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Abstract  

Invasive neural recording in humans shows promise for understanding the circuit basis of brain 

disorders. Most recordings have been done for short durations from externalized brain leads in 

hospital settings, or from first-generation implantable sensing devices that offer only intermittent 

brief streaming of time series data. Here we report the first human use of an implantable neural 

interface for wireless multichannel streaming of field potentials over long periods, with and 

without simultaneous therapeutic neurostimulation, untethered to receiving devices. Four 

Parkinson’s disease patients streamed bilateral 4-channel motor cortical and basal ganglia field 

potentials at home for over 500 hours, paired with wearable monitors that behaviorally 

categorize states of inadequate or excessive movement. Motor state during normal home 

activities was efficiently decoded using either supervised learning or unsupervised clustering 

algorithms. This platform supports adaptive deep brain stimulation, and may be widely 

applicable to brain disorders treatable by invasive neuromodulation. 
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Introduction  

 

Electrical stimulation using permanently implanted brain devices has become a standard 

therapy in movement disorders and epilepsy, and is also under active investigation for 

psychiatric and cognitive disorders1.  Often, neurostimulation therapies are introduced without a 

clear model of the underlying circuit disorder, nor of the mechanism by which therapeutic 

stimulation influences signs and symptoms. One approach to addressing this knowledge gap 

has been analysis of invasive cortical or subcortical recordings from externalized leads, either 

during lead implantation surgery or for a few days afterwards in the hospital setting. This 

method provides neural data with excellent signal to noise ratio at high spatial and temporal 

resolution compared to noninvasive methods2, but is limited by its short duration, unnatural 

environment, and temporary circuit changes induced by edema from recent surgery. There is 

thus interest in incorporating a sensing function into chronic, fully implanted neurostimulators, 

for chronic neural recording over months or years3. In addition to circuit discovery, an exciting 

potential applications for these “bidirectional” (sense and stimulate) neural interfaces is adaptive 

neurostimulation, in which stimulation therapy is automatically adjusted in response to changing 

brain states, decoded from electrophysiological biomarkers of symptom severity4,5.  

 

However, the early generation bidirectional neural interfaces have important limitations4-6. 

Bandwidth and duration of data collection for time series data have been limited. Wireless data 

streaming typically requires patients to be “tethered” to a receiving interface that restricts free 

movement, and requires the presence of trained investigators, constraining the use of such 

devices to unnatural environments. Large stimulation artifacts and amplifier saturation may 

preclude data collection during therapeutic stimulation. Here we report the first human 

experience with an investigational second generation bidirectional interface, Summit RC+S 

(Medtronic), which solves many of these limitations7,8. This device can transmit neural data at a 

sampling rate up to 1000 Hz to an external Windows-based tablet up to 12 meters away, 

allowing freedom of movement. It can be tailored for easy home use and for different disease 

indications, by programming customized functions within its application programming interface. 

The device’s recharging capability obviates concerns inherent in prior devices that extensive 

sensing would lead to premature battery failure. Chronic wireless data streaming from RC+S 

has only been tested in canine8 and nonhuman primate models9 of epilepsy.  This and similar 

devices now under development allow researchers and clinicians access to large “real world” 
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neural data sets to enable discovery of personalized neural signatures of human brain 

disorders.   

 

Patients with Parkinson’s disease (PD) are an ideal population for testing novel bidirectional 

interfaces. PD is commonly treated with deep brain stimulation (DBS) of basal ganglia nuclei to 

treat motor fluctuations, the tendency of patients to cycle between bradykinetic (slow), normal, 

and dyskinetic (excessive movement) states, in response to dopaminergic agents1. Short term 

testing using externalized leads has suggested that adaptive DBS could offer improved 

efficacy10 and reduced adverse effects11  compared with standard, continuous DBS. There is a 

candidate biomarker for bradykinesia identified from acute, peri-operative recordings from 

externalized leads: the amplitude of beta band (13-30 Hz) oscillatory activity in basal ganglia 

field potential recordings2. However, cortical biomarkers of parkinsonian motor signs have also 

been proposed12-14 and it is not known which site (cortical or basal ganglia) is most effective for 

motor state decoding.  It is unclear whether biomarkers identified in hospital settings remain 

useful in naturalistic environments, on patients’ regular schedule of dopaminergic medications, 

or over longer periods.  

 

To address these questions, we implanted four patients bilaterally with RC+S devices attached 

to both subthalamic nucleus (STN) and motor cortical leads (Figure 1). Patients streamed 

simultaneous multisite field potential data for many hours at home, paired with wearable 

monitors for independent validation of motor state, with and without therapeutic DBS. We 

utilized analytic methods that leverage high volume data sets, including both supervised and 

unsupervised clustering methods, to refine and extend the “oscillation model” of movement 

disorders pathophysiology2. We demonstrate for the first time that oscillatory phenomena in PD 

correlate with individual patients’ motor signs at home during everyday activities, and that 

multiple recording sites improve the classification of patient motor state. Using PD as a model, 

we illustrate capabilities of this novel class of bidirectional neural interfaces, that may be widely 

applicable for circuit discovery and rational design of neuromodulation therapies in neurology 

and psychiatry15. 

 

Results  

 

Patient characteristics, surgical implant, and contact localization.  
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Four adults received bilateral implants of the Summit RC+S bidirectional neural interface, 

attached to quadripolar depth leads in the subthalamic nuclei and subdural paddle-type leads 

over primary motor and sensory cortices. All study subjects had idiopathic Parkinson’s disease 

with motor fluctuations, including prominent bradykinesia and rigidity in the off-medication 

states, but varied with respect to the degree of off-period tremor and on-period dyskinesia 

(Table 1). Data were collected in the first 1-3 months after surgery, by wireless streaming of 

multichannel field potentials to an external computer, both at home and in-clinic (Figure 1).  

Figure 1. Configuration of implanted hardware and method of data streaming. Quadripolar 
leads were placed bilaterally into the subthalamic nuclei and in the subdural space over 
precentral gyri (inset provides zoomed-in view). Each DBS lead and cortical paddle pair were 
connected via tunneled lead extenders to the ipsilateral Summit RC+S bidirectional implantable 
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pulse generator (IPG), placed in a pocket over the pectoralis muscle. Each RC+S uses 
radiofrequency telemetry in the medical implant communication spectrum (MICS) band to 
wirelessly communicate with a pocket sized relay device, usually worn on the patient. The relay 
devices transmit by Bluetooth to a single small Windows-based tablet at a distance of up to 12 
m, allowing sensing of local field potentials from up to four bipolar electrode pairs for up to 30 
hours per IPG, before recharge is needed. Custom software on the tablet allows remote 
updating of device streaming parameters or adjustment of embedded adaptive DBS algorithms, 
at home. A wristwatch-style actigraphy monitor is downloaded to a server that is synchronized 
off-line with neural recordings for brain-behavior correlations. 
 
 

Accurate lead placement was verified both by intraoperative physiological recordings (Figure 2 
a,b) and anatomically by postoperative CT scan computationally fused with preoperative MRI 
scan (example lead locations Figure 2c; lead locations for all patients are provided in Table 
S1). Therapeutic continuous STN neurostimulation (standard clinical therapy) was initiated at 
one month post-implantation. There were no serious adverse events related to surgery or to the 
study protocol.  

Figure 2. Anatomic and 
physiological 
localization of 
subthalamic and 
cortical leads (example 
from RCS04). a, 
Localization of STN 
contacts with respect to 
the borders of STN 
(outlined in blue) as 
defined by 
microelectrode mapping. 
The microelectrode map 
(green line) shows the 
borders of STN as 
defined by cells (red 
dots) that have 
canonical STN single 
unit discharge patterns 
and rates.  The intended 
depth of the DBS lead is 
determined by this map, 
and contact numbers are 
labelled. The middle 
contacts (1 and 2) are 
within the dorsal 4 mm 

of STN (motor territory).  The black dot is a cell in substantia nigra, pars reticulata.  b, 
Somatosensory evoked potential (from stimulation of the median nerve) recorded from the 
subdural paddle lead, montaged for three overlapping contact pairs. Reversal of the N20 
potential between pairs 8-9 and 9-10 (arrow) shows localization of contact 9 to primary motor 
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cortex, consistent with subsequent imaging. c, Location of the leads from postoperative CT 
computationally fused with the preoperative planning MRI. Left, STN leads on axial T2 weighted 
MRI which shows the STN as a region of T2 hypointensity. Right, quadripolar subdural paddle 
contacts on axial T1 weighted MRI showing relationship to central sulcus (red arrows) and 
numbering of contacts (green arrows).   

Data characteristics, movement related activity, and effect of levodopa in clinic. 

Data were streamed in clinic at a three weeks after implantation, to verify recording quality, the 

presence of movement related activity, and the effects of levodopa in defined on/off states. 

Four-channel time series recordings, two cortical and two subthalamic, were done on each side 

(Figure 3a). In sensorimotor cortex, initiation of movement was associated with canonical 

movement-related reduction in beta band activity with a concomitant increase in broadband 

activity 50-200 Hz reflecting local cortical activation16 (Figure 3b).  

 

Figure 3. Data examples 
and demonstration of 
effects of movement and 
levodopa in-clinic. a, 
Example field potentials 
recorded from right 
hemisphere, cortical (top) 
and STN (bottom). 
Horizontal grey (bottom left) 
line represents 300ms, 
vertical line is 100 uV. b, 
Example spectrogram of 
ECoG activity (bipolar 
recordings contacts 8-10) 
showing canonical 
movement-related alpha-
beta band (8-35 Hz) 
decrease, and broadband 
(50-200 Hz) increase, 
consistent with placement 
over sensorimotor cortex 
(from RCS04), recorded 27 
days post-implantation 
(sampling rate 500 Hz). 
Dotted vertical line is the 
onset of movement. Color 

scale is z-scored.  c, Example power spectra of STN and motor cortex field potentials showing 
oscillatory profile of off-levodopa (red) and on-levodopa (green) states (patient  RCS01), from 
30 second recordings. d, STN beta amplitude is consistently reduced in the on-medication state. 
(p<0.001). Average PSD plots across both hemispheres, both recording montages, and all 4 
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patients (average - dark line, shaded area is one standard deviation). Horizontal bar shows 
frequency bands that had significant differences between states. Antiparkinsonian dopaminergic 
medications such as levodopa are thought to induce profound changes in oscillatory activity in 
the basal ganglia, based on previous perioperative recordings in humans using externalized 
brain leads2. Thus, we collected data in defined medication states: after 12 hour withdrawal of 
antiparkinsonian medications (“off”), and after a suprathreshold dose of levodopa/carbidopa 
(“on”). The on-medication state was associated with the expected reduction in subthalamic beta 
band (13-30 Hz) activity in each individual case (Figure 3c) and across all 16 subthalamic 
recordings (p < 0.001, Generalized Estimating Equations (GEE)) (Fig 3d). Thus, acute effects of 
levodopa observed previously with externalized leads were validated here by wireless data 
transmission from an implanted device, recorded 2-4 weeks after surgery. In patients with 
prominent dyskinesias, a motor cortex oscillation at 60-90 Hz appeared in the on-state12 (Figure 
3c). 

 

Physiological signatures of motor signs identified by pairing at-home neural recordings with 

wearable monitors. 

A challenge in the field of invasive human brain recordings has been validation of findings from 

acute in-hospital recording paradigms, in chronic settings as patients go about activities of daily 

living.  Here, patients streamed eight channels of neural data at home over a total of 548 hours, 

while experiencing their typical on/off fluctuations from their habitual schedule of 

antiparkinsonian medications, as well as during sleep. Data were collected 2-4 weeks after 

device implantation, prior to initiating standard clinical neurostimulation. Clinically validated 

wrist-mounted wearable monitors worn bilaterally (Parkinson's KinetiGraph (PKG) watch)17 

provided numerical scores for bradykinesia and dyskinesia every 2 minutes based on a 10-

minute moving average (Figure 4a). All patients experienced motor fluctuations as evident from 

their PKG watch data with periodic variations in scores similar to Figure 4a.  

 

Neural data were analyzed in 10 minute segments, to correspond to the length of time over 

which motor scores were calculated from the PKG wearable device.  A power spectrum was 

calculated for each 10 min segment and superimposed for all single site recordings within 

subjects (Figure S1). Sleep states, as identified by PKG scores, typically showed prominent 

delta activity in both STN and cortex (Figure S1). For awake data, the power spectra calculated 

from 10 minutes segments were then segregated into mobile (“estimated on”) and immobile 

(estimated “off”) segments by PKG scores and averaged. A time-frequency analysis over a 

single day (7.5 hours) from a single subject shows that transitions between on and off states are 

associated with simultaneous rapid transitions in beta and gamma band oscillatory activity, as 

well as in in coherence between STN and cortex (Figure 4b). Averaged LFP power spectra 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 14, 2020. ; https://doi.org/10.1101/2020.02.13.948349doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.13.948349


segregated by the wearable monitor (42.7 hours of recording)  broadly recapitulates the patterns 

discerned in defined on/off states in-clinic: A prominent STN beta band peak when off, which 

disappears in on states, and a prominent motor cortex gamma band peak at 75 Hz when on 

with dyskinesia (Figure 4c, compare to brief in-clinic recordings in Figure 3c).  

 
Figure 4. Decoding motor fluctuations from long duration recordings at home, single 
subject example (RCS01). a, Data from wearable Personal KinetiGraph (PKG) monitor reports 
scores for bradykinesia and dyskinesia in 10 minute intervals. Example from 1 day. Assignment 
of state is shown in the lower bar. b, Capturing transitions between immobile (off) and 
mobile/dyskinetic (on) states. Top, spectrograms for STN and motor cortex, and STN-motor 
cortex coherence over a 7.5 hour period (all times PM). Arrows indicate frequency bands 
sensitive to on-off fluctuations. Grey vertical lines show areas where the recording was 
discontinuous and was concatenated.  Bottom, PKG dyskinesia scores indicate four transitions 
between off (low dyskinesia) and on (high dyskinesia) states.  These are associated with 
transitions in beta and gamma oscillatory activity. c, Power spectra of STN and motor cortex, 
and STN-motor cortex coherence for all awake data from patient RCS01, segregated by mobile 
and immobile states (categorized by PKG) and averaged. Shaded error bars represent one 
standard deviation 
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STN-motor cortex coherence also distinguished on and off states (Figure 4c), suggesting the 

use of basal ganglia-cortical oscillatory interactions, in addition to single-site oscillatory profiles, 

for the identification of motor function from neural recordings. Variations on these spectral 

patterns in other subjects occurred, consistent with cross-subjects variations in their most 

prominent motor signs (Figure S1). For example, in the one subject with prominent off-period 

tremor (RCS03), an oscillation at twice tremor frequency appeared, especially in STN-cortical 

coherence, during tremor episodes (Figure S1). This physiological signature of tremor has been 

detected previously in the cortex using magnetoencephalography18. 

 

The number of hours of data streamed at home by each patient is in Figure 5a. Across all 

subjects, the sites and frequencies of significant separation in neural data between estimated on 

and estimated off states, occurred in the STN beta band and cortical gamma band (Figure 5b).  

Figure 5. Decoding motor fluctuations from long duration recordings at home, group 
data.  a, number of hours recorded by each patient b, Power spectra of STN and motor cortex, 
and STN-motor cortex coherence, for home recordings combined across all subjects. Horizontal 
bars with asterisks indicate frequencies that differed between states after correction for multiple 
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comparisons.  c, Area under the curve (AUC) from ROC (receiver operator curve) analysis, 
showing that utilizing data from both STN and cortex is better able to discriminate mobile and 
immobile states (as segregated by PKG scores), than either site alone. The input for the 
computation of each ROC curve (a single point on graph) was calculated by computing average 
beta band spectral power from STN (within each patient, side and two possible contact pairs - 
yielding 16 points), average gamma power from cortex, or a combination of estimates across 
recording montages (two values from STN and two from cortex). The four colors correspond to 
the four study subjects.  

The specificity and sensitivity of these neural features for decoding on and off behavioral states 

was quantified across all recordings in all subjects using receiver operating characteristic curve 

(ROC) analysis (Figure 5c). Discriminating on and off states was possible from either STN beta 

activity (Area Under Curve (AUC) range 0.5-0.96), or motor cortex gamma activity (AUC range 

0.56 -1). An important debate in the area of decoding behavior state from brain recordings, is 

whether to utilize subcortical data, cortical data, or both.  The combination of subcortical and 

cortical data provided the best behavioral discrimination (AUC range 0.81-1.0) (Figure 5c), 

underscoring the utility of multisite sensing for bidirectional interfaces. The significance of 

decoding was tested within subjects non-parametrically by shuffling the “on” and “off” labels and 

repeating the 5-fold cross validation. Single site spectral power beta or gamma bands, in ten 

minute recordings, was predictive of motor state in most but not all hemispheres, whereas when 

both recordings sites were combined and cortex-STN coherence was included, ten minute 

segments of neural data significantly segregated on and off states for all hemispheres (Figure 

5c).   

 

Unsupervised clustering of neural data for identification of distinct behavioral states.  

A major goal for clinical utilization of bidirectional interfaces in neurology and psychiatry is the 

implementation of adaptive DBS, using electrophysiological signatures (biomarkers) of specific 

signs and symptoms4,15,19. To accomplish this efficiently when biomarkers are highly 

individualized, distinct brain states should be identifiable using “unsupervised” clustering 

algorithms, with which neural data are categorized without the need for paired behavioral 

monitors, patient reporting, or clinician ratings.  We employed an unsupervised clustering 

method based on density of data points in dimensionality-reduced power spectra20  (“density-

based clustering”, Figure 6a). We chose this method since it does not require defining the 

number of states (unlike k-means clustering). Indeed, unsupervised clustering algorithms were 

able to identify clusters that corresponded to supervised clustering (on/off state estimates 

clustered by wearable PKG monitor) with high concordance (mean 74%, range 59%-89% for 
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density based clustering, mean 74.5% range 59%-90% for template based clustering)(Figure 

6c). A second clustering method leverages the power spectra of brief in-clinic recordings, done 

in defined behavioral states,  as “templates” for unsupervised clustering in home data (“template 

based clustering”, Figure 6b). In disorders for which behavioral states are readily induced in-

clinic, this is a powerful method to identify those states in home recordings. Template clustering 

also shows high concordance with supervised clustering for STN data (Figure 6c).  

Figure 6. Unsupervised clustering segregates neural data into specific behavioral states.  
Examples patients are RCS01 and RCS04. All raw data (recorded in the awake state) were 
segregated using unsupervised clustering algorithms with two different paradigms: a, 
Unsupervised clustering using the density based method of Laio20. b, Clustering of PSDs based 
on template PSDs from in clinic recording in defined on/off medication states. Black lines are the 
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template PSD’s (dotted = off medication, solid = on medication). c, Concordance between brain 
states derived from unsupervised and supervised clustering methods (24 hour data sample, 
STN only). Barcodes compare motor state estimates derived from the wearable monitors, with 
the clusters derived from type of clustering algorithm.  

 

Advanced device features that enable embedded adaptive stimulation 

A central challenge in the design of implantable bidirectional neural interfaces is the enabling of 

sensing from the same array that is used for therapeutic stimulation, a critical capability for 

adaptive neurostimulation. This is particularly challenging with subcortical targets, since the 

amplitude of field potentials from non-layered structures is often <10 µV, which is 5- to 10-fold 

less than those recorded from the cortical surface. Previous bidirectional interfaces have usually 

allowed meaningful sensing only during periods when stimulation was absent, or required 

sensing from a distant electrode array, such as from a cortical array during subcortical 

stimulation21. Here, using a “sandwiched” sensing configuration to take advantage of common 

mode rejection (bipolar sensing from the contacts on either side of a monopolar stimulating 

contact), we show that STN beta power is reduced by chronic therapeutic stimulation, without a 

concomitant change in cortical beta power (Fig 7a). Violin plots show how chronic stimulation 

affects the variability of STN beta band activity (Fig 7b).  Prior to therapeutic stimulation, the 

range of beta amplitudes shows a bimodal distribution, corresponding to on- and off-states.  

Chronic therapeutic DBS eliminates pathologically elevated beta epochs, but preserves 

variability of beta band activity within a smaller range. Preservation of task-related variation in 

beta activity may be important for normal movement during DBS22. 

 

A promising but technically demanding approach to adaptive DBS is to use very short trains of 

DBS triggered on bursts of oscillatory activity, to shorten the duration of pathologically 

prolonged bursts23.  This approach has shown efficacy in PD that is greater than that of 

standard continuous stimulation10, but has only been implemented using externalized leads 

connected to external amplifiers and computers, or with implanted devices streaming to an 

external computer in a “distributed mode”24. We therefore tested this strategy for adaptive DBS, 

in a fully embedded paradigm (Figure 7c). A common pitfall of feedback control systems is the 

occurrence of “limit cycles”, that is highly regular oscillatory behavior in which each state change 

triggers the opposite change, such that the detector fails to respond appropriately to neural 

activity changes.  Irregular changes in detector state show appropriate algorithm performance 

without converging to a limit cycle (arrow in Figure 7c).  
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Figure 7. Recording during therapeutic DBS, and demonstration of adaptive DBS. a, 
Chronic recording from same quadripolar STN contact array as utilized for therapeutic 
stimulation. Example from RCS01. Average PSDs for 10 min data segments segregated by off 
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stimulation (grey), and on stimulation (green), over a total of 87.5 hours of recording at home.   
b, Violin plots showing the average beta power (5Hz window surrounding peak) off/on chronic 
stimulation in two rigid/akinetic patients. Chronic STN DBS eliminates periods of pathologically 
elevated STN beta band activity, but preserves variability within a smaller range (median off 
stimulation versus chronic stimulation differ). c, Example of embedded adaptive DBS algorithm 
designed to trigger off of beta bursts. Top panel is filtered STN time domain data (blue) in the 
beta range (17-19Hz) centered around subject specific beta peak with amplitude (Hilbert 
transform, red) superimposed. Middle panel - threshold chosen for algorithm in (dotted orange 
line) and the detector (blue) which is a smoothed estimate of instantaneous beta power. 
Algorithm state is in green such that when the detector crosses the line state is “high” and when 
it is below the line state is “low”. Bottom panel - current amplitude in mA. This algorithm is 
designed to “trim” beta bursts as advocated by Little et. al. (2013). When a beta burst is 
detected stimulation is rapidly ramped up followed by rapid decrease when burst subsides. 
Arrow indicates a 5 second epoch during which the detector is not triggered. 

 

Discussion  

 

Here we report the first human use of an implanted bidirectional neural interface designed for 

continuous wireless streaming of neural data for long periods, at home during normal daily 

activities.  In four PD patients implanted bilaterally with both motor cortex and basal ganglia 

leads, we show that patterns of oscillatory activity in both structures can decode hypokinetic and 

hyperkinetic states, as demonstrated by pairing the recordings with wearable monitors which 

track these motor fluctuations behaviorally. We show that brain states are also separable by an 

unsupervised clustering algorithm applied to the power spectra of short data segments, 

providing a rapid method for personalized biomarker discovery.  Finally we demonstrate 

technical device capabilities that have not previously been readily achievable in implantable 

sensing devices: sensing during stimulation from adjacent contacts of a multipolar array, and 

embedded adaptive DBS utilizing small subcortical signals for control.   

 

Circuit discovery in humans using field potentials 

Analyses of field potentials from invasive recordings in humans have shown great promise for 

discovering the circuit basis of a variety of brain disorders25. Field potentials represent the 

summed, synchronized activity of a neuronal population near the recording contact and usually 

have a strong oscillatory component, thus offering an excellent probe of neural synchronization. 

In normal function, oscillatory synchronization provides a mechanism for flexible communication 

between functionally related brain regions, as elucidated in the “communication through 

coherence” hypothesis26. Many brain disorders are now thought to be related in part to 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 14, 2020. ; https://doi.org/10.1101/2020.02.13.948349doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.13.948349


abnormalities of oscillatory synchronization25. In patients undergoing invasive monitoring for 

epilepsy, mood and anxiety have been decoded from patterns of oscillatory synchrony in field 

potential recordings27,28, and this approach shows promise in major depression29 and in 

obsessive compulsive disorder30.  These findings have generated great interest in utilizing long 

term brain recordings from implantable devices in a wide variety of disorders3. Identification of 

neural signatures of disease states translates to improved therapies in several ways:  1) 

detecting circuit abnormalities that predict response to neurostimulation therapy, 2) optimizing 

symptom-specific stimulation algorithms, and 3) the use of these neural signatures for adaptive 

neurostimulation.  

 

Here, we utilized chronic home recordings to inform the “oscillation hypothesis” of movement 

disorders  pathophysiology.  A seminal observation, made using perioperative recordings from 

externalized leads, was that the amplitude of beta band oscillatory activity in the basal ganglia is 

relatively elevated in parkinsonian states31,32, and its attenuation is a reliable index of the effects 

of therapeutic intervention (both oral levodopa33 and DBS31,34). As a result, the “oscillatory 

synchrony” hypothesis of parkinsonian akinesia2 and bradykinesia has begun to replace the 

earlier “rate model” of parkinsonian pathophysiology35. However, this hypothesis has only been 

tested in non-naturalistic clinical situations in severe and controlled off- and on-medication 

states, which might not reflect neural activity in the real world during normal activities of daily 

living. Here, we show that subthalamic beta band activity can indeed consistently track the 

severity of motor fluctuations in PD in chronic, real-world use. However, motor cortical gamma 

band (65-90 Hz) oscillations, and basal ganglia-cortex coherence in beta and gamma bands, 

also track motor signs. In many cortical regions, gamma oscillations coordinate local neuronal 

ensembles during task performance25.  Our findings suggest that an imbalance in basal ganglia 

beta band activity and cortical gamma activity may be critical for the expression of motor signs 

of PD, and highlight the utility of multisite recordings within a network, both for optimal circuit 

discovery and for high fidelity characterization of brain states. 

 

The analysis of large amounts of neural data “supervised” by wearable monitors is labor-

intensive and depends on the accuracy of the wearable monitor as well as a prospective 

understanding of the behavioral states that need to be tracked. Unsupervised clustering, in 

contrast, provides efficient identification of individualized neural signatures of disease state from 

large data sets, does not depend on patient compliance with a wearable monitor, and may 

identify previously unrecognized patterns of neural activity to generate new hypotheses about 
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circuit mechanisms and biomarkers. Here, unsupervised clustering was able to distinguish brain 

states corresponding to on- and off-periods, similar to those identified with wearable monitors. 

(Figure 6). These methods may prove especially important for identifying neural correlates of 

psychiatric states, for which wearable monitors for objective tracking are less advanced than in 

movement disorders. Unsupervised clustering can also be supplemented by the use of neural 

activity “templates” derived from brief in-clinic recordings in a defined behavioral state, to 

objectively search for the occurrence of those states during chronic neural recording at home 

(Figure 6b). Whereas the templates in our study were provided by defined medication on and 

off states, in the application of this method to psychiatric illness, templates could be established 

by “provocative” tests such as brief exposure of a patient with obsessive-compulsive disorder to 

images that trigger obsessions36.  

 

Second generation bidirectional interfaces: new capabilities and their implications 

Several fully implantable brain devices that combine neural sensing with therapeutic 

neurostimulation have been introduced prior to the present work. The RNS device (Neuropace) 

is clinically approved in Europe and USA for contingent stimulation in some types of epilepsy4. It 

has been used for sensing and adaptive DBS in Tourette’s syndrome in an investigational 

study37. A first generation precursor of RC+S, Activa PC+S (Medtronic), has been used under 

investigational protocols for brain sensing in PD6,12,38-40,   essential tremor41, epilepsy42, pain43, 

and locked-in syndrome44. However, both devices are designed for brief recording rather than 

continuous streaming of time series data, are problematic for recording during therapeutic 

stimulation on adjacent contacts of an array38, and are inflexible with respect to the type of 

adaptive DBS algorithms that can be embedded3. While earlier devices have allowed long term 

streaming of spectral power in a predefined frequency band44, time series data are important 

since they do not require a priori knowledge of the most relevant frequency bands, and allow the 

exploration of many other metrics of synchronization including phase coherence12, phase-

amplitude coupling45, and waveform shape46. 

 

Second generation bidirectional interfaces require several technical and conceptual innovations 

to overcome the limitations of first generation devices. One important innovation is allowing 

academic investigators full access to a device’s Application Programming Interface7. Thus, for 

the first time, researchers may write their own code to control the research functions of the 

device, including home data streaming and adaptive DBS. This provides great flexibility to tailor 

device functions to specific studies. Here, we wrote a patient-facing graphical user interface 
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customized for PD patients, for data streaming at home from bilateral devices and for marking 

relevant data such as timing of medications. This is readily usable by patients without the 

presence of study investigators, and provides relatively seamless re-initiation of streaming 

whenever the patient was in range of the receiver (12 m). Thus, patients were able to use this 

for many hours of continuous data streaming, while freely moving and untethered to receivers. 

The rechargeable battery obviates potential concern about the need for surgical replacement of 

the pulse generator in the setting of energy-intensive data streaming at home.   Artifact 

management strategies, including active recharge for biphasic pulses and customizable signal 

blanking during therapeutic stimulation, allow sensing of neural biomarkers during therapeutic 

stimulation to a much greater extent than prior devices38.   

 

The capabilities of second generation neural interfaces open up new areas for basic science 

investigations and for clinical translation. Neurophysiological investigations in humans have 

classically been done during brief repetitions of well defined, but artificial, tasks, in laboratory or 

clinical environments.  The capacity for high volume data streaming for long periods of time in 

the real world allows, for the first time, study of human neurophysiology in naturalistic 

environments47.  The statistical power offered by high volume longitudinal data is based on 

within-subjects comparisons of neural activity over many exacerbations and remissions of 

specific signs and symptoms of disease states, supplemented by wearable monitors to 

independently categorize behavioral state. Spontaneous fluctuations in normal behaviors could 

be studied using the same approach. 

 

Potential for Adaptive DBS. While continuous neurostimulation is now employed in many 

conditions, it may induce adverse effects such as hypophonia11 or dyskinesia12 in PD, mania in 

OCD48, or seizures from cingulate stimulation for pain43.  Efficacy of continuous stimulation may 

also suffer from waning effectiveness, such as in chronic pain49.  If stimulation were only 

delivered contingent on the relevant patterns of abnormal circuit activity, it could respond to 

changing brain needs and reduce adverse effects15,19.  Further, adaptive DBS has the potential 

to shape neural circuits, such as shortening of pathologically lengthened subthalamic beta 

bursts in PD22, so as to be more effective than open loop, continuous DBS. The present study 

demonstrates this capability in an embedded paradigm within a fully implanted device, whereas 

prior demonstrations of adaptive DBS in PD triggered on small subcortical beta bursts, have 

only been possible using externalized brain leads10 or using first generation implanted devices 

in “distributed mode” (streaming to an external computer) in hospital settings24. 
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Challenges and future developments.  

A new challenge of RC+S, inseparable from its high flexibility, is the requirement for academic 

investigators to write their own software to control its functions, and to document its compliance 

with FDA requirements.  Investigators thus need to hire or contract with a dedicated software 

engineer familiar with medical devices, or collaborate closely with other groups that do so.  

Here, this complexity was mitigated by establishing a multi-institutional collaborative 

environment in which device control software and regulatory templates are freely shared 

between academic groups (https://openmind-consortium.github.io). In the future, use of neural 

interfaces during normal activities could be facilitated by allowing streaming directly from the 

implanted device to smartphones. Smartphones may also provide applications for behavioral 

monitoring that could then be readily paired with neural recordings50. 
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Methods  

 

Inclusion criteria and clinical characterization. Four study subjects were recruited from a 

population referred for implantation of deep brain stimulators for PD. Subjects were evaluated 

by a movement disorders neurologist and met diagnostic criteria for PD1. Baseline motor 

function was evaluated using the Movement Disorders Society (MDS) Unified Parkinson’s 

Disease Rating Scale (UPDRS), parts I-IV. The motor subscale (UPDRS-III), was rated both 

“off” (12 hour after withdrawal of antiparkinsonian medication) and “on” (after a supratherapeutic 

dose of levodopa/carbidopa). Patients were evaluated by a neuropsychologist to exclude 

significant cognitive impairment or untreated mood disorder. Inclusion criteria were: Motor 

fluctuations with prominent rigidity and bradykinesia in the off medication state, baseline off-

medication UPDRS-III scores between 20 and 80, greater than 30% improvement in UPDRS-III 

on medication compared to off medication, and absence of significant cognitive impairment 

(score of 20 or above on Montreal Cognitive assessment).  The study was approved by the 

hospital institutional review board (IRB) under a physician sponsored investigational device 

exemption (IDE), protocol # G180097. The study was registered at Clinical Trials.gov 

(NCT03582891). Patients provided written consent in accordance with the IRB and the 

Declaration of Helsinki. The full IDE application and study protocol have been shared with other 

researchers via the Open Mind initiative (https://openmind-consortium.github.io).  

 

Surgery, device models, and lead localization. All patients underwent bilateral placement of 

cylindrical quadripolar deep brain stimulator leads into the subthalamic nucleus (Medtronic 

model 3389, 1.5 mm contact length and 2.0 mm intercontact spacing), bilateral placement of 

paddle-type quadripolar cortical paddles into the subdural space to cover precentral gyrus 

(Medtronic model 0913025, 4 mm contact diameter and 10 mm intercontact spacing), and 

bilateral placement of investigational sensing implantable pulse generators (IPGs) in a pocket 

over the pectoralis muscle (Medtronic Summit RC+S model B35300R). The IPG and leads were 

connected by 60 cm lead extenders (Medtronic model 37087), two on each side (Figure 1).  

STN leads were initialized as contacts 0 to 3 (0 is the deepest contact)(Figure 2a). Cortical 

leads were initialized as contacts 8 to 11 (8 is the most posterior contact)(Figure 2c).  
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The surgical technique for placement of permanent subdural paddle leads during DBS 

implantation surgery was previously described in detail2.  Briefly, the paddle lead was placed in 

the subdural space through the same frontal burr hole used for the subthalamic lead. At least 

one contact covered the posterior precentral gyrus (presumed primary motor cortex), 

approximately 3 cm from the midline on the medial aspect of the hand knob. Adequate 

localization of the ECoG strip was confirmed using intraoperative CT computationally merged to 

the patient’s preoperative MRI3 (Stealth8 Cranial software, Medtronic Inc.) Functional 

localization of the ECoG strip was verified by reversal of the N20 somatosensory-evoked 

potential from median nerve stimulation (Figure 2b). The exiting wire from the cortical contact 

array was secured to the skull with a titanium miniplate.  

 

The subthalamic lead was placed using frame-based stereotaxy and confirmed by 

microelectrode recording in the awake state using standard methods4. Proper location in the 

motor territory of the STN was verified by eliciting movement-related single-cell discharge 

patterns. The DBS lead was placed with the middle two contacts in the dorsal (motor) STN, the 

most superior contact dorsal to the STN, and the most inferior contact in ventral STN (Figure 

2a). The free ends of the cortical and subthalamic leads were coiled under the ipsilateral parietal 

scalp. The remaining hardware was placed under general anesthesia. The free ends of the 

cortical and subthalamic leads were connected to the lead extenders, which were tunneled 

down the neck to the IPG. Each IPG was connected to the ipsilateral cortical and STN leads. 

Medical adhesive was placed at the junction of the lead extenders and IPG to reduce 

contamination of neural signals by EKG artifacts.  Two months postoperatively, locations of 

leads were again verified, by postoperative CT computationally merged to the patient’s 

preoperative MRI using Stealth8 Cranial software (Figure 2c).  

 

RC+S device characteristics and programming. The Summit RC+S is an investigational 

rechargeable bidirectional neural interface that offers the researcher a great degree of flexibility 

through access to the device’s application programming interface (API)5,6. It is a 16-channel 

device that can simultaneously stream four bipolar time domain channels (250/500Hz) or two 

channels at 1000Hz. It can simultaneously provide standard therapeutic stimulation on up to two 

quadripolar leads, and can also perform adaptive deep brain stimulation using algorithms 

programmed on the device (“embedded” mode) or algorithms on an external computer, through  
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wireless communication (“distributed” mode). In addition to voltage time series data, RC+S can 

stream up to 8 predefined “power channels” (spectral power within a predefined frequency 

band), event markers, stimulation parameters, embedded adaptive DBS performance 

parameters, and triaxial accelerometry from an embedded accelerometer.  

 

For all research functions including configuring and initiating sensing, and embedded or 

distributed adaptive DBS, investigators control the device by writing software in C# within the 

device API, accessed using a “research development kit” (RDK, Medtronic model 4NR013) 

provided by the manufacturer.  We wrote two graphical user interface (GUI)-based applications 

to configure and initiate streaming data from one or two RC+S devices simultaneously. One 

application is used by the research team and allows configuration of sensing parameters and 

streaming data in-clinic. The other application is “patient facing” and contains a simplified 

application that allows the patient to control streaming in a home environment and report 

symptoms or medications taken, Applications rely on a dynamic linked library (DLL), supplied by 

Medtronic, Inc., that is specific for Microsoft Windows operating systems and Intel processor 

platform. The DLL provides the API to investigators and is not compatible with streaming data to 

mobile devices. Both applications are available at https://openmind-consortium.github.io. We 

wrote and documented software in compliance with FDA code of federal regulation CFR 820.30, 

which specifies design controls for implantable human devices. Figure 1 provides a schematic 

of the data streaming configuration. 

 

In-clinic data recording in defined on/off states. STN and cortical field potentials were sampled 

at 500 Hz in clinic three weeks postoperatively in both “on” and “off states (during which 

levodopa medication was withdrawn for at least 12 hours), and a movement disorders 

neurologist administered the UPDRS-III rating scale in both states. The three week time point 

was chosen to allow recovery from the “microlesion” effect of lead insertion7,8, but prior to 

initiating chronic therapeutic stimulation at 1 month after surgery. Recordings were done at rest, 

and during a binary choice iPad reaching task which has been previously described9. Rest 

recordings were one to two minutes long, and iPad reaching task recordings were 3-5 minutes 

long.  
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At home data streaming paired with wearable monitors. Patients initiated home recordings using 

the patient-facing GUI on a Microsoft Surface Go computer with broadband cellular service 

(weight 1.15 pounds, dimensions - 245.00 x 175.00 x 8.30mm (height, width thickness)). We 

provided this computer to each study subject along with training in its use. Streamed data 

contained no personal health information (PHI). Data were encrypted and uploaded to a secure 

cloud environment operated by UCSF. Patients were able to use the application to report 

medications taken and to rate their motor signs. The application automatically connects to the 

device when patients are in range (approximately 12 meters). Patients collected data in 1-2 

week recording “sprints” in which they were instructed to carry the computer with them and 

stream continuously if possible.  

 

The summit RC+S system uses a user datagram protocol (UDP). Data are transmitted in 

discrete intervals or “packets” of variable duration averaging 50 ms. Occasional data packets 

are lost and these “dropped packets” must either be interpolated or discarded. This can also be 

partially mitigated by changing sampling rates and using a lower data streaming rate bitrate. 

Failure of packet transmission (“dropped packets”) occurred for 1-5% of packets, even when 

patients were in range of receiving devices. We have written specialized software in Matlab to 

account for dropped packets which is available on our GitHub page 

https://github.com/starrlab/rcsviz.  

 

Data are time stamped using the pulse generator clock time. Data were recorded at 250Hz in at 

the patient’s home, lower than the in-clinic rate of 500 Hz.  Four time domain channels were 

streamed using a bipolar recording configuration in which we verified adequate signal during a 

montage recording obtained one to two days postoperatively.  Patients also streamed 

actigraphy at 64Hz from the embedded accelerometer, event related information and power 

channels. The Summit RC+S device has several configurable device filters that must be 

chosen. All filters are applied after digitization, and low pass filters are applied twice – before 

and after amplification. In the absence of therapeutic stimulation, we used a high pass filter of 

0.85Hz and low pass filter of 450 Hz before amplification and 1700Hz after amplification.  
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To track parkinsonian motor signs at home, for subsequent correlation with paired neural data, 

patients wore wristwatch style monitors (Parkinsons’s KinetiGraph System (PKG), Global 

Kinetics Inc)10,11. The PKG reports scores for bradykinesia, dyskinesia and tremor every two 

minutes as well as the timing in which medication were taken. The PKG uses a 3 axis 

accelerometer (similar to that embedded in RC+S) to assess parkinsonian symptoms according 

to a proprietary commercial algorithm that has been validated. We confirmed accurate temporal 

synchronization between the PKG and the RC+S by comparing their actigraphy data.  

 

Maintaining continuity of data streaming  

Benchtop tests show that streaming of four time domain channels at 500Hz while providing 

therapeutic stimulation, can be done for approximately 30 hours before recharging the RC+S 

pulse generator.  However, several factors may reduce the duration of continuous streaming. 

The CTM relay device (Figure 1), as supplied by the manufacturer, is powered by two AAA 

batteries that only last for 4-5 hours during streaming. We therefore developed an external 

“battery pack” for the CTM that extends this range to 12 hours.  Both RC+S pulse generators 

can be recharged simultaneously in 30 minutes. For most home streaming we used lower 

sampling rates (250Hz) than the device allows, in order to cap the bitrate at 4500 bits/second 

but allows for longer range and fewer dropped packets. Our patients wore a specialized vest 

with pockets for the CTM so that it remained in close proximity to the DBS device to avoid 

frequent packet drops.  

 

Therapeutic continuous stimulation and recording during stimulation. To implement standard 

DBS therapy, clinicians are provided with a tablet programmer (Medtronic model 4NR010) to 

allow setting parameters for standard continuous therapeutic stimulation, and a patient 

programmer (Medtronic model 4NR009) that allows the patient limited control over some 

parameters under limits set by the clinician. One month after implantation, study clinicians 

began programming the STN lead(s) to achieve the best clinical result. The cortical lead was 

never used for stimulation. Clinicians attempted programming using monopolar mode from one 

of the middle two contacts (contacts 1 or 2), as these montages are compatible with bipolar 

sensing in a “sandwiched configuration” around the stimulating contact. Sensing from STN 

leads programmed to stimulate in a bipolar mode or programmed with a stimulation montage 

that includes contacts 0 or 3, precludes STN sensing during stimulation because of excessive 
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stimulation artifact. For some subjects, 80 hours of data were streamed at home during 

therapeutic stimulation, to document effects of stimulation on STN and cortical field potentials. 

Both on-device low pass filters were set at 100Hz for STN recordings during stimulation to limit 

stimulation artifacts). Sense blanking was set at 0.33ms 

 

Data extraction and management of lost data. Data streamed to the researcher or patient facing 

applications are assembled into JavaScript Object Notation (.JSON) format. This is a light-

weight data-interchange text-based format that in RC+S merges meta-data and actual data 

across several different file types distributed. Data are polled from the device in configurable 

intervals (50 ms in our case) in first-in, first-out (FIFO) fashion. The IPG has a 16 bit clock-

driven tick counter that rolls over every 6.553 seconds (least significant bit (LSB 100 

microseconds)). This can be combined with an estimate of system time (LSB seconds) to 

accurately account for lost packets. We wrote Custom software in Matlab to extract the data 

from the .JSON format and discard packets that have corrupted data. The extraction code is 

available on GitHub (https://github.com/starrlab/rcsviz).  

 

Data Processing (in-clinic data). Data were inspected for artifacts and contiguous 30 second 

data segments for which no packet loss occurred were chosen for analysis. We calculated 

power spectral density (PSD) using the Welch Method in Matlab (pwelch, 500ms window, 

250ms overlap) from 4 contact pairs (0-2, 1-3 in STN and 8-10, 9-11 in the cortical lead) per 

implant side. This yielded 8 PSD’s per patient in the on and off medication condition. For each 

PSD we computed the average beta signal (13-30Hz) subcortically or gamma (65-85Hz) 

cortically across patients. We compared the average frequency specific spectral power on/off 

medication response using generalized estimating equations (GEE) to account for non-

independence of recording locations within patients12 using the GEEQ toolbox for Matlab. For 

movement-related changes in spectral power, data were filtered using a two way FIR1 filter 

(eegfilt from eeglab toolbox with fir1 parameters) in frequencies between 1-200Hz. Data from all 

trials were aligned relative to the onset of movement (time 3) and averaged. The averaged 

amplitude was normalized by a 1000ms window prior to cue presentation (time 0). Data were z-

scores by subtracting the average baseline amplitude and dividing by the baseline standard 

deviation. This z-score procedure was performed for each frequency separately. 
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Data Processing (home data). Data were divided into 30 second contiguous chunks in which no 

packet loss occurred. We calculated power spectral density (PSD) using the Welch Method in 

Matlab (pwelch, 250ms window, 125ms overlap). Data were averaged in the power domain 

between 40-60Hz (range selected to avoid frequency bands of physiological interest) and 

outliers larger than 2 standard deviations were excluded from further analysis. This was usually 

due to the presence of transient artifacts in the data and only affected 1.3% on average (range 

0.1-3.1%) of the data. Data were normalized by dividing each PSD by the average power 

between 3 and 90 Hz. In addition to the PSD, the magnitude squared coherence was also 

computed for the four possible contact pairs each recording montage (mscohere in Matlab, 256 

ms window, 50% overlap, 256 discrete Fourier transform points).  

 

Synchronization of neural data with wearable monitor state estimates. The RMS voltage of the 

internal built-in accelerometer was used in order to verify the synchronization between the PKG 

and the RC+S data. The (root mean square) value of each 30 second chunk of data was 

correlated with the bradykinesia and dyskinesia 2 minute scores closest in time to each value. 

Though we have received 2-minute interval of PKG data we were advised by the manufacturer 

to use a moving 10 minute average in order to classify patient state. Predefined thresholds 

supplied by PKG were used on a per patient basis. Bradykinesia scores are negative such that 

a lower score indicates more bradykinesia. Dyskinesia scores are positive such that more 

dyskinesia indicated a higher score. Sleep was defined as a bradykinesia score below -80. A 

patient was scored as “on” with good symptom control by levodopa medication, for each 10 

minute segment, if his bradykinesia score was above -26 and his dyskinesia score below 7. 

Patients were considered “off” if their bradykinesia scores (and/or) dyskinesia scores above 7. 

Using these guides patient “on” vs “off” state were tailored on an individual basis given each 

patient’s clinical condition. For example, some patients never had on-time without dyskinesia 

whereas others did not have any dyskinesia as measured by the PKG. States were defined 

using a 10 minute window and a two minute step size. A patient was deemed in a certain “state” 

if at least 3/5 2-minute epochs in a 10 minute window were in agreement with regards to patient 

state. If this criteria is not met, state is classified as “other” (Figure 4a). For each 10-minute 

window of PKG data the corresponding 30 second PSD’s from the RC+S on the contralateral 

side were averaged. The use of 30 second PSDs was to avoid transients in the 10 minute 

windows resulting from small gaps in the data. Thus, we created a moving average with a 10 

minute window and 8 minute overlap with average PKG and RC+S scores.  
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Supervised motor state detection. Power spectral data from each subject’s individually defined 

peak in the beta (13-30Hz) frequency in the STN and gamma frequency in cortical contacts was 

used as input into an linear discriminant analysis (LDA) classifier. Coherence between STN and 

cortical contacts was also used in these frequency bands. State labels using the PKG wearable 

data were adjusted according to profile of motor signs (for example not all patients had off-

period tremor or on-period dyskinesia). Sleep data (as defined by the PKG wearable) were 

included in Figure S1 but are excluded elsewhere. Data from each contact montage, frequency 

band and measure (power/coherence) were separately fed into an LDA using 5-fold cross 

validation and the mean AUC (area under the curve) was computed.  The same procedure was 

then repeated for the combination of all features (2 STN beta values, 2 cortical gamma values 

and 4 coherence measures covering all possible pairings). We used non parametric methods in 

order to assess the significance of each AUC measurements by repeating the analysis using 

shuffled labels 5000 times and computing a p-value for each test. Significance was assessed at 

alpha 0.05 level, corrected for multiple comparisons using the Bonferroni method.  

 

Unsupervised clustering. In order to perform unsupervised clustering to test whether states are 

separable without a-priori knowledge of the number of clusters or the location of peaks in the 

beta frequency the average power in known physiological ranges (delta, theta, alpha, low beta, 

high beta, beta,low gamma, high gamma) was fed into a clustering detection algorithm13. This 

algorithm does not require specifying the number of clusters (unlike k-means). We used the 

same temporal averaging as for LDA analysis (a 10 minute window sampled every two 

minutes). We tested a second clustering approach that relies on capturing known physiological 

events in clinic and using them as a template to classify at-home data. These states have been 

well defined in-clinic and correlate with motor impairment in PD but it is unknown if they would 

be recapitulated in the home environment. We computed the normalized spectral power from a 

two minute recording in-clinic in which patients were off meds (avoided taking levodopa 

medication for the past 12 hours) or on meds (after a dose of levodopa medication). We used 

each state as a template and classified each at-home PSD based on the smallest Euclidian 

distance to each of the two in-clinic templates.  
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Statistical analysis. To assess the statistical significance of in-clinic grouped data we use 

general estimating equations (GEE) to control for non-independence of our repeated measure 

test (subject recording site) in the beta and gamma range. We used the same approach to test 

the significance of at home-grouped data. As input we used the median PSD value from each 

state classification provided by the PKG watch. We also assessed the significance of each 

subject’s classification using a non-parametric approach detailed above in clustering algorithms 

and state detection.  

 

Testing embedded adaptive stimulation. Embedded adaptive stimulation was tested using the 

protocol of Little et al14. that triggered stimulation off of beta bursts15. We used the +2-0 STN 

contact configuration and filtered beta band activity on board the device between 17.58-

21.48Hz. Data were sampled at 250Hz with an FFT size of 64 points and three FFT’s were 

averaged before being input into the onboard linear detector. State change blanking was set at 

4 FFT windows to avoid a limit-cycle (self-triggering) in which the stimulation changes are 

coupled into beta band power estimates. The ramp rate was set at 4.58 mA/sec and the ramp 

down rate was set at 1.56 mA/sec. The stim rate was set at 130.2 Hz, pulse width at 60us and 

stim amplitude was set at 0mA below threshold and 2.7 mA above threshold.  

 

The use of “sandwich” mode is important for achieving this, in which strong signal artifact 

(several orders of magnitude larger than the signal) can be greatly reduced by symmetric 

bipolar sensing around a monopolar stimulation contact.  This does effectively reduce the 

number and configuration of contacts that can be used for stimulation, when sensing is active.  
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Figure S1. Superimposed STN and motor cortex power spectra (left two columns) and STN-
motor cortex coherence (right column) from averaged 10 minute nonoverlapping data segments, 
showing all data collected during home recordings for all subjects. Both recording channels for 
each target (0-2 and 1-3 for STN, 8-10 and 9-11 for motor cortex) are represented. Each row 
shows all data from one study subject. Vertical dotted lines at 13 and 30 Hz demarcate the beta 
band, for visual clarity.   
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Table 1. Demographics of five implanted subjects under NIH UH3 “Closed loop deep brain stimulation in Parkinson’s disease”.  All clinical 
rating scores are obtained preoperatively within 90 days of DBS implantation. 

Subjec
t ID 

Age at 
surgery 
and 
gender 

Duration of 
motor sx 
(years) 

MOC
A 

levodopa 
equivalent
s* 

UPDRS III 
off 
medication 
score  

% change 
UPDRS 
when on 

time with 
dyskinesia** 

off tremor 
scores*** 

RCS01 54,M 7 26 1425 49 90% 4 left:2 

right:0 

RCS02 63,M 19 30 955 45 51% 1 

 

left: 3 

right: 4 

RCS03
**** 

28,F 12 27 1550 61 73% 2 left: 12 

right: 9 

RCS04 40,M 4 30 1314 41 65% 1 left: 6 

right: 3 

 

*levodopa equivalents calculated with reference to: 

Tomlinson CL1, Stowe R, Patel S, Rick C, Gray R, Clarke CE. Mov Disord. 2010 Nov 15;25(15):2649-53. doi: 10.1002/mds.23429. Systematic 
review of levodopa dose equivalency reporting in Parkinson's disease. 

** UPDRS part IV item 4.1   

*** sum of all updrs-III tremor scores for each side, off medication (UPDRS-III items 16a through 17d) 

****positive for Parkin mutation 

sx - symptoms  

MOCA - Montreal Cognitive Assessment 
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Table S1. Lead locations from fusion of postoperative CT to preoperative MRI 

subject AC-PC 
coordinates 
of DBS lead 
tip: left* 

AC-PC 
coordinates 
of DBS lead 
tip: right* 

Lateral and 
AP 
coordinates 
of lead at 
dorsal 
STN:left ** 

Lateral and 
AP 
coordinates 
of lead at 
dorsal 
STN:right** 

Sagittal 
plane 
approach 
angle 
(degrees 
from 
horizontal) 

Coronal 
plane 
approach 
angle 
(degrees 
from 
vertical) 

Ecog 
laterality 
(mm) at 
central 
sulcus: left 

ECoG 
laterality at 
central 
sulcus: right 

RCS01 -9.8, -3.3,-
6.5 

-9.1, -2.5, -
6.9 

-10.1, -2.4 10.2, -1.1 Left: 60.7 
Right:67.1 

Left:-14.6 
Right:20.0 

29.0 mm 
(contact 1) 

24.8 mm 
(contact 1) 

RCS02 -11.8, -3.4, 
 -5.8 

9.1, -4.0, -
5.6 

-11.4, -2.7 10.9,-3.2 Left: 51.4 
Right: 52.9 

Left: -17 
Right: 8.7 

21.1 
(contact 1) 

28.9 (contact 
1) 

RCS03 -10.2, -3.9,  
-7.0 

9.4,-1.4, -
6.6 

-10.9, -3.2 10.4, -0.2 Left:70.6 
Right: 61.6 

Left: 16.6 
Right: 
21.6 

25.4 
(contact 2) 

29.3 
(contact 2) 

RCS04 -10.5, -3.0, 
 -6.8 

9.4, -1.1, -
7.8 

-11.3, -1.5 10.2, 0 Left: 64.8 
Right:66.5 

Left:16.7 
Right:14.4 

33.1 
(contact 1) 

22.3 (contact 
1) 

*coordinates are lateral, anteroposterior, and vertical with respect to midpoint of line connecting the anterior and posterior commissures 

** coordinates are lateral and anteroposterior, in the axial plane 4 mm inferior to the line connecting anterior and posterior commissures 
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