these genotypes, 486 

96.6% of calls were identical between methods, and modeled expectations of genotype 487 
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concordance (residual sum of squares = 0.02) indicated that a concordance rate of 99.0% could 488 

be expected at a GT-seq read depth of 31 (Fig. 6).  489 

  For a final proof of concept, a new sample of 570 walleye was sequenced using the 490 

current panel of 436 loci. After filtering, 551 individuals and 303 loci were retained with an 491 

average of 32.9 (SD = 29.1) reads per locus; 116 of the 303 loci exhibited an average coverage 492 

greater than the 31× target identified for 99.0% genotyping concordance (Fig. 7). The average 493 

percent of missing data was 6.4% (SD = 13.0%) across individuals and 30.0% (SD = 38.0%) 494 

across loci.     495 

Discussion 496 

GT-seq and other amplicon sequencing methods have tremendous potential for 497 

facilitating high-throughput genotyping in non-model organisms (Meek & Larson, 2019). Few 498 

published studies, however, have critically analyzed the panel development process (see 499 

McKinney et al. 2019). Here, we leverage our experiences developing a GT-seq panel for 500 

walleye with testing various aspects of the GT-seq methodological process to provide general 501 

guidelines usable by other researchers to simplify panel construction and validation, particularly 502 

in non-model species. Our walleye panel has the necessary power to conduct GSI in a study 503 

system with highly variable degrees of genetic differentiation and perturbation by historical 504 

stocking, while also being capable of identifying PO and FS relationships within large 505 

populations. The robust performance of our panel was facilitated by exploring the upper limits of 506 

how many loci a GT-seq panel can target and the trade-offs between choosing loci for GSI 507 

versus parentage analysis. The workflow presented here will aid in the efficient creation of 508 

multipurpose GT-seq panels in organisms with little to no available genomic resources.  509 

Patterns of population structure: historical stocking influences GSI accuracy 510 
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The largest genetic differentiation in our data was observed between populations from 511 

Wisconsin and Minnesota; this structure was likely the result of recolonization from different 512 

refugia following the Wisconsin glaciation, which ended ~10,000 years ago. A range-wide 513 

analysis of walleye genetic structure using microsatellite loci produced similar patterns, with the 514 

most genetically independent populations found in northern Minnesota and Canada (Stepien et 515 

al., 2009). Additionally, we found that while populations in Minnesota displayed strong isolation 516 

on relatively small spatial scales, broad-scale patterns of isolation were less evident in 517 

Wisconsin. In particular, the Ceded Territory of Wisconsin, which included our Chippewa River 518 

and Wisconsin River reporting groups, displayed patchy and low genetic structure overall. It is 519 

likely that structure in this region has been compromised by stocking. Hammen and Sloss (2019), 520 

for instance, observed that several populations of walleye in the upper Chippewa were more 521 

genetically similar to populations in the upper Wisconsin than to other populations in the upper 522 

Chippewa, while nongame species in the Ceded Territory of Wisconsin displayed patterns of 523 

genetic divergence strictly associated with drainage basin boundaries (Westbrook, 2012). We 524 

also observed that four proximate populations spanning the Chippewa and Wisconsin River 525 

boundaries were nearly indistinguishable (Turtle Flambeau Flowage, Manitowish Lake, 526 

Kawaguesaga Lake, Big Arbor Vitae Lake). These populations are within 50 km of each other 527 

and are located near a state walleye hatchery in Woodruff, Wisconsin, that has historically used 528 

broodstock solely from the Wisconsin River drainage basin. It is therefore highly likely that the 529 

genetic similarity of these four populations is due to stocking. Several of the sampled 530 

populations from Minnesota also had poorly documented stocking histories yet they remained 531 

highly distinct. Genetic structure in Minnesota may have been less eroded if local, genetically 532 
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similar sources were used, stocking was into larger, healthier resident populations, or stocking 533 

was less intense or ended a longer time ago.  534 

Despite the challenges posed by low FST and evidence of supplemental stocking altering 535 

genetic structure in some populations, the SNPs discovered here provide greatly increased 536 

resolution for defining reporting units across the Midwestern, USA. Additionally, simulations 537 

suggested that a panel of several hundred loci would be highly capable of conducting individual-538 

based GSI for most genetic units in the region. Given the regional complexity, however, 539 

improvements to accuracy could be made by further sampling areas that have shown 540 

heterogeneous signals of genetic structure (e.g., due to stocking). For example, increased 541 

sampling effort directed at the Chippewa and Wisconsin Rivers’ drainage basins could prove 542 

especially beneficial as analyzing populations in the lower reaches of each basin may provide a 543 

better understanding of signals of historical recolonization, while populations in the upper 544 

reaches (e.g., Ceded Territory of Wisconsin) could better define the effects stocking may have 545 

had. Additional samples could also serve as a holdout dataset, as suggested by Anderson (2010), 546 

to test the assignment accuracy of our panel.  547 

Tradeoffs associated with choosing loci based on differentiation versus diversity 548 

We evaluated the tradeoffs associated with selecting SNPs based on differentiation or 549 

diversity and found that there was relatively little variation in GSI accuracies across panels. 550 

Markers selected based on differentiation have been shown to provide increased resolution for 551 

defining reporting groups in systems with low levels of genetic structure (Larson et al., 2014; 552 

McKinney et al., 2019). This approach has not, however, been applied to systems where stocking 553 

may be a major factor for reduced levels of population structure, such as in upper Midwestern, 554 

USA, walleye. Interestingly, we found that assignment accuracies with our smaller panels was 555 
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relatively similar to accuracies obtained using ~30,000 SNPs discovered with RAD-seq (data not 556 

shown). This suggests that assignment accuracy in our system may be limited more by biological 557 

realities associated with human-mediated gene flow than by the power of our genetic markers. 558 

Further increases in assignment accuracy are therefore likely to be realized through sampling of 559 

additional populations and a more refined understanding of population history as opposed to 560 

genotyping additional markers.   561 

Conversely, we found that FPRs for assigning kin relationships were highly variable 562 

among panels, with the microhaplotype diversity-based panel displaying the lowest FPRs by 563 

several orders of magnitude for each kin relationship (Table 3). This contrast in inter-panel 564 

variation between GSI and kinship simulations is reflective of the variation in information 565 

content of each panel (Fig. S1), and supports previous findings that while microhaplotype 566 

information provided added benefit to both applications, the greatest increase in assignment 567 

accuracy will likely be for kinship analysis (Baetscher et al., 2018; McKinney, Seeb, et al., 568 

2017). When attempting to target microhaplotype loci via GT-seq, attention should be given to 569 

the number of SNPs one aims to genotype within a locus, as attempting to include loci with too 570 

many SNPs may result in targeting repetitive regions that fail to amplify properly in a multiplex. 571 

The expected maximum number of alleles per locus and the degree to which loci with large 572 

numbers of alleles perturbs primer design will likely vary among taxa. We chose a cutoff of 10 573 

alleles per locus as this appeared to be a natural break point in the allele distribution for walleye; 574 

we suggest that researchers investigate this in their system and come up with a logical cutoff 575 

prior to selecting loci. Finally, while our results suggested this panel could facilitate HS 576 

identification in small systems, performing this task in large systems would likely require more 577 
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loci. Our tests of panel implementation suggest this could be achievable by combining PCR 578 

products from several panels within individuals prior to barcoding. 579 

Optimizing primer design and removing overamplifying loci 580 

The main objective of GT-seq primer development is to produce a single pool of primer 581 

pairs that will amplify uniformly, while retaining as many loci as possible. To achieve this, it is 582 

important to minimize heterogeneity of primer and product characteristics (e.g., primer size, 583 

product size) and to understand that the highly multiplexed PCR required by GT-seq can be 584 

complicated by hairpin- and inter-primer hybridization artifacts. To best control PCR artifacts, it 585 

is important to avoid developing primers with complimentary regions (e.g., complimentary 3’ 586 

regions and self-complementarity) and apply conservative thresholds to the upper Tm of primer 587 

design parameters (Rychlik, 1993). Incorporating loci with multiple SNPs can lead to further 588 

difficulties when the ideal priming region also contains a SNP. We found that, while degenerate 589 

primers could be successfully amplified in a multiplex, they were culled during optimization at a 590 

higher rate than non-degenerate primers. Further performance benefits could be gained from 591 

examining DNA template quality beyond just the availability of priming regions, as shown by 592 

Benita et al. (2003) who found regionalized GC content of template DNA to be a predictor of 593 

PCR success. This was supported by our data, as loci removed from the panel during 594 

optimization displayed significantly higher GC content in the amplicon and primer. Finally, 595 

while GT-seq primers can theoretically be designed for a range of amplicon sizes, we suggest 596 

that researchers design panels targeting similarly sized products that can be sequenced using 597 

PE150 technology. Panels containing similarly sized and relatively short amplicons should 598 

reduce variation in amplification rates (Baetscher et al., 2018) and ensure that genotyping is 599 
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robust to variation in sample quality. Moreover, PE150 sequencing is common to benchtop and 600 

core facility sequencing platforms, such as Illumina® MiSeq and HiSeq.  601 

In exploring the upper limits of how many loci a GT-seq panel can target, we found that 602 

the number of amplicons reliably genotyped in a single pool is highly dependent on variable 603 

rates of amplification among primer pairs during PCR and, to a lesser extent, the degree of 604 

primer specificity. Despite efforts to limit primer inter-hybridization through diligent primer 605 

design, the presence of overamplifying loci is likely inevitable during early phases of panel 606 

development. We found it best to focus primarily on the uniformity of amplification within the 607 

primer pool in early optimization steps, by removing primer pairs found to overamplify. 608 

Although achieving perfect uniformity is challenging, application of strict cutoffs during initial 609 

optimization steps likely results in a final panel that is less influenced by overamplification. The 610 

importance of this was illustrated by prop_reads_T10 reducing from 85.0% of all primer reads to 611 

36.6% after optimization. Likewise, on-target rates were greatly improved by addressing 612 

overamplification, as demonstrated by the on-target proportion of reads increasing from 24.9% to 613 

91.7% by the third test. 614 

Further optimization of the GT-seq protocol 615 

Although there may be an upper as-yet-unidentified limit in the number of primers that 616 

can be included in a single primer pool, we found that the total number of loci targeted can be 617 

increased by PCR amplifying multiple primer pools separately on a sample and pooling PCR 618 

products within individuals prior to barcoding. This approach could be used to genotype multiple 619 

complementary or even independent GT-seq panels using the same primer tail systems at a small 620 

cost increase compared to genotyping a single panel, as the most expensive steps in the GT-seq 621 

protocol (e.g., DNA normalization) are only conducted once (Campbell et al., 2015). Combining 622 
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multiple panels could facilitate genotyping of > 1,000 loci rather than a few hundred, providing 623 

greatly increased power for kinship analysis and GSI (Baetscher et al., 2018; McKinney, Seeb, et 624 

al., 2017). Additionally, further optimization of individual panels could be conducted by 625 

manipulating the initial concentrations of primer pairs based on observed panel performance, 626 

reducing the concentration of loci that appear to overamplify. While this process would be 627 

cumbersome to perform by hand, a liquid handling robot could enable a researcher to fine-tune 628 

the performance of existing and new panels alike, thereby enhancing efficiency.  629 

 DNA extraction can comprise a large portion of the total cost of genetic analysis, 630 

especially for relatively affordable approaches such as GT-seq, in terms of finances and time. 631 

Extractions using chelating beads provided a cost-effective alternative to more expensive salting-632 

out approaches, such as Qiagen DNeasy kits. Chelating extractions, however, can also produce 633 

lower quality DNA and may include suspended impurities (Singh et al., 2018). Campbell et al. 634 

(2015) did show that GT-seq can be conducted using DNA from chelating extractions but did not 635 

directly compare results using multiple extraction protocols. Here, we directly showed that cost-636 

effective chelating extractions can produce equally high quality, if not superior, sequence data 637 

compared to more expensive methods. Although consideration should be given to the quality of 638 

tissue samples, the chelating approach appears to be a viable approach for reducing per-sample 639 

costs with GT-seq. It is important to be aware that proper laboratory technique is essential when 640 

using this method, however, as chelating beads will inhibit PCR and greatly reduce library 641 

product yields. This may be especially problematic when using a liquid handling robot that is 642 

unable to visually detect chelating beads. Therefore, we suggest researchers carefully pipette the 643 

DNA-containing supernatant from chelating resin extractions by hand into a secondary container 644 

(e.g., 96-well PCR plate) before aliquoting DNA with a robot. Finally, we found that the 645 
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ExoSAP procedure included in the original GT-seq protocol did not produce higher quality data 646 

and was not necessary for our purposes; removing this step from the protocol will further reduce 647 

GT-seq costs and time commitment. 648 

Suggestions for designing GT-seq studies and conclusions 649 

A major consideration when designing a GT-seq panel is deciding how large of an 650 

ascertainment dataset is necessary. We constructed a comprehensive ascertainment set with 651 

RAD-seq, which was expensive and resource intensive. Despite this, we found that the panel 652 

chosen based on diversity produced similar results to the panel chosen based on differentiation. 653 

In our case, we believe that a smaller ascertainment set of ~96 individuals sampled from across 654 

the same geographic range may have resulted in a panel of relatively similar quality. Smaller 655 

ascertainment datasets are likely sufficient when the main applications of a given GT-seq panel 656 

are kinship analysis and GSI of highly diverged populations; however, when designing GT-seq 657 

panels to differentiate closely related populations (e.g. Chinook salmon Oncorhynchus 658 

tshawytscha in western Alaska), accurate characterization of ascertainment populations is vital 659 

(Larson et al., 2014; McKinney et al., 2019).   660 

Another major consideration when conducting GT-seq analysis is deciding how deep to 661 

sequence individuals. We found that a read depth of 31× could be expected to produce genotypes 662 

that were 99% concordant with those derived from RADseq. Read depths were, however, highly 663 

variable across loci; we only retained 303 of the 436 loci in our panel when we genotyped 536 664 

individuals at an average depth of 33×. We also found that a large and variable proportion of 665 

reads can be discarded prior to genotyping. Therefore, we suggest that researchers target an 666 

average depth of at least 100× to ensure that most loci in the panel can be genotyped and that all 667 

acquired genotypes are highly reliable. At this level of coverage, researchers could genotype 668 
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~500 individuals with a panel of 500 loci on a single MiSeq lane (~25 million reads) and ~8,000 669 

individuals on a HiSeq lane (~400 million reads). It is possible this level of coverage is not 670 

necessary for some applications, such as GSI, but we strongly suggest obtaining high coverage 671 

for more sensitive applications that require high genotyping accuracy, such as kinship analysis. 672 

 Finally, researchers conducting GT-seq must consider trade-offs associated with different 673 

genotyping approaches. The two main approaches we are aware of are: (1) in-silico probe-based 674 

methods that use pattern matching to genotype specific alleles (Campbell et al., 2015; McKinney 675 

et al., 2019) and (2) alignment-based methods that call all polymorphisms in a given amplicon 676 

(Baetscher et al., 2019). A major advantage of probe-based methods is that databases of probes 677 

can be shared among laboratories, facilitating standardization. It is difficult, however, to discover 678 

new variation with these methods, whereas alignment-based methods discover new variation by 679 

default. We suggest a hybrid approach, where researchers periodically use alignment-based 680 

approaches to discover new variation and add this variation to a probe database that forms the 681 

basis of genotyping and standardizing genotyping among laboratories.  682 

 GT-seq is a powerful addition to the molecular ecologist’s toolkit that facilitates rapid, 683 

accurate, and cost-effective genetic analysis. Yet, creating a GT-seq panel is non-trivial, and 684 

there are many considerations for maximizing the utility of this approach. We found that the 685 

greatest challenge when designing our GT-seq panel was locus-specific overamplification, and 686 

we suggest that researchers remove these loci liberally. We also found that chelating extractions 687 

without an ExoSAP step produce high-quality results, providing a lower-cost alternative to 688 

salting-out extractions. Additionally, we showed that combining multiplex PCR products from 689 

multiple panels prior to barcoding can ensure additional, potentially important, loci can be 690 

genotyped with only a moderate cost increase. Finally, we found that a relatively substantial 691 
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proportion of sequencing reads are lost before genotyping, and we suggest researchers target 692 

higher sequencing coverage (100×) than may apparently be necessary to ensure that GT-seq 693 

datasets are robust across loci. The GT-seq approach promises to be a mainstay of population 694 

genetics for the foreseeable future, and the guidelines and suggestions outlined here may help 695 

increase the effective use of this powerful method. 696 
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Tables 876 

Table 1. Information on walleye Sander vitreus collections from 23 sites in Wisconsin and 877 
Minnesota. Reporting units are aggregations of genetically similar populations grouped for GSI 878 
analysis, n past filters is the number of individuals missing genotypes at < 30% of SNPs and 879 
retained after quality filtering. Diversity statistics calculated using 20,579 SNPs. The FST_600, 880 
Composite_600, and Diversity_600 columns are the percent correct assignment to reporting group 881 
for each population with 100% simulations conducted using the corresponding panel. 882 

 883 

Population 
ID Reporting Unit Population Latitude Longitude n 

sampled 
n past 
filters HE HO FIS AR FST_600 Composite_600 Diversity_600 

1 Rock-Fox Delavan Lake 42.58 -88.63 48 48 0.169 0.168 0.008 1.607 1.00 1.00 1.00 

2 Wolf River Lake Winnebago 44.36 -88.69 47 41 0.173 0.186 -0.05 1.645 1.00 1.00 1.00 

3 Upper Wisconsin Lake Wisconsin 43.38 -89.58 48 45 0.179 0.175 0.017 1.674 1.00 1.00 1.00 

4 Upper Wisconsin 
Medicine Lake 
Chain 45.81 -89.13 47 47 0.166 0.166 0.004 1.604 0.96 0.98 0.98 

5 Upper Wisconsin Willow Flowage 45.71 -89.87 48 48 0.176 0.174 0.013 1.657 1.00 1.00 0.99 

6 Upper Wisconsin Kawaguesaga Lake 45.86 -89.74 48 42 0.17 0.167 0.013 1.638 0.96 0.94 0.94 

7 Upper Wisconsin 
Big Arbor Vitae 
Lake 45.93 -89.65 48 44 0.174 0.174 0.005 1.654 0.74 0.96 0.99 

8 Upper Chippewa Escanaba Lake 46.06 -89.59 48 44 0.168 0.173 -0.018 1.623 NA NA NA 

9 Upper Chippewa Sanford Lake 46.18 -89.69 48 44 0.157 0.164 -0.033 1.528 NA NA NA 

10 Upper Chippewa Manitowish Lake 46.11 -89.85 47 35 0.172 0.175 -0.006 1.647 0.58 0.57 0.51 

11 Upper Chippewa 
Turtle Flambeau 
Flowage 46.06 -90.13 47 38 0.173 0.172 0.005 1.661 0.63 0.55 0.76 

12 Upper Chippewa Chippewa Flowage 45.90 -91.09 47 43 0.173 0.175 -0.006 1.658 0.88 0.89 0.93 

13 Upper Chippewa Eau Claire River 44.80 -91.50 47 47 0.161 0.162 -0.001 1.583 0.98 0.98 0.98 

14 Upper Chippewa Lake Millicent 46.53 -91.37 48 32 0.167 0.176 -0.034 1.623 NA NA NA 

15 Lake Superior St. Louis River 46.65 -92.21 32 30 0.17 0.168 0.006 1.621 0.77 0.77 0.77 

16 Vermilion River Pike River 47.59 -92.39 32 28 0.144 0.142 0.005 1.498 1.00 1.00 1.00 

17 Des Moines River Lake Sarah 44.15 -95.77 32 30 0.164 0.166 -0.006 1.597 1.00 1.00 1.00 

18 North Fork Crow River Lake Koronis 45.33 -94.70 32 17 0.155 0.155 -0.011 1.579 0.82 0.82 0.75 

19 Rum River Mille Lacs Lake 46.25 -93.67 32 29 0.148 0.151 -0.018 1.511 1.00 1.00 1.00 

20 Pine River Pine River 46.70 -94.39 32 30 0.156 0.162 -0.028 1.547 0.97 0.97 0.97 

21 
Mississippi River - 
Headwaters Cutfoot Sioux Lake 47.50 -94.09 32 25 0.147 0.148 -0.011 1.517 1.00 1.00 1.00 

22 Otter Tail River Ottertail Lake 46.41 -95.66 32 23 0.158 0.16 -0.016 1.568 1.00 1.00 0.97 

23 Red Lake Red Lake 47.91 -95.04 32 29 0.149 0.153 -0.025 1.514 0.90 0.86 0.83 

 884 

  885 
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 886 

Table 2. Summary of pairwise FST comparisons between walleye Sander vitreus populations 887 
grouped by state of origin. Abbreviations are Wisconsin (WI) and Minnesota (MN).  888 

  
WI-
WI 

MN-
MN 

WI-
MN 

Max 0.106 0.142 0.142 
Mean 0.032 0.068 0.072 
Min 0.001 0.019 0.026 

 889 

  890 
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Table 3. Summary statistics by SNP panel tested for walleye Sander vitreus in Wisconsin and 891 
Minnesota, USA, including: average FST, heterozygosity  (HE_mhap), assignment accuracy to 892 
population and reporting unit of origin in 100% simulations, and estimated false-positive rates 893 
(FPR) for a given kin relationship at a false-negative rate (FNR) of 0.01. 894 

  895 

  FST_600 Composite_600 Diversity_600 

Average FST 0.117 0.076 0.047 
Average HE_mhap 0.389 0.569 0.633 
Average accuracy by reporting unit 0.937 0.937 0.929 
Average accuracy by population 0.864 0.861 0.862 
Parent-offspring FPR (FNR = 0.01) 4.68×10-34 7.92×10-62 2.74×10-80 
Full-sibling FPR (FNR = 0.01) 3.42×10-29 5.34×10-50 1.16×10-64 
Half-sibling FPR (FNR = 0.01) 6.44×10-6 2.56×10-10 2.06×10-13 

 896 

  897 
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Table 4. Summary of GT-seq optimization runs for walleye Sander vitreus in Wisconsin and 898 
Minnesota, USA. Rows report number of primer pairs targeted, number of reads with intact i-7 899 
barcodes (retained reads), number of retained reads with in-silico primer sequences (total reads), 900 
number of total reads with in-silico probe sequences (on-target reads), percent of total reads on-901 
target, percent of total reads allocated to the 10% of loci tested with highest rank total read 902 
counts, average number of SNPs per locus, and average GC content in the forward and reverse 903 
primers.  904 

  Test 1 Test 2 Test 3 
Total primer pairs 600 477 436 
i7 reads 4,655,071 12,653,262 7,282,101 
i7 reads w/ primers (total reads) 4,150,910 9,347,591 6,827,424 
i7 reads w/ primers & probes (on- target) 1,031,707 3,268,293 6,262,523 
On-target percent of total reads 24.9% 35.0% 91.7% 
Percent reads in top 10% of loci 85.0% 72.5% 36.6% 
mean SNPs per locus 2.06 2.00 1.97 
mean GC percent forward primer 51.0% 50.4% 50.3% 
mean GC percent reverse primer 49.0% 48.3% 48.2% 
mean FST 0.133 0.133 0.133 
mean HE_mhap 0.425 0.415 0.416 

 905 

  906 
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Figures 907 

 908 

Figure 1. Generalized workflow describing major steps inherent to de novo construction of a 909 
high-density SNP panel for walleye Sander vitreus in Wisconsin and Minnesota, USA. Numbers 910 
of SNPs or loci present in each phase for this panel shown in parentheses. 911 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2020. ; https://doi.org/10.1101/2020.02.13.948331doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.13.948331
http://creativecommons.org/licenses/by-nc-nd/4.0/


42 
 

 912 

Figure 2. (a) Map of walleye Sander vitreus in Wisconsin (populations 1-14), the St. Louis River 913 
(population 15), and Minnesota (populations 16-23), USA, collection locations and (b) 914 
dendrogram of sampled populations with bootstrap support (n = 1000) estimates above nodes. 915 
Branch lengths correspond to genetic distances estimated using Nei’s DA. Figures color coded 916 
according to major drainage of origin (Hudson Bay: yellow, Mississippi: green, Great Lakes: 917 
blue) and numbered with respect to order in Table 1.  918 
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 919 

Figure 3. (a) Violin plots showing densitity distributions of accuracy estimates from 100% 920 
simulations of 23 populations of walleye Sander vitreus in Wisconsin and Minnesota, USA, 921 
performed using 1,000 iterations for each test panel by reporting unit and (b) simulated false-922 
positive rate (FPR) estimates across a range of false-negative rates (FNR). Figures color coded 923 
according to SNP panel tested: FST_600 (red, 600 rank FST loci), Composite_600 (black, 300 rank 924 
FST and 300 rank HE_mhap loci), and Diversity_600 (purple, 600 rank HE__mhap loci). 925 
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 926 

Figure 4. Relative log10 total read counts per locus (black) and relative log10 on-target read 927 
counts per locus (green) of the GT-seq panel for walleye Sander vitreus in Wisconsin and 928 
Minnesota, USA,  prior to optimization (a, 600 loci), after first optimization (b, 477 loci), and 929 
after second optimization (c, 436 loci). Loci identified for culling during optimization steps 930 
shown in orange. Raw read counts annotated in boxes. 931 

  932 
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 933 

 934 

Figure 5. Number of on-target reads (green) and proportion of total reads on-target obtained 935 
from GT-seq libraries produced using DNAs extracted via Chelex, Chelex with Exo-SAP, and 936 
Qiagen with Exo-SAP. Significantly different groups denoted by letters on box. 937 
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 938 

Figure 6. Modeled relationship between GT-seq read depth and genotype concordance between 939 
GT-seq and RADseq shown in gray (1.00-0.34/GT-seq read depth, rss = 0.02) with 95% 940 
confidence intervals in red. GT-seq read depth at which estimated genotype concordance equals 941 
99% (96.2%-100%) represented by blue line. Black points display proportion of genotypes found 942 
identical between GT-seq and RADseq for GT-seq read depth bins with > 30 genotypes. 943 
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 944 

Figure 7. Variation in read depth among individuals at loci successfully genotyped after quality 945 
filtering (303 loci with < 30% missing data). Average read depth at each locus shown with black 946 
points, while gray points denote first and third quartile for each locus. Dotted blue line denotes 947 
target read depth of 30×. Data from 551 walleye sequenced using fully optimized panel. Average 948 
read depth among all loci is 33×.  949 
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 950 

Supplementary materials 951 

Table S1. Pairwise FST estimates for all sampled walleye Sander vitreus populations (sites 952 
numbered according to Table 1 and Fig. 1 A). Estimates produced in arlequin v3.5.2. 953 

Table S2. Summary statistics for 20,597 SNPs retained through initial filtering based on 954 
maximum missingness rates of < 30% and HDplot cutoffs of H > 0.5 and -7 < D < 7. Columns 955 
include a locus tag (CHROM), position of SNP within locus (Reid et al.), a unique SNP value 956 
(ID), reference (REF) and alternate (Keenan et al.) SNP alleles, global FIS (Willi et al.), single 957 
SNP FST (Smith et al.), expected microhaplotype heterozygosity (mhap_HE), and number of 958 
alleles per locus tag (n_alleles). Diversity statistics estimated in diveRsity v1.9.90 (global FIS and 959 
single SNP FST) and adegenet v2.1.1 (single locus HE, number of alleles).  960 

Table S3. Summary matrix of 100% simulations (reps = 1,000, mixsize = 200) for each sampled 961 
population retained through filtering, performed using the FST_600 panel. Each row represents a 962 
simulation for the listed population name. Each column within a row represents the proportion of 963 
individuals assigned to the population denoted at the top of the column. Unassigned individuals 964 
(< 70% probability of origin from a given population) accounted for in last column.   965 

Table S4. Summary matrix of 100% simulations (reps = 1,000, mixsize = 200) for each sampled 966 
population retained through filtering steps, performed using the Composite_600 panel. Each row 967 
represents a simulation for the listed population name. Each column within a row represents the 968 
proportion of individuals assigned to the population denoted at the top of the column. 969 
Unassigned individuals (< 70% probability of origin from a given population) are accounted for 970 
in the last column.   971 

Table S5. Summary matrix of 100% simulations (reps = 1,000, mixsize = 200) for each sampled 972 
population retained through filtering steps, performed using the Diversity_600 panel. Each row 973 
represents a simulation for the listed population name. Each column within a row represents the 974 
proportion of individuals assigned to the population denoted at the top of the column. 975 
Unassigned individuals (< 70% probability of origin from a given population) are accounted for 976 
in the last column.   977 
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 978 

Figure S1. Frequency distribution of number of alleles among 600 loci tested in each panel. 979 
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