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Abstract 

Quantitative biological substrates of depression remain elusive.  We carried out this study to 

determine whether application of a novel computational approach to high spatiotemporal 

resolution direct neural recordings may unlock the functional organization and coordinated 

activity patterns of depression networks.  We identified two subnetworks conserved across the 

majority of individuals studied. The first was characterized by left temporal lobe 

hypoconnectivity and pathological beta activity. The second was characterized by a hypoactive, 

but hyperconnected left frontal cortex. These findings identify distributed circuit activity 

associated with depression, link neural activity with functional connectivity profiles, and inform 

strategies for personalized targeted intervention. 
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Introduction 

Major depressive disorder (MDD) is a common, highly disabling and potentially deadly disorder 

that affects more than 264 million individuals worldwide (1). Despite significant neuroscientific 

advances, the biological substrate of depression remains poorly understood and new approaches 

that facilitate our understanding are critical.  The majority of early studies seeking to characterize 

depression pathophysiology examined specific brain regions (ex. subgenual anterior cingulate 

cortex (2-4)), cognitive networks (ex. default mode network (5-9)), or univariate 

electrophysiological markers (ex. alpha asymmetry (10-15)).  Yet, there is increasing evidence 

that depression is characterized by distributed network dysfunction beyond a single brain region 

or network (16-18).  

 

Recent computational advancements within a network neuroscience framework have enabled 

researchers to model brain activity with the scope and complexity necessary to understand such 

distributed processes (19). However, detailed investigations of both the functional organization 

and coordinated activity patterns of depression networks have been limited by the capabilities of 

current imaging and electroencephalography (EEG) technologies, both indirect measures of 

neural activity that require a trade-off between spatial and temporal resolution.  Intracranial EEG 

(iEEG), typically collected in patients with epilepsy for the purpose of seizure localization, has 

the advantage of high temporal resolution, and provides direct recordings from both cortical and 

subcortical brain structures.  Patients with epilepsy have high rates of co-morbid depression (20-

25) that shares origin (26-30) and treatment response (31) characteristics with primary 

depression. However, owing to heterogenous electrode placement across individuals, previous 

iEEG studies have been limited to low patient numbers and region-based approaches (32-34). 
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We hypothesized that we could apply a novel computational approach to a large unique dataset 

of multi-region, multi-day iEEG recordings in 54 participants to uncover distributed cortico-

subcortical networks in depression. To tackle inconsistent network sampling across individuals, 

we utilized a method called SuperEEG (35) that uses the correlational structure of brain activity 

across the population to create a model of multiregional iEEG activity for each individual despite 

heterogeneous electrode placement. This model provided a highly detailed representation of 

brain activity across space and time and allowed us to chart out the inherent organization of the 

brain into functional networks. Once a generalized map of functional brain network organization 

was established, we quantified the multi-dimensional nature of corresponding brain dynamics to 

discover how rhythmic activity riding atop these functional networks differed in depressed and 

non-depressed individuals (36). Because depression has a variable presentation, we further 

examined how depression-associated circuitry varied across individuals in the depressed group.   

 

We found that depression circuitry was highly distributed across cortical and subcortical 

structures with global dysfunction in both connectivity and spectral activity. Two unique 

depression subnetworks present in 89% of depressed subjects were identified.  One pattern was 

marked by decreased connectivity across the occipitotemporal region and dominant beta band 

activity.  The second was characterized by excessive frontal cortical connectivity with decreased 

activity in the alpha spectral frequency band.  
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Results 

Overall Approach 

Our total population consisted of 54 patients with intracranial electrodes placed for the purpose 

of pre-surgical mapping for treatment-resistant epilepsy. The number of electrodes per subject 

ranged from 33–201 (mean=120, SD=37). Our overall approach consisted of two steps – a model 

building step where we identified large-scale functional networks across iEEG electrodes, and a 

model utilization step where we related the architecture and intrinsic neural activity of functional 

networks to depression status (Fig. 1).  

 

 

 
 
Fig. 1. Overall approach.  Model Building: We utilized direct neural recordings from 54 

patients to construct a whole-brain model of iEEG activity based on correlational relationships of 

neural LFP time series signals across all electrode pairs. We then parcellated this model into 
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functional network modules using graph theory metrics. Model Utilization: We used the whole-

brain iEEG model to study how brain activity and connectivity measures relate to depression 

status. We first defined spectral power features across network modules and applied supervised 

machine learning to identify a group-level network features of depression (Activity analysis).  In 

parallel, we identified alterations in functional network connectivity and organization between 

depressed and control groups (Connectivity analysis). Common group-level network features 

expressed at the individual level were clustered to identify two distinct patterns of altered activity 

and connectivity.   
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Derivation of functional modules   

We utilized a method called SuperEEG (35) to map continuous iEEG recordings from different 

patients into a common neural space and create a whole-brain, multi-subject model of iEEG 

recordings that served as the basis for studying distributed depression circuitry (Fig.2 A-E).  This 

method provided an important advance over previous iEEG studies (32-34) that were limited to 

region-based analyses conducted in small samples due to heterogeneous electrode placement. In 

brief, to generate this model, we first constructed subject-level full-brain correlational models. 

Interelectrode correlation matrices were constructed from activity where sensors were present 

and learned radial-basis function weighted averages were used to generate correlational 

information at locations where sensors were not present. The subject-level models were then 

averaged to generate a population-level model. We then used Gaussian process regression based 

on the population-level model and individual time series for each subject to reconstruct whole-

brain local field potentials for each subject. The output of this SuperEEG (35) model is therefore 

an estimate of iEEG time series for each patient for a union set of electrodes across our total 

population (4,244 electrodes/per patient).  Quantification of the algorithms performance has been 

performed previously on two large independent iEEG datasets using leave-one-out cross-

validation where full-brain correlation matrices were estimated for each patient in turn using data 

from all the other patients (37).  Correlation of the true and reconstructed signals were compared 

for each held-out electrode from the held-out patients.  By using only other patients’ data to 

estimate activity for each held-out electrode, volume conductance or other sources of “leakage” 

were minimized resulting in a conservative estimate of reconstruction accuracy. Using the same 

approach, we found the distribution of correlations was again centered well above 0 (mean r 

=0.38) suggesting the algorithm estimates activity patterns substantially better than chance 
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(Fig.2F). To calculate significance, we averaged the patient level fisher transformed correlation 

coefficients and compared the distribution across patients to 0 using a t-test (t=13.94, p = 1.04e-

25).   

 

Fig. 2. Construction of whole-brain model. A. To generate a multi-subject whole-brain model of 

iEEG activity, patient’s electrode locations across participants were first represented in a 

common space (Montreal Neurologic Institute (MNI) space).  Electrode locations and sample 

recordings for a few example patients are shown. Activity was then randomly sampled in 1 min 
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intervals across daytime hours to obtain a stable representation of brain activity across a 2-hour 

period. B. Individual inter-electrode correlation matrices were constructed for each participant at 

locations where electrodes were present. C. Subject-level full brain correlational models were 

then predicted using radial basis function (RBF)-weighted averages to estimate brain activity 

correlations at locations where sensors were not present. D. Subject-level correlational models 

were then averaged to generate a population level whole-brain correlational model. E. Local 

field potential activity for each of the 4,244 electrodes was then reconstructed using Gaussian 

process regression with the population-level model as a prior and activity where electrodes were 

present as the marginal likelihood. F. The distribution of the electrode signal reconstruction 

accuracy across our model. To obtain this distribution we built models with 55/56 patients, and 

then applied the model to the held-out patient, holding out each patient in turn. Correlation of the 

true and reconstructed signals were compared for each held-out electrode. Significance was 

assessed by averaging the patient level Fisher transformed correlation coefficients and 

comparing the distribution across patients to 0 using a t-test (t=13.94, p = 1.04e-25). 
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After construction of the model, we next utilized principles of graph theory to identify data-

driven functional networks (modules) across it. Our rationale was that the model had learned 

statistically correlated fluctuations between iEEG signals, akin to functional connectivity, and 

that a network-based approach could enhance discovery of depression circuitry over a univariate, 

single-region approach. We applied a modularity optimization technique known as community 

detection which groups electrodes into non-overlapping modules by their correlational 

relationships (38, 39) and has been used to reveal system-level disruptions in disease states (40-

46) including MDD (47) (Fig. 3). Previous work on module detection (48) demonstrated that 

tuning a resolution parameter (gamma) is key to identifying modules at different topological 

scales of a network. In line with previous efforts that have related iEEG network structure to 

brain parcellations based on anatomy (49), we computed a similarity index between the division 

of electrodes into modules and the division of electrodes into anatomical structures as defined by 

the Lausanne atlas (50) for a range of resolution parameters and selected the most parsimonious 

match between modules and anatomical structures (gamma=1.19) (Fig. S1). We principally 

observed that our iEEG model was optimally parcellated into 6 stable modules (Jaccard index, 

p<0.05, permutation test)) and that these modules were spatially distributed and spanned multiple 

anatomical structures. A graph of the network and its subdivision into modules is shown in Fig. 

3B, where module membership is indicated by the color of nodes (iEEG electrodes) and edges 

(inter-electrode correlation from whole-brain model). To name each module, we identified 

regions (hubs) with the most influential connectivity profile for each module by calculating the 

participation coefficient metric (51-53) (see Methods) yielding the left dorsolateral prefrontal 

cortical (L-DLPFC), left occipitotemporal (L-OT), left orbitofrontal cortical (L-OFC), right 

frontotemporal (R-FT), right medial frontal (R-MF), and mid-hemispheric modules. Fig. 3C 
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shows hub locations by their mean Montreal Neurological Institute (MNI) (50) coordinates and 

associated Brodmann Areas. 

 

 
 
Fig. 3 Identification of functional modules. A. Multiscale community detection was applied to 

the whole-brain model to group electrodes (nodes) into non-overlapping modules (communities) 

by their correlational relationships (38, 39). First, the population-level correlational model was 

reordered by the module assignment according to the modularity cost function. Network modules 

were identified at different levels of granularity by varying the tuning parameter,  (47, 54). 

Increasing  partitions the brain into increasing numbers of modules with a limit equal to the 

number of electrodes, as shown here for 3 values of  (left). Next, the stability of this clustering 

at each value of  was assessed by calculating module allegiance, which describes the probability

that any two electrodes occupy the same module on repeated module detection (55) (right).  A -

value of 1.19 was selected by comparing the similarity of partitions generated by values of  

with those of a commonly used brain atlas (50), resulting in 6 modules. Of note, one of the 
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modules is small and difficult to resolve in the figure. B. The graph of the large-scale network 

with module membership delineated by the color of the nodes and edges for selected γ of 1.19 is 

shown along with a schematic representation of the 6 modules.  C. Hubs for each module were 

identified by selecting electrodes with the lowest 10% participation coefficients.  Values were 

then averaged for each Lausanne brain region per module and weighted by the distribution of 

electrodes across Lausanne regions in all modules. Hub weight is indicated by the size of hub, 

and module assignment is indicated by hub color. Module 5 contained insufficient number of 

electrodes for hub identification (0.3% of total sample) and coefficients across all electrodes 

were utilized to name this module. L-DLPFC=left dorsolateral prefrontal cortex, L-OT=left 

occipitotemporal cortex, L-OFC=left orbitofrontal cortex, R-MF=right medial frontal cortex, R-

FT=right frontotemporal cortex 
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Relationship of functional network identification to depression status 

We next investigated the whole-brain iEEG model to study brain networks underlying 

depression.  All patients in this study were undergoing surgical mapping with multi-channel 

iEEG for seizure localization as part of their standard medical care.  Depression was measured 

during the hospital stay, using the validated PHQ-9 measure (56-58). In accordance with 

literature-derived rates of depression in this population (20-25), 43% of our population had self-

reported depression as defined by this measure (PHQ-9≥10, n=23), and 33% had mild or no 

symptoms of depression, which defined our control group (PHQ-9≤5, n=18). The two groups did 

not vary in age, sex, type of epilepsy, antidepressant usage, or anti-epileptic drug class (t-test, X2, 

p>0.4, Table S1).   

 

Work over the past 50 years has attempted to utilize scalp EEG to uncover neurophysiological 

characteristics of depression outside of epilepsy (59-62). Disruption in frontal alpha power is one 

of the earliest and most-studied findings (10-15), but its value toward understanding depression 

is limited due to inconsistent findings across studies (63-65). We hypothesized that by leveraging 

the high temporal resolution of iEEG, as well as the direct access to subcortical structures, we 

could overcome limitations of scalp recordings. We calculated relative spectral power from the 

reconstructed time series in six frequency bands and averaged the resulting power values across 

time independently per module. This process yielded 36 features per participant, where each 

feature contained information about a spectral power band across one functional module; we 

therefore collectively referred to these as “spectral-spatial features.”   
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We then utilized a standard leave-one-out cross validated machine learning pipeline (PCA 

followed by logistic regression) (66) to identify network activity that was predictive of 

depression (Fig. 4A). First, in line with prior iEEG analyses, we used principal component 

analysis (PCA) to identify a low-dimensional feature representation of spectrally band-limited 

neural activity across electrodes that potentially span different modules. It is important to note 

that while PCA and network module detection reduce the complexity and inherent collinearity in 

the datatset (33, 34, 67-69), they also reflect two non-mutually exclusive properties of brain 

connectivity (modules) and brain activity (principal components). Specifically, modules 

demarcate groups of brain regions with correlated broadband brain activity, irrespective of the 

amplitude of the activity, and principal components represent additional state-dependent neural 

activity that is band-specific, such as  rhythms and oscillations (49), and may arise from 

functionally important integrative connections that span between modules (51, 70). This line of 

thinking closely resembles previously reported accounts of neural co-activation dynamics (akin 

to principal components) spanning multiple cognitive networks (akin to network modules) that 

explain inter-individual differences in task performance and cognitive traits. Second, after 

identifying a principal component representation of cross-module spectral-spatial network 

features, we utilized logistic regression (with L1 regularization) to classify subjects with 

depression and identify features with the greatest discriminatory power. We found that a 

combination of four principal components had the strongest predictive ability to detect depressed 

from non-depressed subjects.  Their loading weights represent their contribution towards 

likelihood of depression. We show these weights in Fig. 4B.  Utilizing the four most 

discriminative components alone, we achieved a mean classification accuracy of 80.0% on the 

training set and 77.4% on the test set. Significance was assessed using a permutation test 
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(p=0.002). The same classification pipeline applied to a null model obtained from randomly 

permuting the target class labels 1000 times and retraining the classifier with each permutation 

led to an accuracy of 50.0% (70.6% training set). Together, these data suggest that a 

parsimonious model with four principal components, which capture major sources of variance in 

spectral-spatial features, can detect subjects with depression from the control group significantly 

better than chance.  

 

As our primary goal was to uncover the underlying biology of depression, we next turned to an 

examination of the individual spectral-spatial features contained within the four components. 

These features comprise the circuit activity that distinguishes depression in our population (for 

full component loadings see Table S4). To better interpret the biological meaning of this 

distributed network activity in terms of recognized brain regions (50)  and our similarly scaled 

network modules, we spatially projected the four components back onto the brain (Fig. 4C). 

Specifically, we computed the dot product between the loading weights (>0.2) for each spectral-

spatial feature and the coefficient weighting from the classifier. Performing this operation 

enabled us to show the direction of change of each power band and module in relation to 

depression diagnosis. It also enabled us to relate changes in spectral power associated with 

depression across spatially distributed brain networks. In fact, on visual inspection two gross 

patterns of spectral activity across the modules emerged. The first was high alpha power across 

the L-OT, R-FT, and mid-hemispheric modules (attention and default mode regions, modules 

2,5, and 6 in Fig. 4C). The second was high delta and low alpha and theta power in the L-

DLPFC and OFC modules (executive and limbic regions, modules 1 and 3 in Fig. 4C).  These 

results suggest that low- and mid- frequency activity across broad networks characterize 
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depression at the group level. These observations motivated the subsequent statistical analysis to 

define the two patterns quantitatively.  

 
 
Fig. 4. Spectral-spatial features that discriminate depression at group level. A. Activity 

analysis pipeline showing steps including power feature extraction, dimensionality reduction, 

transformation, and classification. The distribution of PHQ-9 scores across the depression (n=18, 

purple) and control groups (n=23, gray) is shown bottom left (mean PHQ-9 score 8.85, standard 

deviation 6.13). Power was extracted from the reconstructed time-series using the Morlet 

transformation in 30 s intervals across 6 frequency bands (delta = 1-4 Hz, theta = 5-8Hz, alpha = 

9-12Hz, beta = 13-30Hz, low gamma (gammaL) = 31-70Hz, high gamma (gammaH) = 71-

150Hz). This process yielded 25,464 spectral power features from our model (6 frequency bands 

x 4,244 electrodes x 2 hours). Z-scored relative power was calculated and averaged within each 
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band across each of the 6 network modules. Power was then further averaged across time to yield 

36 spectral-spatial features per participant. Principal component analysis was then used to 

transform the full spectral-spatial feature set, followed by logistic classification yielding 4 

features that identified depression with 80.0% accuracy on the training set and 77.4% on the test 

set. B. The component weights of the four features with cumulative explained variance across the 

first 10 principal components shown in the inset.  C. Spectral distribution of the 4 components 

was obtained by calculating the dot product between the loading weights (>0.2) for each 

spectral-spatial feature in the four principal components and the coefficient weighting from the 

classifier. Bars show the direction of change of each power band and module in relation to 

depression diagnosis and relate changes in spectral power associated with depression across 

spatially distributed brain networks. These spectral-spatial features represent the circuit activity 

that distinguishes depression in our population. DLPFC = dorsolateral prefrontal cortex, OT = 

occipitotemporal, OFC = orbitofrontal cortex, MF = medialfrontal, FT = frontotemporal, MH = 

mid-hemispheric 
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Distinct Network Expression Patterns Define Depression 

As depression is a complex disorder with heterogeneous symptom profiles across individuals, we 

anticipated that there would also be inter-individual heterogeneity in expression of the group-

level depression network features.  To assess this possibility, we first identified clusters of 

subjects who expressed relevant neurophysiological activity patterns by quantifying the log-odds 

impact on classification of each previously identified spectral-spatial feature for each subject. 

We next tested the distribution of feature impact on depression classification probability across 

participants using an agglomerative hierarchical clustering algorithm (see Methods) (71-74). We 

found two distinct subnetwork activity patterns (network expression patterns (NEPs)) that 

strongly impacted depression and subdivided our depressed population into two groups (Fig. 

5A). The first subnetwork (NEP1) was marked by increased beta power in the L-OT module, and 

increased alpha and decreased delta power over the L-OT and R-FT modules.  The second 

subnetwork (NEP2) was marked by decreased theta in the L-DLPFC, L-OFC, and R-FT 

modules, and decreased alpha, beta power together with increased delta power within the L-

DLPFC and L-OFC modules.  The presence of two subnetworks importantly demonstrated that 

different core features were relevant in different subjects.  We next quantified the impact of each 

NEP on each participant’s probability of being classified as depressed using a sensitivity 

analysis. The difference in classification probability when one NEP was left out was attributed to 

the presence of that NEP, which quantified the relative importance of that NEP toward the 

classification of depression. Fig. 5B shows the probability contribution of each NEP for each 

subject in the depressed group (top plot) and control group (bottom plot).  While we anticipated 

that each individual would exhibit several NEPs with differing contributions to their depression 

classification, an alternate pattern emerged from the data. We found that increased activity in 
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either NEP was correlated with depression, but that each patient exhibited activity in only one of 

the two NEPs.  Thus, depressed participants fell into two groupings based on NEP activity. 

Classification for the first group (37% depressed subjects) was largely driven by NEP1 (n=7, 

mean probability contribution =0.38, SD=0.13) alongside usually modest opposing contributions 

form NEP2, while classification for the second group (53% depressed subjects) was largely 

driven by NEP2 (n=10, mean probability contribution=0.39, SD=0.18, Fig. 5C), alongside more 

modest opposing contributions from NEP1. Classification of the remaining 11% of participants 

was either driven by mixed effects of both NEPs or there was little contribution from either NEP 

and may be evidence of additional subnetworks that were not resolved in our dataset. Two 

distinct groups also emerged from the control participants with NEP activity contributing here as 

well, but with distinct contribution profiles compared to the depressed participants. Classification 

for the first group (21% control patients) was driven either by mixed effects of both NEPs or 

little contribution of either NEP, as we anticipated. Classification for the second group, was 

driven by one of the two NEPs with a more modest contribution of the opposing NEP (79% of 

control group).  We might speculate that relative NEP activity could represent either risky or 

conversely, protective activity profiles, and that NEP activity could be modulated in either 

direction to treat depression. The anatomical distribution of the two depression subnetworks is 

shown in Fig. 5D.   
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Fig. 5. Identification of two depression subnetworks. A. Hierarchical clustering on log-odds of

spectral-spatial features at the individual patient level showing 2 patient groups (horizontal 

groupings) and 2 network expression patterns (NEPs) (vertical groupings).  Columns represent 

individual patients with patient study number shown at bottom, and rows represent spectral 

power across one frequency band and module (ex. alpha_1=alpha power across module 1). 

Magnitude of log-odds represented by color of corresponding boxes (color-bar legend top right). 

Spectral-spatial features associated with NEP-1 represented in purple text and those associated 

with NEP-2 represented in blue text.  B. NEP probability contribution for the depressed group 

(top plot) and control group (bottom plot) derived from a sensitivity analysis where the 

probability of depression for each individual was calculated in total and with a perturbation 

0
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where each NEP was held out. The probability difference was attributed to the presence of the 

NEP.  This probability contribution is represented by the colored bars overlaid over each 

patient’s total probability of being depressed as derived from the machine learning classification 

model (gray bars, probability > 0.5 leads to classification of depression). The perturbations do 

not sum to produce the total classification probability; rather each quantifies the relative 

importance of that NEP toward depression.  Bars in the positive direction indicates a positive 

contribution toward depression, and those in the negative direction indicate a protective 

contribution toward depression. Subjects where one of the two NEPs did not drive classification 

probability are shown in muted colors (mixed profile).  Subjects classified incorrectly shown on 

far right of each plot (misclassified).  C. Mean probability contribution of each NEP to two 

patient groups is shown.  NEP-1 (purple bars) contributed most strongly to the probability of 

depression in the first group (mean=38% probability contribution, SD=0.13) and NEP-2 (blue 

bars) contributed most strongly to a second group (mean=39% probability contribution, 

SE=0.18). Number of participants who exhibit each NEP shown above each bar.  Error bar = 

standard deviation. d. Direction of activity and spatial distribution of activity changes within 

NEP shown on glass-brain in several orientations.  Hubs for each module within the NEP are 

designated by hub color. 
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Network Organization is Disrupted Across Depression Subnetworks 

In addition to alterations in the spectral content of network activity in depression, previous 

studies have observed distinct deficiencies in connectivity across depression networks (75-79). A 

fundamental interest in neuroscience is the relationship between the brain’s neural activity and 

its underlying functional and structural connectivity, which remains unknown. We expected that 

alterations in functional network topology would be present in our depressed population and that 

we could delineate new relationships between activity and functional connectivity with our high-

resolution dataset to more comprehensively characterize depression subnetworks. We performed 

a connectivity analysis using correlation of local field potential activity across modules as an 

estimate of functional connectivity between electrodes. The graph of our whole-brain iEEG 

model (Fig. 3B) defines correlational relationships between electrodes across our total 

population. We thus examined these correlational relationships across control and depressed 

groups independently in order to measure the relative differences of functional network 

organization between the two groups. Specifically, we examined the relative difference in 

connectivity strength across electrodes within and between functional modules. Fig. 6A shows 

the two-dimensional representation of the functional network structure for control (left) and 

depressed (right) groups. In comparison to the control group, we qualitatively observed an 

overall reduction in the segregation between modules in the depression network.  

 

To quantify these differences, we first calculated the inter- and intra-modular connectivity 

strength by calculating the correlation between electrodes located in the same module (intra-

modular) and across different modules (inter-modular). We next compared the distribution of 

correlation strengths between depressed and control groups for each possible module pair using a 
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Cohen’s d effect size metric. We assessed significance by retaining the Cohen’s d values that 

survived multiple comparisons testing with a null distribution of Cohen’s d values generated by 

permuting nodal module assignments (p<0.001). This analysis tests whether the effect of 

connectivity differences between groups is a network-wide characteristic of the depressed brain 

or whether the effect is localizable to specific modules. Fig. 6B shows the heatmap of significant 

Cohen’s d values, where a greater effect of connectivity for the depressed group is indicated in 

red, and lower effect of connectivity for the depressed group is indicated in blue. The results 

demonstrate strong evidence that, indeed, there are module-specific differences in the effect of 

connectivity between depressed and non-depressed individuals suggesting that modules may 

express hyperconnectivity or hypoconnectivity in depression depending on their anatomical 

localization in the brain.  In the depressed group, there was overall greater frontal connectivity 

and weaker cross-hemispheric connectivity. Specifically, we observed greater intra-modular 

connectivity within L-DLPFC, L-OFC, and R-MFC modules, weaker intra-modular connectivity 

within L-OT and R-FT modules, and greater inter-modular connectivity between L-DLPFC, L-

OFC and L-OT modules. Hubs in the insula, amygdala, temporal pole and fusiform gyrus drove 

the cross-module connectivity (top 10% participation coefficient, see Methods). We also 

observed a decrease in cross hemispheric connectivity in the depressed group compared to the 

control group (L-DLPFC/L-OFC to R-FT modules, and L-OT to R-FT/R-MFC modules), with 

hubs in the insula, temporal-parietal region and amygdala responsible for this decreased 

connectivity. The L-OFC module showed greater connectivity with the R-MFC module, and R-

MFC module exhibited stronger connectivity with the R-FT module.  
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On the basis of the above analyses we were able to parse specific connectivity components that 

characterize the two depression subnetworks (Fig. 6C), unifying both activity and connectivity 

analyses across cortical and deep structures with a level of specificity that has not previously 

been possible. In the first subnetwork characterized by NEP1 we observed increased beta power 

in the L-OT module, and right-left asymmetry in the alpha and delta bands over right frontal/L-

OT modules with weaker intra- and inter-modular connectivity throughout. In the second 

subnetwork characterized by NEP2 we observed a hyperactive left frontal cortex that was more 

highly connected within itself but more weakly connected to R-FT module. Lower theta 

bilaterally was observed in this subnetwork.  

 

 

 

Fig. 6. Intra- and Inter-modular connectivity signatures of depression and control groups. 

A. Connectivity structure derived using whole-brain iEEG model recalculated for the control 

4
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group (left) and depressed group (right) with module membership delineated by the color of the 

nodes (electrodes), and edges (connections between electrodes) delineated by the black 

interconnecting lines. B. Heatmap of significant Cohen’s d values calculated from the 

distribution of correlation strengths between depressed and control groups for each possible 

module pair and compared to Cohen’s d values for a null distribution derived from permuted 

nodal module assignment. Those that survived multiple comparison testing (p<0.001) were 

retained (red: increased connectivity for depressed group; blue: increased connectivity for 

control group; white: not significant). C. Schematic of NEP-1 (left) and NEP-2 (right) showing 

both connectivity and spectral power underlying each pattern.  Increased connectivity strength 

shown in red, and decreased connectivity shown in blue (hub=intramodular, line=intermodular 

connectivity). Color of shaded area refers to module number as shown in color legend in panel a.  

 

 

Discussion 

In this report, we present a large study of direct neural recordings aimed at identifying depression 

networks, made possible by multi-day iEEG recordings paired with a depression measure. The 

opportunity to directly record semi-chronically from cortical and subcortical structures in this 

manner enabled us to estimate whole-brain neural activity and incorporate both activity and 

connectivity analyses to resolve new subnetworks underlying depression. We found that 

depression is associated with a complex distributed pattern of network activity and two distinct 

depression subnetworks were expressed in 89% of depressed patients. These included a poorly 

connected occipitotemporal network characterized by heightened beta activity, and a 

hyperconnected frontal cortical subnetwork characterized by low alpha and theta power. 
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Our ability to delineate the functional organization and spectral activity patterns of depression 

networks with high spatiotemporal resolution relied on the application of a network neuroscience 

framework to the output of the SuperEEG model. Recently, Betzel and colleagues successfully 

applied a similar correlational network model to multi-subject iEEG recordings, followed by 

community detection, and found network organization to be representative of that obtained from 

DTI and fMRI (49).  We further extended these findings, by applying the iEEG model to the 

study of disease status for the first time. The two depression subnetworks we identified are 

supported by previous fMRI and EEG studies of depression that have found individual 

components of the subnetworks in different studies including disruptions in frontal theta, 

temporal beta (59), and alpha asymmetry (10, 11, 80-82), decreased connectivity in the occipital, 

temporal, and right medial frontal regions (16) and higher frontal connectivity in depression (5, 

6, 83-86). Our findings of two dichotomously expressed subnetworks may provide a partial 

explanation for the inconsistent findings across prior EEG studies that have predominantly 

focused on single frequency band or brain regions and have lacked rigorous cross-validation as 

noted by a recent meta-analysis (87).  

 

Prior analyses of neuropsychiatric-related iEEG features have been made using components of 

the patient dataset used in this study (32-34).  These efforts (33, 34) have focused on studying a 

broad emotion state rather than depression and took region-based approaches using low subject 

numbers due to the problem of heterogenous electrode coverage across individuals. The 

computational approach developed here was motivated by limitations of this prior work, 

enabling us to incorporate parallel information from all of our subjects despite differing electrode 
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coverage, perform group level analysis of depression, and uncover distributed circuit activity.  

While our aim was to capture network dysfunction associated with depression, the two distinct 

ways in which activity within the NEP networks combinatorically relates to disease classification 

also suggest the possibility of their reflecting depression biotypes.  Other studies have identified 

biological characteristics potentially distinguishing depression subpopulations.  In one example, 

Drysdale and colleagues matched patient symptom profiles with fMRI connectivity features and 

identified several depression biotypes (71), one of which was dominated by globally decreased 

right OFC and left temporal-occipital connectivity - consistent with NEP1, and a second which 

exhibited increased frontal and decreased temporal connectivity - consistent with NEP2.  Despite 

methodological differences, the similarity of these respective pairs of subnetworks – each 

developed in an empirical, data-driven approach using different modalities – is striking and 

potentially represents an emerging point of cross-scale convergence in our understanding of 

depression biology. Furthermore, in complement to the fMRI study, the temporal and spatial 

resolution of our physiology data and our network neuroscience framework for analysis has 

enabled a clarified picture of the patterns of modular and distributed neural activity that may 

underlie the expression of depression subtypes in different patients.  Deeper exploration of these 

putative biotypes await further study.  

 

Functional connectivity informs longer time-scale organization of neural populations whereas 

functional activity informs moment-to-moment behavior of neural populations.  Our finding that 

some brain regions show distinct changes in both activity and connectivity, while other regions, 

such as the right medial frontal region (module 4), demonstrate connectivity differences alone 

suggest that depression is both a state-invariant connectivity disorder and a state-dependent 
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activity disorder. This relationship might explain why traditional antidepressant medications can 

take 6-8 wks to start working, yet ketamine can improve symptoms on the same day of 

administration (88). It is possible that the presence of aberrant activity over long periods of time 

could shape network connectivity via plasticity or that changed connectivity patterns can impact 

the timing and flow of normal neural activity. Future work using high temporal resolution iEEG 

could inform how symptom-states and depression traits are integrated at the level of distributed 

neural circuits.   

 

We acknowledge some weaknesses in the results presented.  Depression in epilepsy is thought to 

arise from similar origins to primary depression (ex. stress (26), inflammation (27), circuit 

dysfunction (30)), and is responsive to antidepressants (31) suggesting it can provide valuable 

insight into depression more broadly.  It remains unknown whether the depression networks we 

identified are related to the presence of epilepsy. Our categorical approach using the PHQ-9 to 

identify depressed patients was straightforward to apply in the context of complex data and has 

direct clinical relevance.  However, it also selects inherently imperfect diagnostic boundaries and 

limited our capacity to examine variation in depression among subjects. Furthermore, as this was 

a cross-sectional investigation, some patients in the control group had a history of depression 

treated with ongoing antidepressant use but were not depressed per the PHQ-9 at the time of the 

study. Future analyses could explore how neural signatures vary with symptom severity in 

addition to alternative dimensional approaches which have the potential benefit of mapping 

neural features onto symptom profiles (71, 72).   
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While our whole-brain iEEG model was extensive in coverage, we did not have electrodes 

placed in all brain regions, including some regions implicated in depression (89-93) and the 

density of electrode sampling varied across brain regions leading to uncertainty in the accuracy 

of estimation in sparsely sampled areas (94). We dealt with this constraint by discounting the 

effect of each individual node degree before running community detection and comparing 

network measures to a null model that accounted for overall node density. Furthermore, our prior 

work has shown no reliable correlation between reconstruction accuracy and density (35). 

SuperEEG relies on accurate reconstruction of held-out activity patterns. While accuracy of this 

algorithm is significantly above chance and similar to the test-retest reliability of fMRI in 

redetecting estimated activity (95), improved reconstruction is an important area for future work. 

With advancements in data processing capabilities and accessibility we may be able to reduce 

assumptions and the estimation burden, extend coverage to more brain regions, and utilize larger 

samples. Indeed, work to integrate our findings with network features from high spatial 

resolution MRI is already underway by our group. Finally, while ideally we would have 

independent test and training datasets for the machine learning used for classification, we utilized 

leave-one-out cross validation due to our sample size.   

 

In light of methodological limitations of the whole-brain iEEG modelling approach it is 

important that we highlight a critical, yet subtle, conclusion regarding the saliency of biological 

signatures in background iEEG recordings that are associated with depression. Indeed, the 

SuperEEG approach reconstructs just a portion of the verum iEEG signal – the remaining 

unexplained portion may stem from subject-specific variation in connectivity (96, 97), state-

dependent variability in connectivity (98, 99) within subjects, or statistical noise. It follows that 
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of this faithfully reconstructed portion of the iEEG signal, we found that higher-order principal 

components of spectral-spatial iEEG activity were most important for identifying patients with 

depression. Taken together, we speculate that depression may in fact have a low-dimensional 

network representation that is widely pervasive in the iEEG signal but represents just a small 

portion of iEEG signal dynamics. Importantly, we found that alternate ML pipelines converged 

on these same low-dimensional features and the composite feature set resembles neural features 

of depression that have been cited in previous neuroimaging studies.  Thus, there is high 

likelihood that the neural features we have found reflect circuit physiology that is stereotyped to 

depression. 

 

Through the current study, we identified two novel subnetworks of depression. The results have 

important implications for disease subtyping, diagnosis, treatment planning, and monitoring of 

depression status. These subnetworks could form the basis for interventions at many different 

potential control points along each subnetwork and suggest that interventions that change both 

connectivity and spectral power could be promising. For example, they provide a mechanistic 

rationale for practitioner’s choice between right and left DLPFC vs. OFC targets for repetitive 

transcranial magnetic stimulation (71, 100). Evidence of high activity in one network pattern, 

countered by an anti-weighting of the other pattern further suggests the existence of protective or 

high-risk profiles and the possibility of preventative treatments. A library of new treatment 

targets and frequency-specific treatment parameters (101, 102) could enable a new wave of 

closed-loop interventional therapies that personalize treatment based on neurophysiological 

signals. 
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Materials and Methods 

Patient Characterization 

Participants included 54 adults (49% female) aged 20-67 who had medication-refractory epilepsy 

and were undergoing intracranial monitoring as part of their standard medical care. Neural data 

from these participants comprised our full dataset and was utilized to build the whole-brain iEEG 

model of LFP time-series. Participants were screened for depression following electrode 

implantation and concurrent with neural recordings using the Patient Health Questionnaire-9 

(PHQ-9), a 9-item self-report instrument validated for depression screening (56-58). A score ≥ 

10 defined the MDD group (moderate depression) and a score ≤ 5 defined the non-depressed 

control group generating a sample of 23 depressed subjects (56%) and 18 controls (44%). The 

remaining 13 patients were used in the first step of the study (model building) but not the second 

(model utilization). Data comprised a consecutive series of patients recruited from University of 

California, San Francisco and Kaiser Permanente, Redwood City, California over a 5-year 

period. This study was approved by the University of California, San Francisco Institutional 

Review Board with written informed consent provided by all subjects.   

 

Patients’ antiepileptic medications (AEDs) were withdrawn as part of standard clinical care.   

However, to control for possible effects of medication on neural activity in the depressed and 

control groups we examined the number of patients in each group that were on AEDs associated 

with depression(103) using a chi squared test.  Depressive disorders have been shown to be 

significantly increased with AEDs that have strong GABA-ergic properties such as barbituates, 

tiagabine, vigabatrin, and topiramate (29).  Zonisamide (104) and perampanel (105) also have 

been shown to be associated with depression.  There was no significant difference in the number 
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of patients on such medications in the control and depressed group (Table S1) providing 

evidence that medication usage is not driving the neurophysiological group differences. 

 

Electrode Implantation and Localization  

Subdural grid, strip, and depth electrodes (AdTech, Racine, WI; or Integra, Plainsboro, NJ) were 

implanted using standard neurosurgical techniques. Subjects underwent pre-operative 3 Tesla 

brain magnetic resonance imaging (MRI) and post-operative computed tomography (CT) scan to 

localize electrodes in patient-centered coordinates using an open source python package for 

preprocessing imaging data for use in iEEG recordings (106).  The steps included warping brain 

reconstructions to a common Montreal Neurologic Institute (MNI) template and merging 

electrode locations across subjects. Surface warpings were then generated by projecting pial 

surfaces of the subject and template brains into a spherical coordinate space and aligning the 

surfaces in that space. Depth warping was then performed using a combination of volumetric and 

surface warping (107). For visualization, pre-operative T1-weighted MRI scans were pre-

registered with the post-operative CT using Statistical Parametric Mapping software SPM12 and 

pial surface 3D reconstructions were generated using FreeSurfer (108). 

 

Data Acquisition and Pre-Processing  

Data acquisition of iEEG recordings were acquired using the Natus EEG clinical recording 

system at a sampling rate of 1-2 kHz. Standard iEEG/ECoG pre-processing techniques were 

conducted in python including application of a 2-250Hz bandpass filter, notch filters at line noise 

frequency and harmonics (60Hz, 120Hz, 180Hz, 240Hz), down sampling to 512Hz, and common 
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average referencing to the mean of all channels. The data were acquired across a range of 

behaviors while the patient was in the epilepsy monitoring unit. 

 

Construction of Whole-Brain iEEG Model  

A functional connectivity imputation technique was utilized to estimate whole-brain iEEG 

activity for each subject (SuperEEG). This method involved four main steps outlined in Fig. 2.  

First, pre-processed iEEG signals were chunked into 60s non-overlapping blocks and filtered for 

putative epileptiform activity or artifacts. We then randomly sampled the 60s intervals across 

daytime hours (8am-10pm) and concatenated them into 2 hours blocks, each representative of 

naturalistic activity.  To filter the activity of putative epileptiform activity or artifacts we 

identified signals that deviated from the norm using kurtosis, a measure of infrequent extreme 

peaked deviations (109). Individual 60s blocks were retained if the number of artifactual signals 

(kurtosis>10) was less than 5% of the total sample. The same kurtosis threshold was then applied 

to each 2h block to further eliminate noisy electrodes. The kurtosis threshold of 10 was tested in 

Owen et al. 2020 on a similar intracranial dataset and verified by eye on a subset of samples by a 

provider trained in Clinical Neurophysiology. Second, the iEEG functional connectivity model 

was built by averaging patient level connectivity models. The patient level model leveraged 

known inter-electrode correlations to estimate temporal correlations at locations that were not 

present.  This was accomplished by using the fact that the strength of relationships between 

sensors are proportional to neural proximity.  As the distance between two sensors increases the 

correlation weakens.  The rate of falloff was modeled using a gaussian radial basis function (rbf) 

at locations � of each known patient electrode to estimate the unknown correlations between  � 

and �.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 5, 2020. ; https://doi.org/10.1101/2020.02.14.943118doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.14.943118


 34

 

�����|�, ��  ��� ���� � ���

� � 

 

    where � was set to 20 based on prior work that sought to maximize both spatial resolution and 

generalizability to any brain location (51). This relationship was utilized as the Weight matrix 

(�) and applied to every electrode set (�, �) for each patient as 
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     where the rbf function expands the single patient to include estimated temporal recording 

relationships from sensors in the full population. Third, the Weight matrix was then combined 
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where r(·) represents the Fisher-z transformation. The patient specific estimates of full brain 

correlation matrix ��� and the spatial proximity weighting matrix ��� were combined in a 

weighted average to compute a single whole-brain expected correlation matrix "� as 
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Finally, estimated LFP activity for each electrode was reconstructed using Gaussian process 

regression according to 
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   where + represents the patient, ,� is the set of indices where we had observed recordings for 

patient + and -� is the set of indices that were to be estimated. The submatrix "��
�

,
�
 represents 

the estimated correlations between locations of known activity and locations of reconstructed 

activity. The submatrix "�
�

,
�
 represents correlations between known neural recordings. 

 

Construction of the above model required extensive computational resources. Therefore, we 

sought to utilize the minimum required information required to obtain the majority of 

information and enable computational feasibility. Using the 10h benchmark as the largest 

feasible model we could build, we compared 2, 4, 6 and 8 hour models to the 10 hour model and 

found that the difference in adding additional time beyond 2h was marginal and could be 
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computed at a fraction of the computational cost. We therefore utilized the 2h model for further 

analysis (Fig. S1A). 

 

Validation of this method on two independent datasets has been performed previously, 

demonstrating reconstruction accuracies for held out electrodes are significantly better than 

random guessing (35).  We performed this same validation on electrodes from our dataset.  To do 

so, a model with all but one patient was constructed and then applied to the held-out patient.  The 

correlations of the true and reconstructed signals were compared for each electrode.  The 

distribution of reconstruction accuracies is shown in Fig. 2F.  Significance was assessed by 

averaging the patient level fisher transformed correlation coefficients and comparing the 

distribution across patients to 0 using a t-test.   

 

Signal Processing  

Standard signal processing techniques were applied to the time-series activity across all 

reconstructed electrodes. This included continuous wavelet transformation using the Morlet 

transform wavelet method (6-cycles) (110) performed in 30s intervals to obtain power spectra in 

6 frequency bands (delta = 1-4Hz, theta = 5-8Hz, alpha = 9-12Hz, beta = 13-30Hz, low gamma 

(gammaL) = 31-70Hz, high gamma (gammaH) = 71-150Hz). Relative power was calculated by 

dividing the power of each frequency band by the total power across the 6 frequency bands for 

each electrode. Signals were summarized by taking the mean power across time for each spectral 

band and were z-scored across patients. 

 

Electrode Clustering into Functional Modules   
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We used a well-validated technique, multiscale community detection, to identify distributed 

functional sub-networks (modules) across the model (38, 39, 48, 111-113). The purpose of 

module detection was to uncover the inherent organization of the brain’s correlational structure 

from the output of the SuperEEG model.  We conceptualize a network module as a distinct 

property of connectivity organization, akin to validated atlas parcellations (50) but specifically 

designed for functional rather than structural data. Atlases apply boundaries to brain regions 

based on structural or functional organization derived from coarse-scale neuroimaging and thus, 

while they provide a useful validation for our data-driven parcellation scheme, there is no reason 

to assume their boundaries will perfectly align with neural signals at the millimeter scale of 

iEEG. 

 

Individual functional connectivity models generated in the whole-brain iEEG reconstruction 

were used as a starting point in this analysis.  Using the Louvain algorithm (114), we identified 

an optimal parcellation of electrodes into discrete functional modules by maximizing a 

modularity cost function defined by the following relationships, 

.   2
�"��

"0"�  

 

1   ��" � 2.� 3 4��
 

 

where 0 is a ones matrix, 3 is the Hadamard product and Gi,j is 0 if node pair (�, �) are assigned to 

different modules and 1 if the pair is assigned to the same module, 1 is modularity, " is the 

connection weights (correlation) between node � and �, . is the Newman-Girvan null model (39) 

and 2 is the weighting of that null model which is tuned to obtain network modules of different 
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sizes.  As the network fractures into many small modules for higher 2, the overall modularity 1 

decreases. We examined network modularity at values of 2 between 0.5 and 2.1. We first 

assessed the stability of clustering at each value of 2 by examining module allegiance (55),  

calculated by repeating module detection 100 times and evaluating the probability that two 

electrodes occupied the same module. We then selected an optimal value of 2 by assessing how 

the iEEG modules co-localized with brain structures derived from the 234 anatomically distinct 

brain areas defined by Cammoun et al. (2012) (50) referred to as the Lausanne atlas. In 

accordance with prior work (49), we computed a similarity index (Rand score index (115)) 

between the division of electrodes into modules and the division of electrodes into anatomical 

structures for the range of resolution parameters (Fig. S1B). Significance was assessed by a 

permutation test where the null model was generated by randomly assigning electrodes to each 

module and calculating the confidence interval of the similarity index generated from 1,000 

random permutations and tested at significance level 0.05 for a 2-tailed test. Two similarity 

peaks were identified, with values of γ that generated 6 and 1,855 modules respectively. The 

peak with the highest modularity (lowest number of clusters) was selected for further analysis 

due to our goal of examining the brain at a low level of granularity. This selection enabled 

subsequent classification of activity across these clusters without overfitting our model. While 

we report our results based on this most parsimonious match between modules and anatomical 

structures (2 =1.19), we verified that the assignment of electrodes into slightly coarser and 

slightly finer modules (1 < 2 < 2.1) did not substantially alter our ability to predict subjects with 

depression (Fig. S1B, red).  Finally, we assessed the distribution of electrodes that were assigned 

to each module across the main anatomical regions defined by Cammoun et al. (2012) (50) (Fig. 

S1).  
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Assigning Names to Modules  

We assigned a name to each module by examining the location of each module’s most influential 

electrodes.  We utilized the participation coefficient (PaC), which is a degree-based measure of 

network connectivity that describes a node's functional interaction within and across network 

modules (51-53). This metric is typically utilized to identify influential hubs across a large-scale 

network. We utilized it in our study to identify the location of hubs that were most important for 

driving connectivity in each module identified through community detection. Groups of 

electrodes with low PaC values indicate hubs with high intramodular connectivity, also known as 

provincial hubs (116). Similarly, connector hubs are those with high PaCs and drive 

intermodular connectivity. The PaC describes the weight of edges from node i to all other nodes 

in the same module relative to the weight of edges from that node to all nodes in the network 

according to  

 

��  1 �  �  6��7�
6�

!
���

 

 

where yi is node �’s participation coefficient, C is the set of all modules, 6��7� is the sum of all 

correlations between node � and other members of module C and 6�  is the sum of all correlations 

between node � and members of all modules. We calculated the PaC for each electrode across 

our model, and then selected those with high and low participation values (top/bottom 10%). We 

then grouped these selected nodes by Lausanne atlas region, eliminating or combining a minority 

of regions due to having too few electrodes for analysis. We addressed the non-uniform 

distribution of electrodes across the model by then assigning each Lausanne region a score 

according to the following hub weight:  
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where ��  is the number of selected electrodes (top/bottom 10%) in Lausanne region �, 9�  is the 

number of selected electrodes in Lausanne region � of module �, and :� is the number of total 

electrodes across modules in Lausanne region �.  Hubs were those Lausanne regions with the 

highest hub weight. Hub location was identified by averaging the MNI coordinates of electrodes 

within each hub. The full list of Lausanne regions and hub weights is shown in Fig. S2 and 

Tables S2-3. The purpose of the identified hubs in the present report was primarily descriptive 

and helped relate the computational model to known brain regions and structure; all subsequent 

analyses utilized the population set of electrodes across the full model.  

 

Classification 

We utilized a machine learning algorithm validated with leave-one-out cross validation to 

identify distributed neural circuit features that discriminated depression. We first averaged local 

field potentials across the electrodes within each module and then decomposed the signals into 

common spectral band to identify 36 features (6 frequency bands x 6 modules) that contained 

information both about the spectral power and the location of the activity. These features, 

referred to as spectral-spatial features, served as our starting feature space for entry into our 

classification pipeline.  Transformation with principal component analysis (PCA) (117) followed 

by methods for feature selection and subsequent discrimination have been used on previous 

iEEG classification problems (33, 34).  We followed a similar pipeline. PCA enabled us to 

reduce collinearity and identify latent variables that described maximally distinct network-based 
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components inclusive of multiple frequency bands and spatial modules. A logistic regression 

classifier was then utilized to classify depression based on accuracy using a sparsity promoting 

regulizer (L1) which selects fewer principal components while controlling for overfitting. PCA 

and logistic classification were performed within the cross-validation loop where a model is 

trained on all subjects but one, and then tested on the held-out subject with each subject held-out 

in turn. We report mean accuracy (balanced to group-size) across the cross-validation iterations. 

To further asses our model validity, we repeated our classification pipeline on a null model 

obtained from randomly permuting the target class labels 1000 times and used a permutation test 

to assess significance between the true and null model accuracy distributions.   

 

In order to control for possible differences in epileptiform activity residual to data-cleaning 

across the modules we calculated line-length, a commonly utilized measure for the detection of 

epileptiform activity (118) for each electrode and averaged across the modules.  We used a 

logistic regression model to show that line-length across the six modules was not a significant 

predictor of depression status (R2=0.15, p=0.13, logistic regression).   

 

Hierarchical clustering to identify depression networks 

We reasoned that we could utilize the group-level network to identify common features that 

defined depression at the individual level. To do so, we mapped the principal component values 

(feature loadings ≥0.2) back to the original feature space weighted by the logistic regression 

coefficients. This provided the log-odds impact of each original feature. We then tested the 

distribution of feature impact on depression classification probability across depressed 

participants by grouping similar log-odds impact covariates (thresholded at  0.15) utilizing an 
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agglomerative hierarchical clustering algorithm (71-74). A log-odds threshold of 0.15 was 

selected because it retained classification results for 98% of subjects while isolating the most 

contributory spectral-spatial features (see Fig. S3A for non-thresholded model for comparison). 

The clustering yielded both patient and feature groupings that defined neurophysiological 

network expression patterns (NEPs) of depression. We quantified the impact of these NEPs on 

each participant’s probability of being classified as depressed by performing a sensitivity 

analysis where we withheld each NEP and then attributed the probability decrement from the 

total classification probability to the withheld activity pattern.  Two patient groupings were 

defined based on the relative contribution of each NEP to classification probability.  Subjects in 

whom the contribution was very modest or mixed across the NEPs were placed into a third 

mixed group. We also ran this analysis on the boundary patients who had mild symptoms of 

depression but did not reach threshold (PHQ-9<10) for depression (Figure S3B). 

 

Connectivity Analysis 

In order to understand the effect of depression on network topology we examined changes in 

connectivity across the control and depressed subjects.  First, inter- and intramodular 

connectivity strengths were assessed by looking at the correlations between all electrodes within 

the same module (intramodular) and the correlations between electrodes across all pairs of 

modules (intermodular).  Next, to assess whether the effect of connectivity differences between 

groups is a network-wide characteristic of the depressed brain or whether the effect is localizable 

to specific modules, we used a Cohen’s d effect size metric and compared the distribution of 

correlation strengths across depressed and control groups for each possible module pair. To 

assess significance across these connections we generated a null distribution of Cohen’s d values 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 5, 2020. ; https://doi.org/10.1101/2020.02.14.943118doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.14.943118


 43

for each module pair and retained the true Cohen’s d values that survived multiple comparisons 

testing (p<0.001).  
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