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Summary 

Advances in technology have allowed for the study of metabolomics in the context of disease, 
enabling the discovery of new potential risk factors, diagnostic markers, and drug targets. For 
neurological and psychiatric phenotypes, the cerebrospinal fluid (CSF) is of particular biomedical 
importance as it is in direct contact with the brain and spinal cord. However, the CSF metabolome 
is difficult to study on a large scale due to the relative complexity of the procedure needed to 
collect the fluid compared to blood or urine studies. Here, we present a metabolome-wide 
association study (MWAS), an analysis using individual-level genetic and metabolomic data from 
two cohorts to impute metabolites into large samples with genome-wide association summary 
statistics. We conducted a metabolome-wide genome-wide association analysis with 338 CSF 
metabolites, identifying 16 genotype-metabolite associations, 6 of which were novel. Using these 
results, we then built prediction models for all available CSF metabolites and tested for 
associations with 27 neurological and psychiatric phenotypes in large cohorts, identifying 19 
significant CSF metabolite-phenotype associations. Our results demonstrate the potential of 
MWAS to overcome the logistic challenges inherent in cerebrospinal fluid research to study the 
role of metabolomics in brain-related phenotypes and the feasibility of this framework for similar 
studies of omic data in scarce sample types. 
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Introduction 

In recent years, the study of metabolomics has yielded novel insights into a variety of complex 
diseases, including diabetes1, obesity2, cancer3, and Alzheimer’s disease (AD)4. The identification 
of disease-associated metabolites can shed light on mechanisms contributing to disease and reveal 
biomarkers that can be used for diagnosis and prognosis. 

To date, most metabolomics studies in humans have focused on more accessible sample types like 
blood or urine. However, for psychiatric and nervous system disorders, the cerebrospinal fluid 
(CSF) is of particular relevance5,6. CSF is in direct contact with the brain and spinal cord and 
separated from the blood by the blood-brain barrier; as such, CSF may more directly reflect 
physiological changes occurring in the central nervous system (CNS) than other sample types. In 
AD, for example, CSF is the source of some of the most powerful biomarkers for disease onset 
and progression, including amyloid-beta (Aβ) and phosphorylated tau7. 

The difficulty in studying the CSF metabolome is that acquiring CSF samples is more challenging 
than blood or urine samples, requiring a lumbar puncture (LP), thus making CSF samples a rare 
and valuable resource, particularly those from healthy volunteers. This small sample size, 
however, makes the detection of changes in the CSF metabolome during disease progression a 
logistic and statistical challenge. Transcriptome-wide association studies (TWAS) have been a 
successful approach to dealing with such issues for gene expression8. Using a reference panel of 
genotype and gene expression measurements to model the regulatory machinery of the genetically 
regulated component of gene expression, TWAS allows for the estimation of potentially causal 
gene-disease associations in data sets where only genetic information is present, circumventing the 
need to collect gene expression data with every disease-focused data set9. TWAS and related 
methods have been successfully used with a diversity of phenotypes, including autoimmune 
diseases9, schizophrenia10, and AD11. 

Building on the success of TWAS, we demonstrate the feasibility of a metabolome-wide 
association study (MWAS) that combines the richness of a scarce resource study (e.g., a CSF 
metabolome study) with the accessibility and scale of large, publicly available genome-wide 
association study (GWAS) summary statistics. We conducted the first CSF metabolome-wide 
GWAS and then used the results to build CSF metabolite prediction models from genetic 
information to study the association of CSF metabolites with a variety of brain-related phenotypes 
using GWAS summary statistics. 

 

Methods Overview 

The general outline of our MWAS approach is as follows: 1) identify single nucleotide 
polymorphism (SNP)-metabolite associations; 2) build metabolite prediction models using 
genotypes; 3) impute and test metabolite-phenotype associations with publicly available GWAS 
summary statistics. 

The primary data for this study came from two different longitudinal cohort studies of AD with 
available CSF metabolomics and genotype data: the Wisconsin Alzheimer’s Disease Research 
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Center (WADRC) and Wisconsin Registry for Alzheimer’s Prevention (WRAP) studies12,13. To 
improve the generalizability of this analysis, only data from cognitively healthy participants were 
used. Imputation and stringent quality control were performed on both the CSF metabolite and 
genotype data, resulting in a final data set of 291 baseline visits of unrelated European-ancestry 
individuals with 338 CSF metabolites (Supplementary Tables 1-2). 

SNP-metabolite associations were estimated using GWAS conducted on both WADRC 
(discovery) and WRAP (replication). Both GWAS results were then meta-analyzed to maximize 
statistical power. Genome-wide prediction models were built for each CSF metabolite with 
independent SNPs as predictors, using both penalized regression (LASSO, elastic net, and ridge 
regression) and polygenic score models to allow for a diversity of possible genetic architectures. 
The average predictive correlation from four-fold cross-validation was used to identify the best-
performing model for each metabolite. The metabolite prediction models were then used to impute 
and test the associations of the CSF metabolites with 27 brain-related phenotypes from available 
GWAS summary statistics using the BADGERS approach14. 

 

Results 

A total of 606 significant SNP-CSF metabolite associations from 10 independent loci were 
identified in the discovery phase GWAS (p < 1.48x10-10, using the genome-wide significance 
threshold corrected for 338 tested metabolites), of which 488 SNPs (80.5%) and 8 loci (80%) were 
replicated (p < 8.25x10-5, adjusting for the 606 SNPs tested in replication). The GWAS meta-
analysis identified a total of 1,183 significant SNPs across 16 metabolites (p < 1.48x10-10), with 
one distinct genetic locus of association per metabolite (Figure 1A; Supplementary Figures 1-16; 
Supplementary Tables 3-4). The genomic control inflation factor across all metabolite GWAS was 
1.01, indicating little evidence of inflation (Figure 1B; Supplementary Figure 17). The SNP effect 
sizes and directions were consistent across the cohorts for the top SNP at each significant locus 
(Figure 1C). 
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Figure 1. GWAS meta-analysis of the CSF metabolome. A) Manhattan plot of the meta-analysis across all 338 
metabolites tested, with the significant SNPs colored by the metabolic pathway of the associated metabolite. Age at 
CSF sample, sex, genotyping batch (WADRC only), and the first 5 principal components were controlled for in each 
individual GWAS. The top SNP of each locus is labeled with the nearest gene. The horizontal lines represent the 
genome-wide (5x10-8, black) and Bonferroni-corrected significance thresholds (1.48x10-10, red). Data points with p 
< 1x10-50 for N6-methyllysine are not shown. B) Q-Q plot based on the meta-analysis across all metabolites. C) 
Forest plot of the top SNPs from each significant locus across the discovery, replication, and meta-analysis ordered 

A 

B C 
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by chromosome and BP position. The blue point represents the discovery GWAS, green the replication GWAS, and 
red the meta-analysis. The effect size refers to the GWAS beta effect estimate. 

 

Of these 16 SNP-metabolite associations, 10 (guanosine, ethylmalonate, 3-ureidopropionate, N-
acetylhistidine, tryptophan betaine, N-acetyl-beta-alanine, N-delta-acetylornithine, bilirubin, 2’-
O-methylcytidine, and methionine sulfone) have been previously identified in GWAS of blood, 
urine, or saliva samples15–20. Non-CSF regional association plots manually generated from publicly 
available summary statistics from Shin et al 201416 and Long et al 201717 were similar to 
corresponding CSF regional association plots, although the lead SNPs varied (Supplementary 
Figures 18-24). The remaining 6 associations were novel, either due to the metabolite not having 
been analyzed in a GWAS previously (N-acetylglutamate, 2-hydroxyadipate, 1-ribosyl-
imidazoleacetate, and N6-methyllysine) or having been analyzed previously but without 
identifying the same locus found here in CSF (oxalate and betaine). The top SNP, nearest gene, 
and brain tissue expression quantitative trait locus (eQTL) effects from each of these genotype-
metabolite associations are summarized in Supplementary Table 3 (meta-analysis results, eQTL 
information across tissue types, and GWAS Catalog associations for all 1,183 significant SNPs 
are in Supplementary Tables 4-6). In 9 out of the 16 loci, the eQTL effects of the top SNPs included 
the gene physically closest to the SNP itself. 

The metabolite prediction models trained on the combined WADRC/WRAP data set showed 
varying abilities to predict each metabolite (Figure 2, Supplementary Figure 25, and 
Supplementary Tables 7-8). Among the top 10 best-predicted metabolites from genetics, 7 had a 
significant locus of association from the GWAS meta-analysis, and the top 6 were sparse models 
resulting from elastic net. 
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Figure 2. Metabolite prediction model performance. The prediction performance of the best model for each 
metabolite is shown arranged in order of decreasing R2. Metabolites with a significant locus from the GWAS meta-
analysis are denoted with an asterisk. 

 

Among the best-performing models for each metabolite, the R2 between the predicted and actual 
metabolite levels ranged from 0.00083 to 0.29 (mean = 0.024, SD = 0.025), with 282 (83.4%) of 
the metabolites having a positive correlation and an R2 > 0.01. Generally, models tended to contain 
100 SNPs or more. The elastic net model was chosen as the best model type for 44.3% of the 
metabolites, followed by polygenic score models (28.4%), ridge regression (22.8%), and LASSO 
(4.5%). 

There were 106 models with a positive correlation and a more conservative predictive R2 > 0.025. 
These metabolite models were then tested for association with each of 27 neurological and 
psychiatric phenotypes (Supplementary Table 9)21–42. We report 19 metabolite-phenotype 
associations that were identified at a false discovery rate (FDR) cutoff of 0.05 (Table 1, 
Supplementary Table 10, Supplementary Figure 26). The phenotypes (and significantly associated 
metabolites) were schizophrenia32 (N-delta-acetylornithine, alpha-tocopherol, ethylmalonate, N6-
methyllysine, guanosine, malate, unknown metabolite X-24699, 2-hydroxy-3-methylvalerate), 
cognitive performance35 (N-delta-acetylornithine, glutaroylcarnitine [C5], benzoate), alcoholic 
drinks per week38 (N-delta-acetylornithine, glycerol, cysteinylglycine), smoking behavior38 
(ethylmalonate), sleep duration34 (cysteinylglycine disulfide), post-traumatic stress disorder 
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(PTSD)31 (unknown metabolite X-24295), and attention deficit hyperactivity disorder (ADHD)24 
(orotate and malate).  

Table 1. Significant CSF metabolite-phenotype associations from BADGERS 
Metabolite Phenotype Z score P Q value 

ethylmalonate Schizophrenia 4.14 3.46E-05 1.22E-03 
Smoking initiation 4.22 2.49E-05 2.64E-03 

cysteinylglycine Alcoholism (drinks per week) 3.24 1.20E-03 4.22E-02 
2-hydroxy-3-methylvalerate Schizophrenia -3.16 1.58E-03 2.09E-02 

N-delta-acetylornithine 
Alcoholism (drinks per week) -4.49 7.05E-06 7.47E-04 

Cognitive performance 4.83 1.34E-06 1.42E-04 
Schizophrenia -5.26 1.42E-07 1.50E-05 

glutaroylcarnitine (C5) Cognitive performance -3.72 2.01E-04 1.06E-02 
cysteinylglycine disulfide Sleep duration -3.94 8.10E-05 8.59E-03 

N6-methyllysine Schizophrenia -3.76 1.73E-04 4.58E-03 
alpha-tocopherol Schizophrenia 4.34 1.39E-05 7.39E-04 

malate ADHD 3.51 4.49E-04 2.38E-02 
Schizophrenia -3.21 1.31E-03 2.09E-02 

glycerol Alcoholism (drinks per week) -3.29 9.99E-04 4.22E-02 
orotate ADHD 3.61 3.05E-04 2.38E-02 

guanosine Schizophrenia 3.47 5.24E-04 1.11E-02 
X - 24295 PTSD -3.7 2.12E-04 2.25E-02 
X - 24699 Schizophrenia -3.18 1.47E-03 2.09E-02 
benzoate Cognitive performance 3.23 1.22E-03 4.30E-02 

 

A two-sample MR analysis was performed for the 19 significant metabolite-phenotype 
associations. Four effects were significant after multiple testing correction, and all four of these 
effects were in the same direction as predicted by BADGERS but of smaller magnitude: N-delta-
acetylornithine, ethylmalonate, and N6-methyllysine with schizophrenia and N-delta-
acetylornithine with cognitive performance (Supplementary Tables 11-12). 

 

Discussion 

The results of this study demonstrate the feasibility of MWAS to elucidate novel metabolite-
phenotype associations using metabolite prediction models built from scarce sample types and 
GWAS summary statistics. The first major component of MWAS was to identify SNP-metabolite 
associations. We identified 16 genotype-metabolite associations. As no previous metabolome-
wide GWAS in the CSF had been reported to our knowledge, we assessed the validity and novelty 
of the results by comparing identified loci with previous GWAS of metabolites in blood, urine, 
and saliva15–19,43–47. Many of the loci discovered in this analysis of CSF metabolites replicate loci 
that have been previously discovered, indicating that some of the regulatory machinery of the 
metabolome is shared across biological compartments. 
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The 6 novel SNP-metabolite associations we identified appear to be biologically feasible based on 
previous research and are likely to be of general biomedical interest. The GWAS Catalog48 reports 
76 different phenotypes to be associated with these 6 loci (Supplementary Table 6). The 
chromosome 3 locus (rs17279437) associated with CSF betaine levels is closest to SLC6A20, a 
gene that has been implicated in betaine transport49 and previously associated with N,N-
dimethylglycine43,50, which is related to betaine51. The SNPs associated with oxalate (ethanedioate) 
did not have any documented associations in the GWAS Catalog nor significant eQTLs in the 
Genotype-Tissue Expression project (GTEx)52. However, oxalate is a metabolite of the 
chemotherapeutic drug oxaliplatin53, and the locus identified here is upstream of EPHA6, a gene 
that has been implicated in neuropathy from another chemotherapeutic drug, paclitaxel54. The 
locus associated with 1-ribosyl-imidazoleacetate included brain eQTLs for several genes, 
including NAPRT, which encodes an enzyme (nicotinate phosphoribosyltransferase) involved in 
transferring ribosyl groups55. The locus for N6-methyllysine includes brain eQTLs for the 
PYROXD2 gene, which has been associated with other metabolites (trimethylamine and 
dimethylamine) in previous studies50,56,57. The locus associated with N-acetylglutamate included a 
brain eQTL for the SLC13A3 gene that encodes sodium-dependent dicarboxylate cotransporter 3, 
which has been implicated as a transporter for N-acetylglutamate and for N-carbamoylglutamate, 
a drug used to treat N-acetylglutamate synthase deficiency58. The biology behind the locus for 2-
hydroxyadipate was less immediately clear, but the locus includes eQTLs for the lincRNA gene 
RP4-625H18.2. 

These GWAS results underscore the importance of studying scarce sample types like the CSF as 
they included a number of previously unreported genotype-metabolite associations. Two such 
metabolites (oxalate and betaine) have been previously studied in blood and urine samples, but 
different genetic loci were identified15–17,20,43,46,50. For oxalate, the strongest SNP association from 
blood had a p = 1.54x10-8 (rs368292858, chromosome 12, base pair (BP) 109,713,327)17, while 
the strongest SNP association in CSF was stronger at p = 5.64x10-11 (rs35170539, chromosome 3, 
BP 96,314,015), despite having a smaller sample size. For betaine, the strongest SNP association 
was reported in blood at p = 1.49x10-19 (rs16876394, chromosome 5, BP 78,346,769)16, while in 
the CSF the top association was at p = 4.73x10-15 (rs17279437, chromosome 3, BP 45,814,094). 
These CSF findings potentially represent genetic loci of control that are unique to the CSF, as they 
have not been identified in non-CSF studies. 

The metabolite prediction models achieved comparable performance to TWAS and imaging-wide 
association study (IWAS) applications. Average predictive R2 values from TWAS have tended to 
range from 0.1 (in-sample)9,59 to 0.02-0.05 (out-of-sample)9. The average in-sample R2 from our 
MWAS was lower (0.024), perhaps as a result of metabolites being less directly controlled by the 
genome than gene expression and the challenge of using the entire genome for prediction rather 
than just cis-SNPs. Nonetheless, 83.4% of the metabolites here could still be predicted at or above 
the R2 threshold of 0.01 used by previous studies to filter out poorly predicted gene expression 
values or endophenotypes9,60, supporting the feasibility of MWAS to perform comparably to 
TWAS and IWAS in studying disease associations. 
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One benefit of this study is the insight gained into the genetic architecture of scarce sample types. 
The CSF metabolites studied here showed a wide range of genetic architectures as seen through 
the model types best able to predict them. While some metabolites with significant loci from the 
GWAS favored sparse models, other metabolites tended to be best predicted by a polygenic model. 
The performance of these predictive models also hints at the relative importance of genetics for 
each metabolite, which is especially helpful for data sets that are too small for effective heritability 
estimation, as was the case here. 

The MWAS analysis identified a number of plausible CSF metabolite-phenotype associations. 
Three of the metabolites predicted to be associated with schizophrenia—alpha-tocopherol, N-
delta-acetylornithine, and N6-methyllysine—have been implicated by previous research. Alpha-
tocopherol, also known as vitamin E, is an antioxidant whose level has been noted to change in 
the blood during acute and chronic phases of schizophrenia61. Levels of N-acetylornithine, an 
amino acid, has been shown to differ between case and control brains in mice treated with 
haloperidol, an antipsychotic medication used to treat schizophrenia62. Finally, L-lysine, a related 
compound to N6-methyllysine, has been investigated as a potential treatment for schizophrenia63. 
Beyond schizophrenia, other putative metabolite-phenotype associations from this analysis 
appeared to be feasible as well: cysteinylglycine disulfide (associated with sleep duration) is a 
disulfide, and disulfides have been explored as a marker of stress in obstructive sleep apnea64, and 
glutaroylcarnitine (associated with cognitive performance) levels are known to be altered in 
glutaric acidemia type 1, which can manifest in neurological problems like dystonia65. Among the 
novel findings, N-delta-acetylornithine (associated with schizophrenia) was also associated with 
cognition and alcoholism. Though this particular metabolite does not appear to have been reported 
previously in association with cognitive performance and alcoholism, these two phenotypes have 
long been associated with schizophrenia66,67. 

An additional analysis made possible by the metabolite-phenotype association testing is 
elucidating the biology of unidentifiable metabolites. The metabolite X-24295 was significantly 
associated with PTSD, but little information was available on it. However, by examining the 
nominally significant genetic locus associated with the metabolite on chromosome 10 (BP 
60,794,328-61,050,339), nearby genes and phenotypes associated with those genes were identified 
(genes included PHYHIPL, TRAF6P1, LINC00844, and FAM13C; phenotypes included DNA 
methylation, sleep duration, and QT-interval duration in Trypanosoma cruzi seropositivity). 
Together, these findings support and potentially shed light on the biological mechanism for 
metabolite X-24295’s association with PTSD, as PTSD has been shown to be related to traumatic 
brain injury68 (which has been associated with PHYHIPL in mice69), altered DNA methylation70, 
and sleep disturbances71. These genetic annotations may also aid in the identification of the 
metabolite itself, as has been demonstrated by other metabolome-wide GWAS analyses17. 

The identification of promising drug targets is a major goal of metabolomics, and studies in insulin 
pathways72,73, obesity74, type 2 diabetes75, and atherosclerosis76 have shown the feasibility of 
identifying metabolites that affect disease in follow-up experimentation. In a recent review, a drug 
development pipeline was proposed for metabolomics-identified targets, beginning with two 
rounds of case-control studies with 50 or more participants77. Multiple studies on such a large scale 
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may be logistically difficult to arrange for many diseases, which is where MWAS can play a key 
role. MWAS offers a potential alternative for the initial discovery of targets that avoids the need 
for direct metabolite quantification, instead imputing metabolites using more readily available 
genetic information. 

One limitation of this study was the small sample size available for running the GWAS and training 
the metabolite prediction models. Having only a few hundred samples likely precluded the 
identification of some genetic loci associated with CSF metabolites; as such, the resulting 
predictive models could potentially be improved. However, even at the current sample size, the 
majority of metabolites could be predicted from genetics at the threshold of typical TWAS 
applications, and those studies have been successful in identifying gene-phenotype associations as 
noted earlier. One possible explanation for the success of this GWAS in spite of the smaller sample 
size is that molecular traits like metabolites are more biologically proximal to the DNA and thus 
may be more likely to be strongly affected by genetic variants compared to complex disease. 
Another limitation is that only individuals of European ancestry were studied, which may limit the 
generalizability of these findings to individuals of non-European ancestry. Future applications of 
MWAS in diverse populations will be needed to ensure that disease associations can be identified 
for a broader range of populations. Finally, the metabolite-phenotype associations identified here 
may not necessarily be causal. Even with the results of the two-sample MR providing significant, 
consistent support for some of the metabolite-phenotype associations, more needs to be known 
about the functional roles of these metabolites and their related genetic loci to adequately assess 
the assumptions of an MR analysis. Nevertheless, MWAS provides a powerful tool for the initial 
discovery of metabolite-phenotype associations that can then be followed up experimentally. 

 

Conclusion 

Here, we conducted the first metabolome-wide GWAS of the CSF metabolome, identifying 16 
genome-wide significant associations. Some of these loci appear to be unique to the CSF based on 
what is currently known about the blood, urine, and saliva metabolomes. Using these genetic 
associations, we built genome-wide prediction models for the metabolites, achieving predictions 
that are comparable to those currently used by TWAS applications. We leveraged these genetic 
associations to conduct a summary-statistic-based MWAS on a diversity of neurological and 
psychiatric phenotypes, identifying 19 significant associations, some supported by previous 
literature and others novel. These findings collectively provide insight into the genetic architecture 
of the CSF metabolome and the roles of CSF metabolites in disease, demonstrating the potential 
of this framework to make inroads into the omics of scarce sample types. 
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Online Methods 

 

Study participants 

The metabolomics data used in this study came from CSF samples analyzed in the WADRC and 
WRAP cohort studies. The WADRC, previously described78, is a longitudinal cohort study of 
memory, aging, and AD in middle and older aged adults who were recruited into one of six 
subgroups: 1) mild late-onset AD; 2) mild cognitive impairment (MCI); 3) age-matched healthy 
older controls (age > 65); 4) middle-aged adults with a positive parental history of AD; 5) middle-
aged adults with a negative parental history of AD; and 6) middle-aged adults with indeterminate 
parental history of AD. The National Institute of Neurological and Communicative Disorders and 
Stroke and Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA)79 and 
National Institute on Aging and Alzheimer’s Association (NIA-AA)80 criteria were used for 
clinical diagnoses. Briefly, the inclusion criteria for WADRC participants included an age ≥ 45, 
decisional capacity, and the ability to fast from food and drink for 12 hours. Briefly, exclusion 
criteria included history of certain medical conditions (e.g., kidney dysfunction, congestive heart 
failure, major neurologic disorders other than dementia, and others), lack of a study partner, and 
contraindication to biomarker procedures. 

The WRAP study, also previously described12, is a longitudinal cohort study of AD in middle and 
older aged adults who are cognitively healthy at baseline, enriched for persons with a parental 
history of AD. Briefly, inclusion criteria include being between the ages of 40 and 65, fluent in 
English, able to complete neuropsychological testing, and free of health conditions that might 
preclude study participation. Briefly, exclusion criteria included having a diagnosis or evidence of 
dementia at baseline. 

This study was performed as part of the Generations of WRAP (GROW) study, which was 
approved by the University of Wisconsin Health Sciences Institutional Review Board. Participants 
in the WADRC and WRAP studies provided written informed consent. 

 

CSF samples 

A subset of participants in both the WADRC and WRAP studies had LPs conducted to collect 
CSF. Similar collection protocols and staff were used in both studies to collect and store the CSF 
samples, which have been previously described12,81. Briefly, fasting CSF samples were drawn from 
study participants in the morning through LP and then mixed, centrifuged, aliquoted, and stored at 
-80 degrees Celsius. 

Samples were kept frozen until they were shipped overnight to Metabolon, Inc. (Durham, NC), 
which similarly kept samples frozen at -80 degrees Celsius until analysis. Metabolon used 
Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS) to 
conduct an untargeted metabolomics analysis of the CSF samples, processing both WADRC and 
WRAP simultaneously on the same platform. A total of 412 metabolites were quantified, of which 
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354 were identified and 58 were of unknown structural identity. The relative peak intensity was 
quantified for each metabolite in each sample using area-under-the-curve. Metabolite values were 
divided by the median of all values for that metabolite. Quantified metabolites were annotated with 
metabolite identifiers, chemical properties, and pathway information. 

A total of 689 participants (532 from WADRC and 168 from WRAP) with CSF samples analyzed 
for metabolites were initially included before metabolite quality control. 

 

Initial metabolite processing 

Initial metabolite quality control was performed on the 689 CSF samples, including assessment of 
missingness and variation, imputation, and transformation. First, the missingness of each 
metabolite across samples was calculated. A metabolite value may be missing for several reasons: 
the metabolite was not present in the sample; the metabolite was present at a level below the 
detection limit for that metabolite; or the metabolite was present, but there was a sample or 
technical issue that precluded its detection by MS. Non-xenobiotic metabolites were removed if 
they were missing for ≥ 30% of samples. Xenobiotic metabolites, which may reasonably be 
completely absent in samples, were removed if they were missing for ≥ 80% of samples. CSF 
samples were removed from analysis if any sample was missing measurements for ≥ 40% of all 
metabolites in the data set. Metabolites with an interquartile range of 0 were removed because of 
the limited variation available for statistical analysis. At the end of these initial processing steps, 
378 metabolites across 672 samples remained. 

Imputation was then performed for each cohort’s samples separately. Non-xenobiotics were 
imputed to half the minimum value within each cohort, while xenobiotics were not imputed since 
they could feasibly be absent from the CSF. Due to consistent right-skew in the data, each 
metabolite was log10 transformed. 

 

Initial genotype processing 

In the WADRC cohort, samples were sent to the National Alzheimer’s Coordinating Center 
(NACC) and genotyped by the Alzheimer’s Disease Genetics Consortium (ADGC) using the 
Illumina HumanOmniExpress-12v1_A, Infinium HumanOmniExpressExome-8 v1-2a, or 
Infinium Global Screening Array v1-0 (GSAMD-24v1-0_20011747_A1) BeadChip. All genetic 
data underwent stringent quality control prior to imputation and analysis: variants or samples with 
> 2% missingness, variants out of Hardy-Weinberg equilibrium (HWE) (p < 1x10-6), or samples 
with inconsistent genetic and self-reported sex data were removed. After pre-imputation 
processing with the Haplotype Reference Consortium (HRC) Checking tool82, the genotypes were 
uploaded to the Michigan Imputation Server83 where they were phased using Eagle284 and imputed 
to the HRC reference panel85. Variants with a low quality score (R2 < 0.8) or out of HWE were 
removed. Quality control was carried out separately for each genotyping chip’s data. After 
imputation, the various chip data sets were merged together. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 15, 2020. ; https://doi.org/10.1101/2020.02.14.948398doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.14.948398
http://creativecommons.org/licenses/by-nc-nd/4.0/


In the WRAP cohort, DNA was extracted from whole blood samples and genotyped using the 
Illumina Multi-Ethnic Genotyping Array at the University of Wisconsin Biotechnology Center13. 
Briefly, samples and variants with high missingness (> 5%) and samples with inconsistent genetic 
and self-reported sex were removed. 1,198 samples from individuals of European descent with 
898,220 variants were then imputed using the Michigan Imputation Server and the HRC reference 
panel. Variants with a low imputation quality score (R2 < 0.8), with a low minor allele frequency 
(MAF) (< 0.001), or out of HWE were removed. Variants were annotated based on the GRCh37 
assembly. 

 

Data cleaning 

For this study, the initial sample contained those samples with both genetic and metabolomic data 
(440 samples from WADRC; 165 samples from WRAP). Samples were then removed for missing 
age at LP, a cognitive diagnosis date more than two years from the LP date, non-European ancestry 
(due to lack of sample size in other ancestry groups), or having withdrawn from or being ineligible 
for the study. In order to maximize the generalizability of the genetic-metabolite associations, only 
participants who were cognitively normal at the time of the CSF draw were kept. When multiple 
CSF draws were available from a participant, only the first qualifying sample was retained. 
Similarly, if participants were related (according to identity by descent in ADRC or self-reported 
family relationships in WRAP), only one participant was kept per related group in order to remove 
genetic correlation between participants. 

Metabolite missingness was then reassessed among the cleaned data set to ensure sufficient sample 
size for estimating SNP effects in the GWAS: any metabolite missing ≥ 50% across a cohort’s 
samples was removed. To address potential population stratification, principal component analysis 
(PCA) was conducted within each cohort on the subset of participants to be analyzed in the GWAS. 
The number of principal components (PCs) controlled for in the GWAS was selected based on a 
visual inspection of the scree plots, which in both cases was 5 PCs. Finally, SNPs missing ≥ 1% 
across the remaining samples in a cohort were removed, leaving 7,049,691 SNPs in WADRC and 
10,494,131 SNPs in WRAP. A total of 338 metabolites across 155 samples in WADRC and 136 
samples in WRAP remained after these quality control procedures. 

 

GWAS 

A GWAS was performed for each metabolite in each cohort using PLINK86 (version 1.90b6.3). 
Linear regression with an additive genetic model was used, controlling for age at CSF draw, sex, 
the first 5 PCs, and the NACC genotyping round (for WADRC only). Post-GWAS, SNPs were 
removed with a MAF ≤ 0.05. A Q-Q plot and Manhattan plot were generated for each GWAS 
using the R package qqman87 (version 0.1.4). The genomic inflation factor was calculated for each 
metabolite in each cohort using the median χ2 statistic. 

In the discovery phase GWAS (WADRC cohort), a genome-wide significance threshold (5x10-8) 
with a Bonferroni correction for the number of metabolites tested (338) resulted in a significance 
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threshold of 1.48x10-10. The significant SNPs from the discovery phase were identified and then 
compared to the replication phase (WRAP cohort) to assess replication at a significance threshold 
of 0.05 with a Bonferroni correction for the number of significant SNPs tested from the discovery 
phase (606), for a final significance threshold of replication of 8.25x10-5. 

The discovery and replication phase GWAS results were then meta-analyzed using the inverse-
variance-weighted approach implemented in METAL88 (2018-08-28 version, STDERR scheme). 
Only SNPs present in both the discovery and replication GWAS were retained, and a genome-
wide significance threshold Bonferroni-corrected for the number of metabolites analyzed (p = 
1.48x10-10) was used for reporting associations. Q-Q plots, Manhattan plots, and genomic inflation 
factors were calculated for the meta-analysis as before, and LocusZoom89 (version 1.4) was used 
to generate regional genetic association plots for a 1 Mb region around the top SNP at each 
significant locus, using the 1000 Genomes Nov2014 EUR population for linkage disequilibrium 
(LD) estimation (Supplementary Figures 1-16). 

 

Evaluation of significant loci 

The significant SNPs from the meta-analysis GWAS were evaluated for the feasibility of a 
connection with their associated metabolites. Each SNP was annotated with the nearest gene using 
GENCODE90 annotations (version 19) and known eQTLs in CNS-related tissues using GTEx52 
(version 7) (Supplementary Table 5). Regions around the significant SNPs were also looked up in 
the GWAS Catalog for previously reported phenotype associations using the R package 
gwasrapidd91 (version 0.99.8) (Supplementary Table 6). Additionally, each significant SNP-
metabolite association was checked against previously published GWAS of metabolites15–19,44,45,47 
in non-CSF fluids or tissues, with a focus on publications that also used Metabolon for metabolite 
quantification and thus were more likely to have measured the same metabolites that were 
measured here. To match metabolites by name across data sets when Metabolon identifiers were 
not available, string-matching functions from MetaboAnalystR92 (version 1.0.2) and stringdist93 
(version 0.9.5.5) were used to match metabolite names, which were then manually reviewed for 
accuracy. Each SNP-metabolite association was examined in the results of each of the non-CSF 
studies for the presence of the metabolite and whether the SNP association was replicated. For 
studies with publicly available GWAS summary statistics, LocusZoom plots were created of the 
CSF-significant genetic regions using the publicly available non-CSF summary statistics data to 
allow for side-by-side comparison of the CSF associations and the non-CSF associations for the 
same metabolite at the same locus (Supplementary Figures 18-24). 

 

Metabolite prediction models 

Metabolite prediction models were built and selected using four-fold cross-validation. To 
maximize the sample size available for training metabolite prediction models, a combined 
WADRC and WRAP data set was created. Only SNPs present in both data sets, present for all 
individuals, and with a MAF ≥ 0.05 were retained. To account for differences in SNP annotations, 
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SNPs were harmonized across WADRC, WRAP, and the 1000 Genomes Phase 3 CEU samples 
that were used as an LD reference such that all SNPs were oriented to the same strand and 
major/minor allele annotation. SNPs that were inconsistent across the data sets or ambiguous SNPs 
were removed. The combined WADRC/WRAP data set was then partitioned evenly into four 
portions, with a training fold comprising three portions merged together and a testing fold 
comprising the remaining portion. 

Within each training fold of data, PLINK was used to run a GWAS of each metabolite using a 
linear, additive model, controlling for age at CSF collection, sex, the top 5 PCs (calculated in the 
combined data set), and an indicator for WADRC or WRAP genotyping round. Variance inflation 
factors were restricted to being less than 50 (four metabolites were excluded from further analysis 
due to a high inflation factor in at least one fold). The resulting fold-specific GWAS files were 
then clumped down to independent SNPs (r2 < 0.1 within a 1000 kb window using the 1000 
Genomes CEU reference panel for LD estimation) with a p-value threshold of 0.01 using PLINK. 

Metabolite prediction models were built for each metabolite within each fold of training data. Four 
general model types covering a range of genetic architecture assumptions were employed: 
LASSO94, elastic net95, ridge regression96, and polygenic score models97. The 3 penalized 
regression models (LASSO, elastic net, and ridge regression) were implemented using the R 
package glmnet98 (version 2.0-18). An 11x11 grid of parameter combinations (lambda and alpha) 
was created. Lambdas ranged from 1.0x10-5 to 1.0 (10 raised to exponents incremented by 0.5); 
alphas ranged from 0.0 to 1.0 (incremented by 0.1). Models were classified based on the alpha 
value (1.0 = LASSO, 0.0 = ridge regression, others = elastic net). Model predictors included all 
clumped SNPs and the same covariates used for the fold-specific GWAS, but the regularization 
penalty was only applied to the SNPs. The polygenic score models were implemented using 
PRSice99 (version 2.2.4). Three p-value thresholds were used: 0.0001, 0.001, and 0.01. 

Each fold-specific metabolite prediction model was tested on the corresponding testing fold to 
determine the correlation and R2 between the predicted and actual metabolite values. The mean 
predictive correlation was taken across all folds for each model, with the highest-correlated model 
chosen as the best predictive model for that metabolite. For each metabolite, the type of model, 
mean number of SNPs used, and presence of significant meta-analysis GWAS loci were recorded 
(Supplementary Table 7). 

 

Metabolite-phenotype association testing 

To test the association between imputed metabolites and the various brain-related phenotypes, two 
components were needed: metabolite prediction model SNP weights and brain-related GWAS 
summary statistics. The best prediction models per metabolite chosen by the four-fold cross-
validation described above were initially considered for the association testing. Only metabolite 
prediction models with a positive correlation and a mean predictive R2 > 0.025 were retained. The 
model type and parameter settings for each metabolite’s best-performing model were then run on 
the entire WADRC/WRAP combined sample to generate the final model weights for all SNPs 
included in the model (Supplementary Table 8). 
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The phenotypes for the association analysis were chosen based on the feasibility of the CSF 
metabolome being relevant to the phenotype and the availability of GWAS summary statistics for 
the phenotype. The only exception was the GWAS for the AD proxy phenotype, which was 
developed in-house on the UK Biobank data set as a surrogate measure for AD risk based on 
parental diagnosis and age at diagnosis, following previous research100,101. The CNS phenotypes 
and sources of the GWAS summary statistics21–42 are listed in Supplementary Table 9. All GWAS 
summary statistics files were harmonized to the GRCh37 SNP annotations and orientations of the 
WADRC/WRAP combined data set used for model training. For GWAS summary statistics with 
only odds ratios or Z-scores reported, beta effect sizes were converted or estimated from the data 
provided. To maximize the SNP overlap between the model training SNPs and the GWAS 
summary statistics, the ImpG method102 (FIZI package, version 0.6; Python, version 3.8) was used 
to impute missing SNP effect sizes in the GWAS summary statistics. Only SNPs that matched 
between the training data and the imputed GWAS summary statistics were retained. 

The BADGERS (Biobank-wide Association Discovery using GEnetic Risk Scores) software 
package14 was used to test the association of each imputed CSF metabolite with each of the GWAS 
summary statistics phenotypes (Supplementary Table 10). A Q-Q plot of all BADGERS 
association test results was created to assess potential inflation (Supplementary Figure 26). An 
FDR was calculated using the qvalue103 (version 2.18.0) package for each GWAS phenotype at a 
threshold of 0.05 to report significant associations. A Bonferroni-corrected significance threshold 
based on the number of metabolite (106) and phenotype (27) combinations tested with BADGERS 
(p = 0.05 / 2862 = 1.7x10-5) was additionally used to report the most conservative associations. A 
manual search of published literature was conducted to check for the biological feasibility of the 
metabolite-phenotype associations estimated by BADGERS. For metabolites marked as unknown 
by Metabolon, the region around the top genetic loci for the metabolite from the GWAS meta-
analysis was looked up in the GWAS Catalog to identify any other associations that might inform 
the metabolite’s role or identity. 

A two-sample Mendelian Randomization was performed for each of the significant metabolite-
phenotype associations from BADGERS, using the meta-analysis GWAS results for the 
metabolites described above and a phenotype GWAS from the IEU GWAS Database 
(Supplementary Table 11). When possible, the same phenotype GWAS that was used in 
BADGERS was used for the MR analysis; otherwise, a similar phenotype from a different study 
was used (Supplementary Table 12). The MR analysis was conducted using the TwoSampleMR104 
(version 0.5.0) package, using the Wald ratio (“mr_wald_ratio”), inverse-variance-weighted 
(“mr_ivw”), Egger regression (“mr_egger_regression”), and weighted median 
(“mr_weighted_median”) methods. A Bonferroni-corrected significance threshold for the number 
of MR analyses performed (42) was used for reporting significant results (p = 0.05 / 42 = 1.2x10-

3). 

 

General bioinformatic tools 
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General data analysis was performed primarily using R105 (versions 3.6.0 and 3.6.1), RStudio106 
(version 1.2.1335), and the Tidyverse suite of R packages107. 
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