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Abstract

In palynology, the visual classification of pollen grains from different species is a hard
task which is usually tackled by human operators using microscopes. Many industries,
including medical and farmaceutical, rely on the accuracy of this manual classification
process, which is reported to be around 67%. In this paper, we propose a new method
to automatically classify pollen grains using deep learning techniques that improve the
correct classification rates in images not previously seen by the models. Our proposal
manages to properly classify up to 98% of the examples from a dataset with 46 different
classes of pollen grains, produced by the Classifynder classification system. This is an
unprecedented result which surpasses all previous attempts both in accuracy and
number and difficulty of taxa under consideration, which include types previously
considered as indistinguishable.

Introduction 1

Pollen is widely recognised as a nuisance, but also as a very valuable tool in several 2

scientific fields. An estimated 40% of the world’s population experience seasonal allergic 3

rhinitis (SAR) driven by exposure to pollen [1]. Pollen forecasting, informed by 4

examination of airborne pollen has become a key tool for management of SAR [2]. 5

Pollen is also very important for quality verification of honey [3], reconstructing past 6

vegetation to understand past changes in climate change [4], biodiversity [5], and human 7

impacts [6] and as a forensic tool [7]. Common to all these areas is the need for 8

experienced analysts to spend considerable amounts of time identifying and counting 9

pollen on slides. While other branches of science have been transformed by the 10

technological advances of recent decades, palynology is languishing, with the practical 11

methodology of pollen counting having hardly advanced much beyond that of the 1950s. 12

But this is not for want of trying. Flenley [8] was the first to call attention to the 13

need and potential of automation of pollen counting. A handful of early attempts were 14

published in the later decades of the 20th century, but the rapid increase in capability 15

in computational intelligence over the early part of the 21st century resulted in 16

considerable acceleration in the field during this time, with numerous attempts at 17

partial or complete automation of palynology appearing in the literature, summarised 18

in [9] and [10]. 19

While the results of the existing studies can be regarded as promising, they are 20

rather limited in that they typically deal with a relatively small number of taxa (max 21

February 5, 2020 1/14

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2020. ; https://doi.org/10.1101/2020.02.14.949149doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.14.949149
http://creativecommons.org/licenses/by/4.0/


30, mean 8), and success/accuracy rates vary. While some palynological applications 22

may require a lower level of taxonomic diversity than others, it is arguable that many 23

’real world’ pollen problems will require higher diversity than that of most of the 24

existing studies. For example, Stillman and Flenley, (1996) suggested that the minimum 25

number of taxa for paleoecological applications would be around 40 types. 26

Recently, Sevillano and Aznarte ( [10]) presented an example of pollen classification 27

which applied deep learning convolutional neural networks to the POLEN23E image 28

dataset, a freely available set of 805 brightfield microscope images of 23 different pollen 29

types from the Brazillian savannah (Goncavales et al, 2016). Their model achieved 30

accuracies of over 97%. 97% accuracy on a 23 class problem represents one of the best 31

successes rate, when weighted for the number of taxa, of any attempt at automated 32

pollen analysis currently documented in the literature. 33

In this paper, we apply the same approach to a wider set of pollen images produced 34

by an automated pollen classification system, the Classifynder, marketed by Veritaxa 35

ltd. This image set includes twice as many pollen types as the POLEN23E set, and over 36

19,000 individual images. 37

State of the art 38

Previous approaches to automated palynology are comprehensively summarised in [9] 39

and [10]. They can be divided into image-based and non-image based methods. 40

Non-image based methods use alternative techniques for sensing characteristics used for 41

differentiation, for example fluorescence [11], Fourier-Transform infrared [12], and 42

Raman spectroscopy [13], etc. Non-image based methods won’t be discussed further 43

here. 44

Traditionally, image-based methods typically involve defining and extracting 45

discriminating features from pollen images, followed by sorting via statistical or machine 46

learning-based classifiers. An example which uses the same type of images as this 47

research is [14]. As per [10], these image-based methods fall into three different 48

categories based on the type of features being used: (1) discriminant features are largely 49

visual/geometrical (e.g. shape, symmetry, diameter, etc.); (2) discriminant features are 50

texture-based, i.e. they capture information about the pollen grain ornamentation (e.g. 51

gray-level co-occurence matrices, entropy, gabor features etc.,); and (3) a combination of 52

the two approaches. 53

Recently, a new method for image-based pollen classification has emerged which 54

harnesses the power of deep learning neural network frameworks. While still a 55

combination of classification based on key image features, this new approach involves a 56

model determining and extracting the features itself, rather than them being predefined 57

by human analysts. Transfer learning is used to maximise classification ability by 58

leveraging the representativeness of these synthetic features and the power of a linear 59

discriminant classifier. 60

Existing studies applying this new approach outperform the traditional more 61

supervised methods defined in 1-3 above. For example, [15] achieved a 94% of training 62

accuracy on a dataset of 30 pollen types. Their technique is similar to ours, but their 63

results are based on the training set and no information is given about how the model 64

behaves with unseen images. The same can be said of [16], which informs of 100% 65

accuracy on 10 very different pollen grains by using transfer learning over a 66

convolutional neural network based on the VGG16 architecture, and of [17], which 67

reports 99.8% training accuracy for 5 species. [10] experimented with three deep 68

learning models for classification of pollen images from the POLEN23E dataset [18], 69

and the same dataset has been recently used by [19]. These models use different 70

combinations of automatic feature extraction, transfer learning and a pre-trained 71
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convolutional neural network. 72

Materials and methods 73

Pollen image set 74

The images used in our experiment are dark field microscope images captured on the 75

Classifynder system (for an example, see Figure 1). The Classifynder (formerly known 76

as AutoStage) is documented in [20]. It was designed as a complete ’standalone’ system 77

for automated pollen analysis. The system uses basic shape features to identify the 78

locations of objects of interest (i.e. pollen grains) in conventional microscope slides 79

under a low-power objective. It then switches to a higher power objective and visits the 80

location of each pollen object to capture an image of it to be used for classification. 81

Objects are imaged at different focus levels, producing a ’Z-stack’. The system subsets 82

the best-focussed portions of each of the Z-stack images for an object, and then 83

combines them to produce a single composite image, followed by segmentation from the 84

background. This image is then falsely coloured to show depth (Fig. 1). 85

Fig 1. Samples of seven pollen types found in the dataset. By rows, pollen types
usually considered as indistinguishable.

In its routine operation, the Classifynder extracts values for 43 different image 86

features (both geometrical and textural, see [14] for a list) and tags them on to each 87

image as metadata. Images are classified using a simple neural network (feed-forward 88

with a single hidden layer), which compares the feature values of the unknown pollen 89

types with the feature values of known ’library’ images. 90

In this paper, we have used the Classifynder to generate our image set only. While 91

the Classifynder has produced satisfactory classification in previous experiments with 92
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low numbers of taxa [20], performance of the neural network classifier declines with 93

greater numbers of taxa [14]. 94

The image dataset we use comprises a total of 19,500 images, from 46 different 95

pollen types, representing 37 different families. This was the total number of taxa for 96

which suitable Classifynder datasets were available at the time our research commenced. 97

Unlike the POLEN23E dataset, which is representative of the Brazilian savannah, 98

our dataset is a mix of taxa found in New Zealand and the Pacific, including both 99

native and introduced taxa. Many are types encountered in honeys from these regions. 100

The number of images per taxon varies from 40 to 1700. See Figure 8 for a full list 101

of the number of images per taxon. The majority of the images were captured from 102

reference pollen slides, with the exception of 14 taxa (Coprosma sp., Echium vulgare, 103

Geniostoma sp., Griselinia sp., Ixerba brexiodes, Lotus sp., Lycopodium clavatum, 104

Knightia excelsa, Metrosideros sp., Quintinnia sp., Ranunuculus sp., Salix sp., 105

Taraxacum sp., Trifolium sp., and Weinmannia sp.) whose images were captured from 106

slides of pollen extracted from honey samples. All pollen samples, regardless of origin, 107

were acetolysed following the method of Erdtman [21] and then suspended in either 108

silicone oil or glycerine jelly, and mounted under coverslips on glass slides. 109

Slides were scanned using the Classifynder system, which automatically locates and 110

images the pollen grains, with only limited human input needed at the start of the 111

process. It is this feature which has allowed for such a large image dataset to be 112

generated, as we were not reliant on a human analyst to manually locate and image 113

each grain. 114

The resultant raw image sets for each taxon or honey sample were manually 115

examined. Image sets from honey samples were manually sorted into individual taxa, 116

while image sets from reference slides were manually filtered to remove images of 117

’outliers’, i.e. grains not representative of that pollen type due to deformation or 118

malformation, as well as any non-pollen debris or pollen of other taxa that may have 119

made their way onto the slide. 120

Overall, the number of images per taxon was dictated by what was 121

available/gathered. As mentioned above, many of the individual sets were originally 122

generated for other projects or experiments. This partially accounts for the considerable 123

differences in the number of images per taxon. For example, the images for the taxa 124

with the highest numbers of images (Leptospermum scoparium and Kunzea ericoides) 125

were gathered as part of work on differentiating these two taxa using the 126

Classifynder [22], and an even larger number of images were available for these two 127

types. A figure of 1700 was arbitrarily selected. 128

The 46 taxa comprise a wide range of pollen morphologies, with some more similar 129

than others. We have deliberately included two pairs and one trio of morphologically 130

similar taxa to test the system’s ability to discriminate closely related types, as well as 131

across a broader range of morphologies. These are shown in Figure 1 and include 1) 132

Fuscospora fusca and F. truncata, 2) Leptospermum scoparium and Kuzea ericoides, and 133

3) Olearia semidentata, Brachyglottis huntii and B. repanda. The last three are 134

members of the Asteraceae family, many members of which are notoriously difficult to 135

distinguish. L. scoparium and K. ericoides represent two important nectar sources in 136

New Zealand honey, with L. scoparium being the source of the high-value New Zealand 137

Manuka honey. Traditionally, these two taxa have been regarded as virtually 138

indistinguishable, limiting the use of pollen analysis in Manuka honey quality 139

assessment (although see [22] for more information). F. fusca and F. truncata are two 140

species of southern beech (Fagaceae), whose pollen (along with the two other species of 141

Fuscospora) are regarded as virtually identical [23]. 142
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Deep learning convolutional neural network 143

Neural networks are inspired by the function and structure of the human brain. In these 144

models, there are multiple layers of artificial neurons trained to process and identify 145

concrete features of the input space, each layer extracting different valuable information. 146

Deep learning is a common name for the technique to train very complex neural 147

networks that can be used on many types of data, like signal processing, image 148

processing, speech recognition or natural language processing among many others, to 149

produce results that often are similar to those that a human being would produce. 150

In the field of image recognition, deep learning of neural networks has reached levels 151

of accuracy not previously achieved. While traditional neural networks contain a few 152

hidden layers of neurons, deep learning networks can contain tens or hundreds. These 153

models are trained with large data sets and are able to learn features without the need 154

for manual intervention. This ability to extract features from large data sets makes 155

them especially suited for the task of the classification of pollen grains, where the correct 156

identification of these features is especially complex. Eliminating the manual selection of 157

features significantly simplifies the classification process, while increasing the reliability. 158

There are different techniques to create and train these models. The most common 159

three are 1) training from scratch, where the network is built from the beginning, 2) 160

transfer learning, where the structure of a pre-trained model is adapted and 3) feature 161

extraction, a more specialized approach in which the learned features are used as input 162

for another automatic learning model as, for example, a support vector machine or a 163

linear discriminant classifier. In this work, we present a hybrid solution between the last 164

two configurations. 165

First, we use the pre-trained network Alexnet [24] to automatically extract 166

significant features of the images. Alexnet is one of the most popular convolutional 167

neural networks, and it was originally designed to classify images from 1000 different 168

classes. It is much larger than previous convolutional neural networks, consisting of 5 169

convolutional layers and 3 fully connected layers, and having around 60 million 170

parameters and 650,000 neurons. 171

Through the different layers we can observe what features the network learns by 172

comparing areas of activation with the original image. The first layers learn basic 173

features like color and edges, while in the deeper layers the network learns more 174

complex and abstract features. Identifying features in different layers allows us to 175

understand what the network has learned. In Figure 2 we show an example of nine of 176

the trained filters for each of the five convolutional layers of the network. After these 177

layers, Alexnet contains three fully connected layers, of which the last contains 1000 178

neurons, one for each class. The ith neuron of this layer is interpreted as the probability 179

that the input image belongs to the ith class. In our model, we extract the 180

automatically created features from the second fully connected layer because it is the 181

deeper layer and it is thus expected to contain the higher level representation of the 182

differences amongst the classes. 183

Fig 2. Example of 9 filters from the five convolutional layers of the trained network.

The features extracted by these layers usually do not offer an overly clear vision of 184

the network operation. We can, however, analyze the activations that a concrete image 185

produces when processed through the network to obtain its classification. In this case, 186
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the different filters and activations in the different layers are clearer to the naked eye. 187

To illustrate the example, an image belonging to the Brachyglottis huntii class has been 188

selected (see Figure 3). 189

Fig 3. A sample Brachyglottis huntii image (left) and the activation it produced in
filters 29 (center) and 85 (right) of the first layer of the convolutional neural network.

The image is initially preprocessed to be adapted to the network requirements as 190

described below. We then feed the image to the trained convolutional neural network 191

and display the activations of different layers of the network to, later, examine these 192

activations and analyze what features the network learns by comparing them with the 193

original image. Figure 3 shows the activations that the image produces in two of the 194

filters of the first convolutional layer. White pixels represent strong positive activations 195

and black pixels represent strong negative activations. When a filter is mostly gray, it 196

does not respond to any strong activation on the original image. The position of the 197

pixels on the activations corresponds to the same position on the original image. This 198

way, we can analyze which part of the image is identified by each of the activated filters. 199

For filter 29 (center of Figure 3) we can see positive and negative activations, in 200

black and white respectively, corresponding to the features detected by this filter. The 201

positive activations of this filter recognize the edges, identifying the external peaks of 202

the image and the internal purple points. Filter 85, in the right hand side of Figure 3, is 203

the one showing lager activations for the first convolutional layer and the selected 204

sample image. 205

The deeper layers contain filters that have learned to identify more complex features 206

from the previous layers. A closer look at all the activations produced by this sample 207

image in the convolutional layer 5, in Figure 4, bring us closer to the complexity of the 208

characteristics learned by this deep layer. 209

As mentioned above, after this layer another three fully connected layers are present, 210

the last layer being an output layer. Once the network is trained, we extract the 211

relevant features from the second fully connected layer and we train a linear 212

discriminant classifier to perform the classification on these features. 213

Experimental design 214

To properly estimate the error and to assess the robustness of the models against 215

overfitting, the accuracy on each conducted experiment was computed using a 10 fold 216

cross-validation process summarized in Fig. 5. We compute the following common 217

performance measures to evaluate model performance: 218

CCR =
TP + TN

TP + TN + FP + FN
(1)

219

precision =
TP

TP + FP
(2)

220

recall =
TP

TP + FN
(3)
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Fig 4. Fifth convolutional layer activations for the Brachyglottis huntii class sample
image of Figure 3.

F1 score = 2 ∗ precision ∗ recall

precision + recall
(4)

where TP refers to true positives, TN to true negatives, FP to false positives, and FN 221

to false negatives. Precission, recall and F1 score were computed as an average weighted 222

by the number of images in each class. 223

Image preprocessing and augmentation 224

In our experiment, in addition to performing a custom image preprocessing procedure, 225

we implemented data augmentation, which considerably increases the convolutional 226

neural network training time, and the training time of the linear discriminant classifier, 227

but that also increases the accuracy accordingly. This process is summarized in Fig. 6. 228

One of the most relevant features of the dataset is the image size. This feature is 229

important since different pollen grains of different classes have different sizes, and thus 230

this feature is essential for classification. As the convolutional neural network needs a 231

227x227x3 format as an input, all images must be reframed into that format. Our 232

preprocessing algorithm crops the grains from the original images while keeping a 233

minimum padding around them and mantaining their size so that the network can 234

identify it more effectively. This reduction of the images to their effective content 235

facilitates the process of data augmentation, since it allows to generate new images from 236

the originals without resizing them in the process. 237

In the framework of convolutional neural networks it is common to derive an 238

augmented image dataset by generating batches of new images, with optional 239

preprocessing such as resizing, rotation, and reflection, based on the available images. 240

Augmenting image data helps to prevent the network from over-fitting and memorizing 241

the exact details of the training images. It also increases the effective size of the 242

training data set. 243
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Fig 5. Diagram for the cross-validation procedure. The red circles represent the
validation sets for each step, containing 10% of the images for each class.

Fig 6. Summary of the data augmentation process applied.
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Furthermore, the original set of images from this experiment has classes with very 244

different amounts of images, ranging from 1700 in the most represented case to 40 in 245

the least. In order to obtain the greatest number of features of each class while 246

maintaining a reasonable training time, we have increased the images of each class to 247

the number of images of the class with more examples. 248

Hence, from the original preprocessed images, subsequent synthetic images are 249

obtained to complete the image data set. The creation process we have used relies only 250

on the rotation of images. A resizing process was not considered to be effective since 251

they would lose the aforementioned size ratio. Each new image is generated from a 252

random image of its class. Once the original image has been randomly selected, a 253

rotation angle, also randomly chosen, is applied, generating an rotated image from the 254

original one, but maintaining the dimensions of it, even if the final image contains a 255

different canvas size. 256

This technique allows to generate synthetic images that preserve the original 257

proportions but contain different characteristics, significantly increasing the features 258

presented to the convolutional neuronal network. 259

Results and discussion 260

As explained above, to properly evaluate the model performance, we use a validation set 261

composed of images not seen by the model during the training process. These images 262

constitute an example close to reality, since they are completely unknown to the model 263

and allow us to anticipate its behavior against new observations. 264

Table 1 presents the results obtained by the model using the training and the 265

validation datasets, as an average of the 10 cross-validation partitions together with the 266

standard deviation of each value, in brackets. The CCR obtained by the examples of 267

the validation set rises to 97.86%, which approximates the results obtained during 268

training, 99.91%. 269

Table 1. Results for the training and validation sets.

CCR Precision Recall F1 score

Training 99.91% 0.998 1.000 0.999
(± 0.011) (± 0.021) (± 4.84e-04) (± 0.011)

Validation 97.86% 0.979 0.978 0.978
(± 0.252) (± 0.030) (± 0.031) (± 0.027)

he low deviation between training and validation values demonstrates the robustness 270

of the model, ruling out the possibility of overfitting during the training process. This is 271

supported by the low values in the standard deviations of the different measures, which 272

also prove the stability of the model. 273

However, the CCR measure alone does not provide sufficient information about the 274

model behavior against false positives and false negatives produced in the process of 275

predicting new observations. The values obtained for precision and recall, 0.979 and 276

0.978 respectively reinforce the consistency of the model with respect to false positives 277

and false negatives. Finally, the high value of the F1 score validates the consistency of 278

those measures. 279

Figure 7 shows the confusion matrix obtained by the model over the 10 validation 280

datasets of the cross-validation procedure. This matrix has been constructed by 281

accumulating the individual cross-validation results: since each validation set was 282

composed by a 10% of the data for each type, and we had 10 such datasets, the matrix 283

columnwise sums are equal to the total of images for each type. We can dive into this 284
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matrix by looking at the aforementioned 3 sets of virtually indistinguishable pollen 285

types. 286

Fig 7. Confusion matrix for the 46 pollen types through the 10-fold cross validation
process. For each type, 10% of the available images were saved for validation.

With regards to Olearia semidentata and Brachyglottis repanda, we see how the 287

model wrongly predicts as O. semidentata 29 images that should have been classified as 288

corresponding to B. huntii. This represents a 9% of the total for the latter. Conversely, 289

16 images (8%) of O. semidentata are wrongly classified as B. huntii. These comprise 290

every missclassification recorded for both classes. Furthermore, there was only one 291

confusion between B. repanda and B. huntii. 292

When dealing with Fuscospora fusca and F. truncata, our model gets 16 images of 293

the former missclassified as the latter, representing a 4.8% of the total. And conversely, 294

12 images of F. truncata are missclassified as Fuscospora fusca (6.7%). 295

Finally, concerning Leptospermum scoparium and Kunzea ericoides, we see that 42 296

images of the latter (representing only a 2.5%) are missclassified as Leptospermum 297

scoparium, whereas 73 (4.3%) of the former are also missclassified as the other. Given 298

the known similarities amongst both types, these results can be considered as very good 299

(and are in fact far better than what a human operator can achieve). 300

Figure 8 shows a boxplot with the distribution of the F1 scores for the validation 301

sets during the cross-validation process. In this figure, we can observe the good general 302

behavior of the model, with two types perfectly classified in all the cross-validation 303

partitions (Carpodetus and Gunnera), with other 10 types perfectly classified in median 304

(B. repanda, Carex, Geniostoma, Ixerba, Knightia, Lycopodium, Maonao, Muelhenbeckia, 305

Plagianthus, Prumnopitys, Ranunuculus, Santalum and Typha), and with medians above 306

0.95 for all but 7 of the classes. 307

In Figure 8, the 46 pollen types are ordered according to the number of images 308

available for each one. This reveals a pattern: leaving aside the indistinguishable pairs 309

mentioned above, which of course present lower F1 than others, it seems that there is a 310
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Fig 8. Distribution of f1 score per type in the 10 folds of the cross-validation process.
In brackets, the number of images for each type.
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relationship between the number of available images and the results. As expected, when 311

the number of images increases, the error of the model decreases: all the types that 312

obtain a median F1 below 0.95 are either part of the indistinguishable pairs or have less 313

than 200 images. 314

This is evident in the case of the Poaceae class, which is the one with the fewest 315

original images, having only 40 in total (and thus only 4 in the validation sets). This of 316

course implies a greater dependence on the selection of samples in the different 317

cross-validation experiments. It is also clear that the difficulties with this particular 318

class are responsible for a significant decrease in the model overall accuracy. 319

Conclusions 320

Finally, we can add some concluding remarks. In this work we present a model for the 321

classification of images of 46 different kinds of pollen grains captured with the 322

Clasifynder automatic microscope. We have used different techniques of image 323

pre-processing and data augmentation to feed a pre-trained convolutional neural 324

network, retrained by transfer learning to extract features from one of its deepest layers. 325

Finally, these automatically extracted features are used to perform classification with a 326

linear discriminant classifier. 327

The behavior of the model is excellent, with an accuracy higher than 97 % in unseen 328

sets of images. Furthermore, we have proven how it is able to correctly set apart pairs 329

of pollen types considered indistinguishable by palinologists. The performance was 330

slightly lower for those types with less images available, pointing at even higher overall 331

accuracies by the use of vaster, more complete datasets. 332

These groundbreaking results are of great interest for the automatization of pollen 333

counting, identified as one of the future achievements in the palinology field. 334
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4. Bogotá-A RG, Groot MHM, Hooghiemstra H, Lourens LJ, Van der Linden M,
Berrio JC. Rapid climate change from north Andean Lake Fúquene pollen
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