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Abstract

While interacting with objects during every-day activities, e.g. when sliding a glass on a
counter top, people obtain constant feedback whether they are acting in accordance
with physical laws. However, classical research on intuitive physics has revealed that
people’s judgements systematically deviate from predictions of Newtonian physics.
Recent research has explained these deviations not as consequence of misconceptions
about physics but instead as the consequence of the probabilistic interaction between
inevitable perceptual uncertainties and prior beliefs. How intuitive physical reasoning
relates to visuomotor actions is much less known. Here, we present an experiment in
which participants had to slide pucks under the influence of naturalistic friction in a
simulated virtual environment. The puck was controlled by the duration of a button
press, which needed to be scaled linearly with the puck’s mass and with the square-root
of initial distance to reach a target. Over four phases of the experiment, uncertainties
were manipulated by altering the availability of sensory feedback and providing different
degrees of knowledge about the physical properties of pucks. A hierarchical Bayesian
model of the visuomotor sliding task incorporating perceptual uncertainty and
press-time variability found substantial evidence that subjects adjusted their
button-presses so that the sliding was in accordance with Newtonian physics. After
observing collisions between pucks, subjects transferred the relative masses inferred
perceptually to adjust subsequent sliding actions. Crucial in the modeling was the
inclusion of a cost function, which quantitatively captures participants’ implicit
sensitivity to errors due to their motor variability. Taken together, in the present
experiment we find evidence that our participants transferred their intuitive physical
reasoning to a subsequent visuomotor control task in accordance with Newtonian
physics and weigh potential outcomes with cost functions based on their knowledge
about their own variability.

Author summary

During our daily lives we interact with objects around us governed by Newtonian 1

physics. While people are known to show multiple systematic errors when reasoning 2

about Newtonian physics, recent research has provided evidence that this is the 3
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consequence of perceptual uncertainties and partial knowledge about object properties. 4

Here, we carried out an experiment to investigate whether people transfer their intuitive 5

physical reasoning to how they interact with objects. Using a simulated virtual 6

environment in which participants had to slide different pucks into a target region by 7

the length of a button press, we found evidence that they could do so in accordance 8

with the underlying physical laws. Moreover, our participants watched movies of 9

colliding pucks and subsequently transferred their beliefs about the relative masses of 10

the observed pucks to the sliding task. Remarkably, this transfer was consistent with 11

Newtonian physics and could well be explained by a computational model that takes 12

participants’ perceptual uncertainty, action variability, and preferences into account. 13

Introduction 14

Whether sliding a glass containing a beverage on a counter top in your kitchen or 15

shooting a stone on a sheet of ice in curling, acting successfully in the world needs to 16

take physical relationships into account. While humans intuitively sense an 17

understanding of the lawful relationships governing our surroundings, research has 18

disputed that this is indeed the case [1, 2]. Instead, human judgements and predictions 19

about the dynamics of objects deviate systematically from the laws of Newtonian 20

mechanics. Past research has interpreted these misjudgments as evidence that human 21

judgements violate the laws of physics and that they instead use context specific rules of 22

thumb, so called heuristics [2–4]. E.g., when judging relative masses of objects such as 23

billiard balls based on observed collisions, people seem to use different features of 24

motion in different contexts and end up with erroneous predictions [2]. 25

But recent research has provided a different explanation of human misjudgments on 26

the basis of the fact that inferences in general involve sensory uncertainties and 27

ambiguities, both in perceptual judgements [5, 6] as well as in reasoning and decision 28

making [7, 8]. Therefore, physical reasoning needs to combine uncertain sensory 29

evidence with prior beliefs about physical relationships to reach predictions or 30

judgements [9–12]. By probabilistically combining prior beliefs and uncertain 31

observations, a posterior probability about the unobserved physical quantities is 32

obtained. Judgements and predictions are then modeled as based on these probabilistic 33

inferences. Thus, deviations from the predictions of Newtonian physics in this 34

framework are attributed to perceptual and model uncertainties. 35

This framework of explaining reasoning about physical systems on the basis of 36

Newtonian mechanics and perceptual uncertainties has been referred to as the noisy 37

Newton framework (see e.g. [13] for a review). It has been quite successful at explaining 38

a range of discrepancies between predictions of Newtonian physics and human 39

predictions for various perceptual inference tasks. E.g., when observing simulated 40

collisions of objects with different masses, subjects’ biases in judgements of mass ratios 41

agree well with physical predictions, if the perceptual uncertainties are included [9, 14]. 42

Additionally, the noisy Newton framework can also explain why human judgements 43

depend on experimental paradigms, because tasks differ in the availability of knowledge 44

about objects’ properties [15]. E.g., this suggests an explanation for the fact that 45

judgements about physical situations based on a static image representing a situation at 46

a single timepoint have usually been reported to deviate more from physical ground 47

truth compared to richly animated stimuli [16], which additionally allow to estimate 48

objects’ velocities. 49

While physical reasoning has been studied predominantly using tasks in which 50

subjects needed to judge physical quantities or predict how objects continue to move, 51

much less is known about how intuitive physical reasoning guides actions. Commonly, 52

experimental paradigms have asked subjects to judge physical properties such as 53
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relative masses in two-body collisions [3, 9, 11,12], predict the future trajectory of an 54

object when no action is taken based on an image of a situation at a single timepoint, 55

such as a pendulum [15], a falling object [17], or whether an arrangement of blocks is 56

stable [12]. Other experiments have asked subjects to predict a trajectory of objects [18] 57

or their landing position [10] after seeing an image sequence, but again without subjects 58

interacting with the objects in the scene. By contrast, the literature on visuomotor 59

decisions and control [19–22] has seldom investigated the relationship between 60

visuomotor decisions, actions, and control and physical reasoning. Notable exceptions 61

are studies, which have investigated how humans use internal models of gravity in the 62

interception of moving targets [23] and how exposure to 0-gravity environments [24] 63

changes this internal model. Other studies have investigated how perceptual judgements 64

and visuomotor control in picking up and holding objects in the size-weight and 65

material-weight illusions can be dissociated [25,26]. Nevertheless, these studies did not 66

investigate the relationship of intuitive physical reasoning and visuomotor actions. 67

Here we investigate how human subjects guide their actions based on their beliefs 68

about physical quantities given prior assumptions and perceptual observations. Thus, 69

we combine work on intuitive physics [9, 11,12] and visuomotor control [19,21,23,25]. 70

First, do humans use the functional relationships between physical quantities as 71

prescribed by Newtonian mechanics in new task situations? E.g., when sliding an object 72

on a surface the velocity with which the object needs to be released needs to scale 73

linearly with the object’s mass but with the square-root of the distance the object needs 74

to travel. Second, after having observed collisions between objects do humans adjust 75

their actions in accordance with the inferred relative masses of those objects? E.g., 76

while it is known that subjects can judge mass ratios of two objects when observing 77

their collisions, it is unclear whether they subsequently use this knowledge when sliding 78

those objects. To address these questions, subjects were asked to shoot objects gliding 79

on a surface under the influence of friction to hit a target’s bullseye in a simulated 80

virtual environment. The simulated puck was accelerated by subjects’ button presses 81

such that the duration of a button press was proportional to the puck’s release velocity. 82

A succession of five conditions investigated, what prior assumptions subjects had about 83

the relationships between physical quantities, whether they could learn to adjust to 84

different masses when visual feedback about their actions was available, and whether 85

they could use mass ratios inferred from observing collisions to adjust their actions. 86

Analysis of the data shows that subjects adjusted their press-times depending on the 87

distance the pucks had to travel. Furthermore, subjects adjusted the button press-times 88

to get closer to the target within a few trials when visual feedback about the puck’s 89

motion was available. Because perceptual uncertainties and motor variability can vary 90

substantially across subjects and to take Weber-Fechner scaling into account, we 91

subsequently analyzed the data with a hierarchical Bayesian model under the 92

assumption that subjects used a Newtonian physics based model and compared it to the 93

prediction of a linear heuristics model. Importantly, because subjects needed to adjust 94

their button press-times, the model needs to account for perceptual judgements and the 95

selection of appropriate actions. We include a comparison of three costs functions to 96

investigate subjects’ selection of press-times. Based on this model of the sliding task, we 97

find evidence that subjects used the functional relationship between mass and distance 98

of pucks as prescribed by Newtonian physics. Moreover, biases in subjects’ press-times 99

can be explained as stemming from costs for not hitting the target, which grow 100

quadratically with the distance of the puck to the target’s bullseye. After observing 24 101

collisions between an unknown puck and two pucks with which subjects had previously 102

interacted, we found evidence that participants transferred the inferred relative masses 103

to subsequent sliding actions. Thus, intuitive physical reasoning transfers from 104

perceptual judgements to control tasks and deviations from the predictions of 105
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Newtonian physics are not only attributable to perceptual and model uncertainties but 106

also to subjects’ implicit costs for behavioral errors. 107

Materials and methods 108

Participants 109

Twenty subjects took part in the experiment. All participants were undergraduate or 110

graduate students recruited at the Technical University Darmstadt, who received course 111

credit for participation. All experimental procedures were carried out in accordance 112

with the guidelines of the German Psychological Society and approved by the ethics 113

committee of the Darmstadt University of Technology. Informed consent was obtained 114

from all participants prior to carrying out the experiment. All subjects had normal or 115

corrected to normal vision and were seated so that their eyes were approximately 40 cm 116

away from the display and the monitor subtended 66 degrees of visual angle horizontally 117

and 41 degrees vertically. In the vertical direction the monitor had a resolution of 1080 118

pixels, which corresponded to a distance of approximately 11.5m in the simulation. Four 119

participants have been excluded from the analysis (three due to incorrect task execution 120

and one due to incomplete data; f=9, m=11, age=[18,27], median=22.5, mean=22.25). 121

Experimental design and data 122

Participants were instructed to shoot a puck in a virtual environment into the bullseye 123

of a target, similar to an athlete in curling. The shot was controlled by the duration of 124

pressing a button on a keyboard. Participants were told that they were able to adjust 125

the force, which initially was going to accelerate the puck and thus the initial velocity of 126

the puck, by the duration of their press. Additionally, participants were told that 127

realistic friction was going to slow down the puck while sliding on the simulated surface. 128

The general objective of the experimental design was to investigate whether subjects 129

adjusted their shooting of the pucks in a way that was in line with the physical laws 130

governing motion under friction. Specifically, the magnitude of the initial impulse 131

exerted on the puck determines how far the puck slides on the surface. Thus, subjects 132

needed to adjust the duration of a button press according to the distance between the 133

randomly chosen initial position of the puck and the target on each trial. The different 134

experimental phases allowed investigating subjects’ prior beliefs about the puck’s 135

dynamics, their adjustments of button presses when these beliefs were updated given 136

visual feedback of the puck’s motion, and the potential transfer of knowledge about 137

relevant object properties to the control of the puck from perceiving object collisions. 138

Therefore we designed a task with two conditions and four consecutive experimental 139

phases, which differed in the availability of previous knowledge and feedback. 140

Laws of motion governing the puck’s motion. At the beginning of each trial, 141

subjects saw the fixed target and a puck resting at a distance chosen uniformly at 142

random between one and five meters from the target’s bullseye. To propel the puck 143

toward the target, subjects needed to press a button. To model the relationship 144

between the button press and the puck’s motion, we reasoned as follows. Human 145

subjects have been shown to be able to reason accurately about the mass ratio of two 146

objects when observing elastic collisions between them [9]. In elastic collisions, 147

according to Newtonian laws, the impulse transferred by the collision is proportional to 148

the interaction duration with a constant force. In other words, the duration of the 149

interaction with a constant force leads to a linearly scaled impulse. Given a constant 150

mass m of a puck and assuming a constant surface friction coefficient µ, Newtonian 151

physics allows deriving the button press-time Tpress required to propel the puck to the 152
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target at a distance ∆x: 153

154

Tpress =

√
2µgm2

F 2
∆x ∝ m ·

√
∆x (1)

155

with gravitational acceleration g and a constant force F . Here, the constant force F is 156

being applied by the interaction, i.e. the button press of duration Tpress, which is 157

physically equivalent to an elastic collision with an object. Note that this formulation of 158

the interaction has the additionally intuitive consequence that the release velocity of the 159

puck scales linearly with the duration of the button press (see S1 Appendix ”Puck 160

Movement”). The second expression clarifies, that the press-time scales linearly with 161

the mass of the puck, while it scales with the square-root of the distance to the target. 162

Obviously, this relationship assumes perfect knowledge of all involved quantities. The 163

Fig 1. Task design. (A) Single trial illustration. Target area and puck are presented on a monitor from bird’s-eye perspective.
Releasing the pressed button accelerates the puck by applying a force, which is proportional to the press-time. In trials without
feedback the screen turned black after button release, while in feedback trials participants were able to see the puck moving according to
simulated physics. (B) Four phases of experiment. In the ’prior’ phase, no feedback about puck motion was available, whereas in the
’feedback’ phase subjects obtained visual feedback about the pucks’ motion. Two pucks with different color and correspondingly
different masses were simulated. In the ’no feedback’ phase subjects obtained a new puck as indicated by an unknown color and
obtained no feedback. In the last phase, subjects first watched 24 collisions between the new puck and the pucks they had interacted
with in the ’feedback’ phase before interacting again with the puck. Note that the puck of the ’no feedback’ and ’collisions + no
feedback’ phase are identical.
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movement of the puck was implemented by simulating the equivalent difference 164

equations for each frame given the friction and the velocity of the preceding frame 165

(detailed derivations are provided in the S1 Appendix, ”Puck Movement”). 166

Phase 1: Prior beliefs. In the first phase, we wanted to investigate, which functional 167

relationship subjects would use a priori to select the duration of button presses 168

depending on the perceived distance between the puck and the target. A black puck 169

with unknown mass m was placed at a distance to the target drawn uniformly at 170

random. Participants received no further information about the puck or the 171

environment. Participants were instructed to press the button in a way so as to bring 172

the puck into the target area, but after pressing the button for a duration tpre and 173

releasing it the screen turned black to mask the resulting movement of the puck. This 174

screen lasted for at least half a second until the participant started the next trial by 175

button press. All participants carried out fifty trials. Thus, the collected data allowed 176

relating different initial puck distances to the press-times subjects selected based on 177

their prior beliefs. 178

Phase 2: Visual feedback. The second phase was designed to investigate, how 179

participants adjusted their button press-times in relation to the simulated masses of 180

pucks and their initial distances to the target when visual feedback about the pucks’ 181

motion was available. To this end, participants carried out the same puck-shooting task 182

but with two different pucks, as indicated by distinct surface textures (yellow diamond 183

versus five red dots, see fig 1 b, Feedback). The two pucks were alternating every four 184

trials with a total number of two-hundred trials. The two different pucks were simulated 185

with having differing masses, resulting in different gliding dynamics. In this condition, 186

participants received visual feedback about their actions as the pucks were shown 187

gliding on the surface from the initial position to the final position depending on the 188

exerted impulse. Thus, because the distances traveled by the two pucks for different 189

initial positions as a function of the button press-times tpre could be observed, 190

participants could potentially use this feedback to adjust their press-times on 191

subsequent trials. Half the participants were randomly assigned to the ’light-to-heavy’ 192

condition, in which the two pucks had masses of 1.5 kg and 2.0 kg, and the other half of 193

the participants were assigned to the ’heavy-to-light’ condition, in which the pucks had 194

masses of 2.0 kg and 2.5 kg. 195

Phase 3: No feedback. In phase three, we wanted to investigate how having 196

observed the sliding of the pucks in phase two influenced participants’ press-times with 197

an unknown puck. Subjects were asked to shoot a new puck they had not seen before to 198

the target without visual feedback, as in the first experimental phase (Fig. 1 B, No 199

Feedback). The texture of the puck consisted of five concentric rings. For participants in 200

the ’light-to-heavy’ condition, the new puck had a mass of 2.5 kg whereas for 201

participants in the ’heavy-to-light’ condition the new puck had a mass of 1.5 kg. 202

However, different from phase one, in which subjects had not obtained feedback about 203

the pucks’ motion, by phase three participants had already interacted with three pucks 204

and obtained visual feedback about the motion of two pucks. Importantly, participants 205

had received feedback about the non-linear nature of gliding under friction in phase two. 206

Thus, this experimental phase allowed investigating, whether subjects use the functional 207

mapping from puck distances to press-times prescribed by Newtonian physics and what 208

assumptions about the mass of an unknown puck they used. 209

Phase 4: Collisions & no feedback. With the final experimental phase we wanted 210

to investigate, whether participants can use the relative mass ratios inferred from 211

observing collisions between two pucks to adjust their subsequent actions with one of 212

those pucks. At the beginning of phase four, participants watched a movie of 213

twenty-four collisions between two pucks. One was always the puck with unknown mass 214

used in phase three (without feedback; five rings) (see Fig. 1 B, Collisions No 215

February 10, 2020 6/32

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2020. ; https://doi.org/10.1101/2020.02.14.949164doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.14.949164
http://creativecommons.org/licenses/by/4.0/


Feedback), while the second puck was one of the two pucks presented in phase two (see 216

Fig. 1 B, Feedback). Each collision thus showed one of the two previously seen pucks 217

from phase two selected at random colliding with the puck from phase three with a 218

total of twelve collision with each of the two known puck. By observing these elastic 219

collisions participants were expected to learn the mass ratios between pucks, as shown 220

in previous research [9, 14]. Note that the pucks were simulated without the influence of 221

friction in these collisions, ensuring that participants never observed the unknown puck 222

gliding under the influence of friction. After watching these collisions, subjects were 223

asked to shoot the puck from phase three again without obtaining visual feedback as in 224

phases one and three. Thus, subjects interacted with the same puck as in phase three 225

but had now seen the collisions of this puck with pucks they had interacted with. This 226

experimental phase therefore allowed investigating, whether subjects used the learned 227

mass ratios and transferred them to the control task to adjust their press-times. 228

Importantly, having learned the mass ratios between pucks needs to be transferred to 229

the press-times, which differ in a physically lawful way depending on the initial distance 230

of the pucks to the target. Thus, if subjects used an internal model of physical 231

relationships, they should be able to adjust their press-times for the new puck without 232

ever having seen it glide. 233

Results 234

Behavioral results 235

Fig 2. Task performance and pucks’ traveled distance for three phases of experiment. (A) Participants’ performance by
experimental phase as quantified by pucks’ average absolute error in final position. (B) Aggregated final positions of pucks versus
initial distance of pucks to target. Phases of the experiment are separated by columns and conditions are separated by rows. The line of
equality representing final positions prescribed by the Newtonian model with perfect knowledge of all parameters is shown in blue.
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As subjects did not receive visual feedback about the consequences of their button 236

presses in the first phase of the experiment, the button press-times reflect the prior 237

assumptions they brought to the experiment. Indeed, subjects’ press-times tpre grew 238

with the initial distance between the puck and the target. The correlation between tpre 239

and the initial distance was 0.482 (p < 0.001). However, the functional relationship 240

according to Newtonian physics prescribes a scaling of the press-time according to the 241

square-root of the distance as specified in eq. 1. The correlation between press-times 242

tpre and the square-root of the initial distance was 0.478 (p < 0.001). We expected the 243

standard deviation of press-times to scale with the the mean of press-times in 244

accordance with the Weber-Fechner scaling. This was confirmed by subdividing the 245

range of distances into three intervals of the same size, i.e. [1, 2.33]m, (2.33, 3.66]m, and 246

(3.66, 5]m and computing the standard deviation of press-times within these three 247

intervals resulting 2.97× 10−1s, 4.19× 10−1s, and 5.69× 10−1s. 248

In phase two, participants adjusted their press-times based on observing the gliding 249

of the pucks after button presses. Performance was evaluated by calculating the mean 250

absolute distance of pucks to the target after sliding. The mean absolute error over the 251

entire phase was 0.928m (0.0177m SEM). Accordingly, the correlation between tpre and 252

the initial distance was 0.644 (p < 0.001) and with the square-root of distance 0.646 253

(p < 0.001). The performance improved between the first eight trials at the beginning of 254

the phase (mean absolute error 1.76m) and the last eight trials at the end of the phase 255

(mean absolute error 0.89m). The adjustment of pressing times was achieved on average 256

after only a few trials, as revealed by a change-point analysis [27], which showed that 257

after six trials the average endpoint error of the puck was stable (see S1 Appendix, 258

”Change point detection”). Note that this includes four trials with one puck of the same 259

mass and two trials of the second puck with a different mass. 260

Phase three involved shooting a new puck, which subjects had previously not 261

interacted with, without visual feedback. Note that the puck was identical to the puck 262

subjects later interacted with in phase four after seeing the collisions. This phase 263

therefore allowed testing whether subjects used the non-linear scaling of the press-times 264

depending on initial distance of the puck after having observed the pucks’ motion in 265

phase two. As expected, performance was significantly lower with the new puck without 266

obtaining visual feedback. Mean absolute error was 2.87m (0.104m SEM). The 267

correlation between tpre and the initial distance was 0.599 (p < 0.001) while the 268

correlation between tpre and the square-root of the initial distance was 0.603 (p < 0.001). 269

Given that subjects had already obtained feedback about two pucks in phase two but 270

did not obtain feedback in this phase, their press-time distribution could potentially be 271

the mixture of the two press-time distributions of the two previous pucks, which were 272

different in the conditions ’light-to-heavy’ and ’heavy-to-light’. We compared the 273

combined press-time distributions of phase two with the press-time distribution of phase 274

three for each condition with the Kolmogorov-Smirnov test. Press-times in phase three 275

reflected the behavior of both previous pucks combined for condition ’heavy-to-light’ 276

(Kolmogorov-Smirnov, D = 0.0538, p = 0.092, see S1 Appendix, ”Kolmogorov tests - 277

press-times in phase two & phase three”) and approximately for condition 278

’light-to-heavy’ (Kolmogorov-Smirnov, D = 0.156, p < 0.001, see S1 Appendix, 279

”Kolmogorov tests - press-times in phase two & phase three”). 280

At the beginning of phase four subjects watched a movie showing 24 collisions 281

between the pucks from phase two, for which visual feedback of the gliding had been 282

available, and the unknown puck from phase three. Thus, this condition allowed testing 283

whether observation of the collisions was used to infer the mass ratios of pucks and to 284

subsequently adjust the pressing times for that puck from phase three. Performance was 285

significantly higher than in phase three with a mean absolute error of 1.63m (0.0440m 286

SEM), although the puck was the same as in phase three and although subjects did not 287
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Fig 3. Press-times as function of initial distance to target. Press-times for all participants by condition and experimental
phase are shown with data points in black and Newtonian relationship with perfect knowledge about the involved parameters in blue.
The top row shows the data of subjects in the light-to-heavy condition and the bottom row shows the data of subjects in the
heavy-to-light condition. (A) Press-times of participants in the first phase (”prior”), (B) second phase (”feedback”) for the yellow puck,
(C) second phase (”feedback”) for the red puck, (D) third phase (”no feedback”), and (E) last phase (”collisions and no feedback”)
after having seen 24 collisions.

obtain visual feedback. This effect was significant for both conditions as tested with 288

Wilcoxon Signed Rank test for the absolute error (light-to-heavy: W = 339300, p = 289

0.018; heavy-to-light: W = 441330, p < 0.001). This shift towards longer and shorter 290

press-times in the light-to-heavy and heavy-to-light condition respectively is depicted in 291

S1 Appendix, ”Press-time distributions”. The shift was statistically significant by 292

testing with a Wilcoxon Signed Rank test for shorter and longer press-times for both 293

conditions respectively (light-to-heavy: W = 158580, p < 0.001; heavy-to-light: W = 294

490620, p < 0.001). For more detail of the error distributions across phases two to four 295

see S1 Appendix, ”Distance error distributions”. 296

Taken together, these analyses suggest, that subjects adjusted their press-times both 297

depending on the distance of the pucks to the target and depending on the pucks’ 298

masses used in the simulation. Furthermore, the analyses provide initial evidence, that 299

subjects scaled their press-times with a linear function of mass and with a square-root 300

function of initial distance after having obtained visual feedback about the pucks’ 301

motion. Finally, observing collisions between pucks lead subjects to adjust their 302

press-times even without obtaining visual feedback. 303

Model results 304

The above analyses give a first indication that our participants were able to adjust their 305

press-times in accordance with Newtonian physics and that they transferred the 306

inferences about relative mass ratios from observing collisions to the press-times. 307

Nevertheless, the above analyses are limited in several ways. First, perceptual variables 308

such as the initial distance of the puck to the target were uncertain for our subjects, 309
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which is not quantitatively entering the correlation analyses of press times with physical 310

predictions under the assumption of perfect knowledge of all parameters. Secondly, our 311

participants had to press a button to propel the puck. For longer press-times, subjects 312

are known to demonstrate variability in pressing times, which scales linearly with its 313

mean and which may vary considerably between subjects. Thirdly, while subjects 314

pressed a button and observed the simulated motion of the pucks from a bird’s eye view 315

on a monitor, it would be desirable to be able to estimate subjects’ belief about the 316

masses of the different pucks implicit in their press-times. Therefore, we devised a 317

hierarchical Bayesian model of the full visuomotor decision task to provide a 318

computational account of our subject’s behavior.
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Fig 4. Hierarchical Bayesian network for the Newtonian model class. The model
expresses the generative process of observed press-times tprei,j across trials i, participants j, and
pucks k including Weber-Fechner scaling given perceptual uncertainties of distance xi,j and
mass mj,k of the pucks and subjects’ press-time variability. See the text for details.

319

The Bayesian network model in Fig. 4 expresses the relationship between variables 320

on a subject-by-subject and trial-by-trial basis. While as experimenters we have access 321

to the true initial distance x used in the simulation of the puck and displayed on the 322

monitor as well as the measured press-time tpre chosen by the subject on a particular 323

trial i, subjects themselves do not know these values. Instead, each participant j has 324

some uncertain percept of the puck’s distance xperi,j and, potentially, some belief about 325

the mass mj,k of the puck, which depends on its color and the phase of the experiment 326

k. This structure of the graphical model from the experimenter’s view leads to the 327

following joint distribution p(d, l) with observed data d = {x, tpre} and latent variables 328

l = {xper, σx,m, σt}, where trial, puck and participant subscripts were omitted for 329

clarity: 330

p(d, l) = p(x) p(σx) p(xper|x, σx) p(m) p(σt) p(tpre|xper,m, σt, θ) (2)

Here, p(x) is known to the experimenter as the actual distribution of distances to target 331

used in the simulations. By contrast, the distribution of perceived distances 332

p(xper|x, σx) is the noisy perceptual measurement by our participants described as a 333

log-normal distributed variable, ensuring that samples are strictly positive and including 334

uncertainty scaling according to Weber-Fechner [28]. p(σx) describes the prior 335

distribution over possible values of this perceptual uncertainty. Participants’ prior 336

beliefs about the masses of the different pucks p(m) are described by gamma 337

distributions, which entail the constraint that masses have to be strictly positive. The 338

log-normal distribution of actually measured press-times p(tpre|xper,m, σt) depends on 339
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the noisy perception of the distance to target xper, the belief about the mass of the 340

object and the variability in acting, which is the press-time variability σt with its’ 341

gamma distribution p(σt). We additionally summarize all constant factors, i.e the 342

surface friction coefficient, the gravitational acceleration, the constant interaction force 343

in the parameter θ. 344

The potential functional relationship between the perceived distance of the puck to 345

the target and the required press-time is expressed in the deterministic node 346

representing tint in the Bayesian network. We consider two possible functional 347

relationships between the press-time and the distance to be covered: subjects may use a 348

linear relationship between press-time and initial distance as a simple heuristic 349

approach: 350

H1 : tint ∝ xper (3)

or may use the square-root relationship as prescribed by Newtonian physics according 351

to Eq. 1: 352

H2 : tint ∝
√

xper (4)

As experimenters, we only have access to the observed data d, i.e. the actual distances 353

given the experimental setup and the measured press-times. We use Bayesian inference 354

employing Markov-Chain Monte-Carlo to invert the generative model and infer the 355

latent variables describing subjects’ internal beliefs given the observed data d: 356

p(l|d) =
p(d, l)

p(d)
=
p(σx) p(xper|x, σx) p(m) p(σt) p(t|xper,m, σt, θ)

p(t|x)
(5)

However, modeling perception as inference may not be sufficient to describe our 357

participants’ behavior and their selection of actions. In order to include this selection 358

we take potential cost functions into account. Cost functions govern which action from 359

an action space, here the possible press-times, is considered to best suit the demands of 360

the task. This means that it is assumed that participants select an action that 361

minimizes potential costs associated with missing the target. Loss functions, describing 362

the rewards or costs for every action in the action space, can have any arbitrary form, 363

nonetheless we chose a set of three standard loss functions and compare their 364

predictions: 0-1, absolute and quadratic loss functions. It can be shown that these loss 365

functions lead to different decisions for a continuous variable with a non-symmetric 366

distribution [29]. Thus, assuming that humans do have costs for missing the target and 367

associated policies to minimize these costs, leads to three different model versions for 368

each model class (see S1 Appendix, ”Implementation of cost functions”). 369

In order to evaluate participants’ behavior computationally we first utilized subjects’ 370

data from phase two of the experiment to estimate their perceptual uncertainty and 371

behavioral variability. We chose to start with analyzing phase two for two reasons: first, 372

if participants are able to use visual feedback about the pucks’ dynamics to adjust their 373

press-times, predictions of the model with the correct physical relationships should 374

capture the behavior better than the linear heuristics model. Secondly, inferred values 375

for latent variables describing visual uncertainty in distance estimation and variability 376

in press-times are less prone to be assigned additional uncertainty. Additional 377

uncertainty arising in all other phases of the experiment due to the lack of visual 378

feedback should be assigned to the uncertainty about the mass or the linear scaling 379

rather than to the variability of press-times in general. Therefore, by evaluating data 380

from phase two ”feedback” first, values for the press-time variability and uncertainty in 381

the perception of distances can be estimated for each participant. 382

First, we used the data of phase two ”feedback” to investigate, which of the three 383

loss functions best describes our participants’ data. In order to choose the appropriate 384
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Fig 5. Residuals of estimated press times and inferred masses in phase two for
three cost functions. (A)Residuals were calculated for each participant and each puck in
phase two (”feedback”) given the actual press-times and the best fits for the linear heuristics
and the Newtonian model. Residuals for both models were calculated for all three cost
functions. (B) MAP estimates of the masses used by individual subjects inferred according to
the Newtonian model for the the three cost functions. Red and yellow pucks had different
masses for subjects in the two conditions ”heavy-to-light” and ”light-to-heavy”.

cost function explaining participants’ actions most accurately, we computed the 385

press-times predicted by the linear heuristics and the Newtonian model and applied the 386

three cost functions to both models. This was achieved by using the inferred maximum 387

a posteriori (MAP) values for the latent variables in both model classes, i.e. the mass m 388

in the Newtonian and a linear factor in the heuristic linear model class. This allowed 389

calculating the residuals, i.e. the difference between subjects’ actual press-times and the 390

predicted press-times for all six combinations of two models and three cost functions. 391

The residuals are shown as a function of the distance to the target in Fig.5. The strong 392

correlation of residuals and distance to target indicates a systematic bias of the linear 393

heuristics model, whereas the weak correlation of the Newtonian model demonstrates its 394

superiority in explaining the measured data. These relationships were tested with 395

Spearman correlation tests for each model and cost function. Showing highly significant 396

correlations for each test (p < 0.001) and higher correlation in the linear model for each 397

cost function (0-1 loss function: ρNew = 0.167, ρlin = −0.550; abs. loss function: 398

ρNew = 0.124, ρlin = −0.643; quadratic loss function: ρNew = 0.0976, ρlin = −0.686). 399

Thus, with respect to cost functions the Newtonian model with quadratic cost shows the 400

lowest residual correlation, which from here on will be used as the proposed cost 401

function for both model classes. 402

Secondly, a further indication, that the Newtonian model together with the 403
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quadratic cost function better described the data was obtained by comparing posterior 404

mass beliefs inferred separately for each cost function. Posterior distributions inferred 405

with data aggregated over participants only from phase two match actual masses 406

implemented in the physical simulations better for the quadratic cost function (see S1 407

Appendix, ”Latent masses by cost function: aggregated data from phase ’feedback’”). 408

In both conditions inferred beliefs about the masses are closer to the actual masses 409

implemented in the simulations when presuming that participants use a quadratic loss 410

function. This was confirmed by testing for the absolute differences between the 411

posterior belief and the actual mass for each condition, puck and cost function. ANOVA 412

revealed highly significant differences (F = 486, p < 0.001) and post-hoc tests showed 413

that the posterior belief when using the quadratic cost function is the closest fit for all 414

pucks (p < 0.001 condition light-to-heavy, yellow diamond puck; p = 0.002 red dots 415

puck; p < 0.001 condition heavy-to-light, yellow diamond puck; p < 0.001 red dots 416

puck). This result also held at the individual participant levels as illustrated in Fig.5 417

(B)). 418
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Posterior distributions inferred with: Linear model Newtonian model

Perceptual uncertainty σx [m]

0.1 0.2 0.3 0.4 0.50.0

Press-timel variability σt [s]
Fig 6. Posterior estimates of perceptual uncertainty and press-time variability
inferred with data from phase two ”feedback”. (A) Inferred posterior distributions of
perceptual uncertainty for the linear heuristics model and the Newtonian physics model. Dark
green distributions display posterior distributions for the Newtonian model class, dark blue
ones for the linear model class. A separation into cost functions is not included since the
different cost functions did not lead to significant differences. (B) Inferred posteriors for
individual press-time variability varied significantly between subjects between the two models.
All but one participant show lower or equal values of variability regarding the press-time for
the Newtonian model class.

Finally, the posterior predictive distributions for press-times estimated from data in 419

phase two (see S1 Appendix, ”Posterior predictive checks for press-times”) match the 420

actual behavior of the participants more closely compared to the linear heuristics model. 421

Kullback-Leibler divergence for each pair support this with divergence values at 0.0558 422

and 0.0851 for the Newtonian and linear model, respectively. Not only did the 423

Newtonian model capture participants’ press-times in phase two better than the linear 424

heuristics model, but this also affected the inferred variabilities. While perceptual 425

uncertainty only varied marginally (see Fig.6 (A)), the posterior distributions of the 426

press-time variability σtj show higher values for the linear model (see Fig.6 (B)) 427
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compared to the Newtonian model. This was confirmed by calculating a repeated 428

measure ANOVA on the posterior distributions of press-time variability for both models, 429

showing that the difference was highly significant (F = 39.2, p < 0.001). This elevated 430

level of uncertainty is necessary for the linear heuristics model to compensate for the 431

diminished ability to capture the relationship of initial distances and participants’ 432

press-times. 433

Fig 7. Bayes factors calculated from posterior odds sampled using the product
space method. Bayes factors are displayed for different phases and combinations of phases.
Blue line at 1 marks the point where neither model is stronger supported by evidence. Red line
at 3.2 marks the transition from Bayes factors being only worth mentioning to substantial
evidence in favor of one the models. Colors of bars indicate the model favored by the Bayes
factors.

Subsequently, we used the MAP values of the inferred press-time variabilities σ̂tMAP 434

for each subject as fixed values for the analyses of data of all experimental phases. The 435

same applied for the MAP values of the inferred perceptual uncertainties σ̂xMAP which 436

did not differ across subjects or models (see Fig.6 (A)) and therefore were set to one 437

fixed value for all subjects. Note that the mean was 0.05m in simulation space, which, 438

given the current setup corresponded to approximately 1.8 pixels on the monitor. Using 439

the hierarchical Bayesian model, samples of the posterior predictive distributions of 440

press-times and of the perceptual uncertainty are used to infer latent variables for both 441

the linear and the Newtonian models. The posterior predictive distributions of 442

press-times are shown in the S1 Appendix, ”Posterior predictive checks for press-times 443

in both models”. Evidence was in favor of the Newtonian model compared to the 444

heuristics model across all phases of the experiment with the exception of the Prior 445

phase. The largest differences in prediction power appears in the Feedback phase with 446

the Newtonian model being the considerably better choice to describe the actual 447

press-times. This superiority of the Newtonian model over the linear heuristic one 448

remains in the subsequent phases even without any visual feedback. This was again 449

tested by running two-sample Kolmogorov-Smirnov tests for posterior predictive 450

distributions of phase three of both models and the actual data, as well as calculating 451

the Kullback-Leibler divergence for each pair. Resulting in lower K-S statistic values for 452

the Newtonian model (D = 0.0436, p = 0.00521) compared to the linear one (D = 453

0.0851, p < 0.001). KL divergence values are 0.0582 and 0.0599 for the Newtonian and 454

linear model, respectively. 455

Finally, to confirm that the behavioral data of our subjects was best described by 456

the Newtonian model with quadratic cost function we carried out model selection using 457
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the product space method [30]. In this approach, a mixture model combines both the 458

linear and the Newtonian model to account for the data. An index variable indicates, 459

which of the two models is selected at each iteration to explain the data. Given that 460

both models have the same a priori probability to be chosen, the Bayes factor equates 461

to the posterior odds of the index variable. Resulting Bayes factors are shown in Fig.7. 462

Given the complete data set from all phases there is small support for the Newtonian 463

model (Bayes factor K of 2.33). When only considering data from the Prior phase there 464

is weak support for the linear model (K = 1.88). Instead, when considering all phases 465

but the first phase there is substantial support for the Newtonian model (K = 3.71) 466

and strong evidence for the square-root model in the feedback phase (K = 9.71).
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Fig 8. MAP values of inferred latent mass in Newtonian model class with
quadratic loss function for each participant and condition.

467

The hierarchical Bayesian model also allows inferring the masses best describing our 468

subjects’ internal beliefs given the Newtonian model and the measured press-times. Not 469

surprisingly, mean mass beliefs vary strongly across subjects in the Prior phase, where 470

participants had to make decisions without any observations of the pucks, only relying 471

on their prior beliefs about the potentially underlying dynamics and environmental 472

conditions (see S1 Appendix ”Latent masses: phase ’prior’ and ’feedback’” for gray 473

posterior distributions). Nevertheless, the variances of mass beliefs within the first 474

phase were surprisingly small for individual subjects with a mean of 0.0023 kg, 475

potentially indicating that each subject consistently used a belief about the mass of the 476

puck. Inferred values for these prior mass beliefs are displayed in the Appendix S1 477

”Latent masses: phase prior and feedback” for each participant. When obtaining visual 478

feedback in the Feedback phase of the experiment, subjects only needed on average six 479

trials to adjust their press-times so that mass beliefs were stable thereafter. Implicit 480

mass beliefs were quite accurate with the mean of inferred MAP values at 1.5218 and 481

1.8818 kg in the condition light-to-heavy (1.5 and 2.0 kg) and 1.9415 and 2.3068 kg in 482

condition heavy-to-light (2.0 and 2.5 kg). Fig. 8 shows the MAP estimates of the 483

masses for both conditions and phases two to four for all subjects. 484

In phase three No Feedback participants faced an unknown puck without any visual 485

feedback but with the acquired knowledge about the relationship of press-time and 486

distance. Thus, participants had to select press-times without knowing the mass of the 487

unknown puck. As reported above, the press-time distributions in this phase of the 488

experiment were close to the combined press-times that subjects had used for the two 489
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pucks in the previous phase two of the experiment. The corresponding MAP mass 490

beliefs were accordingly approximately the average of the two previous pucks’ masses 491

with 1.87 and 2.19kg and corresponding mass distributions differed significantly for the 492

two conditions light-to-heavy and heavy-to-light (ANOVA: F = 1060, p < 0.001; see 493

also S1 Appendix, ”Latent masses: phase ”no feedback” and ”collision and no 494

feedback””). But after observing the 24 collisions in phase Collisions + No Feedback of 495

the two known pucks with the unknown puck participants were able to adjust their 496

press-times so that the estimated mass beliefs were significantly closer to the true values 497

used in the simulations than in the previous phase. This was quantified by running a 498

repeated measures ANOVA of the deviations from the actual mass (F = 7.103, p = 499

0.0176). Thus, the mass beliefs implicit in our participants’ press-times reflected the 500

inferred mass ratios and transferred from having observed the pucks’ collisions to the 501

subsequent visuomotor control task. 502

Discussion 503

Although people are able to interact with the physical world successfully in every-day 504

activities, classic research has contended that human physical reasoning is fundamentally 505

flawed [1–4]. Recent studies instead have shown that biased human behavior in a range 506

of perceptual judgement tasks involving physical scenarios can be well described when 507

taking prior beliefs and perceptual uncertainties into account [9–12]. The reason is that, 508

inferences in general need to integrate uncertain and ambiguous sensory data and 509

partial information about object properties with prior beliefs [5–8]. Much less is known 510

about how intuitive physical reasoning guides actions. Here, we used a perceptual 511

inference task involving reasoning about relative masses of objects from the intuitive 512

physics literature and integrated it with a visuomotor task. Subjects had to propel a 513

simulated puck into a target area with a button press whose duration was proportional 514

to the puck’s release velocity. The goal was to investigate how people utilize relative 515

masses inferred from watching object collisions to guide subsequent actions. 516

Specifically, we devised an experiment consisting of four phases, which differed in the 517

available sensory feedback and prior knowledge about objects’ masses available to 518

participants. The physical relationship underlying the task requires subjects to press a 519

button for a duration that is proportional to the mass of the puck and proportional to 520

the square-root of the initial distance. This allowed examining peoples’ prior 521

assumptions about the underlying dynamics of pucks’ gliding, their ability to adjust to 522

the pucks’ initial distances to the target and to the varying masses of pucks, and the 523

transfer of knowledge about relevant properties gained by observing collisions between 524

pucks. Using a hierarchical Bayesian model of the control task accommodating 525

individual differences between subjects and trial by trial variability allowed analyzing 526

subjects’ press-times quantitatively. 527

In the prior phase without visual feedback, subjects adjusted their press-times with 528

the initial distance of the puck to the target. Not surprisingly, because subjects did not 529

obtain any feedback about their actions and therefore the degree of friction, the 530

magnitude of the applied force, and the scale of the visual scene, could only hit the 531

target by chance. Nevertheless, model selection slightly favored the linear heuristics 532

model compared to the square-root model, i.e. subjects approximately scaled the 533

press-times linearly with the initial distance to target. Thus, subjects came to the 534

experiment with the prior belief that longer press-times would result in longer sliding 535

distances but did not scale their press-times according to the square-root of the initial 536

distance of the pucks as prescribed by Newtonian physics. As subjects did not sense the 537

weight of the pucks and did not obtain any visual feedback about the pucks’ motion, the 538

observed behavior in this phase of the experiment may be dominated by the uncertainty 539
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about the underlying mapping between the duration of button presses and the pucks’ 540

release velocities, the effects of friction, and the visual scale of the simulation. 541

When visual feedback about the pucks’ motion during the feedback phase was 542

available, subjects needed on average only six trials to reach stable performance. This is 543

particularly remarkable, because it corresponds to adjusting the press-times to a single 544

puck’s mass over the four initial trials and then adjusting the press-times within only 545

two subsequent trials to a new puck with a different mass. Thus, the observation of the 546

pucks’ dynamics over six trials was sufficient to adjust the press-times with the 547

square-root of initial distance and linearly with the mass, which was by itself not 548

observable. Data from this phase of the experiment were utilized to infer parameters 549

describing individual subjects’ perceptual uncertainty and motor variability. Perceptual 550

variability was consistent across subjects and varied only marginally so that a constant 551

value of σx = 0.05m was used across subjects and models for all other phases of the 552

experiment. Remarkably, this corresponds to a distance of pixels in the horizontal 553

direction on the display monitor with a resolution of 1080 pixels. By contrast, the 554

variability of press-times σt varied substantially across subjects with almost all subjects 555

lying between 0.15s and 0.33s, so that individuals’ parameters were used in all 556

subsequent models. 557

Given that the variability of peoples’ press-times scales with the mean of the 558

duration, longer press-times can lead to larger deviations from the targeted press-time. 559

To reduce possible overshoots, participants may implicitly use a cost function 560

quantifying the relative desirability of the pucks’ final distance to the target. Therefore, 561

we tested which of three commonly used cost functions best described subjects’ 562

press-times: the 0-1 cost function, the quadratic cost function, and the absolute value 563

cost function. Using these three cost functions together with the hierarchical Bayesian 564

model, we analyzed the correlation of the residuals between predicted and observed 565

press-times with the initial distance to target. For each cost function, the Newtonian 566

square-root model showed smaller Spearman correlations, and overall, the smallest 567

correlation of ρNew = 0.0976 was achieved by the square-root model and the quadratic 568

cost functions. Thus, our subjects’ press-times were best explained by a quadratic cost 569

function, which we used for the remaining analyses. 570

Model selection using the product space method showed that the press-times were 571

best explained by the Newtonian physics model when taking into account perceptual 572

uncertainty, motor variability and the quadratic cost function. Similarly, this was 573

confirmed through posterior predictive checks of press-times for the two models. Thus, 574

participants adjusted the press-times with the square-root of the initial distance to the 575

target and used the contextual color cue of the pucks to adjust the press-times. 576

Subjects only had the contextual cue of different colors between the two pucks but 577

adjusted the press-times in such a way that this was interpretable in terms of the two 578

different masses used in the puck’s simulations. Therefore, just on the basis of these 579

adjustments alone, one might argue that subjects may have adjusted their press-times 580

based on the available visual feedback about the pucks’ motion without any recurrence 581

to a the concept of physical mass. That this is unlikely, is due to the following two 582

phases of the experiment. 583

Previous research has demonstrated, that people can infer the mass ratios of objects 584

from observing their collisions [9,11,12] and that prior beliefs can be transferred between 585

distinct scenarios and tasks [31]. Here, subjects were asked to propel one particular 586

puck before and after seeing 24 collision between this puck and the two pucks for which 587

they had previously obtained visual feedback. Subjects utilized the inferred mass ratios 588

to adjust their press-times to reach the target more accurately. Model selection 589

provided evidence, that subjects continued to use the square-root relationship of initial 590

distance. Thus, subjects scaled their press-times according to Newtonian physics to 591
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successfully propel the puck to the target. Note that beyond the color cue, subjects did 592

not know the pucks’ masses. While subjects assigned to the condition light-to-heavy 593

had interacted with pucks with 1.5kg and 2.0kg, subject in the heavy-to-light condition 594

had interacted with pucks with 2.0kg and 2.5kg. That the different dynamics were to 595

attribute to different masses and that relative masses from observing the collisions could 596

be transferred to press-times entirely relied on subjects intuitive physical reasoning. 597

Thus, subjects utilized the relative masses inferred from observing pucks’ collisions and 598

transferred them to the puck shooting task according to Newtonian physics. 599

The hierarchical Bayesian model furthermore allowed inferring the latent variables 600

describing our participants’ behavior. First, the posterior means of press-time variability 601

σt were smaller for the Newtonian model compared to the linear heuristics model for all 602

but one subject. This reflects the fact that additional variability due to the weaker 603

ability to model the relationship between initial distances and press-times needs to be 604

accommodated by the linear model. Secondly, the posterior means of masses best 605

explaining our participants’ press-times were closer to the true masses used in the pucks’ 606

simulations for the quadratic cost function compared to the 0-1 and the absolute-value 607

cost functions. Thus, while previous research has demonstrated that human biases and 608

systematic deviations from the predictions of Newtonian physics are attributable to 609

perceptual uncertainties and prior beliefs, the present experiments and analyses provide 610

evidence that costs functions implicit in subjects’ behavior also need to be taken into 611

account for explaining such deviations. 612

Taken together, the present study is in accordance with previous studies on intuitive 613

physics within the noisy Newton framework [13]. The systematic deviations in our 614

subjects’ press-times from the those prescribed by Newtonian physics under full 615

knowledge of all parameters were explained quantitatively as stemming from perceptual 616

uncertainties interacting with prior beliefs according to probabilistic reasoning. Previous 617

studies had also shown, that people are able to infer relative masses of objects from 618

their collisions [9,11,12]. The present study additionally shows, that subjects can utilize 619

such inferences and transfer them to a subsequent visuomotor task. This establishes a 620

connection between reasoning in intuitive physics [9–12] and visuomotor 621

tasks [19,21,23,25]. 622

Crucial in the quantitative description of participants’ behavior was the inclusion of 623

a cost function. Commonly, cost functions in visuomotor behavior are employed to 624

account for explicit external rewards imposed by the experimental design, e.g. through 625

monetary rewards [19,32] or account for costs associated with the biomechanics or 626

accuracy of movements [21,22]. The present model used a cost function to account for 627

the costs and benefits implicit in our participants visuomotor behavior and may 628

encompass external and internal cost related to different task components, perceptual, 629

cognitive, biomechanical costs and preferences. Inferring such costs and benefits has 630

been shown to be crucial for the understanding of visuomotor behavior [33–35]. Thus, 631

participants’ deviations from predictions of Newtonian physics were in part attributable 632

to prior beliefs and perceptual uncertainties and in part by a cost function quantifying 633

the internal costs for errors due to participants’ internal variability. 634

The results of the present study furthermore support the notion of structured 635

internal causal models comprising physical object representations and their dynamics. 636

Although our participants never sensed the weight of pucks, they readily transferred 637

their visual experiences by interpreting them in terms of the physical quantity of mass. 638

A recent study [36] found support at the implementational level for representations of 639

mass in parietal and frontal brain regions that generalized across variations in scenario, 640

material, and friction. While our results do not provide direct evidence for the notion of 641

internal simulations of a physics engine [37], they also do not contradict them. While it 642

could be argued that structured recognition models may be sufficient for the inference 643
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of object properties such as mass, in our experiment subjects had to act upon such 644

inferences, which strongly suggest the availability of representations of mass. 645

Finally, the present study also shows the importance of using structured 646

probabilistic generative models that contain interpretable variables when attempting to 647

quantitatively reverse engineer human cognition [38]. Previous research has 648

demonstrated pervasive and systematic deviations of human reasoning from 649

probabilistic accounts [39]. Similarly, systematic deviations in physical reasoning [1–4] 650

have been interpreted as failures of physical reasoning. It is only more recently, that 651

these deviations have been explained through computational models [9–12,37] involving 652

structured generative models relating observed and latent variables probabilistically. 653

These models involve the explicit modeling of prior beliefs and perceptual 654

uncertainties [5, 6] as well as uncertainties in visuomotor behavior [19–21], which have 655

been modeled successfully in a probabilistic framework. As such, the present study is in 656

line with efforts of understanding perception and action under uncertainty through 657

computational models, which use structured probabilistic generative models and 658

external as well as internal costs [8]. 659
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Supporting information

Puck Movement

From Newtonian physics we know the relationships between a change in momentum ∆p
by a force F exerted over a time ∆t:

∆p = F ∆t (6)

The impulse is transferred to a puck of mass m resulting in a change of speed ∆v:

∆p = m∆v (7)

As the puck is initially at rest, the release velocity v0 when shooting the puck can
therefore be expressed as:

v0 =
F ∆t

m
∝ ∆t (8)

Therefore, in the simulations the change in momentum ∆p increases linearly with
press-time ∆t and proportionally to force F and thus the initial velocity v0 also scales
linearly with the press-time. Once released, a frictional force Ffr, which can be
expressed in terms of the gravitational force Fg and the friction coefficient µ:

Ffr = µFg = µmg, (9)

which slows the puck down with an acceleration afr, which accordingly to Newton’s
second law F = ma is:

afr = µg (10)

until at rest after some time T :

vT = 0 = v0 − afrT (11)

During this time the puck has moved a distance sT

sT =
1

2
afrT

2 (12)

Solving eq. 11 for T and substituting into eq. 12, substituting the acceleration afr from
eq. 10 and using the expression for the initial velocity v0 from eq. 8 allows finding the
press-time required for propelling the puck over a distance ∆x in eq. 1.

Position and velocity updates per frame:

We used the difference equations corresponding to the above equations of motion:

xt+δt = xt + vtδt (13)

vt+δt = vt − afrδt. (14)
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Distance error distributions

Fig 9. Distance error distributions. Final discrepancy between target and puck
pooled for all participants. Pucks being shot too short are shown with negative values,
pucks with a positive deviation were shot too far. Columns showing the the data for
both conditions and rows divide into puck and phase combinations. The first two rows
(in gold and red) showing the error distributions for both pucks with feedback in phase
2. The error distribution for the unknown puck in phase 3 before seeing the collisions is
shown in the second last row (in purple) with greater deviation, with a clear bias and
bigger spread. In the last row the error distributions are depicted for the unknown puck
after having seen the collisions with the previous learned pucks, showing a reduced bias.
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Press-time distributions

Fig 10. Press-time distributions. Pooled press-time distributions for all
participants. Columns showing the the data for both conditions and rows divide into
puck and phase combinations. First two rows showing the press-times for the pucks
with feedback. Press-time distributions in phase 3 without feedback are shown in row
three in blue. Without further information participants’ behavior in phase 3 is strongly
influenced by the previous phase and its press-time distribution: press-time
distributions for the unknown puck in phase 3 reflect roughly the combined
distributions of press-times of the previous pucks in phase 2 (Kolmogorov D = 0.0538;
p = 0.092 for heavy-to-light, D = 0.156; p = 9.8× 10−12 for light-to-heavy)
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Kolmogorov tests - press-times in phase 2 & phase 3

Fig 11. Empirical cumulative density function for press-time distributions
of phase 2 and 3 for both conditions. (A) In the light-to-heavy condition both
distributions of press times when seeing pucks and without feedback in phase 3 differ
significantly. However, considering the asymmetry within the task response -
press-times and potential masses are only constrained single-sided towards lower values
with a minimum at zero - this difference in press-time distributions is surprisingly small.
(B) In the heavy-to-light condition there was no significant difference between the
distribution of press-times of both combined feedback pucks and the unknown puck
before observing the collisions as revealed by the Kolmogorov-Smirnov test. This
suggests that participants adhere to their previous adjusted strategies when facing
decisions in great uncertainty.
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Implementation of cost functions

∼ L𝛮 (log(tj,k
int,)+ σj

time2
,σj

time) ←
0-1 loss function
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∼ L𝛮 (log(tj,k
int),σj

time) ←
absolute loss function
choosing tj,k

int as Median

∼ L𝛮 (log(tj,k
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time) ←
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time

Fig 12. Implementation of three different cost functions - 1-0, absolute and
quadratic loss.

Posterior predictive checks of cost functions in phase 2

Fig 13. Posterior predictive distributions for both model classes and all
cost functions with data from phase 2 with feedback. Posterior predictive
distributions of press-times given data from feedback trials. Fifty distributions were
drawn from each model after being fitted to the data. Dark green distributions arise
from models of the Newtonian model class, dark blue ones from the linear model class.
Separation into rows is made on basis of the implemented cost function. For each cost
function the Newtonian model predicts values that match the actual data shown as red
curve obviously better than the model from the linear model class.
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Posterior predictive checks for press-times in both models

Fig 14. Posterior predictive checks for press-times in both models. Posterior
press-time predictions for both, the linear and the Newtonian model with quadratic cost
function, and separately for every phase. Actual data is shown as red line. Model predictions
in dark green (50 iterations) of the fitted Newtonian model match the data closely and surpass
the fitted linear model in dark blue for the complete data set and in almost every phase
individually.

February 10, 2020 27/32

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2020. ; https://doi.org/10.1101/2020.02.14.949164doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.14.949164
http://creativecommons.org/licenses/by/4.0/


Latent masses by cost function: aggregated data from phase 2

Fig 15. Inferred latent mass beliefs with aggregated data from phase ’feedback’
for each cost function. Posterior distributions for mass belief aggregated over all
participants for each cost function. Colored, vertical lines indicate actual mass of pucks. In
comparison the quadratic loss function leads to posterior distributions that fit closest to the
actual masses in the experiment.

Change point detection

Fig 16. Average absolute error as function of trials and posterior of mean
average error derived using the change point detection model. (A) Average
absolute error over participants as function of trial number. (B) Posterior over change point τ .
Red dotted line marks trial six. (C) Posterior of mean error before and after change point.
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Latent masses: phase ’prior’ and ’feedback’

Fig 17. Inferred latent mass in Newtonian model class with quadratic loss
function for each participant and with data from Prior and Feedback phase.
Posterior mass distributions for each participant in Prior and Feedback phase. Gray
distributions show the inferred mass distribution for an unknown puck before participants have
encountered the task dynamics. Resulting mass distributions for both pucks in feedback trials
in red (light puck) and yellow (heavy puck). Dotted lines indicate actually implemented mass
for each of the feedback pucks.
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Latent masses: phase ’no feedback’ and ’collision and no
feedback’

Fig 18. Inferred latent mass in Newtonian model class with quadratic loss
function for each participant with data from Prior and both No Feedback phases.
Posterior mass distributions for each participant in Prior and Feedback phase. Gray
distributions show again the inferred mass distribution for an unknown puck before participants
have encountered the task dynamics. Distributions in violet and green are the posterior mass
distributions of the unknown puck without feedback before and after the participants saw
collision with known pucks. Dotted line marks the actual mass of the unknown puck.
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Fig 19. Posterior predicitve for press times, actual press times and ideal
responses for phases two to four and condition light-to-heavy. Black distributions
show the actual data, blue ones display samples from the posterior predictive distribution and
green ones show the correct responses given perfect knowledge about the underlying physics
and all parameters. Visualizing the enhanced suitability of this noisy Newtonian model
framework compared to Newtonian models excluding prior preferences and uncertainties in
describing human behavior.
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Fig 20. Posterior predicitve for press times, actual press times and ideal
responses for phases two to four and condition heavy-to-light.
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