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Highlights 

 Proteomic and transcriptomic characterization of fully sequenced diverse L1 and L2 clinical 

isolates of Mtb. 

 

 Post-transcriptional control mechanisms for regulatory and virulence genes are mitigated 

in Mtb L2. 

 

 By applying a genome-scale transcriptional framework, DosR, Rv1985c, Lsr2 and Rv0691c 

are identified as master transcription factors responsible for differential target gene 

expression in L2 strains compared to L1. 

 

 L1 and L2 DosR proteins respond differently to nitric oxide stress, thus determining a 

relevant phenotype. 

 

Summary 
The Mycobacterium tuberculosis (Mtb) complex comprises seven phylogenetically distinct 

human-adapted lineages exhibiting different geographical distribution and degrees of 

pathogenicity. Among these, Lineage 1 (L1) has been associated with low virulence whereas 

Lineage 2 (L2) has been linked to hyper-virulence, enhanced transmission and drug resistance. 

Here, we conducted multi-layer comparative analyses using whole genome sequencing data 

combined with quantitative transcriptomic and proteomic profiling of a set of L1 and L2 clinical 

strains, each grown under two different conditions in vitro. Our data revealed different degrees 

of correlation between transcript and protein abundances across clinical strains and functional 

gene categories, indicating variable levels of post-transcriptional regulation in the tested lineages. 

Contrasting genomic and gene expression data showed that the magnitude of the transcriptional 

and translational changes was proportional to the phylogenetic distance between strains, with 

one out of three single nucleotide polymorphisms leading to a transcriptional and/or translational 

change on average. We devised a new genome-scale transcriptional regulatory model and 

identified several master transcription factors, strongly linked to the sigma factor network, whose 

targets were differentially regulated between the two lineages. These differences resulted in a 

higher basal expression of DosR proteins and a stronger response to nitric oxide (NO) exposure in 

L2 compared to L1. These patterns are most likely responsible for the shorter NO-induced growth 

arrest in L2 observed. Given the limited genetic variation between strains, it appears that 

phenotypic differences in Mtb are substantially driven by differences in the regulation of 

biochemical networks through master transcriptional regulators.    
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Introduction 
Adaptive evolution is mainly driven by mutations. While the phenotypic consequences of 

mutations can be easily mapped in the context of strong selection such as antibiotic pressure, the 

phenotypes emerging from more subtle evolutionary changes are more elusive. 

Mycobacterium tuberculosis (Mtb) is the etiological agent of tuberculosis (TB), the major cause of 

human mortality due to an infectious agent (World Health Organization, 2018). Mtb is an obligate 

human pathogen and comprises seven phylogenetic lineages, each with a distinct geographic 

distribution. Together with several animal-adapted lineages (Brites et al., 2018), these make up 

the “Mtb complex” (Gagneux, 2018). Even though the Mtb complex harbors little genetic diversity 

compared to other bacteria (Achtman, 2008), Mtb clinical strains differ significantly in virulence 

and transmissibility (Coscolla and Gagneux, 2010, 2014). However, linking this phenotypic 

variation to the limited genetic diversity in the Mtb complex has been challenging (Brites and 

Gagneux, 2017). Among the seven human-adapted lineages of Mtb, some have received 

particular attention because of their clinical significance. Of note, Lineage 2 (L2) strains are 

geographically widely distributed and have been associated with high virulence in macrophages 

and various animal models and rapid disease progression (de Jong et al., 2008), increased 

transmission (Holt et al., 2018) and a propensity for antibiotic resistance in humans (Borrell and 

Gagneux, 2009). Conversely, Lineage 1 strains (L1) are geographically localized mainly around the 

rim of the Indian Ocean, have been linked to reduced virulence in infection models (Bhatia et al., 

1961), reduced transmission potential (Holt et al., 2018) and a reduced propensity for antibiotic 

resistance (Coscolla and Gagneux, 2014; Phyu et al., 2009). Importantly, in geographical areas 

where both lineages are present, such as in Vietnam, L2 seems to be supplanting L1 as the 

predominant form of Mtb (Guerra-Assunção et al., 2015; Holt et al., 2018). These features point 

to important physiological differences between L1 and L2. Although, many studies have described 

phenotypic differences in Mtb clinical strains (Coscolla and Gagneux, 2010, 2014), the molecular 

mechanisms underlying these differences remain to be determined. To date, the majority of  

insights into the molecular processes have been gained from work on a few laboratory-adapted 

strains of Mtb (Almeida et al., 2016; Gagneux and Small, 2007; Wang et al., 2010; Wollenberg et 

al., 2017; Yang et al., 2015) that do not capture the entire phylogenetic diversity of clinical strains 

(Chiner-Oms et al., 2018; Trauner et al., 2018). 

Microbiologists are increasingly applying systems biology approaches and multi-layer omics 

technologies to interrogate bacterial systems and their interactions with the human host (Caron 

et al., 2017; Nicod et al., 2017; Penn et al., 2018). These approaches largely profile various types 

of biomolecules, typically genome, transcriptome, proteome and, more recently, protein 

complexes that collectively describe the molecular makeup of specific cells and cellular states and 

predict interdependencies of different levels of gene expression along the axis of the central 

dogma (Banaei-Esfahani et al., 2017; Comas et al., 2013; Heusel et al., 2019; Rose et al., 2013). In 

Mtb, genomic profiling and measurements of the transcriptional response to a particular stress 
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have been frequently used (Cortes et al., 2017; Manson et al., 2017; Rustad et al., 2014). Yet, 

computational approaches that can extract mechanistic insights from the statistical associations 

in a multi-layer omics dataset need further development. Moreover, a growing body of evidence 

shows that post-transcriptional events are of considerable importance in Mtb, and that direct 

functional information can be retrieved from the state of the proteome, making quantitative 

proteomic data an asset and a relatively recent addition to integrated multi-layered omics 

analyses of bacteria (Chionh et al., 2016; Cortes et al., 2017). The mass spectrometric technique 

SWATH-MS, combines data independent acquisition with massively parallel targeted analysis of 

the acquired data (Gillet et al., 2012; Röst et al., 2014) and thus offers the high degree of 

reproducibility, consistency, and throughput needed for large cohort studies. It has recently been 

optimized in model experiments with Mtb (Collins et al., 2017; Schubert et al., 2013, 2015). 

Here, we generate and analyze a multi-layer omics dataset that includes transcriptome and 

proteome data generated from genome sequenced clinical Mtb strains. Specifically three L1 and 

L2 strains, respectively, were studied during two in vitro growth conditions. We use these data to 

systematically examine the strength of post-transcriptional regulation in Mtb across various 

functional categories. Moreover, we tailor a genome scale transcriptional framework – GenSTrans 

– to identify transcription factors (TFs) that regulate their target genes differently between L1 and 

L2 strains. We further show that ~40% of the observed significant changes can be explained by a 

small set of identified TFs and the number of SNPs between each pair of strains determines the 

extent of the significant changes at both mRNA and protein level. Our model highlights four 

master TFs (DosR, Rv1985c, Rv0691c, and Rv3597c) that are known to interact with several sigma 

factors, including SigB. We discuss how the observed differential expression of DosR proteins, 

most likely triggered by SigB in response to nitric oxide stress, correlates with shorter growth 

arrest in L2 strains compared to L1. In summary, we demonstrate the potential of network 

modeling to describe molecular mechanisms that differentiate Mtb L1 strains from L2. We 

propose that these differences may explain some of the phenotypic changes observed in clinical 

setting for these strains. 
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Results 
Multi-layer omics profiling of Mtb clinical strains 

To establish the data basis for the integrated, multi-layer analysis of Mtb L1 and L2 clinical strains, 

we selected three strains from each lineage (Borrell et al., 2019; Chiner-Oms et al., 2019) such as 

to represent the greatest phylogenetic diversity within each lineage based on whole genome 

sequence data (Fig 1a). We then grew the six strains in vitro to mid-log phase and profiled their 

transcriptomes and proteomes in biological triplicates (18 samples) using RNASeq and SWATH-

MS respectively (Fig 1b, Fig S1). Illumina NGS quantified 3,933 transcripts across the samples 

(transcript per million, TPM > 1). SWATH-MS quantified 21,184 peptides consistently across 

samples from which 2,479 proteins, corresponding to 62% of Mtb’s open reading frames, were 

inferred (Fig 2a, Fig S2a). Through the targeted data analysis pipeline OpenSWATH (Röst et al., 

2014) and using the Mtb proteome library (Schubert et al., 2013) as prior information, three or 

more proteotypic peptides per protein were quantified for ~76% of the detected proteins (Fig2b). 

Next, we examined the quality and reproducibility of each of the omics layer individually. The 

median CVs (Coefficient of Variation) across the biological triplicates was ~12% at both the 

transcript and protein level, indicating comparable data quality between the two platforms (Fig 

S2b, c). Overall, we were able to quantify 94% of detected proteins across all samples by direct 

measurement. Where this was not possible (the remaining 6%), we inferred upper bounds of 

possible protein expression from local background values (Fig 2c). The correlation between 

biomolecular features of the replicates was high for both the transcriptomic and proteomic data 

(Fig S2 d, e). We assessed the technical and biological variability of the respective datasets. The 

results indicated an ascending molecular variation with increasing genomic distance within and 

between the two lineages (Fig 2d). Our analyses also resulted in a perfect unsupervised clustering 

of Mtb strains and lineages for both transcriptomic and proteomic data (Fig S2 f, g). Principal 

component analysis (PCA) suggested that the protein data are more informative with respect to 

separating strains by their phylogenetic relationship compared to transcriptomic data. Indeed, 

the first two principal components of protein data exhibited a good separation, resolving 

individual strains (Fig 2e). By contrast, the resolution of PCA based on transcriptomic data was 

more limited and reflected the phylogenetic classification (Fig 2f). In short, we have generated a 

dataset, which spans from the genome of fully sequenced clinical isolates of Mtb to transcriptome 

and proteome. The multifaceted nature and deep coverage of the high data quality provided a 

solid base on which to build our downstream analyses. 

Post-transcriptional regulation is prevalent in Mtb clinical strains 

A growing body of evidence suggests that the extent of post-transcriptional regulation in Mtb is 

higher than previously appreciated (Chionh et al., 2016; Cortes et al., 2017). We used our 

combined multi-layer omics dataset to systematically explore the extent of transcriptional and 

post-transcriptional regulation in Mtb clinical strains and to assess the relative impact on gene 
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functional categories annotated by Tuberculist (Lew et al., 2011) between the two lineages. As an 

indirect measure of the degree of post-transcriptional regulation, we computed the Spearman 

rank correlation between averaged intensities of mRNA and protein products of the same gene 

across biological triplicates in the six strains studied. We found that the magnitude of the 

correlation, and hence the assumed extent of post-transcriptional regulation, varied between 

functional categories. Whereas the overall correlation was 0.46, the strongest and weakest 

signals of post-transcriptional regulation were observed in the “virulence, detoxification, and 

adaptation” (Spearman’s rho: 0.33) and “lipid metabolism” (Spearman’s rho: 0.69) group, 

respectively. Remarkably, the L2 strains presented a significantly higher mRNA to protein 

correlation compared to L1 for both regulatory (T-Test’s p-value = 0.015) and virulence genes (T-

Test’s p-value = 0.0036) (Fig 3a). Comparing the global correlation observed in Mtb to that in 

other species showed that the potential of Mtb for post-transcriptional regulation was in the 

same range as for humans, despite the fact that bacterial systems are usually less complex (Liu et 

al., 2019). An earlier study showed that mRNAs and proteins of 137 Escherichia coli genes were 

moderately correlated, although the correlation values were variable (0.54 – 0.77) depending on 

the different quantification methods used in the study (Taniguchi et al., 2010). Other studies in 

yeast and metazoan species showed mRNA-protein correlations at the gene-to-gene basis of 

above 0.5 (Alli Shaik et al., 2014; Beyer et al., 2004; Brockmann et al., 2007; Ghaemmaghami et 

al., 2003). A possible explanation for the apparent increased post-transcriptional regulation in 

Mtb may be the presence of the proteasome system responsible for protein degradation and 

homeostasis that is rarely found in other bacteria (Becker et al., 2019). Due to the substantial 

post-transcriptional regulation in Mtb, RNA data in isolation can lead to incomplete or misleading 

mechanistic understanding. This underscores the need for high quality quantitative proteome 

data (Cortes et al., 2017). For instance, our data revealed that T cell antigens (both MHC class one 

and two) are significantly regulated at the RNA level in L2 strains compared to L1 (MCHI’s p-value 

= 4.57E-5 and MHCII’s p-value = 0.0071). However, this pattern of the differential regulation could 

not be observed at the protein level (MCHI’s p-value = 0.07 and MHCII’s p-value = 0.55) (Fig S3). 

Transcript and protein abundances differ substantially between Mtb L1 and L2 

strains 

Next, we performed differential protein and transcript expression analyses of the L1 and L2 

strains. We identified 578 differentially abundant transcripts and 390 differentially abundant 

proteins (fold change > 1.5 and adjusted p-value < 0.01) (Table S1). The vast majority of the 

changes occurred in non-essential genes involved in survival, infection and persistence of the 

bacilli, whereas the expression of Mtb essential genes remained largely unchanged (p-values = 

6.9E-7 & 2.17E-6 on mRNA and protein level). Gene set enrichment analyses of the differentially 

abundant transcripts and proteins highlighted regulons and functional categories that distinguish 

the two lineages. These included the Dormancy survival Regulator (DosR) and Iron-dependent 

Repressor (IdeR) regulons. DosR proteins contribute to maintenance of cell viability during 

transition to a non-replicating state induced by various stresses such as macrophage engulfment, 

hypoxia and nitric oxide (Mehra et al., 2015). The abundance of these genes was significantly 
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regulated in L2 strains compared to L1, both on the transcript and protein level (Fig 3b, S4a). For 

transcripts this observation has been reported previously (Homolka et al., 2010; Rose et al., 2013) 

and it is confirmed here using both transcriptome and proteome data from the same samples. 

Chao JD et. al. showed that the abundance of DosR proteins is increased upon PknH, a 

serine/threonine-protein kinase, knockout (Chao et al., 2010). Since we found the abundance of 

PknH decreased in L2 strains, we decided to examine whether there was a link between the PknH 

downregulation and DosR upregulation. We hypothesized that PknH could regulate DosR proteins 

through either DosR or an alternative transcription factor. To test this hypothesis, we profiled the 

proteome of a PknH knockout and overexpressing strain generated from the laboratory strain 

H37Rv along with the wild type strain in biological triplicates, using the same method as described 

above. However, we could not replicate the results shown by Yossef Av-Gay and colleagues and 

DosR proteins remained unchanged upon PknH knockout and overexpression (Table S2). 

Our analyses also pointed to the regulon IdeR, (repressed in iron-replete conditions) as being 

significantly differentially abundant in the two lineages (Fig 3c, S4b). Iron acquisition systems in 

pathogenic bacteria are critical virulence factors and Mtb requires iron to be able to grow in 

culture and during infection (Rodriguez and Smith, 2006; Rodriguez et al., 2002). Hence, the 

increased expression of IdeR proteins in L2 strains could boost the potential of the iron acquisition 

system and therefore strengthen L2’s success during infection (Gold et al., 2008). Lipid 

metabolism related proteins that showed the lowest mRNA-protein correlation also appeared 

significantly differentially abundant between the two lineages (Fig 3d, S4c). This functional 

category contains 272 genes in Mtb whereas, in comparison, the E. coli genome encodes only ~50 

such proteins. The amount of energy Mtb spends to transcribe and translate these genes indicates 

their critical roles in the life cycle of Mtb. Proline-glutamic acid (PE)/proline-proline-glutamic acid 

(PPE) genes, many of which are considered as virulence factors, also displayed differential 

regulation between the lineages at both RNA and protein level (Fig 3e, S4d). These proteins are 

challenging to quantify since they are, to a large extent, either secreted or localized on the cell 

surface. We next examined transcription factors (TFs) of which 138 out of 214 (%64) could be 

detected at the protein level. We found that at least 24 TFs showed changes in their abundance 

at the protein level between the lineages (Fig 3f, S4e). Taken together, our multi-omics data 

revealed important differences in the functional and regulatory organization of Mtb clinical 

isolates from lineages 1 and 2. 

The number of single nucleotide polymorphisms (SNPs) is linked to the magnitude 

of transcript and protein expression differences between strains. 

The large extent of the observed transcriptional and translational changes between the two 

lineages led us to examine the role of SNPs, the most common form of genetic variation in Mtb. 

To this end, we first calculated the genomic distance based on number of SNPs between each pair 

of the tested Mtb strains. The average pairwise genomic distances within L1 and L2, as well as 

between the two lineages, were 873, 446 and 1,761 SNPs, respectively. These results are 

consistent with results reported previously (Coscolla and Gagneux, 2014) that showed that the 
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genetic diversity within L1 was about twice that of L2. We then examined the extent to which the 

observed changes at the transcript and protein level correlated with the number of SNPs in the 

corresponding genomes. Our analysis revealed a Spearman correlation between the genomic 

distance, measured in number of SNPs, and the differentially regulated mRNAs and proteins of 

0.73 and 0.83, respectively (Fig 4a, b). The lower proteomic coverage diminished the slope of the 

corresponding regression line but it almost met the slope calculated for transcripts following a 

coverage-based normalization. The elucidation of the one-to-one relationship and exact 

mechanism of each causative SNP goes beyond the scope of this analysis due to the complexity 

of potential mechanisms. For instance, genetic variation might affect regulatory proteins such as 

TFs by either changing the affinity of a given protein to DNA (both synonymous and non-

synonymous SNPs), or modifying a regulatory protein (synonymous SNPs), and therefore 

influence gene expression. Hence, we included both synonymous and non-synonymous SNPs in 

our analysis. Overall, our data indicate that, on average, every three SNPs caused a significant 

expression change which can be detected at either transcript or protein level. 

A genome-scale transcriptional model identifies divergent regulators between L1 

and L2 strains. 

The differential expression between the two lineages of a high number of TFs observed in our 

dataset led us to ask to what extent changes in transcript or protein abundance can be explained 

by direct regulation of TFs. To address this question, we leveraged an existing transcriptional 

framework, the Mtb’s Environment and Gene Regulatory Influence Network (EGRIN) model, to 

identify TFs causally linked to the observed changes in transcript and protein abundance 

(Peterson et al., 2014). The EGRIN model defines clusters of co-regulated transcripts (modules) 

and their corresponding TFs. It requires dual enrichment analysis to connect a given regulated 

gene set to the modules and the modules to TFs (Fig S5a) (Peterson et al., 2016). Applying the 

model to our transcriptomic dataset highlighted 15 modules that were i) associated with at least 

one TF and ii) significantly enriched in transcripts that were differentially abundant between the 

two lineages (adjusted p-value < 0.05) (Fig S6a). The transcription factor DosR was identified with 

high significance through four different modules as a putatively causative TF for divergent gene 

expression in L1 and L2 strains. In addition, we also found that KstR2 (Rv3557c) could regulate its 

target genes differently between the two lineages. This transcription factor was identified 

through two different modules and controls the expression of a small set of genes involved in the 

utilization of cholesterol, the main carbon source used by Mtb during infection (Kendall et al., 

2010) (Fig S6b). Whereas EGRIN provides a high degree of sensitivity and is well suited to 

pathway-level analysis provided that the model includes pathways of interest, the model could 

not satisfactorily address our quest for the identification of lineage-specific regulators for two 

reasons. First, the EGRIN model contains only 66 transcription factors and is therefore not a 

genome-scale model. Second, each module encompasses only 13 genes on average, which 

mitigates the specificity of the model. Consequently, the Mtb EGRIN based analysis can suggest 

several TFs regulating a given module, making it impractical to identify the causative TF with 
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confidence (Fig S6a). To improve on these limitations, we devised a new genome-scale 

transcriptional framework. 

We repeated the analyses with a new genome-scale transcriptional network model, GenSTrans, 

that was developed based on ChIPSeq experiments (Minch et al., 2015a). The network consists of 

143 transcription factors and their corresponding sets of target genes represented as specific sub-

networks. Each sub-network on average consists of 64 genes. The high density of information in 

the network is expected to boost the specificity of the analysis compared to the EGRIN model. 

We overlaid the transcript data of this study on the GenSTrans network and examined the degree 

of enrichment of differentially abundant transcripts in specific sub-networks using 

hypergeometric test followed by Benjamini-Hochberg based multiple testing correction (Fig S5b). 

This analysis suggested 28 TFs that differentially regulated gene expression between L1 and L2 

strains (Fig 5a). Of the 28 TFs identified by GenSTrans, 17 were not identified by the EGRIN model 

due to insufficient genome coverage (Fig 5a). Our new model could recapitulate at least one TF 

corresponding to 11 modules also identified by the EGRIN model (Fig S6a). Of note, GeneSTrans 

more precisely pointed to one or two TFs per EGRIN’s module in cases where the EGRIN model 

has suggested several equally likely candidates. For instance, the EGRIN model identified module 

446 that could potentially be regulated by either Rv0081 or Rv1460, or a combination of both (Fig 

5a). Rv0081 and Rv1460 bind to 647 and 11 genes, respectively, according to ChIPSeq experiments 

(Minch et al., 2015a). De-convolving the signals is further complicated because the module 

overlaps with both sub-networks significantly. Nevertheless, the non-overlapping genes pointed 

to Rv1460 as the most likely causative TF explaining the observed pattern, as 9 out of 11 genes in 

the corresponding sub-network appeared regulated in the comparison of L1 and L2 strains. 

Next, we returned to the original question about causation of differential gene expression 

between L1 and L2 strains. Specifically, we examined the extent to which the identified TFs could 

describe the observed expression differences. Our results revealed that at least 37% of the 

modulated transcripts could be statistically significantly linked to a relatively small set of TFs. A 

set of only four TFs – Rv3133c (DosR), Rv1985c, Rv3597c (Lsr2), and Rv0691c – were sufficient to 

explain a quarter of the transcriptomic changes between L1 and L2 strains (Fig 5b). DosR on both 

transcript and protein level and Rv1985c on transcript level – not identified through our proteome 

profiling – were differentially regulated in their abundance very significantly between the two 

lineages. Interestingly, and in contrast to DosR and Rv1985c, Rv3597c and Rv0691c did not show 

significantly different transcript/protein abundance between the lineages. We speculated that 

they might undergo post-translational modifications (PTMs) regulation that affect their respective 

level of activity. In Mtb, various types of PTMs have been identified on at least 1,200 proteins 

(Banaei-Esfahani et al., 2017). For instance, PknB, a serine/threonine-protein kinase, can 

phosphorylate Rv3597c (Turapov et al., 2018). The sub-networks of these four TFs shared several 

genes with each other, indicating their close functional relationship (Fig 5c, d). Of note, DosR and 

Rv1985c bound to 31 and 28 DosR regulon genes, respectively, according to ChIPSeq experiments 

(Minch et al., 2015a). These highly overlapping target genes belonging to the DosR regulon might 
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indicate Rv1985c as an alternative TF contributing to the DosR target regulation under certain 

conditions. 

Hierarchical organization for sigma factors – transcription factors interactions 

In addition to 214 TFs, the tubercle bacillus has one housekeeping sigma factor, SigA, and 12 

accessory sigma factors leading to the reprogramming of RNA polymerase (RNAP) and 

consequently the initiation of transcription of particular gene sets. The sigma subunit ensures 

specificity of the RNAP holoenzyme for special promoter sequences (Rodrigue et al., 2006; 

Sachdeva et al., 2010). Gennaro and colleagues reconstructed a sigma factor regulatory network 

of Mtb. It consists of 13 sigma factors, seven anti-sigma factors, two anti-anti-sigma factors and 

50 TFs (Chauhan et al., 2016), altogether 72 genes. Of these, we were able to quantify the 

abundance of all 72 at the transcript level and for 48 genes at the protein level. Hence, we asked 

how significantly the four master TFs could interact with the sigma factor network and generate 

differential response to a given stress. 

We assessed whether the four master TFs identified in our analysis were present in the sigma 

factor network and how their interactions with sigma factors/anti-factors might affect gene 

expression (Fig S7). Three of the master TFs, Lsr2, DosR and Rv0691c, were among the 50 TFs 

represented in the sigma factor network. Therefore our four TFs of interest were significantly 

enriched using hypergeometric test (p-value = 0.0027). According to the model, Lsr2 and DosR 

both interact with three sigma factors directly, whereas Rv0691c interacts with four sigma factors 

indirectly through their corresponding anti-sigma factors. To examine the potential of these three 

TFs of regulating the whole sigma factor network, we inferred the hierarchical organization of the 

sigma factor network using the hierarchy score maximization algorithm (Cheng et al., 2015). This 

algorithm shows how a given directed network is organized in multiple levels and elucidates the 

position of each component at the inferred levels. The results indicated that the sigma factor 

network has either three or four levels, and that DosR, Lsr2 and Rv0691c fall into the top-level of 

the network propagating regulations towards the lower levels (Table S3). Moreover, SigB, controls 

the transcription factor DosR expression (Chauhan et al., 2016). Of note, only the protein RsfB 

(anti-anti-sigma factor) showed significant differential expression between the two lineages 

among all the sigma factors and their corresponding anti-sigma factors and anti-anti sigma factors 

quantified on transcript and protein level (Table S1). Overall, these three TFs located at the top-

level of the sigma factor network interact with eight sigma factors that could, in part, facilitate 

stress responses of L2 strains compared to L1. As the DosR regulon showed a higher basal 

expression in L2 strains, likely due in some part to the transcriptional regulatory network outlined, 

we next considered the extent to which DosR proteins would respond differently to a relevant 

stress. 
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Differential response of L1 and L2 strains to nitric oxide stress 

To determine whether the molecular differences observed between L1 and L2 strains, such as in 

the DosR regulon, are functionally relevant, we exposed the strains to nitric oxide (NO) stress for 

24 hours and analyzed the samples with respect to their growth status and protein expression 

levels. NO stress simulates the physiological environment that the bacilli experience following 

engulfment by macrophages (Nathan, 2006). Specifically, we (i) quantified DosR target proteins 

and (ii) verified the growth arrest duration after NO stress (see Materials and Methods). The 

expression of DosR target proteins increased more strongly in response to NO in L2 strains 

compared to L1 (Wilcoxon signed rank test’s p-value = 0.00022) (Fig 6a). Given the tight 

interaction with DosR and sigma factors we also examined differential expression of sigma factors 

in L1 and L2 on treatment with NO. Our differential protein expression analysis showed that the 

strength of the SigB induction to NO differed between L1 (fold change = 1.24, adjusted p-value = 

0.006) and L2 (fold change = 1.94, adjusted p-value = 3.37E-6) strains while the other quantified 

sigma factors remained unchanged in response to NO within the both lineages (Table S4). 

Altogether, DosR proteins showed not only a higher basal expression but also a stronger induction 

following NO challenge in L2 strains when compared to L1. 

Based on these molecular data, we hypothesize that following NO exposure, L2 strains, would be 

better capable to restart their growth compared to L1 strains. We tested this hypothesis by 

measuring the duration of growth arrest in two strains from each lineage in biological triplicates. 

The results demonstrated a significantly shorter growth arrest in L2 strains compared to L1 

(Wilcoxon signed rank test’s p-value = 0.0181), supporting our hypothesis (Fig 6b). In summary, 

our findings show that network-based analyses generate a mechanistic hypothesis that was not 

directly apparent from the multi-omics data. We then validated the network-driven hypothesis 

experimentally and found that differential regulation of bio-molecular networks might drive 

distinct phenotypes in Mtb clinical isolates. 
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Discussion 
We used a multi-omics approach combined with network analyses and validation experiments to 

compare clinical strains of Mtb belonging to L1 and L2 to better understand what causes the 

differences in clinically relevant phenotypes such as virulence, transmission and drug resistance 

that have been observed between these lineages (Borrell et al., 2019). For this, we went beyond 

the conventional multi-layer omics data analysis approaches and introduced a new integrative, 

network-based analysis. Our results revealed that (i) the Mtb genetic distance computed based 

on SNPs determines largely the number of significant changes at both mRNA and protein level, 

(ii) the extent of post-transcriptional events in Mtb differs across functional categories, (iii) L2 

strains compared to L1 strains exhibit reduced post-transcriptional regulatory potential for gene 

sets annotated with  “regulatory” and “virulence” function, (iv) four TFs explain 25% of the 

expression changes observed between the two lineages, and (v) the observed molecular changes 

can translate to relevant phenotypes, as exemplified by nitric oxide stress-induced growth arrest, 

which was reduced in L2 strains. 

First, we sought to elucidate to what extent SNPs cause significant changes at the mRNA and 

protein level. Hence, we correlated genomic distance (i.e. the number of distinct SNPs between 

a given pair of strains) and the number of significant changes on both transcript and protein levels. 

We showed that every third SNP on average is responsible for one significant change in gene 

expression. This observation could trigger a large community effort to map genotype – 

proteotype association in Mtb via protein quantitative trait locus (pQTL) analysis. This type of 

study has been implemented in various organisms ranging from yeast to mouse to human but not 

yet in bacterial systems (Großbach et al., 2019; Picotti et al., 2013; Williams et al., 2016). 

Second, we investigated the significance of post-transcriptional regulation, both systems-wide 

and for different functional categories. The analyses revealed that the degree of Mtb post-

transcriptional regulation as determined by the correlation between transcript and protein 

measurements resembles the patterns observed in higher organisms (Liu et al., 2019). While for 

some functional categories, such as lipid metabolism, the transcript – protein correlation was 

relatively high, for others such as virulence genes, it was very low. Therefore, transcriptomic 

measurements in isolation might be misleading for Mtb studies. For instance, Mtb regulates 

thousands of its transcripts in response to nitric oxide but only a few hundred of these changes 

are detectable on the protein level and the rest of them are buffered out (Cortes et al., 2017). 

Our analyses revealed that for virulence and regulatory genes, post-transcriptional events are less 

pronounced in L2 strains when compared to L1. This might suggest that L2 strains might have 

evolved to react more rapidly to various stresses and therefore post-translational mechanisms 

are most likely at play for the mentioned gene groups. 

Third, we examined the extent to which significant changes between L1 and L2 strains can be 

explained by transcription factors (TFs). We started with the published EGRIN model, but this 
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pipeline was insufficient to identify all causative TFs for two reasons, namely, the lack of specificity 

and its sparse coverage of TFs. Hence, we devised a genome-scale transcriptional network 

analysis, GenSTrans, which recapitulated the vast majority of TFs identified by the EGRIN model. 

It also shed some new light on 17 further TFs that were not represented in the EGRIN model. The 

analysis resulted in four transcription factors – DosR, Rv1985c, Rv0691c and Lsr2 – being linked 

to a quarter of the significant changes in gene expression. These transcription factors were 

significantly enriched in the sigma factor network and can regulate seven sigma factors, 

reprogramming RNA polymerase to modulate its affinity to promoter sequences under various 

stresses and conditions. Hierarchical analysis of the sigma factor network showed that the master 

TFs identified in this study fall into the top-level organization of the sigma factor network. This 

creates numerous possibilities for L2 strains to respond differently to a given stress compared to 

L1. Of note, SigB was the only sigma factor known to control the expression of one of our 

proposed master TFs. Since our analyses highlighted the differential basal expression of DosR 

genes between L1 and L2 on both transcript and protein level, we hypothesized that DosR target 

proteins might reveal a similarly differential trend in response to a relevant stress. Hence, we 

tested and validated this hypothesis in nitric oxide (NO) stress replicating a physiological stress 

that the tubercle bacilli experience following uptake by macrophages. The involvement of the 

sigma factors as enriched in our transcriptional regulatory analysis, and, in particular, the 

previously shown SigB regulation of DosR, is supported by the finding that SigB displays a stronger 

induction with respect to NO stress in L2 vs L1 strains. This is also consistent with previous findings 

showing that SigB knockout strains are deficient in a variety of stress responses (Datta et al., 2011; 

Manganelli et al., 2004). Overall, the data showed that DosR proteins hold not only a higher basal 

expression but also a stronger response to NO stress in L2 strains compared to L1. We further 

elucidated that this molecular behavior empowers L2 strains to restart their growth following 

exposure to NO more rapidly. Altogether, our network analysis identified four major TFs 

orchestrating a large fraction of differential gene expression between L1 and L2 strains that could 

drive distinct phenotypes. 

In summary, this study further challenged the dogma suggesting that Mycobacterium tuberculosis 

is a phenotypically homogenous clone. We showed that in clinical isolates of Mtb L1 and L2, 

despite being genetically rather similar, hundreds of mRNAs and proteins are differentially 

expressed and that these molecular differences are being translated to phenotypes likely to be of 

relevance in the clinic. This study also provided important insights to guide future efforts to link 

specific genetic loci with mRNA and/or protein-level changes. Such a map of genetic features and 

their effect on molecular and macroscopic phenotypes in Mtb provides an alternative regulatory 

archetype to those published; one derived from a genetically fairly conserved bacterium which 

may serve as a valuable counter point for future studies.   
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Materials and Methods 
Mtb Strains and bacterial culture 

We used six clinical isolates of Mtb, three from L1 and three from L2, that are part of a recently 

described set of reference strains (Borrell et al., 2019). These strains were chosen in an attempt 

to capture the global genetic diversity of Mtb, both within and between lineages. We grew 

bacteria in a modified 7H9 medium supplemented with 0.5% w/v pyruvate, 0.05% v/v tyloxapol, 

0.2% w/v glucose, 0.5% bovine serum albumin (Fraction V, Roche) and 14.5 mM NaCl. With 

respect to conventional 7H9 culture medium, we omitted glycerol, tween 80, oleic acid and 

catalase. For global expression profiling experiments we cultured the bacteria in 1l bottles 

containing large glass beads to avoid clumping and 100 ml of media. We incubated the cultures 

at 37°C and rotated them continuously on a roller. For nitric oxide stress experiments we grew 

the bacteria in 50ml conical screwcap tubes containing either 17ml (proteomic profiling) or 10ml 

of culture medium. The cultures were incubated at 37°C on an orbital shaker. 

Transcriptomic profiling 

We transferred a 40 ml aliquot of bacterial culture in mid-log phase (OD600 = 0.5 ± 0.1) into a 

50ml Falcon conical tube containing 10 ml ice. We harvested the cells by centrifugation (3,000×g, 

7 min, 4°C), re-suspended the pellet in 1 ml of RNApro solution (MP Biomedicals) and transferred 

the suspension to a Lysing matrix B tube (MP Biomedicals). We disrupted the bacterial cells using 

a FastPrep24 homogeniser (40s, intensity setting 6.0, MP Biomedicals). We clarified the lysate by 

centrifugation (12,000×g, 5 min, 4°C), transferred the supernatant to a clean tube and added 

chloroform. We separated the phases by centrifugation (12,000×g, 5 min, 4°C) and precipitated 

the nucleic acids from the aqueous phase by adding ethanol and incubating at -20C overnight. We 

performed a second acid phenol extraction to enrich for RNA. We treated our samples with DNAse 

I Turbo (Ambion), and removed stable RNAs by using the RiboZero Gram Positive ribosomal RNA 

depletion kit (Epicentre). We prepared the sequencing libraries using the TruSeq stranded Total 

RNA kit (Illumina) and sequenced them on a HiSeq2500 run in high output mode (50 cycles, single 

end). 

The resulting reads were mapped to the Mtb H37Rv reference genome using BWA (ver. 0.7.13); 

the resulting mapping files were processed with samtools (ver. 1.3.1). Per-feature read counts 

were performed using the Python module htseq-count (ver. 0.6.1p1) and Python (ver. 2.7.11). We 

performed differential expression analysis using the R package edgeR and R (ver. 3.4.0) to identify 

Lineage-specific transcriptional changes. 
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Environment and gene regulatory influence network (EGRIN) based transcriptional 

model 

We used the EGRIN model to analyze our transcriptional data in the exact same way that 

described before (Peterson et al., 2016). The model describes a set of modules that each one 

contains a dozen of co-regulated genes. The ChIPSeq and TFOE data paved the way to correspond 

each module to its potential regulators namely transcription factors (TFs) (Peterson et al., 2014). 

Here, we projected our significant differentially regulated mRNAs (fold change > 1.5 and adjusted 

p-value < 0.01) between L1 and L2 strains onto the modules to figure out how significantly each 

module was enriched. The enrichment analysis was performed using hypergeometric test 

followed by Benjamini-Hochberg (BH) multiple testing correction (adjusted p-value < 0.05). To 

visualize a given identified TFs, we included all its corresponding modules even if they were not 

significantly enriched. 

Genome-scale transcriptional model and networks integration 

To reconstruct the Mtb transcriptional network, we retrieved a ChIPSeq data publicly available at 

the Mtb portal V2 (Minch et al., 2015a). We included both operon and direct interactions in the 

final network, which offered a great framework for genome-scale analysis. In contrast to the 

EGRIN model, the TFOE data was totally excluded as they largely feature indirect effects of a 

transcription factor overexpression to the Mtb transcriptome. The reconstructed network 

comprised 143 transcription factors and 2,943 genes and can easily be extended upon the 

availability of ChIPSeq data for the remaining transcription factors. Next, a new set of 

regulons/modules, each contained the target genes of a given TF, were defined. Such a definition 

provided a one-to-one relationship between the modules and the TFs. Moreover, the average size 

of each module became ~65 genes, five times that of the EGRIN model, offering a larger 

specificity. The significantly regulated transcripts in L2 strains compared to L1 were tested against 

each module using a hypergeometric test followed by Benjamini-Hochberg (BH) multiple testing 

correction (adjusted p-value < 0.05). The identified TFs were compared to the EGRIN model 

results (see the color codes in the corresponding figures). Four TFs with the largest regulated gene 

size explaining 25% of the significant changes were introduced as the master regulators. This 

approach is easily portable to other bacterial systems upon the availability of respective ChIPSeq 

data. The TFs of the identified sub-network was integrated into the Mtb sigma factors network 

constructed by Gennaro and colleagues (Chauhan et al., 2016). This networks integration revealed 

the interactions between our four identified TFs (three of these were presented in the sigma 

factor network) and the Mtb sigma factors. Sigma factors can reprogram RNA polymerases and 

change their affinity to a given promoter. Hence, such a network integration showed how 

significantly the identified TFs are capable to present different phenotypic features in response 

to a perturbation. Notably, SigB as the only sigma factor which could modulate the transcription 

factor DosR provided a great opportunity to validate the capability such analyses. 
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Proteomic profiling using SWATH-MS 

We aliquoted 20 OD equivalents from mid-log phase (OD600 = 0.5 ± 0.1) bacterial cultures (e.g. 

40ml of OD600 0.5) into 50ml conical tubes. In the case of nitric oxide stress we harvested 8ml of 

bacterial culture. We harvested the bacteria by centrifugation (3,000×g, 7 min, 4°C) and washed 

the pellet twice with cold PBS to remove tyloxapol from the samples. The washed pellets were 

re-suspended in lysis buffer, which contained 0.1M ammonium bicarbonate, 8M urea and 0.1% 

RapiGest (#186001861, Waters). We then transferred the suspension to a Lysing matrix B tube 

(MP Biomedicals) and disrupted the bacterial cells using a FastPrep24 homogeniser (40s, intensity 

setting 6.0, MP Biomedicals). We clarified the lysate by centrifugation (12,000×g, 5 min, 4°C) and 

sterilized it by filtering it twice through a 0.22 μm syringe filter (Milipore) prior to further 

processing. 

Next, we measured the protein concentration of each sample using BCA assay (A53225, Thermo 

Fisher Scientific). Considering the measured concentrations, we started with 60 ug protein and 

appropriate volume of lysis buffer was added up to 100 ul to equalize the final concentration of 

each sample. Then, 5 mM tris(2-carboxyethyl)phosphine (TCEP) was added to reduce protein 

disulfide bonds while the sample were incubated at 37oC for 30 min. Afterwards, the free cysteine 

residues were alkylated by adding 40 mM iodoacetamide and incubating for 30 min in the dark. 

The samples were diluted 6 times with 0.05 M ammonium bicarbonate to reach a final Urea 

concentration below 2 M. To digest proteins, 1.2 ug sequencing grade modified trypsin (V5113, 

Promega) was added (w/w 1:50). The samples were incubated overnight (~16 hours) at 37oC with 

gentle shaking of 300 rpm. To stop protein digestion, we acidified the samples (PH < 2) using 

formic acid followed by and incubation for 30 min with shaking of 500 rpm. We desalted the clear 

peptide solution using C18 MicroSpin columns (The Nest Group, 30-300 ug loading capacity). 

Next, we spiked in iRT peptides (Ki-3002, Biognosys) which allowed us to normalize retention time 

during the data processing step. 

We measured the samples on a TripleTOF 5600 mass spectrometer (AB Sciex) coupled to a nanoLC 

system (Eksigent) as described before (Collins et al., 2017). The data acquisition was performed 

in SWATH-MS mode using the 64 variable windows scheme. 

The OpenSWATH workflow, containing three software tools, paved the way to process the data. 

We used the pan Mtb spectral library generated on the same type of mass spectrometry, 

TripleTOF 5600 (Schubert et al., 2013). OpenSWATH extracted chromatograms and assigned peak 

groups according to the prior knowledge, the pan Mtb spectral library (Röst et al., 2014). Next, 

we performed PyProphet-cli to score the assigned peak groups using a semi-supervised algorithm. 

The data was filtered to global 1% FDR on both peptide and protein level. Eventually TRIC was 

used to integrate various information of each run and align the extracted and scored peak groups 

between runs offering a high degree of consistency between measurements (Röst et al., 2016). 

To perform absolute (based on top 3 peptides and top 5 transitions) and relative quantification, 
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we used the R package SWATH2stats (Blattmann et al., 2016) and eventually aLFQ (Rosenberger 

et al., 2014) and MSstats (Choi et al., 2014). 

Assesment of nitric oxide stress 

To measure the proteomic changes following nitric oxide (NO) exposure, we grew 17ml bacterial 

cultures to mid-log phase (OD600 approximately 0.5) and harvested 8ml of the culture for 

proteomic characterization. We then added Diethylenetriamine/NO adduct at a final 

concentration of 1mM to the remaining culture and incubated it for a further 24h at 37oC. After 

this time, we harvested 8ml of the culture for proteomic characterization. 

To assess the duration of NO induced growth arrest, we grew duplicate bacterial cultures to mid-

log phase (OD600 approximately 0.5) and added Diethylenetriamine/NO adduct at a final 

concentration of 1mM to the treatment tube with nothing added to the control. We followed the 

subsequent growth dynamics by measuring OD600. 

Genetic, transcriptomic and proteomic distance analysis between clinical isolates 

To compute strain distances on various levels, we assigned a particular cutoff to digitize them. On 

genome layer, we ignored various genetic insertions and deletions and only counted the numbers 

of distinct SNPs between a pair of Mtb strains. For mRNA and protein level, we considered a given 

cutoff (fold change > 1.5 and adjusted p-value < 0.01) and then the number of the significant 

changes were calculated. For each layer, 15 comparisons consisting of six intra lineage (three pairs 

within each lineage) and nine inter lineages comparisons were assumed. Afterwards Spearman 

correlation was computed between the genomic and either transcriptomic or proteomic distance. 

The slope of the respective regression line showed how many significant changes on protein and 

transcript level are caused by a given distinct SNP. 

Sigma factor network hierarchical properties 

To infer the hierarchical organization of the sigma factor network recently described (Chauhan et 

al., 2016), we used the hierarchy score maximization algorithm (Cheng et al., 2015). We 

performed the algorithm for different number of levels k (2-6). In each analysis, it computes 

probability scores to assign a given node to layers of the hierarchical organization. Two criteria 

were assessed to determine the optimal choice of k. First, the enrichment of the downward 

direction compared to expectation that is summarized in the corrected hierarchy score. Second, 

an ambiguity score which quantifies the uncertainty of a node assigning to a given layer of the 

organization. These two measurements revealed that k=4 is the optimal.  
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Figure 1. Schematic Illustration of Workflow. (A) Dendrogram shows the evolutionary 

relationships between the seven human-adapted lineages of the Mycobacterium tuberculosis 

complex and the L1 and L2 strains that were selected for this study. (B) Conceptual workflow. 

Transcriptome and proteome of six fully sequenced clinical strains belonging to L1 and L2 were 

measured. A genome-scale transcriptional model was developed to identify transcription factors 

regulating their targets differently between the two lineages. An exemplary phenotypic 

consequence of the differentially regulated DosR proteins between the two lineages and in 

response to a stress condition, the growth arrest duration following nitric oxide exposure. 
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Figure 2. Cellular Protein Landscape in Mtb Clinical Strains. (A) Number of proteins quantified in 

each biological replicate of a clinical strain at 1% protein FDR. (B) Pie chart exhibits the deep 

coverage of peptides identified by SWATH-MS at 1% protein FDR. (C) Completeness of protein 

measurements. 94% of proteins across the samples were quantified by direct peptide 

measurements while the remaining (6%) were inferred using background signals. (D) Variation in 

SWATH-MS measurements due to different factors: technical (median CVs = 12%), within L2 

(median CVs = 19%), within L1 (median CVs = 23%) and across all measurements (median CVs = 

26%). (D) PCA analysis of protein data. PCA plot shows a decent separation resolution at the strain 

level. (E) PCA analysis of mRNA data. PCA analysis of mRNA data could separate clinical strains 

based on only their phylogenetic lineages.  
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Figure 3. Enrichment and Correlation Analyses of Mtb Functional Categories. (A) Spearman 

correlation analyses of protein vs. mRNA abundances at the gene-to-gene basis for different 

functional categories: all genes (average R = 0.46), cell wall and cell processes (average R = 0.37), 

information pathways (average R = 0.50), Intermediary metabolism and respiration (average R = 

0.54), lipid metabolism (average R = 0.69), regulatory genes (average R = 0.46), virulence, 

detoxification, and adaptation genes (average R = 0.33) and conserved genes (average R = 0.40). 

Volcano plots showing proteins of different functional groups that are differentially expressed 

between L1 and L2: (B) Dormancy survival Regulator (DosR) regulon (p-value = 2.5E-5), (C) Iron-

dependent Repressor (IdeR) regulon (p-value = 8.3E-9), (D) lipid metabolism (p-value = 3.6E-5) 

and (E) PE/PPE genes (p-value = 0.014). (F) 24 transcription factors (out of 138 quantified) showed 

significant changes in their abundance in L2 strains compared to L1. For (B) to (F), purple and blue 

dots denote proteins significantly (p-value < 0.01 and fold change > 1.5) upregulated in L1 and L2 

strains respectively, and black dots denoting proteins of the respective groups that do not 

significantly change. Figure S4 contains the corresponding mRNA data. 
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Figure 4. Genetic Distance Determines Number of Significant Changes on mRNA and Protein 

Level. (A) transcriptomic distance and (B) proteomic distance, measured by number of significant 

changes on mRNA and protein level respectively, as a function of genetic distance, calculated 

based on number of distinct SNPs for a given pair of clinical strains. Their slopes (following 

coverage-based normalization for proteomic slope) and high correlations showed that every 

three SNPs, on average, causes a significant change at the transcript and protein level. 
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Figure 5. Transcriptional Modeling in Mtb L2 Strains Compared to L1. (A) 28 transcription factors 

regulating their target genes differently between L1 and L2 strains. Blue gene names denotes 

transcription factors that are not identifiable by the EGRIN model due to its sparse coverage. (B) 

Subnetwork of four master transcription factors explaining 25% of mRNA changes in L2 strains 

compared to L1. Node and border colors depict transcript and protein expression respectively. 

(C) Bar plot summarizes percentiles of regulated transcripts between the two lineages that could 

be explained by identified and four master transcription factors. (D) Venn diagram of target genes 

that are regulated by four master transcription factors. High degree of overlapping genes 

particularly between Rv3133c (DosR) and Rv1985c suggested their close functional relationships. 
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Figure 6.   DosR Regulon Response to Nitric Oxide Exposure and Its Phenotypic Consequence. 

(A) Scatter plot shows bio-molecular responses of DosR proteins in Mtb clinical strains. Each dot 

represents a DosR protein while its respective response in L1 and L2 strains are denoted on X and 

Y axis respectively suggesting L2 strains responded significantly stronger to nitric oxide compared 

to L1 (Wilcoxon signed rank test’s p-value = 0.00022). (B) Shorter growth arrest duration in L2 

strains compared to L1 upon nitric oxide exposure (Wilcoxon signed rank test’s p-value = 0.0181).  
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Figure S1. Bar Plot of ODs Measured at Harvest Time. 
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Figure S2. Transcript and Protein Data Quality Assessment. (A) Polar plot of peptide counts for 

each biological replicate of Mtb clinical strains. (B-C) Violin plots of CVs across biological replicates 
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of each strains. The same median CVs (12%) suggested comparable reproducibility between 

Illumina NGS platform and SWATH-MS used for transcriptomic and proteomic profiling of Mtb 

clinical strains. (D-E) Correlation plots of transcript (right) and protein (left) data. Spearman 

correlation analysis between clinical strains indicating near to perfect correlations and therefore 

reproducibility across biological replicates. (F-G) Perfect unsupervised clustering of clinical strains 

rooted in protein (left) and transcript (right) data. 
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Figure S3.   Enrichment Analyses of T Cell Antigens. (A-B) Volcano plot of T cell antigens 

presented by MHCI (left) and MHCII (right) at the mRNA level. The analysis showed that these 

functional categories are significantly enriched (p-value for MHCI = 4.5E-5, p-value for MHCII = 

0.0071) by the differentially expressed transcripts between the two lineages. (C-D) Enrichment 

analysis of differentially expressed proteins in L2 strains compared to L1. MHCI (left) and MHCII 

(right) presented antigens were not significantly enriched anymore on protein level (p-value for 

MHCI = 0.069, p-value for MHCII = 0.55). 
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Figure S4.  Enrichment Analyses of Mtb Functional Categories by mRNA data. Volcano plots 

display that (A) DosR regulon (p-value = 4.08E-14), (B) IdeR regulon (p-value = 3.05E-28), (C) lipid 

metabolism (p-value = 0.0025), and (D) PE/PPE (p-value = 9.3E-9) are significantly regulated 

between L1 and L2 clinical strains at the RNA level. (E) Regulated transcription factors between 

the two lineages on mRNA level. 34 (out of 211 quantified) transcription factors were significantly 

regulated in L2 strains in respect to L1. (see Figure 3 for protein data) 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 14, 2020. ; https://doi.org/10.1101/2020.02.14.943365doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.14.943365


 

Figure S5. Conceptual Diagrams for Mtb Transcriptional Modeling. (A) Schematic illustration of 

the EGRIN model. The EGRIN model is a module centric approach, which demonstrates clusters 

of co-regulated genes (module) inferred from hundreds of RNA profiles that are publicly available. 

Next, each module was linked to transcription factor(s) using both Transcription Factor 

OverExpression (TFOE) (Rustad et al., 2014) and ChIPSeq (Minch et al., 2015b) experiments by 

enrichment analysis. Therefore, some of modules could not be corresponded to any transcription 

factor and remained as orphans. Eventually acquired RNA data for a given study should be 

analyzed against modules. (B) Concept of GenSTrans. GenSTrans was developed using ChIPSeq 

data (Minch et al., 2015b) and could be considered as a transcription factor centric model.  This 

model explained sub-networks (instead of modules in the EGRIN model) which were 

reconstructed for each transcription factor. Therefore, each sub-network was linked to one and 

only one transcription factor. Finally, acquired RNA data could be analyzed through sub-networks. 
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Figure S6. EGRIN Based Identification of Transcription Factors Regulating Their Target Modules 

Differently Between L1 and L2 Strains. (A) Identified modules and corresponding transcription 

factors by the EGRIN model. Green transcription factors were also identified by GenSTrans. (B) 

The transcription factor DosR that was identified through four modules significantly. 
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Figure S7. Interactions of Inter-L1 and L2 Master Transcription Factors with Sigma factors. 

Network shows that each of Rv3133c (DosR) and Rv3597c interact with three sigma factors 

whereas Rv0691c could regulate four anti-sigma factor and therefore modulating sigma factors 

indirectly. 
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