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Abstract 16 

Broadly neutralizing antibodies (bNAbs) of HIV-1 hold promise of eliciting long-term HIV-1 17 

remission. Surprisingly, the bNAb VRC01, when administered concomitantly with the cessation 18 

of successful antiretroviral therapy (ART), failed rapidly in chronic HIV-1 patients. We 19 

hypothesized that the failure was due to VRC01-resistant strains that were formed before ART 20 

initiation, survived ART in latently infected cells, and were reactivated during VRC01 therapy. 21 

Current assay limitations preclude testing this hypothesis experimentally. We developed a 22 

mathematical model based on the hypothesis and challenged it with available clinical data. The 23 

model integrated within-host HIV-1 evolution, stochastic latency reactivation and viral dynamics 24 

with multiple dose VRC01 pharmacokinetics. With a virtual patient population, model predictions 25 

quantitatively captured data from two independent clinical trials. Accordingly, we attributed 26 

VRC01 failure to single-mutant VRC01-resistant proviruses in the latent reservoir triggering viral 27 

recrudescence, particularly during trough VRC01 levels. Accounting for pre-existing resistance 28 

may help bNAb therapies maximize HIV-1 remission.           29 

  30 
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INTRODUCTION 31 

Antiretroviral therapy (ART) for HIV-1 infection rapidly suppresses viremia to 32 

undetectable levels and curtails disease progression but is unable to eradicate the virus.1 33 

Discontinuation of ART, even long after viremic control is established, typically leads to rapid 34 

viral rebound, often within days to weeks of discontinuation, and to progressive disease.2 The 35 

rebound is caused by a reservoir of latently infected cells3 that is formed soon after infection4. The 36 

reservoir is sustained by cell proliferation5,6, which can continue even when ART has stopped new 37 

infections, allowing the reservoir to exist long-term7. The reservoir can get reactivated 38 

stochastically and reignite infection once ART is stopped8,9. ART must therefore be administered 39 

lifelong. In a remarkable breakthrough, the VISCONTI study showed that when ART is 40 

administered early in infection, some individuals can maintain viremic control for many years after 41 

the cessation of ART10. This study has raised hopes of a functional cure, or long-term remission, 42 

of HIV-1, where the viremic control once established by ART can be maintained without lifelong 43 

treatment11. The success of ART in inducing post-treatment control, however, is small: only ~5-44 

15% of the patients treated achieve lasting post-treatment control12. Enormous efforts are 45 

underway to improve this success rate11.  46 

One strategy that holds promise is to administer broadly neutralizing antibodies (bNAbs) 47 

of HIV-1 for a short period post-ART, i.e., during an analytical treatment interruption (ATI)13,14. 48 

bNAbs target diverse viral genomic variants15,16, and are expected to suppress viremia arising from 49 

the reactivation of latently infected cells17,18. Simultaneously, they may engage the host immune 50 

system19, potentiating it to maintain the viremic control long-term20,21. Two recent clinical trials 51 

tested this strategy using the bNAb VRC0117. VRC01 targets the CD4 binding site on the HIV-1 52 

envelope with high breadth and potency15,22. When it was administered to chronically infected 53 
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patients who had achieved undetectable viremia with ART, the duration of viremic control was 54 

observed to increase only marginally, by a median of ~2-4 weeks, beyond historical controls17. In 55 

the historical control group, which was not treated post-ART, viral rebound occurred in ~2.6 weeks 56 

on average after ART interruption23. Why VRC01 was ineffective in maintaining remission longer 57 

is unclear. Unravelling the causes of this ineffectiveness is important to optimizing VRC01 usage, 58 

which is also in large clinical trials for preventing the transmission of infection24, and to expose 59 

potential vulnerabilities of other bNAbs.  60 

VRC01 exhibits potent antiviral activity in vivo25, including at its trough levels in 61 

patients26. Yet, in the trials above17, viral rebound was observed in most patients when VRC01 62 

levels in circulation were significantly higher than its in vitro suppressive concentration (or IC50), 63 

implicating the role of resistance. Mutations that confer resistance to bNAbs are well 64 

documented27–30. Indeed, VRC01-resistant strains were detected in the breakthrough viral 65 

populations in the trials above17. The rapid virological breakthrough during treatment, especially 66 

given the absence of circulating virions at the time of ART cessation and the potent activity of 67 

VRC01 against the wild-type, suggests that VRC01 resistance might have existed before VRC01 68 

therapy. Here, we therefore hypothesized that pre-existing VRC01-resistant proviruses formed 69 

before ART and contained in the latent reservoir could underlie the failure of VRC01 therapy.  The 70 

inability to detect minority viral variants as well as latently infected cells using current assays31,32 71 

highlights the challenge associated with testing our hypothesis experimentally. Current assays can 72 

rarely detect variants below a frequency of ~1%33, implying that, given the prevalent estimates of 73 

the latent reservoir size of 
5 810 10− cells4,34, variants present in as many as 103 latently infected 74 

cells may go undetected and be responsible for therapy failure. Indeed, in many individuals who 75 
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failed rapidly in the trials above17, resistance could not be detected pre-treatment. As an alternative 76 

approach, therefore, we resorted to mathematical modeling.   77 

A number of mathematical models have been developed in recent years to describe latent 78 

cell infection and dynamics and its role in the outcomes of treatments35–46. Models have also been 79 

constructed, independently, for describing viral evolution and drug resistance, especially in the 80 

context of ART47–51. Describing the failure of VRC01 therapy required integrating these two 81 

independent formalisms, of viral evolution and latent reservoir reactivation, a task not 82 

accomplished so far because of the complexity involved. HIV-1 evolution involves mutation, 83 

recombination, fitness selection, and random genetic drift, which together define the timing and 84 

speed of the development of drug resistance during ART49–53. Latent cell reactivation is an 85 

intrinsically stochastic process8,43,44, following which the virions released must establish lasting 86 

infection, which is not guaranteed35,39,42, especially in the presence of bNAbs. Here, we developed 87 

a framework that integrates these processes by recognizing that the dynamics of viral evolution 88 

and latent cell reactivation could be decoupled in the context of post-ART bNAb therapy. Viral 89 

evolution primarily occurs pre-ART, where viral and productively infected cell populations are 90 

large and the contribution from latently infected cells to the dynamics can be ignored. Latent cell 91 

reactivation leading to treatment failure occurs during bNAb therapy, when active viral replication 92 

is small and so viral evolution can be ignored. These processes are linked by VRC01 resistant 93 

strains, which are predominantly formed before therapy and are harbored in latently infected cells 94 

and could get reactivated during therapy. Developing a model with this strategy, we were able, for 95 

the first time, to capture data from human clinical trials involving bNAb-based interventions 96 

quantitatively, offering an explanation for the inadequate effectiveness of VRC01 in maintaining 97 

remission, and providing a framework for rational treatment optimization.         98 
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RESULTS 99 

Mathematical model  100 

 We considered the scenario where chronically infected individuals with viremic control 101 

established with long-term ART are administered VRC01 during an ATI, as in recent clinical 102 

trials17. We developed a model to predict the ensuing remission times based on the hypothesis that 103 

viral strains resistant to VRC01 harbored in latently infected cells were responsible for virological 104 

breakthrough (Fig. 1). We provide an overview of the model here; details are in Methods.  105 

We first considered a single infected individual (Fig. 1(a)). We estimated the diversity of 106 

the viral population in the individual at ART initiation using a detailed model of viral dynamics 107 

and evolution that considered target cells, free virions, and productively infected cells, and 108 

included mutation, cellular superinfection, recombination, and fitness selection based on the 109 

relative fitness of dominant VRC01 resistance mutations. From the diversity, we obtained the 110 

frequencies of productively infected cells containing different mutant proviruses resistant to 111 

VRC01. We let the latent reservoir harbor proviruses with the same frequencies, as has been done 112 

previously53. We recognized that of the latter cells, those harboring the most frequent mutant 113 

provirus were the most likely to re-establish infection.  We employed a stochastic model to 114 

estimate the waiting time for the reactivation of such latent cells and tracked the ensuing dynamics 115 

during VRC01 therapy until the infection grew to detectable levels, at which point the therapy was 116 

deemed to have failed. During the simulations, we let the efficacy of VRC01 vary continuously 117 

with time based on its pharmacokinetic profile, which we estimated from independent fits to data.  118 

The parameter values employed for estimating the proviral frequencies and latent cell reactivation 119 

are listed in Tables 1 and 2, respectively. 120 
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Figure 1: Overview of the model. (a) Dynamics at the individual patient level. We used a model 122 

of within-host HIV-1 evolution to estimate the pre-ART frequencies of wild-type and VRC01-123 

resistant mutants (left), letting them be identical in productively and latently infected cells. ART 124 

eliminates the former but not the latter cells (middle). We then used a stochastic model of latent 125 

cell reactivation and viral growth to estimate the time of virological failure following VRC01 126 

therapy (right) for a given size of the latent reservoir and the fitness of the VRC01 resistant strain. 127 

(b) Dynamics at the patient population level and the outcomes of clinical trials. We created a 128 

virtual patient population by sampling the latent cell pool size and mutant viral fitness during 129 

VRC01 therapy from defined distributions (left). For each individual, we performed stochastic 130 

simulations as in (a) and estimated the time to virological failure (middle), from which we obtained 131 

the distribution of breakthrough times and Kaplan-Meier survival plots (right), which we compared 132 

with clinical data. 133 

 134 

 Next, we constructed a large virtual patient population based on inter-patient variations in 135 

the size of the latent reservoir and the fitness of mutant viral strains, to reflect variations in host 136 

and viral factors, respectively, that could influence the outcomes of therapy (Fig. 1(b)). We applied 137 

our model above to each virtual patient and estimated the time of therapy failure. From these 138 

simulations, we estimated the distribution of remission times in the population and constructed 139 

Kaplan-Meier survival plots. We used data from one clinical trial to estimate the parameters 140 

defining the inter-patient variations in the virtual patient population and used them without 141 

adjustable parameters to predict the outcomes of another clinical trial, validating our model and 142 

the parameter estimates.      143 

 144 

Frequencies of VRC01-resistant mutants pre-existing in the latent reservoir 145 

  To estimate the frequencies of VRC01 resistant proviruses that may exist in the latent 146 

reservoir and cause VRC01 failure, we considered viral evolution before the initiation of ART in 147 

a chronically infected individual. During ART, viral replication is quickly halted5,6, leaving little 148 
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scope for further viral diversification. We considered four mutations in the HIV-1 envelope region 149 

reported to be highly resistant to VRC01: N279K, N280D, R456W and G458D27. Resistance could 150 

come from strains carrying these mutations singly, in pairs, in triplets, or all together. We 151 

considered all these strains in addition to the wild-type, or VRC01 sensitive, strain in our model. 152 

The frequencies of the strains would depend on their relative fitness, which, following previous 153 

studies54–56, is defined in our model by two components: infectivity and replicative ability. The 154 

relative infectivity of each of the strains involved has been estimated in independent experiments27, 155 

which we employed (Table S1). The replicative abilities can be estimated using competitive 156 

growth assays57, which have been reported for some of the strains27. From the assays, the two 157 

fittest single mutant strains, N279K and N280D, appeared to have replicative fitness not 158 

significantly different from the wild-type27. We analysed data available from the assays for the 159 

other two single mutants, R456W and G458D, and the quadruple mutant27 using a previously 160 

developed formalism57 and estimated their replicative fitness (Fig. S1). For all the double and triple 161 

mutants, as an approximation, we set the replicative fitness to values predicted assuming zero 162 

epistasis. (This assumption is not critical to our findings, which, as we show below, depend 163 

primarily on the single mutant frequencies.) The fitness values are in Table S1. With these fitness 164 

values and all other parameters representative of chronic HIV-1 infection (Table 1), we estimated 165 

the frequencies of productively infected cells harbouring the different mutant proviral genomes 166 

(Fig. 2).  167 

Our model predicted that the fittest mutant strain, N279K, would exist at a frequency of 168 

approximately 2.3×10-4, the highest among the different mutants (Fig. 2(a)). Other single mutants 169 

were at frequencies ~5-fold lower. The double mutants had frequencies of ~10-9 (Fig. 2(b)), triple 170 

mutants of ~10-14 (Fig. 2(c)), and the quadruple mutant of ~10-19 (Table S1). These frequencies are 171 
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similar but not identical to those expected from the mutation-selection balance, where a strain with 172 

n mutations would exist at a frequency of ~(/a)n, with a the equal per mutation fitness penalty 173 

and  the mutation rate47. For N279K, for instance, where a~0.14, considering both relative 174 

replicative fitness and relative infectivity (Table S1), and with ~3×10-5 (Ref. 50), the mutation-175 

selection balance would yield a frequency of 2.14×10-4, slightly lower than that predicted by our 176 

model.  177 

 178 

Table 1: Parameters values used in the model (Eqs. 1-10) for estimating mutant frequencies  179 

Parameter Description Value Source 

  Production rate of 

uninfected cells 

104 cells/mL/day Ref. 50 

Td  Per capita death rate of 

uninfected cells 

0.01/day 

0k  Infection rate constant for 

uninfected cells 

2.4×10-8 mL/day 

1k  Cellular superinfection 

rate constant 
00.7k  

  Per capita death rate of 

productively infected cells 

1/day 

p  Viral production rate  4,792 virions/cell/day 
c  Virion clearance rate 23/day 
  Mutation rate 3×10-5 substitutions/site/replication 
  Recombination rate 8.3×10-4 crossovers/site/replication  

i   Relative infectivity Listed in Table S1 Ref. 27 

i   Replicative fitness Listed in Table S1 Fig. S1 

 180 

  181 

Following previous models, where a constant fraction of infection events is assumed to 182 

lead to latency37,39,42, the frequencies of the mutants are expected to be similar in productively and 183 

latently infected cells. The latent reservoir is not affected by ART directly, and even in the absence 184 

of active viral replication, the latent reservoir would decrease in size extremely slowly, taking 185 
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years7. Thus, one could safely assume that the latent reservoir at the initiation of ART would exist 186 

nearly intact post-ART and at the start of VRC01 therapy. Given the latent reservoir size, L0, of 187 

~105-108 cells in chronically infected individuals34,39, the expected number of cells infected with 188 

the N279K mutant proviruses would be ~23-23000. The corresponding numbers would be ~10-189 

5000 for the other single mutants (Fig. 2). For the double and triple mutants, however, the numbers 190 

would be <0.1 and <10-6, respectively. On average, thus, our calculations predicted that most 191 

latently infected cells would carry wild-type, or VRC01-sensitive proviruses. A small number, 192 

~10-104 cells, would carry single mutants resistant to VRC01. Cells carrying higher mutants were 193 

unlikely to exist. The single mutants, too, may not be detectable in most cases, given current assay 194 

limits (see Introduction). 195 

 With this description of the frequencies of VRC01 resistant proviruses in the latent cell 196 

reservoir, we examined the dynamics of VRC01 failure due to latent cell reactivation. 197 

 198 

 199 

 200 

Figure 2: Pre-existing frequencies of mutants. Frequencies of (a) single mutants, (b) double 201 

mutants, and (c) triple mutants, resistant to VRC01, estimated by our model (Methods). The 202 

frequencies, including of the wild-type and the quadruple mutant, not shown here, are listed in 203 

Table S1. 204 

 205 
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de novo generation of mutants during VRC01 therapy  206 

 From the above estimates, the lower end of the spectrum of latent cell numbers carrying 207 

single mutant proviruses, ~10 cells, is small enough that it is possible that in some individuals, due 208 

to stochastic variations in the mutant frequencies and/or infected cell numbers, the latent reservoir 209 

contains no resistant proviruses. In such a scenario, de novo mutation after the reactivation of latent 210 

cells carrying VRC01 sensitive proviruses would have to give rise to resistance during VRC01 211 

therapy. Even in the presence of latent cells carrying single mutant proviruses, the large majority 212 

of cells carrying VRC01 sensitive strains may result in de novo mutations following reactivation 213 

of latent cells carrying VRC01 sensitive proviruses being the predominant mechanism of VRC01 214 

failure. We developed a model to test this possibility (Text S1) and found that the estimated 215 

virological breakthrough times were far larger (over 100 days) than those observed clinically (~20 216 

days) (Fig. S2). Although reactivation of such cells was more frequent, given their larger numbers, 217 

than the cells carrying mutant proviruses, such reactivation did not lead to lasting infection in our 218 

predictions because VRC01 successfully neutralized the viruses produced. Mutations, being 219 

intrinsically rare, did not lead to rapid enough de novo development of resistance. The VRC01 220 

failure seen clinically was thus unlikely to be due to the reactivation of latently infected cells 221 

carrying VRC01 sensitive proviruses. The more likely mechanism therefore was the reactivation 222 

of latently infected cells carrying single mutant proviruses resistant to VRC01. We estimated 223 

remission times based on the latter mechanism next. 224 

  225 
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Table 2: Parameters values used in the model of viral rebound (Eqs. 11-20). Parameters not 226 

listed are in Table 1.  227 

Parameter Description Value Source 

0L  Initial latent reservoir size  
10 0( ) (6.3,0.43)Log L N  cells 

(lognormal distribution) 

Fig. S3 

l  Per capita proliferation rate of 

latently infected cells* 

0.0042/day  

 

Refs. 

37,39 

ld  Per capita death rate of latently 

infected cells* 

0.004/day  Ref. 37 

ca  Per capita activation rate of latently 

infected cells* 

7.8×10-4 /day Refs. 

37,39 

f  Fraction of new infections that lead 

to latency 

610−
 Ref. 37 

k  Infectivity$  1.6×10-12 /day Ref. 50 
p  Viral production rate (2100,200)p N  

virions/cell/day (normal 

distribution) 

Refs. 

39,42 

U  Uninfected cell population$  1.5×1010 cells Ref. 50 

ART  ART efficacy 0.99 Assumed 

50,mIC  50% inhibitory concentration 

for the N279K mutant& 
800 g/mL 

 

Fig. S4 

 

1A  Portion of VRC01 dose associated 

with first phase decay# 
451 (320, 580) g/mL  Best-fit 

(Fig. 4(a) 

inset) 

 
2A  Portion of VRC01 dose associated 

with second phase decay# 
1253 (910, 1596) g/mL 

 

1  First phase decay rate# 0.093 (0.078, 0.109) /day  

2  Second phase decay rate# 1.374 (0.752, 1.995) /day 
*

l , ca , and ld  together yield a half-life of ~40 months for the latent pool, consistent with 228 

experiments7.  229 
$Corresponding to 15 L of body fluid volume. 230 
&Estimates indicate a value much larger than 50 g/mL27, but a precise value is lacking.  231 

#95% confidence limits are in brackets. 232 

 233 

  234 
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Growth of pre-existing mutants during VRC01 therapy 235 

We focussed on latently infected cells carrying proviruses with the N279K mutation, 236 

which, with their 5-fold higher prevalence than other mutants, were the most likely to be 237 

reactivated. Stochastic simulations (Methods) with a constant VRC01 efficacy against the mutant, 238 

indicated that the latent cell pool did not vary significantly over the durations considered (Fig. 239 

3(a)), consistent with experiments58. Reactivation leading to the growth of productively infected 240 

cells carrying proviruses with the N279K mutation occurred over a duration of a few days to weeks 241 

(Fig. 3(b)). Detectable viremia, however, took longer given that the viral levels had to rise to 20 242 

copies/ml (Fig. 3(c)). Defining the time for viremia to become detectable as the time of the failure 243 

of VRC01 therapy, or the breakthrough time, the simulations yielded a distribution of breakthrough 244 

times ranging from 20-100 d when L0 was 106 cells (Fig. 3(d)), consistent with observations17, 245 

suggesting that virological breakthrough was likely to be due to the reactivation of cells infected 246 

latently with single mutant VRC01-resistant strains.   247 

The breakthrough time depended on the time for latent cell reactivation as well as for the 248 

subsequent establishment of successful infection. Thus, higher L0, which decreased reactivation 249 

times, led to earlier breakthrough (Fig. 3(e)). Increasing the viral production rate (Fig. 3(f)), 250 

lowering drug efficacy ((Fig. 3(g)) or increasing viral fitness (Fig. 3(h)), which improved the 251 

chances of establishment of successful infection after reactivation, all led to more rapid virological 252 

breakthrough. These factors are likely to vary across individuals. We examined next how their 253 

influence would manifest in clinical trials and whether our simulations could capture the VRC01 254 

failure seen in the trials.  255 

 256 
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 257 

 258 

Figure 3: Dynamics of VRC01 failure due to pre-existing resistance. Representative 259 

trajectories of (a) the latent cell pool harboring resistant proviruses, (b) activated cells, and (c) 260 

VRC01-resistant viral load, obtained by our stochastic simulations (Methods). The different colors 261 

represent individual trajectories. Black dashed line shows the detection limit, crossing which 262 

marks clinical rebound. (d) The distribution of rebound times obtained from 5000 realizations. 263 

Here, the initial population of latently infected cells carrying the resistant mutants was set to 264 

2.3×10-4×L0, where L0=106 cells, and the VRC01 efficacy against the mutant to m=0.3. Other 265 

parameters used are in Tables 1 and 2. Variation of the distribution is shown with (e) initial latent 266 

pool, L0 (cells), (f) viral production rate (virions/cell/day), (g) VRC01 efficacy, and (h) mutant 267 

fitness.  268 

 269 

 270 

Multimodal distribution of breakthrough times in a virtual patient population  271 

 We focused here on the A5340 trial17 where VRC01 therapy was initiated a week before 272 

the end of ART on patients with well-controlled viremia. 3 doses of VRC01 were administered, 273 

with a gap of 3 weeks between successive doses. Virological breakthrough was detected when the 274 

viral load crossed 20 copies/ml. To mimic the trials, it was necessary not only to account for inter-275 

patient variations but also to consider time-varying efficacies of drugs within an individual, which 276 
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can significantly affect the development of drug resistance49,59. We therefore first considered 277 

VRC01 pharmacokinetics and fit a model of biphasic decay to data of the VRC01 plasma 278 

concentration profile following a single intravenous dose25 (Fig. 4(a) inset). Using the resulting 279 

best-fit parameters, we predicted the multiple dose pharmacokinetics for the dosing protocol above 280 

and estimated the time-varying efficacy, m (Fig. 4(a)), which we employed in our stochastic 281 

simulations. 282 

 Next, we created a virtual patient population to mimic inter-patient variations expected in 283 

clinical trials. A number of host factors, including HLA types, are known to affect the ability of 284 

individuals to control viremia60. Similarly, viral factors have also been argued to determine the 285 

level of viremia in chronic infection61. A convolution of host and viral factors is expected to 286 

determine clinical outcomes. The specific factors involved and how they vary across individuals, 287 

however, is not fully established46,60. Here, we employed a parsimonious approach where we let 288 

two parameters, one reflective of variations in host factors and the other viral factors, define the 289 

inter-patient variations. We thus constructed a virtual patient population with different initial latent 290 

pool sizes, L0, subsuming variations in all host-factors, and viral production rates, p, subsuming 291 

variations in all viral factors. For each individual, we sampled L0 and p independently from pre-292 

defined distributions (Methods) and ran a stochastic simulation to describe the ensuing dynamics 293 

resulting in virological breakthrough. 294 

 The simulated dynamics showed breakthrough times varying from a few days to a few 295 

months post cessation of ART across individuals (Fig. 4(b)). Following breakthrough, the viral 296 

load rose sharply. It was suppressed partially following the administration of a VRC01 dose, but 297 

then rose again once the VRC01 level fell. The patterns were similar to the viral load resurgence 298 

patterns seen in patients17. From the breakthrough data, we estimated the distribution of virological 299 
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breakthrough times in this virtual patient population (Fig. 4(c)). We found that the distribution was 300 

multimodal. Until a week or so following the cessation of ART, no breakthrough was expected 301 

based on the distribution because of high VRC01 levels in circulation. As the VRC01 302 

concentration declined, breakthrough began. The distribution of breakthrough times peaked when 303 

the VRC01 concentration was at its trough level, just before the administration of the second 304 

VRC01 dose. Following dosing, the distribution dropped steeply, and rose again as the VRC01 305 

concentration waned. It then attained a peak that was smaller than the first peak and began to fall 306 

subsequently. The smaller size of the peak and the subsequent fall was due to a convolution of the 307 

effect of VRC01 and the natural distribution of breakthrough times in the absence of treatment. 308 

Post ART cessation, it has been shown that the distribution of mean rebound times is unimodal 309 

and declines following its peak41. In other words, after the peak, the population of individuals that 310 

suffers breakthrough decreases with the breakthrough time. In our simulations, this decline is what 311 

explains the smaller second peak compared to the first and the drop in the distribution after the 312 

second peak although the VRC01 levels were low. Of course, with the third dose, the distribution 313 

dropped sharply again due to the rise in the VRC01 level and then rose as the VRC01 level waned. 314 

The distribution attained a third peak that was even smaller than the second peak and ended in a 315 

long tail representing the small fraction of individuals who experienced longer remission times 316 

than studied in our simulations. 317 

Based on the distribution, we constructed a Kaplan-Meier survival plot, which at each time 318 

point marked the percentage of the virtual patient population that was still under remission, defined 319 

as viremia <200 copies/mL17. The plot, as expected, indicated no failure for a short period, ~1-2 320 

weeks, after ART, then dropped sharply, reaching 50% failures in about 4 weeks, and displayed a 321 

long tail with a small percentage, ~10%, maintaining remission for longer than the duration of our 322 
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simulations (100 days) (Fig. 4(d)). We examined next whether these predictions could 323 

recapitulate clinical observations.   324 

 325 

 326 

Figure 4: Recapitulating VRC01 failure in the A5340 327 

trial. (a) Fits of our model of single-dose plasma VRC01 328 

pharmacokinetics (line) to data25 (symbols) (Inset). Best-329 

fit parameter estimates are in Table 2. Corresponding 330 

multiple dose concentration profiles (blue) and the 331 

VRC01 efficacy against a mutant strain with IC50=800 332 

g/mL (green) are shown. Black arrows indicate VRC01 333 

infusions. (b) Stochastic realizations of the dynamics in 334 

a virtual population of 20000 patients, manifesting as 335 

changes in plasma viremia. Each grey line represents a 336 

virtual patient. Some randomly chosen trajectories are 337 

colored to aid visualization of the dynamics. Note that 338 

ART was continued after the first infusion of VRC01 for 339 

1 week. The detection limit of 20 copies /mL is marked 340 

as a black dashed line, crossing which marks clinical viral 341 

rebound. (c) The corresponding distribution of rebound 342 

times (orange). Rebound times of the participants in the 343 

A5340 trial with a 1-week uncertainty period, 344 

representing the gap between successive viral load 345 

measurements, are also marked. (d) Kaplan-Meier plot 346 

for the A5340 trial based on the percentage of patients 347 

with viremia >200 copies/mL. Each light blue line is a 348 

survival curve generated by randomly choosing 20 349 

patients from the virtual population above. The dashed 350 

blue line is the mean of all these survival curves. The data 351 

from the trial is shown as a red solid line. The green 352 

dashed line shows the survival plot when failure occurs 353 

because of wild type or sensitive strains. 354 

 355 

 356 

 357 

 358 
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Model calibration to recapitulate the A5340 trial 359 

 Comparing our simulations with data required knowledge of the distributions of L0 and p 360 

in patients. We chose p to mimic viral growth rates after rebound. The growth rate can vary from 361 

0.4-1.5/day39,42. We therefore chose the mean value of p to yield a growth rate of 1/day. Further, 362 

we let it follow a normal distribution with a standard deviation that ensured positive growth rate 363 

across two standard deviations from the mean. The resulting distribution of p is mentioned in Table 364 

2. Although estimates of the variations in L0 exist34,39, in our simulations, they must accurately 365 

mimic the variations in the pool carrying resistant proviruses, which are not known. We therefore 366 

adopted the following approach. We decided to employ data from the A5340 trial to estimate 367 

parameters characterizing the distributions of L0 and then validate them using an independent trial, 368 

the NIH trial. Both the trials involved small sample sizes, ~10 patients17. Non-linear mixed effects 369 

modeling, designed particularly to estimate parameter distributions using clinical data from small 370 

sample sizes, works with deterministic but not stochastic models62,63. Consequently, we adopted a 371 

heuristic approach to estimate the distributions of L0. We recognized that the product acL0, with ac 372 

the latency reactivation rate, determines the waiting time for viral recrudescence; the larger the 373 

product, the earlier would be the reactivation of the latent reservoir. We fixed ac based on previous 374 

estimates37,39. (Note that previous studies report a wide range for ac.
35,39,42) Through small test 375 

simulations, we identified approximate values of L0 that mimicked the mean waiting times seen in 376 

patients in the A5340 trial. We then performed more detailed simulations by varying the 377 

distribution of L0 around the approximate parameters and identified those distributions that best 378 

described the Kaplan-Meier survival data from the A5340 trial (Fig. S3). The resulting parameters 379 

are also in Table 2. Similarly, we explored the implications of variations in the IC50 of VRC01 380 

against the mutant and found that values 800 g/mL captured the data well (Fig. S4).  381 
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Simulations with the resulting distributions recapitulated data from the A5340 trial in two 382 

ways. First, we found that 11 of the 12 patients who experienced treatment failure despite high 383 

concentrations of VRC01 in circulation17 had breakthrough times close to the peaks in the 384 

multimodal distribution of breakthrough times we predicted (Fig. 4(c)). The number of patients 385 

with breakthrough times associated with the different peaks was also proportional to the area under 386 

the peaks. Note that the area under a peak is a measure of the probability, and hence the frequency, 387 

of failure corresponding to the times associated with the peak. 6 patients failed during the times 388 

associated with the first peak, 4 with the second peak, and one with the third peak. The areas under 389 

the peaks from our simulations yielded failure percentages of 35%, 44%, and 21%, respectively. 390 

The first two peaks, thus, appeared to have comparable failure percentages, whereas the third was 391 

substantially smaller. Given the small sample size in the clinical trial, the distribution of patients 392 

into the three peaks appeared to be consistent with the estimated failure percentages. One patient 393 

(A01) appeared to fail at the trough in the distribution after the first peak, and this could be due to 394 

stochastic effects or variations not captured in our virtual population. 395 

 Second, Kaplan-Meier plots based on breakthrough times, i.e., times for the viral load to 396 

reach 200 copies/ml, from the virtual patient population were in close agreement with the clinical 397 

data (Fig. 4(d)). Here, to account for the small sample size in the trials, we chose many samples of 398 

20 individuals each, selected randomly from our virtual patient population, and constructed 399 

Kaplan-Meier curves for each sample. The clinical data fell within the ranges defined by these 400 

curves. Further, the mean of these curves was in close agreement with the data. Accordingly, 50% 401 

of the treated population exhibited a breakthrough time of >3 weeks from the end of ART (or 4 402 

weeks from the start of VRC01 therapy), consistent with the clinical data. The simulations tended 403 

to over-predict the clinical data for long remission times (>40 d). We attributed this to the presence 404 
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of individuals with strong immune responses and/or small latent cell populations, including post-405 

treatment controllers60, who may not be seen in the small population of 12 individuals in the A5340 406 

trial. Secondly, after the effect of VRC01 wanes, failure may also occur due to the reactivation of 407 

wild-type virus. Indeed, simulations with the wild-type virus alone (Text S1) showed that once the 408 

VRC01 level declined sufficiently, breakthrough with the reactivation of wild-type virus would 409 

become more likely than with the mutant virus (green dashed line in Fig. 4(d)). Our simulations, 410 

thus, successfully recapitulated the data from the A5340 trial.  411 

 412 

Model validation with the NIH trial  413 

 To test and validate our model and the parameter estimates, we applied our simulations to 414 

describe a second, independent clinical trial, the NIH trial17, where 10 individuals were subjected 415 

to VRC01 therapy during an ATI. Treatment commenced 3 days before ART cessation. 416 

Subsequent doses were administered on weeks 2 and 4 and then every month until 6 months. To 417 

describe the resulting breakthrough data, we created a virtual population exactly as above and 418 

subjected it to therapy following the clinical protocol. VRC01 pharmacokinetics was predicted 419 

based on the corresponding dosing times (Fig. 5(a)). All the parameters were kept the same as 420 

those as in our simulations of the A5340 trial.  421 

  422 
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 423 

 424 

Figure 5: Recapitulating VRC01 failure in the NIH 425 

trial. (a) Multiple dose concentration profiles (blue) 426 

and the VRC01 efficacy against a mutant strain with 427 

IC50=800 g/mL (green). Black arrows indicate VRC01 428 

infusions. (b) Stochastic realizations of the dynamics in 429 

a virtual population of 10000 patients, manifesting as 430 

changes in plasma viremia. Each grey line represents a 431 

virtual patient. Some randomly chosen trajectories are 432 

colored to aid visualization of the dynamics. ART was 433 

continued after the first infusion of VRC01 for 3 days 434 

(grey shaded region). The detection limit of 40 copies 435 

/mL is marked as a black dashed line, crossing which 436 

marks clinical viral rebound. (c) The corresponding 437 

distribution of rebound times (orange). Rebound times 438 

of the participants in the NIH trial are marked along 439 

with their uncertainties based on measurement 440 

frequencies. (d) Kaplan-Meier plot for the NIH trial. 441 

Each light blue line is a survival curve generated by 442 

randomly choosing 20 patients from the virtual 443 

population above. The dashed blue line is the mean of 444 

all these survival curves. The data from the trial is 445 

shown as a red solid line.  446 

 447 

 448 

 449 

 450 

 451 

 452 

 453 

 454 

 455 

 456 

  457 

  458 
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We found that viral rebound trajectories were similar to those in the A5340 trial, with sharp 459 

rises in viral load following breakthrough and wide inter-patient variations (Fig. 5(b)). The 460 

distribution of breakthrough times again followed a multimodal distribution with the peak widths 461 

broadening progressively with each dose and culminating in a long tail (Fig. 5(c)). Based on the 462 

areas under the peaks, the percentages of failure at times corresponding to the four peaks were 7%, 463 

37%, 32%, and 24%, respectively. Indeed, in agreement, 7 of the 10 patients failed at times 464 

corresponding to the second and third peaks. 2 patients were associated with the first peak and one 465 

with the last. More precise timing of failure of the patients was not possible given the much larger 466 

intervals between successive viral load measurements in the NIH trial compared to the A5340 trial. 467 

Nonetheless, the distribution of failure times between peaks, given the small sample size, was 468 

remarkable. Furthermore, Kaplan-Meier plots captured the clinical data quantitatively (Fig. 5(d)), 469 

indicating that our simulations accurately mimicked the response of patients to VRC01 therapy in 470 

the NIH trial.  471 

The difference between the A5340 trial and the NIH trial was in the dosing protocol alone. 472 

Our simulations captured both these datasets by simply changing the dosing protocol accordingly, 473 

and required no other adjustments, thereby providing a strong test and validation of our model. 474 

The model may be applied to predict the outcomes of other possible dosing protocols, which could 475 

involve changing dosages or half-lives (Fig. S5), providing a framework for rational therapy 476 

optimization.  477 

 478 

  479 
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DISCUSSION 480 

Passive immunization with HIV-1 bNAbs holds promise as a strategy to achieve long-term 481 

remission of HIV-1 infection20,64. Following its success in macaques20,21, enormous efforts are 482 

underway to translate it to humans65. Trials with VRC01 administered to chronically infected 483 

patients following the cessation of successful ART saw rapid virological failure despite the 484 

presence of suppressive concentrations of VRC01 in circulation17, signaling a potential 485 

vulnerability of such bNAb therapies. Here, using mathematical modeling and analysis of clinical 486 

data, we elucidated the likely cause of this rapid VRC01 failure. Model predictions attribute this 487 

failure to the reactivation during therapy of cells latently infected with VRC01 resistant proviruses 488 

before ART initiation. To arrive at this inference, we constructed a mathematical model that 489 

integrated within-host viral evolution, latency reactivation, and viral dynamics with VRC01 490 

pharmacokinetics, and applied it to simulate the outcomes of therapy in a virtual patient 491 

population. Our simulations recapitulated data from two independent clinical trials17, giving us 492 

confidence in the inference. Accounting for pre-existing resistant strains in the latent reservoir 493 

would be important to the success of bNAb-based therapies.  494 

That mutation-driven resistance can be an important cause of bNAb failure has been 495 

recognized earlier27–30. Indeed, efforts are ongoing to identify bNAbs, including in the VRC01 496 

class, that are less vulnerable to such resistance.66 For bNAb therapies that target maintenance of 497 

HIV remission post ART cessation during chronic infection, our study prescribes the requisite 498 

genetic barrier to resistance, i.e., the number of mutations HIV-1 must accumulate to develop 499 

significant resistance to the therapy. Using a detailed description of within-host HIV-1 evolution, 500 

our study predicts that with the estimated latently infected reservoir size of 105-108 cells in a 501 

chronically infected individual34,39, proviral strains carrying single but not more resistance 502 
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mutations would pre-exist in the latent reservoir. Consequently, a genetic barrier of 2 or more 503 

would ensure that pre-existing resistance would not compromise therapy. A bNAb with a genetic 504 

barrier of one, like VRC01, would be predestined to fail, as was observed in clinical trials17. When 505 

used in combination with another bNAb, however, the overall barrier would cross the threshold of 506 

2, diminishing the chances of such failure. Resistance would then have to develop by de novo 507 

mutation during therapy, which according to our model would be unlikely as long as adequate 508 

bNAb concentrations exist in circulation and restrict the replication of the wild-type virus. Further, 509 

by explicitly incorporating bNAb pharmacokinetics, our model provides a framework with which 510 

optimal dosing protocols could be identified that would ensure adequate bNAb concentrations 511 

throughout.  512 

Early ART initiation has been argued to restrict the viral reservoir size and improve the 513 

chances of post-treatment control10,37. Our study predicts an additional advantage of early ART 514 

initiation: The chances of failure due to resistance are reduced. This reduction happens in multiple 515 

ways. First, most HIV-1 infections involve a single founder virus, which gradually evolves into 516 

the diverse quasispecies seen in chronic infection.52,67,68 Thus, the frequency of mutants at the time 517 

of ART initiation is expected to be smaller, the earlier the initiation.52 Second, given the long half-518 

life of the latent reservoir7, cells infected early during infection are likely to exist in the latent 519 

reservoir in a much higher proportion than in the actively replicating or plasma compartments. 520 

Given the limited viral diversity early in infection, the latent reservoir is likely to have a much 521 

higher representation of bNAb-sensitive strains than estimated using our model of chronic 522 

infection. Finally, if the reservoir size is restricted, due to early ART initiation, far fewer mutant 523 

proviruses, or none at all, may exist in the latent reservoir. Together, thus, early initiation of ART 524 

is expected to reduce the chances of bNAb failure. Indeed, in trials where ART was initiated early, 525 
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in the acute phase of infection, no genotypic resistance to VRC01 was detected from sequence 526 

analysis of viral strains post failure69. Similarly, a combination of two bNAbs, including one in the 527 

VRC01 class, administered early in infection saw no resistance to therapy in SHIV-infected 528 

macaques.20 Surprisingly, however, the breakthrough times for VRC01 therapy following ART in 529 

acute infection were found to be similar to those seen in the trials in chronic infection we 530 

studied.17,69 Additional mechanisms that are not predominant in the chronic phase thus appear to 531 

cause VRC01 therapy failure in individuals treated with ART early. One possibility could be that 532 

CD8 T cell exhaustion is weaker and/or more reversible in the acute phase than in the chronic 533 

phase because of the much longer duration of antigen exposure in the latter scenario.70,71 The 534 

greater associated immune activation levels in the acute phase could imply more rapid reactivation 535 

of latently infected cells, which could offset the advantage from the lower frequencies of mutants. 536 

To test this possibility, models that incorporate CD8 T cell exhaustion37,72–75 would have to be 537 

integrated with our model of stochastic latency reactivation, a promising avenue for future study. 538 

An important question in HIV cure research is how early should ART be initiated to 539 

maximize post-treatment control60. While starting early would restrict the reservoir size and 540 

improve the chances of post-treatment control, starting it too early would not allow enough time 541 

for the development of an immune response, compromising post-treatment control. If bNAb 542 

therapy were to be used post-ART to improve the chances of post-treatment control, the 543 

development of resistance to bNAbs would have to be factored in along with the latter trade-off 544 

between reservoir size and immune response strength to arrive at the optimal timing of ART 545 

initiation. Our study provides a framework that could be used to test whether pre-existing 546 

resistance in the latent reservoir would compromise therapies with other bNAbs, especially those 547 
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belonging to the VRC01-class76–78, which are under trial for both preventive24,79,80 and 548 

therapeutic20 vaccination and are known to fail via diverse mutation-driven resistance pathways28.    549 

An early modeling study compared the likelihood of the failure of therapy due to pre-550 

existing resistance versus de novo generation of mutants in the context of ART and found that 551 

ART was more likely to fail due to pre-existing resistance.48 A more recent modeling study 552 

examined the likelihood of the failure of different antiretroviral drug combinations and explained 553 

how patient adherence influences such failure.53 Our findings are consistent with these studies and 554 

show that bNAbs too are vulnerable to pre-existing resistance, but the resistance now is restricted 555 

to the latent reservoir. Because the reservoir is small compared to the pool of infected cells pre-556 

ART, the required genetic barrier for bNAb therapies is estimated to be lower than for ART. Thus, 557 

a combination of 2 bNAbs is predicted to overcome resistance, whereas first-line ART necessarily 558 

contains 3 drugs.  559 

Previous studies have used either fully deterministic or fully stochastic frameworks to 560 

describe treatment failure48,49,53, making their predictions approximate or computationally 561 

expensive. Here, we devised a strategy that retained both accuracy and computational tractability. 562 

We used a deterministic framework to estimate the frequencies of mutant proviral genomes in the 563 

latent reservoir pre-treatment and then a stochastic framework to estimate latency reactivation and 564 

treatment failure times. The deterministic framework was shown previously to agree well with 565 

stochastic population genetics-based simulations50, giving us confidence in the strategy. In the 566 

stochastic simulations, we considered only latently infected cells containing the dominant resistant 567 

provirus, which accurately described the development of drug resistance without requiring 568 

expensive computations. Indeed, we were able to capture two independent clinical trials of VRC01 569 

failure with this hybrid framework, reiterating its applicability. Such hybrid deterministic-570 
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stochastic frameworks have been successfully applied in other settings, such as in predicting the 571 

pre-existing frequency of hepatitis C virus strains resistant to drugs81, but not, to our knowledge, 572 

with HIV-1 infection.       573 

The sample sizes involved in the clinical trials we studied were small, ~10 patients each17. 574 

Nonlinear mixed-effects models have been used in recent studies to infer the effects of 575 

interventions by analyzing data from such trials82. For instance, bNAb therapy was argued to 576 

improve immune responses 8-fold over controls and not to synergize with the TLR7-agonist82. The 577 

strength of such an approach lies in its robust parameter estimation and the ability to infer effects 578 

at the population level using data from small sample sizes. The approach, however, does not work 579 

when the underlying model is stochastic, which is the case in our study. Also, when the effects are 580 

explicitly parameterized, as is often done82,83, their quantitative estimates are restricted to the 581 

specific conditions studied. Thus, for instance, how a change in the dosage or dosing protocol 582 

would alter the effect becomes difficult to predict. Our approach, being fully mechanistic, is not 583 

similarly limited. Indeed, with the parameters that captured the A5340 trial, by simply changing 584 

the dosing protocol, our model captured data from the NIH trial without any adjustable parameters. 585 

Our model could therefore be used potentially to comparatively evaluate alternative treatment 586 

protocols and suggest optimal ones. 587 

We recognize that in the trials we considered17, the dominant mutant seen post treatment 588 

failure was not the same across individuals. The mutations, however, were all typically 589 

concentrated in the same genomic regions17, suggesting that structural or conformational 590 

modifications that could drive VRC01 resistance could be produced by many mutations in the 591 

same genomic region. While we have focused on the most frequent mutant as it is the most likely 592 

to have caused resistance, and as has been done in earlier studies53, stochastic variations could 593 
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result in latent cells carrying other mutants being reactivated and reestablishing infection. The 594 

mutants selected could also differ based on inter-host variations and the genetic backgrounds of 595 

the infecting strains. Our simulations must thus be viewed as reflecting therapy failure arising from 596 

the dominant mutant which could differ across hosts and which in our study is accounted for by 597 

the inter-host variation in viral fitness.         598 

bNAbs are known to engage the immune system via multiple mechanisms20,84–87. The result 599 

could be heightened activation, which for HIV-1 infection, could mean greater susceptibility of 600 

target CD4 T cells. At the same time, it could imply greater reactivation rates of latently infected 601 

cells. Indeed, the latency reactivation rates employed in our study were higher than those estimated 602 

for historical controls, the latter based on viral recrudescence post ART and in the absence of 603 

further intervention39. When bNAb therapy is administered post ART, cells latently infected with 604 

wild-type strains, which would be in a vast majority, would get frequently reactivated and produce 605 

virions but without causing sustained infection. The virions produced, being bNAb sensitive, 606 

would get neutralized and cleared by the bNAbs. Previous studies have argued that in the process 607 

bNAbs can stimulate CD8 T cells20,87, improving the overall immune activation status, possibly 608 

explaining the higher latency reactivation rate we required to describe VRC01 failure than 609 

previously used to describe historical controls. Our parameters would thus tend to underpredict the 610 

remission times in the historical controls. Previously, too, differences in the viral growth rates 611 

before and after ART have been assumed in order to capture viral recrudescence accurately and 612 

have been attributed to different strengths of the immune responses in the respective periods.39 613 

Mechanisms that could explain the differences in these latency reactivation rates are yet to be 614 

identified. A unified framework that describes remission both with and without bNAb therapy 615 

awaits future studies that would quantify how bNAbs influence immune responses.  616 
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Non-nucleoside reverse transcriptase inhibitors (NNRTIs), administered as part of ART, 617 

have been found to delay breakthrough post ART23. Patients administered NNRTIs were excluded 618 

from the A5340 trial and were switched to an integrase-inhibitor based regimen 2 weeks before 619 

VRC01 therapy in the NIH trial to eliminate the confounding effects of NNRTIs. We therefore did 620 

not consider the effect of NNRTIs in our study. A number of host60 and viral61 factors are thought 621 

to be involved in determining disease progression and treatment outcomes. Our model subsumed 622 

inter-patient variations in these factors into variations in two factors, the latent pool size and the 623 

viral production rate. Virtual patient populations that we created based on variations in these 624 

minimal factors captured clinical data from two independent clinical trials, justifying the 625 

approximation, and suggesting that a small subset of factors may be adequate to capture outcomes 626 

of such bNAb therapies. Future studies may consider the variations in other factors explicitly to 627 

ascertain the validity of the approximation, especially for other kinds of bNAb-based interventions. 628 

 In summary, our study presents an explanation of the failure of VRC01 therapy to sustain 629 

HIV remission post ART, captures clinical data quantitatively, highlights the importance of 630 

accounting for pre-existing resistance in designing effective bNAb-based therapies, and facilitates 631 

rational optimization of such therapies.       632 

  633 
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METHODS 634 

We considered the scenario where a chronically infected individual maintains viral 635 

suppression with ART and is then subjected to VRC01 therapy concomitantly with cessation of 636 

ART. Because active viral replication is halted by successful ART, virological breakthrough 637 

during VRC01 therapy must arise from the reactivation of latently infected cells. We developed a 638 

model to estimate the timing of the failure of VRC01 therapy via the growth of resistant viral 639 

mutants pre-existing in the latent reservoir (Fig. 1). Our approach was to estimate the population 640 

of latently infected cells carrying the resistant strains and then to follow their reactivation leading 641 

to successful infection. We then considered a virtual patient population subjected to the same 642 

therapy and applied our model to recapitulate data from clinical trials. 643 

 644 

Mathematical model of virological breakthrough in a single infected individual 645 

Within-host HIV-1 evolution and the frequencies of pre-existing resistant strains  646 

To estimate the population of cells latently infected with VRC01-resistant proviral 647 

genomes, we reasoned that the frequencies would be the same as in productively infected cells 648 

before treatment initiation because the probability that a particular cell becomes latently infected 649 

is not known to depend on the nucleotides at the VRC01 resistance loci. We estimated the 650 

frequencies of VRC01-resistant strains in productively infected cells using an approach developed 651 

previously to quantify the pre-existence of resistance to antiretroviral drugs50. The approach 652 

combines virus dynamics with evolution, incorporating mutation, cellular superinfection, 653 

recombination, and fitness selection. We present details below. 654 
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Virus dynamics. We considered n=4 positions in the env region where mutations with high level 655 

resistance to VRC01 have been identified, namely N279K, N280D, R456W and G458D27. The 656 

time evolution of the populations of cells and virions containing the different single, double, triple, 657 

and quadruple mutants were described using the following equations:   658 
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Here, uninfected target CD4+ T cells, U, are produced from the thymus at the rate  and are lost 665 

at the per capita death rate dT. They are infected by virions Vjh containing genomes j and h with 666 

the second order rate constant k0βjh, where k0 is the infectivity of wild-type virions and βjh is the 667 

relative infectivity of virions Vjh. We assumed that βjh=(βj+βh)/2, where βj is the infectivity of 668 

genome j relative to the wild-type. The indices j and h denoting viral genomes range from 0 to 669 

2 1nS = − . Thus, S=15 here, with the different genomes including the wild-type (or sensitive 670 
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strain), the 4 single mutants, 6 double mutants, 4 triple mutants, and the quadruple mutant, 671 

amounting to a total of 16 types. We denoted the genomes serially, starting with ‘0’ for the wild-672 

type and ending with S for the quadruple mutant. Each viral particle contains two genomes, not 673 

necessarily identical. The number of distinct viral particle types, Vjh, where j{0,1,..,S} and 674 

h{j,j+1,..,S}, is thus (S+1)(S+2)/2, which here would be 136. (The range of values of h is to 675 

ensure that virions V12 and V21, for instance, which are identical, are not counted separately.) 676 

Summing over all these viral types yields the total rate of loss of U due to infections in Eq. 1. 677 

 Following infection with a virion Vjh, reverse transcription, which includes mutation and 678 

recombination, yields genome i with a probability Qi(jh), where i{0,1,..,S}. On average, thus, a 679 

fraction Qi(jh) of the infections with virions Vjh yield productively infected cells carrying single 680 

proviruses i, which we denote Ti. Summing over all Vjh yields the total rate at which cells Ti are 681 

produced. These cells die at the per capita rate . They can also be infected again, but with a lower 682 

infectivity k1 because infected cells downregulate their CD4 receptors, rendering further infections 683 

difficult88,89. The net effect of these processes defines the dynamics of cells Ti in Eq. 2. 684 

 Doubly infected cells Tii are produced when cells Ti are infected with virions Vjh, following 685 

which reverse transcription again yields the provirus i. When a different provirus j(i) is produced, 686 

the result is the doubly infected cell Tij carrying distinct proviruses i and j. Of course, cells Tij can 687 

also be produced by the infections of cells Tj with another virion yielding the provirus i. Doubly 688 

infected cells too die with the rate constant . These processes are contained in Eqs. 3 and 4. We 689 

neglected cells infected more than twice, following experiments that suggest a rare occurrence of 690 

such cellular superinfection90. 691 
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      Cells Ti and Tii produce virions Vii at the per capita rate pi, where p is the production 692 

rate of wild-type virions and i the production rate of virions Vii relative the wild-type. i is thus 693 

the relative replicative fitness of genome i. Cells Thi (hi) can also produce virions Vii. We assumed 694 

that viral RNA of the types h and i are present in cells Thi in proportion to h and i, respectively, 695 

and that they are randomly assorted into pairs and packaged into progeny virions. Thus, cells Thi 696 

produce virions Vii at the rate 2 / 2( )i h ip  + , Vhh at the rate 2 / 2( )h h ip  + , and Vih at the rate 697 

/ ( )h i h ip   + . Virions are cleared at the rate c. These processes determine the dynamics of viral 698 

populations in Eqs. 5 and 6. 699 

Mutation and recombination. We next describe the formalism to compute the probability Qi(jh). 700 

Following previous studies49,50,91, we let Rk(jh) be the probability that genome k is produced by the 701 

recombination of genomes j and h, and Pik the probability that genome k mutates to genome i. 702 

Thus, PikRk(jh) is the probability that genome i is produced from genomes j and h via the 703 

intermediate k. We recognize next that if genomes j and h differ in d positions, then recombination 704 

could produce a total of 2d different genomes, depending on whether at each of the d positions, the 705 

nucleotide chosen is either from genome j or genome h. Summing over these different 706 

intermediates k yields the total probability of producing genome i from genomes j and h during 707 

reverse transcription: 708 

 

2 1

0

( ) ( )

d

i ik k

k

Q jh P R jh
−

=

=   (7) 709 

To compute Rk(jh), we consider the desired path of the enzyme reverse transcriptase on the two 710 

genomes so that the enzyme is on the appropriate genome, j or h, at each of the d distinctive sites, 711 

so that the genome k is produced. We let the separation between the xth and x+1st distinctive sites 712 
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be lx. If the enzyme has to be on the same genome (j or h) at both these sites, then it must perform 713 

an even number of crossovers in the length lx. Else, it must perform an odd number of crossovers. 714 

If the enzyme has a probability  of crossover per site, then the probabilities of even and odd 715 

crossovers over a length l are ( ) (1 (1 2 ) ) / 2l

evenP l = + −  and ( ) (1 (1 2 ) ) / 2l

oddP l = − − , assuming 716 

that the crossover at any position is independent of the others and all crossovers happen with the 717 

same probability91. If we write Pdes(x+1|x) as the probability that the enzyme arrives on to the 718 

desired genome at the x+1st distinctive site given that it was on the desired genome at the xth site, 719 

then depending on whether the associated crossovers must be even or odd, we write 720 

Pdes(x+1|x)=Peven(lx) or Pdes(x+1|x)=Podd(lx). Note that Pdes(1)=1/2 because the enzyme could be on 721 

either genome at the start of the reverse transcription process. Thus, multiplying the probabilities 722 

over all the distinctive sites yields Rk(jh): 723 

 
1

1

1
( ) ( 1| )

2

d

k des

x

R jh P x x
−

=

= +   (8) 724 

Next, we estimated the probability of producing genome i from genome k. If the two genomes 725 

differ at u sites, then genome i is produced from genome k by mutating genome k at the distinctive 726 

sites and nowhere else. Thus, 727 

 (1 )u n u

ikP   −= −   (9) 728 

where  is the per site mutation probability and n is the number of sites of interest. 729 

Frequencies. Eqs. 1-9 yield a model of viral dynamics that predicts the growth of the populations 730 

of different mutants. We solved the equations for their steady states and obtained the corresponding 731 

frequencies of all proviruses, i, contained in productively infected cells:  732 
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The approximation in Eq. 10 is justified by the small doubly infected cell population compared to 734 

the singly infected cell population. The parameter values employed are in Table 1. i yield the 735 

frequencies of various VRC01-resistant mutants before the start of treatment. Previous studies 736 

have shown that this deterministic formalism yields mutant frequencies in agreement with 737 

stochastic population genetics-based simulations of HIV evolution50. The frequencies are expected 738 

to hold also for the proviruses in latently infected cells. Further, we expect ART not to influence 739 

the latter frequencies; standard first-line ART drugs target HIV reverse transcriptase and protease, 740 

whereas VRC01 targets the HIV envelope. We assumed therefore that following ART, the 741 

frequencies of VRC01-resistant strains contained in the latent reservoir are given by Eq. 10. 742 

We focused next on the reactivation of latently infected cells carrying the resistant 743 

genomes. 744 

Latency reactivation and viral rebound  745 

We developed a stochastic framework to describe the reactivation of latently infected cells 746 

carrying mutant proviruses resistant to VRC01. Because reactivation is most likely of the cells 747 

carrying the fittest mutant, which are the most prevalent, we considered cells Lm carrying the fittest 748 

mutant strain above. Previous studies on ART resistance too have considered the dominant mutant 749 

alone.53 The reactivation of these cells and the ensuing growth of mutant virions is then described 750 

by the following events:  751 

 l

m m mL L L


⎯⎯→ +  (11) 752 
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 ld

mL ⎯⎯→  (12) 753 

 ca

m mL T⎯⎯→  (13) 754 

 (1 )(1 )(1 )m mX f

m m mT T T
 − − −

⎯⎯⎯⎯⎯⎯⎯→ +  (14) 755 

 (1 )(1 )m mX f

m m mT L T
 − −

⎯⎯⎯⎯⎯⎯→ +  (15) 756 

 mT  ⎯⎯→  (16) 757 

 758 

Here, cells Lm proliferate at the per capita rate l (Eq. 11), die at the per capita rate dl (Eq. 12), and 759 

get activated to productively infected cells, Tm, at the per capita rate ac (Eq. 13). Cells Tm carry the 760 

mutant provirus and produce resistant virions, Vmm, at the per capita rate pm, which in turn infect 761 

uninfected cells, U, with the rate constant kβmm. Here, m and βmm are the relative replicative ability 762 

and infectivity, respectively, of the strain m. Free virions are cleared at the per capita rate c. Viral 763 

production and clearance are typically rapid92 compared to changes in cell populations, so that 764 

following an approximation widely used (e.g., see48), Vmm can be assumed to be in pseudo-state 765 

with Tm. Thus, VmmpmTm/c. The rate, kβmmVU, of the infection of U thus becomes kβmmpmTmU/c. 766 

We recognized that U is not altered significantly due to new infections, especially following ART 767 

when the viremia is small. We let a fraction f of the new infections lead to latency and the 768 

remaining to productive infection. Further, we let a VRC01-resistant strain mutate back to the 769 

wild-type with a probability , the point mutation rate of HIV-1. The resulting description would 770 

capture scenarios where a single mutation is adequate to develop resistance, as is the case with 771 

VRC0127. Thus, the rate kβmmpmTmU(1-f)(1-)/c becomes the rate of the growth of Tm in the 772 

absence of therapy. If VRC01 were to block infections with efficacy m, the rate would become 773 

XmTm(1-f)(1-)(1-m)/c with Xm=kβmmpmU/c. Thus, we let Tm (effectively) double with the per 774 

capita rate Xm(1-f)(1-)(1-m)/c (Eq. 14), and yield new latently infected cells at the per capita rate 775 
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Xmf(1-)(1-m)/c (Eq. 15). Cells Tm die with the rate constant . These events together describe the 776 

growth of resistance to VRC01 and therapy failure.  777 

 We solved the model equations using the Gillespie algorithm93 with parameter values 778 

representative of HIV-1 infection in the presence of VRC01 therapy. The model was implemented 779 

using a program written in MATLAB. The parameter estimates are listed in Tables 1 and 2. The 780 

initial population of Lm was set by the frequencies of mutants estimated. With each parameter 781 

setting, we performed 500 realizations to examine the dynamics of treatment failure. 782 

 783 

Comparison with clinical data 784 

 We applied our model to predict the outcomes of trials with the VRC0117. For this, we 785 

explicitly considered VRC01 pharmacokinetics. Further, we created a virtual patient population to 786 

account for the inter-patient variations seen in the trials. In each patient, we performed stochastic 787 

simulations and identified the VRC01 failure time following the model above. We compared the 788 

resulting distribution of failure times with those observed in the trials. We describe the methods 789 

we used here. 790 

Data 791 

 We considered data of viral resurgence following VRC01 therapy during ATIs from two 792 

clinical trials, the A5340 trial and the NIH trial17. In the A5340 trial, 14 adult chronic HIV patients 793 

with a median ART duration of 4.7 years and viremia maintained below detection were 794 

administered 3 doses of VRC01 (40 mg/kg of body weight) intravenously, starting a week before 795 

the cessation of ART and with 3 week intervals. Plasma viremia was measured weekly to check 796 

for rebound (>20 copies/ml). Of the 14 participants, 1 participant stopped ART before VRC01 797 
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administration and was not part of the trial data analysis. Further, 1 participant maintained 798 

remission until well after the 3 doses were administered and thus appeared not to have suffered 799 

failure from VRC01 resistance. We considered data from the remaining 12 patients, who 800 

experienced virological breakthrough between 2 and 8 weeks from the discontinuation of ART. 801 

For each patient, we assumed the breakthrough time was anywhere within the week from the last 802 

undetectable to the first detectable viral load measurement. 803 

 The NIH trial had 10 participants with similar characteristics as the A5340 trial. The 804 

participants had been on ART much longer, however, with a median duration of 10 years, before 805 

entry into the trial. ART was stopped 3 days after the first VRC01 administration. VRC01 doses, 806 

at the same dosage as above, were administered subsequently on days 14 and 28 post ART 807 

cessation and once every month thereafter. Plasma viremia was measured every week for 1 month 808 

and then every 2 weeks until 6 months. The patients experienced virological breakthrough between 809 

2 and 12 weeks from the discontinuation of ART. We considered this time of virological failure 810 

with uncertainties as defined above. 811 

 We note that both trials did not screen for pre-existing VRC01 resistance. While the 812 

primary endpoints of the trials were safety and tolerance, secondary endpoints were viral 813 

remission, based on which the trial data report Kaplan-Meier survival curves17. We considered the 814 

latter data too in our analysis.      815 

VRC01 pharmacokinetics and pharmacodynamics 816 

We let the efficacy of VRC01 against the drug-resistant mutant strain, m, be related to its 817 

plasma concentration, A, by the Hill function49,55,94, 818 
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where IC50,m is the value of A at which VRC01 is 50% efficacious. For simplicity, we set the Hill 820 

coefficient to 1. The antibody concentration has been observed to decline in a biphasic manner 821 

upon dosing25. We therefore described the time course of the antibody concentration using the 822 

following expression when successive doses are administered at time points 1, 2, and so on: 823 
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Here, A1 and A2 are the portions of a dose that decay in the first and second phases, respectively, 825 

with decay rates 1 and 2, and W is the total number of doses. We estimated the pharmacokinetic 826 

parameters using fits of the above equation to data of VRC01 concentrations following a single 827 

dose25. 828 

ART efficacy 829 

For the duration that ART is used simultaneously with VRC01, we replaced the term (1-830 

m) in Eqs. 14 and 15 by 1 (1 )(1 )comb m ART  − = − − , where 
ART  is the efficacy of ART and 

comb  831 

is the combined efficacy of VRC01 and ART. We let 
ART  be constant while on ART and set it to 832 

zero thereafter.  833 

Virtual patient population 834 

 To capture inter-patient variations in the response to bNAb therapy, we constructed a 835 

virtual population of clinical trial participants as follows. For simplicity, we considered variations 836 

in two factors, the initial latent pool size, 
0L , and the viral production rate, p , across individuals.  837 
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We assumed that variations in all host factors could be subsumed in the variation in 
0L  and that 838 

variations in viral factors could be subsumed in p . We let 
0L  vary log-normally and p normally 839 

across individuals. Thus, the corresponding density functions were 840 

 
0 2

ln1
( ) exp

22

l
L

ll

l
f l

l



 

 −
= − 

 

 (19) 841 

and 842 

 2

1
( ) exp

22

p

p

pp

f
 


 

 −
= −  

 
 (20) 843 

where l and l are the mean and standard deviation of lnL0 and p and p are the mean and 844 

standard deviation of p, respectively. The parameters in the distributions were chosen based on 845 

earlier studies or to fit the results of the A5340 trial. From the resulting distributions, we sampled 846 

many pairs ( 10000 ) of values of L0 and p, with each pair representing an individual. We thus 847 

created a virtual patient population, which we then subjected to VRC01 therapy according to the 848 

protocols in the respective trials. For each individual, we ran a stochastic simulation (Eqs. 1-18) 849 

and examined the dynamics of virological breakthrough. From the resulting dynamics, we 850 

constructed the distribution of breakthrough times and used it to build Kaplan-Meier survival plots 851 

sampling virtual patients mimicking the clinical trial protocols.  852 
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