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Abstract

Proteins are complex biomolecules which perform critical tasks in living organisms.
Knowledge of a protein’s structure is essential for understanding its physiological
function in detail. Despite the incredible progress in experimental techniques, protein
structure determination is still expensive, time-consuming, and arduous. That is why
computer simulations are often used to complement or interpret experimental data.
Here, we explore how in silico protein structure determination based on replica
exchange molecular dynamics can benefit from including contact information derived
from theoretical and experimental sources, such as direct coupling analysis or NMR
spectroscopy. To reflect the influence from erroneous and noisy data we probe how
false-positive contacts influence the simulated ensemble. Specifically, we integrate
varying numbers of randomly selected native and non-native contacts and explore how
such a bias can guide simulations towards the native state. We investigate the number
of contacts needed for a significant enrichment of native-like conformations and show
the capabilities and limitations of this method. Adhering to a threshold of
approximately 75% true-positive contacts within a simulation, we obtain an ensemble
with native-like conformations of high quality. We find that contact-guided REX MD is
capable of delivering physically reasonable models of a protein’s structure.

Author summary

Protein structure prediction, that is obtaining a protein structure starting from a
sequence using any computational method, is a great challenge. Over the past years a
broad variety of methods evolved, ranging from algorithms for “blind” or de novo
predictions using Monte-Carlo or physics-based biomolecular simulation methods to
algorithms transferring structure information obtained from known homologous proteins.
Recently, purely data-driven approaches using neural networks have shown to be
capable of predicting high-quality structures. However, some local structural motifs are
only poorly resolved and need further refinement. Here, we explore to what extent
contact information helps guiding replica exchange molecular dynamics towards the
native fold. By adding a contact pair bias potential to the energy function, we
effectively guide the search towards the target structure by narrowing the
conformational space to be sampled. We find that such an energetic bias, even if
containing false-positive contacts to a certain extent, greatly enhances the refinement
process and improves the chance of finding the native state in a single run.
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Introduction

Knowledge of protein structures is crucial for understanding the proteins’ functions or
the biological processes they take part in. Structural knowledge is also critical in related
fields such as pharmacology to design drugs or medicine to understand the molecular
origins of pathogenesis. Both protein structure and function are intrinsically encoded in
the corresponding amino acid sequence [1–3]. Over the past years, experimental
techniques to gain such sequential data have become exceptionally efficient and lead to
fast growing sequence databases, e.g., GenBank [4] and UniProt [5]. In contrast,
experimental structure determination with methods such as X-ray crystallography or
NMR spectroscopy are comparably time-consuming and expensive with often involved
procedures. Some other experimental techniques, e.g., SAXS, FRET, or cryoEM, do not
directly provide structural data but have to be carefully interpreted [6–8].

Computer simulations are commonly used to interpret and complement experimental
data. Novel, purely data-driven approaches can predict protein structures of high
quality [9,10] but lack insight into the physical processes driving structure adoption and
cannot be easily complemented by experimental information. Depending on the method,
local structural motifs are often less resolved [9] and could benefit from additional
refinement. Physics-driven approaches are based on energy functions called force fields.
Lindorff et al. demonstrated by Molecular Dynamics (MD) simulations that current
force fields are sufficiently accurate to reversibly fold proteins starting from unfolded
conformations [11,12]. Still, the computational cost for such de novo folding simulations
is extremely high. As a result, simulations on the millisecond timescale can currently
only be performed on specialized supercomputers like Anton. Luckily, it is possible to
guide the simulations towards target structures or ensembles by introducing an
energetic bias based on experimental data. This bias helps smoothing the energy
landscape, which has frustrated, glassy properties with many competing minima
separated by high barriers. At the same time, the computational costs are lowered due
to the reduced sampling space. One can further lower computational demands by
enhanced sampling techniques [13–15].

In this work, we assume having access to varying amounts of error-ridden contact
information as an additional potential bias for MD simulations. Such contact
information, i.e. information about adjacent amino acids, can be obtained from different
sources. Sparse NMR contact maps would be one example. By themselves they provide
insufficient information for structure generation and have to be complemented.
Recently, contacts derived from coevolution analysis methods such as direct coupling
analysis (DCA) [16] infer contact information from large multiple sequence alignments.
DCA identifies coevolving residue pairs, which can be interpreted as spatially adjacent.
This information was successfully used for structure prediction [17] even in large-scale
studies of proteins [18] or for RNA [19]. However, it is often uncertain how error-prone
contact information is. NMR assignments can be wrong or DCA can contain
false-positive contacts. For this purpose, we performed an extensive study to investigate
the influence of native (“correct”) and non-native (“wrong”) contact information with
regards to structure refinement. Additionally, to overcome residual entrapment and the
occurring multiple-minima problem during the simulation process, we use replica
exchange (REX) as an enhanced sampling technique [11,20–22].

By combining both contact information and REX MD simulations, we drastically
enrich native or native-like conformations in the simulated ensemble of a single run. To
systematically study and test our method’s performance, we investigate two small
proteins with known native structures. Starting from an unfolded state, we look at
contact-guided structure determination with REX MD simulations. We test different
scenarios (see Table 1) by varying the bias quality, i.e. changing the true-positive rate
(TPR) and the total number of randomly selected contact pairs. We intentionally apply
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an equal force coefficient k (see Eq 7) to all used contacts, as the study is performed to
estimate the influence resulting from both native and non-native contacts. We analyze
the data for each test case with simulated times of 250 ns, especially for the lowest
temperature replica. By comparing the test cases to a reference simulation not
including any contact information, we can thus estimate the total number of required
restraints and the bias strength. The study shows good results for both tested proteins
as long as the used bias quality was above a certain threshold. It is possible to include
additional experimental bias into such simulations and use them as a tool for hybrid
data integration.

Table 1. Variation of bias quality during method performance study using REX simulations.

TPR (%) ref 100 100 100 100 100 75 75 75 75 50 50 50 50

# CP 0 6 12 24 36 48 12 24 36 48 12 24 36 48

# native 0 6 12 24 36 48 9 18 27 36 6 12 18 24

# non-native 0 0 0 0 0 0 3 6 9 12 6 12 18 24

# Color - blue cyan green orange red cyan green orange red cyan green orange red

Overview of the fourteen tested scenarios during the method performance study which were conducted on both test proteins.
Listed are the true positive rate (TPR) of used contact pairs (CP) in percent, number of CP used as restraints, number of
native contacts and number of non-native contacts. The coloring is used to highlight the respective contacts of the proteins
(cf. SI).

Results and discussion

Test systems

We use two well-known proteins for our systematic study. The first candidate is the
20-residue miniprotein Trp-Cage (PDB: 1l2y [23]). Its tertiary structure consists of an
α-helix followed by a turn and a 3/10-helix. Trp-Cage was specifically designed as a fast
folder and reaches folding timescales of approximately 4µs [24]. The second test system
is Villin Headpiece (VHP, PDB: 1vii [25]). This protein has a sequence length of 35
residues and forms a three-helix structure. Similar to Trp-Cage, VHP can also achieve
folding times in the order of µs [26,27].

Trp-Cage

We performed REX simulations of Trp-Cage for a total of 60 replica yielding trajectories
of 250 ns simulated time ranging from T0 = 300K to T59 = 624.67K. To compare the
different scenarios as listed in Table 2, each REX simulation initiates from the same
unfolded conformation. As given in Eq (7), a sigmoid potential with the same coupling
strength k is assigned to all implemented restraints (only Cα-Cα pairs). Note that the
resulting force is distance-dependent and the potential has a limit of 10 kJ mol-1. As a
first analysis step, we checked if the coupling strength of the implemented restraints is
adequate. The energetic bias is supposed to guide the protein towards a native-like
structure. We determined the time-dependent backbone RMSD with respect to the
native structure for all replica in each test case. To get an overview and quickly compare
the RMSD statistics across all scenarios, the color-coded RMSD values of all replica are
displayed in heatmap plots. Fig 1A and Fig 1B exemplary show a comparison between
the reference simulation and the simulation with 12 native contacts, respectively.

February 11, 2020 3/18

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2020. ; https://doi.org/10.1101/2020.02.14.949172doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.14.949172
http://creativecommons.org/licenses/by/4.0/


Fig. 1. Backbone RMSD time evolution of Trp-Cage REX simulations.
(A) Reference simulation without contact information.
(B) Simulation with bias of 12 native contacts.

The reference run mostly shows RMSD values greather than 4 Å with a few random
exceptions at lower temperature replica throughout the simulation. As expected,
introducing a bias potential with purely native contact restraints strongly improves the
RMSD values for lower temperature replica, as displayed in Fig 1B. Here, the majority
of low-temperature RMSD values turns from red (more than 4 Å) to blue (less than 4 Å)
compared to the reference simulation. Heatmap plots of the remaining cases using only
ideal contact pairs at 100% TPR can be found in S1 Fig to S3 Fig. They prove that the
number of used native contact restraints is correlated with the enrichment of native-like
conformations. The blue region therefore grows with increased “correct” bias compared
to the unbiased reference simulation. The greatest step-wise improvement for lower
temperature replica is observed for the transition from 6 to 12 native contacts. With
any sort of contact information usually being error-prone, it is nearly impossible to
apply a perfect bias corresponding to a TPR of approximately 100%. Heatmap plots for
the other REX simulations with TPRs of 75% and 50% are shown in S4 Fig to S7 Fig.
Mixed scenarios containing both true- and false-positive contact information are
performed to estimate the bias quality threshold required to improve structure
prediction. For this purpose, we analyzed primarily the lowest temperature replica to
see which conformations become enriched. For each tested scenario, a so-called ∆F
histogram displays the frequency difference of observed backbone RMSD values to the
reference. Histograms for Trp-Cage are summarized in Fig 2. Simulations with purely

Fig. 2. ∆F histograms of Trp-Cage REX simulations.
Histograms show the enrichment and depletion of conformations with a particular
backbone RMSD as compared to the reference. Histogram bins are defined by the
RMSD axis, while the logarithmic ∆F axis displays ∆F = Nsim −Nref . Positive
(negative) values corresponding to enrichment (depletion) are shown in green (red).
(A-D) Simulations with 100% TPR and 12, 24, 36, 48 restraints. (E-H) Simulations with
75% TPR and 12, 24, 36, 48 restraints. (I-L) Simulations with 50% TPR and 12, 24, 36,
48 restraints.

native contacts (Fig 2A to Fig 2D) show a strong enrichment of conformations with
RMSD values between 1.6 and 3.0 Å as indicated by the green region. Frequencies of
conformations with RMSD values above 3.0 Å got reduced accordingly. In case of
Trp-Cage, the net gain of native-like folds does not improve when the bias exceeds 12
restraints, which corresponds to approximately L/2 contact pairs. Test cases with mixed
contacts at 75% TPR (Fig 2E to Fig 2H) show a similar behavior. Additionally, the two
scenarios with 12 and 24 mixed contacts also enrich conformations with RMSDs around
5.0 Å. Such conformations can be filtered out in a subsequent step using a suitable
method or algorithm for frame selection. Scenarios with a low bias quality of 50% TPR
(Fig 2I to Fig 2L) show worse statistics compared to the reference simulations and are
therefore inappropriate for the intended purpose. Naively one might guess that the
“correct” bias would cancel the “wrong” bias out. However, if implemented restraints are
clustered within the contact map, the local bias adds up and apparently is strong
enough to trap the protein in unfavored conformations. When using large numbers of
contact restraints with respect to the protein length, it is necessary to reduce the overall
force coefficient k of the sigmoid potential (see Eq 7) to compensate this effect.

The disadvantage of RMSD-based evaluation of structure quality is that local
deviations between mobile and target structure already result in a disproportionate

February 11, 2020 4/18

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2020. ; https://doi.org/10.1101/2020.02.14.949172doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.14.949172
http://creativecommons.org/licenses/by/4.0/


increase. This is why we transition to the so-called Global Distance Test (GDT) which
takes local misalignments better into account. The distributions of the two scores
GDTTS and GDTHA provide an additional perspective to the estimation of the bias
quality necessary for an effective integration of contact information into REX
simulations. Table 2 gives an overview of occurring percentiles of GDTTS and GDTHA

scores for all REX MD simulations with Trp-Cage as a test system. To simplify the
comparison, shaded table cells indicate improved percentiles Px compared to the
reference Px,ref for each score variant, i.e. cells with

Px ≥ Px,ref . (1)

Additionally, we use a bold font for values which satisfy

Px ≥ Px,ref + w · (P100,ref − Px,ref). (2)

to highlight a significant improvement. In Eq (2) each Px is compared to a
percentile-specific threshold only depending on corresponding reference values. The
threshold is defined as the sum of the percentile itself and a weighted difference of this
percentile to the highest observed value. The difference indicates the practically
possible improvement in relation to the reference. To determine a “significant”
improvement, we set the coefficient w to 50%. In scenarios with TPRs of 75% or higher,

Table 2. Total Score (TS) and High Accuracy (HA) percentiles of Trp-Cage REX simulations.

TPR (%) # CP PTS
80 PTS

85 PTS
90 PTS

95 PTS
100 PHA

80 PHA
85 PHA

90 PHA
95 PHA

100

ref 0 53.75 88.75 93.75 96.25 100.00 30.00 67.50 76.25 81.25 98.75

100 6 96.25 96.25 97.50 97.50 100.00 80.00 81.25 82.50 85.00 96.25

100 12 96.25 97.50 97.50 98.75 100.00 81.25 82.50 83.75 86.25 97.50

100 24 97.50 97.50 97.50 98.75 100.00 82.50 83.75 85.00 86.25 97.50

100 36 97.50 97.50 97.50 98.75 100.00 82.50 83.75 85.00 86.25 97.50

100 48 97.50 97.50 98.75 98.75 100.00 82.50 83.75 85.00 86.25 97.50

75 12 95.00 96.25 97.50 97.50 100.00 78.75 80.00 82.50 85.00 98.75

75 24 95.00 96.25 96.25 97.50 100.00 77.50 80.00 81.25 83.75 96.25

75 36 96.25 96.25 97.50 97.50 100.00 80.00 81.25 82.50 85.00 96.25

75 48 96.25 96.25 97.50 98.75 100.00 80.00 81.25 83.75 85.00 97.50

50 12 41.25 47.50 85.00 95.00 100.00 16.25 23.75 62.50 77.50 96.25

50 24 40.00 42.50 47.50 91.25 100.00 17.50 20.00 23.75 71.25 96.25

50 36 36.25 38.75 41.25 43.75 95.00 15.00 17.50 20.00 22.50 82.50

50 48 37.50 38.75 42.50 46.25 93.75 15.00 17.50 18.75 23.75 76.25

Overview of percentile values at lowest temperature replica. Listed are the true-positive rate (TPR) in percent, number of
used contact pairs (CP) as restraints, Global Distance Test Total Score percentiles denoted as PTS, and Global Distance Test
High Accuracy percentiles denoted as PHA. Values equal to or greater than the reference values are shaded in gray.
According to Eq (2) significantly greater values are bold.

the TS distribution is shifted significantly from 53.75 to score values above 96 already at
the 80th percentile. This means that 20% of the trajectory already consist of
conformations almost identical to the known native structure. The table section with
HA scores similarly shows a significant improvement. Note that the reference simulation
yielded an exceptional HA score of 98.75 during one turnaround of the REX simulation.
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The comparison of 50% TPR simulations to the reference shows that highly error-prone
contact bias has a very negative influence and is not sufficient to effectively improve
structure determination in REX.

Villin Head Piece

All VHP REX simulations were performed under the same conditions as for Trp-Cage.
However, due to the increased system size 40 additional replica were required to achieve
nearly constant exchange rates across the considered temperature range. The REX
RMSD heatmap plots (see S8 Fig to S14 Fig) have similar but less prominent tendencies
compared to Trp-Cage. The reference shows very poor RMSD statistics throughout.
Even with enhanced sampling as in REX we observe that the simulated time span of
250 ns is too short for VHP to be guided towards the native structure without
additional bias. As soon as the bias potential is activated, we clearly see an analogous
growth of the blue region within the heatmap plots indicating enrichment of native-like
conformations. Furthermore, the most potent improvement was observed for the
transition from 12 to 24 native contacts as shown in S9 Fig. The ∆F histograms of the
lowest temperature replica are summarized in Fig 3. Fig 3A to Fig 3D illustrate

Fig. 3. ∆F histograms of VHP REX simulations.
Histograms show the enrichment and depletion of conformations with a particular
backbone RMSD as compared to the reference. Histogram bins are defined by the
RMSD axis, while the logarithmic ∆F axis displays ∆F = Nsim −Nref . Positive
(negative) values corresponding to enrichment (depletion) are shown in green (red).
(A-D) Simulations with 100% TPR and 12, 24, 36, 48 restraints. (E-H) Simulations with
75% TPR and 12, 24, 36, 48 restraints. (I-L) Simulations with 50% TPR and 12, 24, 36,
48 restraints.

scenarios under perfect conditions, i.e. at a TPR of 100%. In the case of VHP, large
improvements are made up to 24 restraints. Scenarios with 36 and 48 restraints show
almost identical results as the simulation with 24 restraints. We observe conformation
frequencies with RMSDs above 4.0 Å to be reduced while conformations with RMSDs
between 2.0 and 4.0 Å got enriched. Scenarios with mixed contacts at 75% TPR are
displayed in Fig 3E to Fig 3H. We still observe an enrichment of low RMSD
conformations but also a drastic increase of conformations with values around 5.0 to
8.0 Å. This is the result of the first three non-native contacts included, which were
randomly selected for this test case. Long-range contact pairs (i, j), which are far away
from the main diagonal of a contact map, have a more significant influence compared to
contact pairs with a small difference in their sequence numbers ∆ij = |i− j| close to the
main diagonal. All simulations with a TPR of 75% nonetheless show a net gain of
native-like conformations. Therefore, they should be favored over the unbiased scenario
given a functional algorithm to filter the best structures. Scenarios with a TPR of 50%
are displayed in Fig 3I to Fig 3L. Here, we observe that both low and high RMSD
conformations appear less compared to the reference, whereas conformations between
5.0 and 9.0 Å are enriched. The high ratio of non-native contacts lowers the chance of
successful structure determination as before for Trp-Cage.

Table 3 specifies the percentiles of GDTTS and GDTHA score distributions. We find
that the VHP REX simulations benefitted from restraints with a TRP of 75% or higher,
resulting in a significant increase of GDT score statistics. For ideal results in mixed
scenarios with 75% TPR, a restraint number in the order of the protein length is
required. Analogous to our previous observation during the RMSD-based discussion,
simulations with only 50% TPR were worse compared to the reference scenario. We
conclude that a bias of such poor quality is therefore unsuited to achieve useful results
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within contact-guided REX simulations. To highlight the local accuracy and visualize

Table 3. Total Score (TS) and High Accuracy (HA) percentiles of VHP REX simulations.

TPR (%) # CP PTS
80 PTS

85 PTS
90 PTS

95 PTS
100 PHA

80 PHA
85 PHA

90 PHA
95 PHA

100

ref 0 50.00 53.47 57.64 63.89 79.17 27.08 30.56 34.72 40.98 58.34

100 6 66.67 68.75 71.53 75.00 87.50 43.06 45.14 47.92 51.39 68.06

100 12 61.11 63.19 65.97 69.44 86.11 37.50 39.58 42.36 45.84 65.28

100 24 71.53 73.61 75.00 77.08 88.89 47.92 49.30 51.39 53.47 68.75

100 36 71.53 73.61 75.00 77.08 88.89 47.92 50.00 51.39 54.16 70.83

100 48 72.22 73.61 75.00 77.08 87.50 48.61 50.00 51.39 53.47 68.06

75 12 47.92 50.70 54.17 59.02 87.50 24.30 27.08 30.56 34.72 65.97

75 24 49.30 54.86 59.02 70.14 84.72 25.00 30.56 34.72 45.83 64.58

75 36 68.06 71.53 74.31 77.08 88.89 43.75 47.22 50.00 53.47 70.83

75 48 62.50 65.97 69.44 73.61 85.42 38.89 42.36 45.83 49.30 63.89

50 12 34.03 38.89 44.44 50.70 79.17 13.20 17.36 21.53 27.08 55.56

50 24 31.25 34.03 36.80 44.45 73.61 10.42 11.81 14.58 22.22 50.00

50 36 28.47 31.94 36.11 40.28 70.83 9.03 11.11 14.58 18.06 49.30

50 48 28.47 30.56 34.03 36.81 59.72 9.03 9.72 12.50 15.28 36.11

Overview of percentile values at lowest temperature replica. Listed are the true-positive rate (TPR) in percent, number of
used contact pairs (CP) as restraints, Global Distance Test Total Score percentiles denoted as PTS, and Global Distance Test
High Accuracy percentiles denoted as PHA. Values equal to or greater than the reference values are shaded in gray.
According to Eq (2) significantly greater values are bold.

how well the simulated structures fit the native state, Fig 4A gives an overview of the
best observed structures during the 75% TPR simulation ranked by HA scores. Each
protein residue is assigned a colored rectangle representing the Cα-Cα distance between
mobile and reference after a least-squares fit. As evident in Fig 4A, many simulated
structures greatly resemble the target structure which manifests in Cα displacements
below 2 Å. The best observed structure with an HA score of 70.83 corresponding to the
first line is displayed in Fig 4B. Local accuracy figures with 36 restraints and varying
TPR can be looked up in S16 Fig to S18 Fig.

Fig. 4. Local accuracy of VHP REX simulation (36 contacts, 75% TPR).
(A) Displayed are the best structures ranked by High Accuracy (HA) score and
color-coded based on the Cα-Cα distance to visualize the local accuracy. (B) Best
observed tertiary structure of VHP corresponding to the first line of subfigure A.

Conclusions

Usually, contact information on its own is insufficient to fully determine a protein’s 3D
structure. We showed that contact-guided REX MD is capable of delivering physically
reasonable structural models of a protein’s conformational state. Contacts derived from
various sources can easily be included and thus interpreted in terms of structural
ensembles. Our ready-to-use framework for structure determination relies on the
well-established and heavily used simulation method of molecular dynamics. As a
physics-based method, it is conceptually transparent compared to purely data-driven
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methods such as AlphaFold [10]. Within one single REX MD run, it is possible to
conveniently obtain high-quality results without the need for arduous adjustment of
system-specific parameters.

We performed an extensive study on two well-known proteins to test the capabilities
and limitations of our framework for protein structure determination. A total of 14
scenarios differing with respect to bias quality by varying true-positive rate and number
of used contact restraints were considered. For a facilitated comparison, we kept the
coupling strength equal across all restraints. We observed a significant enrichment of
native-like conformations as long as the bias quality was above an apparent threshold of
75% TPR. We find that highly error-prone contact information as implemented into 50%
TPR scenarios is not sufficient for effective structure determination within REX MD.
Typically, it is a priori unknown which of the used contacts are really native, and both
experimentally and theoretically derived contact information can mistakenly contain
false positives. One possible approach to resolve this issue is a dynamic weighting of
contact bias. Initially assigning each contact the same force coefficient, contacts can be
monitored regularly and those remaining unrealized can be weakened or completely
deactivated accordingly. Furthermore, we evaluated the step-wise improvement by
comparing different scenarios with varying numbers of contacts at fixed TPR. In the
case of error-free bias, the chance of finding native-like structures increases with the
number of contacts included according to our expectations. For more realistic cases
with a 75% TPR, we observe significant performance improvements compared to the
reference for L/2 to L restraints, with L being the protein sequence length. As a proof
of concept, we showed that it is possible to find physically reasonable folds starting from
an unfolded state, provided enough turnarounds and a sufficiently long simulation time
during REX. To avoid the unnecessary increase of computational costs associated with
the large simulation box, one should always start in a pre-estimated folded conformation
instead. This would greatly increase the computational performance of each REX run.

Although computationally rather involved, this method is particularly suitable for
refinement of often available low-resolution structural models. The underlying force
field contains rich information on various physical interactions determining protein
dynamics. Since the bias is known and thus can retrospectively be balanced out, the
simulated ensemble is thermodynamically correct. Thus, it is in principle possible to
infer a free energy landscape with statistical techniques such as the “weighted histogram
analysis method”.

Methods

Molecular Dynamics

Computer simulations are often used to complement or interpret results of real
experiments. Molecular Dynamics (MD) is such an in silico approach to study the
movements of atoms or biomolecules. Here, one of the many classical force fields is
selected and applied to the studied system. The resulting interactions between all atoms
are calculated by using Newton’s equations of motions. Typical timesteps are in the
order of 1-2 fs. Details of certain mechanisms, such as protein folding or ligand binding,
can be observed by analyzing the trajectory of the simulation.

Replica Exchange

Replica exchange (REX), sometimes referred to as REMD or parallel tempering, is an
enhanced sampling technique [20–22]. This efficient method is commonly applied to
overcome protein entrapment resulting from the multiple-minima problem during MD
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simulations. REX simulates N non-interacting copies (“replica”) of a system at different
temperatures Ti. Each replica corresponds to one of N MD simulations performed
simultanously. After a fixed time dt the atom positions and momenta of adjacent replica
can be exchanged. The exchange probability is given by the Metropolis criterion [20]

w(Xi → Xj) = min(1, e−∆); with ∆ = (βj − βi)(Ei − Ej), (3)

where Xi denotes the state of replica i, β−1
i = kBT the inverse temperature, and Ei the

energy of state Xi. Since exchange rates are signifficantly lower for large temperature
differences, which can be seen in ∆ from Eq (3), it is suffiencent to only exchange
adjacent replica.

The intention of REX is to enhance sampling of both high and low energy states.
For this reason the temperature range has to be chosen accordingly. Replica at the
highest occuring temperatures should have enough energy to overcome potential
barriers. Meanwhile, low temperature replica are supposed to explore conformations
close to local minima. In combination, REX increases the chance of finding the global
energy minimum and thus the native state of a protein. To achieve a random walk it is
mandatory to aim for constant exchange rates across all replica and to make sure that
all replica are shuffled sufficiently.

Replica Exchange Temperature Generator

In REX simulations, every replica resembles the dynamics of a canonical ensemble,
where the probability distribution of each microstate follows the Boltzmann distribution
e−βE . Since exchange rates are propotional to the energy difference of two adjacent
replica (see Eq (3)), an exponential temperature distribution is needed to guarantee a
random walk in conformation space [13, 20, 28]. This distribution is a priori unknown as
it depends on the protein size and number of solvent molecules. However, an initial
temperature distribution can be estimated [29]. A simple temperature generator is given
by

Ti = T0 · eki. (4)

Ti refers to the temperature of replica i, while k stands for the growth parameter which
has to be modified based on the system size. To get more consistent exchange rates
during the simulation across all replica, we slightly modified the generator following the
equations

Ti = Ti−1 + ai ·∆, (5)

∆ = T0 ·
(
eki − ek(i−1)

)
. (6)

Eq (5) recursively describes the temperature of replica i. ∆ denotes the temperature
difference of two adjacent replica, as specified in Eq (6), while ai is a step size
modifying coefficient. With ai = 1∀i the generator will produce the same temperature
distribution as given by Eq (4). To keep the exchange rates almost constant over the
whole simulated temperature range, we increased ai every ten replica by 4%. Used
parameters and resulting temperature distributions can be taken from S3 Appendix for
Trp-Cage and S4 Appendix for VHP.

Sigmoid Potential

In order to guide protein folding, we implement an attractive potential to increase the
bias towards native-like conformations. In our simplistic model, we apply the force only
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between the Cα atoms of used contact pairs. The potential is given by

V (r) = k σ(r), (7)

with the force coefficient k and the sigmoid function

σ(r) =
L

1 + e−α(r−r0)
. (8)

L denotes the sigmoid function’s limit, whereas r and r0 stand for the atom distance
and equilibirium distance, respectively. Furthermore, r0 determines the position of the
inflection point of the sigmoid function and thus the local maximum of the sigmoid
function’s derivative. The parameter α affects the S-shape of the function, i.e. how fast
the transition from low values to high values takes place. For the sake of simplicity, we
set L = 1 so that the force only depends on the force coefficient k. Fig 5 displays the
used sigmoid function σ(r) in red and its derivative σ′(r) in green. During all REX MD

Fig. 5. Sigmoid function of bias potential V (r).
The used sigmoid function σ(r) with parameters L = 1, α = 2.5 nm−1, and r0 = 1.6 nm
is represented by the red curve. The derivative σ′(r) is shown in green.

simulations, we held k constant at 10 kJ mol-1 (approximately 4 kBT at 300K).
Furthermore, we chose α = 2.5 nm−1 and r0 = 1.6 nm.

Coevolution

The physiological function of a protein is directly linked to its 3D structure determined
by the amino acid sequence [30–32]. Through mutation and selection a global structure
is preserved within a protein family as a result of coevolution. Destabilizing mutations
are statistically compensated by mutations of spatially close amino acids, leaving an
evolutionary fingerprint [33,34]. Coevolution analysis methods such as direct coupling
analysis [16] can infer spatially close amino acids based on multiple sequence alignments.
The obtained contact pairs can then be used as an additional bias for, e.g., protein
folding simulations or structure determination.

Native Contact Enrichment

One key aspect of this study was to measure the influence and correlation of native and
non-native contacts during REX simulations. For this purpose we explicitly used
randomly selected contact pairs based on the known structures of the test systems. To
quantify the true-positive rate of chosen contact pairs, we define native contacts to
fulfill the conditions

rij = |ri − rj | ≤ 6Å, (9)

∆ij = |i− j| ≥ 4. (10)

Eq (9) defines a maximum cutoff distance rij of 6 Å between Cα atoms for two residues
i and j. Eq (10) excludes residue pairs which are very close to each other with respect
to their sequence position and would appear on the main diagonal of a contact map.
Based on these definitions, we created one list with native contacts and another list
with non-native contacts. More precisely, we omitted direct neighbors of native contacts
within the contact map from the non-native list. For example, if residue pair (i,j) is
native, then all nine combinations of (i′, j′) with i′ ∈ {i− 1, i, i+ 1} and
j′ ∈ {j − 1, j, j + 1} were excluded. Lastly, we randomly selected contact pairs from
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each list to construct the different scenarios at fixed TPRs for the method performance
study. Contact pairs (i, j) used as restraints during the study can be looked up in the
contact maps given in S19 Fig to S24 Fig.

Global Distance Test

During the trajectory analyses backbone RMSD values after structure alignment are
considered to initially evaluate the method’s performance. In terms of protein structure
determination, however, RMSD is not a proper quantity to assess results as it correlates
strongly with the largest displacement between the mobile and target structure. This
means if the mobile structure fits the target to a large extent and only one small
segment is misaligned, the RMSD becomes disproportionately large. This problem is
solved for the so-called Global Distance Test (GDT) [35–37]. Analogously to the RMSD,
the mobile structure is first aligned to the target structure. Then the displacement
distance of each Cα residue is calculated and compared with various cutoff thresholds to
estimate how similar the two structures are. In a last step, percentages of residues with
displacements below a considered threshold are used to calculate score values. The two
most common scores are the Total Score (TS),

GDTTS =
1

4
(P1 + P2 + P4 + P8), (11)

and the High Accuracy (HA) score,

GDTHA =
1

4
(P0.5 + P1 + P2 + P4). (12)

Here, variables Px denote the percentage of residues with displacements below a
distance cutoff of x Å. Note that both scores range between 0 and 100 and their
interpretation is based on the “fit resolution” set by the applied cutoff distances.

Setup of REX MD simulations

All simulations were set up on a standard desktop PC using an Intel Core i5-3470 CPU
with four cores at 3.20 Ghz frequency. The runs were done with GROMACS

2016.3 [38,39] using the AMBER99SB-ILDN force field [40] and the TIP3P explicit solvent
model [41].

Starting from the pdb structure, the protein was unfolded in a normal MD simulation
at a high temperature. We selected an unfolded state as initial structure for the REX
simulations. All necessary files were generated for the lowest replica temperature T0. A
REX temperature generator based on Eqs (5) and (6) yielded the temperature
distribution for N replica (cf. S3 Appendix and S4 Appendix). After verifying sufficient
exchange rates in short REX simulations (every 1000 steps, rate ≈ 16%), the sigmoid
potential based on Eq (7) was provided as a look-up table. Each simulation run for
250ns with a stepsize of 2fs on 60 (Trp-Cage) and 100 (Villin headpiece) replica.
Restraints were added via tabulated bonded interactions [39] to the topology file.

The production runs were performed on the ForHLR II cluster. We only used thin
nodes, consisting of two Deca-Core Intel Xeon E5-2660 v3 processors (Haswell) with a
base clock rate of 2.6 GHz (max. turbo-clock rate of 3.3 GHz), 64 GB main memory,
and 480 GB local SSD storage.

Supporting information

S1 Appendix. Sample .mdp file for REX simulations.
(PDF)
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S2 Appendix. Look-up table of sigmoid potential.
(xvg)

S3 Appendix. Temperature distribution of Trp-Cage REX simulations.
(PDF)

S4 Appendix. Temperature distribution of VHP REX simulations.
(PDF)

S1 Fig. RMSD Overview during Trp-Cage REX simulation.
Heatmaps display the backbone RMSD time evolution across all replica. (A) Reference
REX simulation without any additional bias. (B) REX simulation with 100% TPR and
6 native contacts as restraints.
(TIF)

S2 Fig. RMSD Overview during Trp-Cage REX simulation.
Heatmaps display the backbone RMSD time evolution across all replica. (A) REX
simulation with 100% TPR and 12 native contacts as restraints. (B) REX simulation
with 100% TPR and 24 native contacts as restraints.
(TIF)

S3 Fig. RMSD Overview during Trp-Cage REX simulation.
Heatmaps display the backbone RMSD time evolution across all replica. (A) REX
simulation with 100% TPR and 36 native contacts as restraints. (B) REX simulation
with 100% TPR and 24 native contacts as restraints.
(TIF)

S4 Fig. RMSD Overview during Trp-Cage REX simulation.
Heatmaps display the backbone RMSD time evolution across all replica. (A) REX
simulation with 75% TPR and 12 contacts (9 native, 3 non-native) as restraints. (B)
REX simulation with 75% TPR and 24 contacts (18 native, 6 non-native) as restraints.
(TIF)

S5 Fig. RMSD Overview during Trp-Cage REX simulation.
Heatmaps display the backbone RMSD time evolution across all replica. (A) REX
simulation with 75% TPR and 36 contacts (27 native, 9 non-native) as restraints. (B)
REX simulation with 75% TPR and 48 contacts (36 native, 12 non-native) as restraints.
(TIF)

S6 Fig. RMSD Overview during Trp-Cage REX simulation.
Heatmaps display the backbone RMSD time evolution across all replica. (A) REX
simulation with 50% TPR and 12 contacts (6 native, 6 non-native) as restraints. (B)
REX simulation with 50% TPR and 24 contacts (12 native, 12 non-native) as restraints.
(TIF)

S7 Fig. RMSD Overview during Trp-Cage REX simulation.
Heatmaps display the backbone RMSD time evolution across all replica. (A) REX
simulation with 50% TPR and 36 contacts (18 native, 18 non-native) as restraints. (B)
REX simulation with 50% TPR and 48 contacts (24 native, 24 non-native) as restraints.
(TIF)
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S8 Fig. RMSD Overview during VHP REX simulation.
Heatmaps display the backbone RMSD time evolution across all replica. (A) Reference
REX simulation without any additional bias. (B) REX simulation with 100% TPR and
6 native contacts as restraints.
(TIF)

S9 Fig. RMSD Overview during VHP REX simulation.
Heatmaps display the backbone RMSD time evolution across all replica. (A) REX
simulation with 100% TPR and 12 native contacts as restraints. (B) REX simulation
with 100% TPR and 24 native contacts as restraints.
(TIF)

S10 Fig. RMSD Overview during VHP REX simulation.
Heatmaps display the backbone RMSD time evolution across all replica. (A) REX
simulation with 100% TPR and 36 native contacts as restraints. (B) REX simulation
with 100% TPR and 24 native contacts as restraints.
(TIF)

S11 Fig. RMSD Overview during VHP REX simulation.
Heatmaps display the backbone RMSD time evolution across all replica. (A) REX
simulation with 75% TPR and 12 contacts (9 native, 3 non-native) as restraints. (B)
REX simulation with 75% TPR and 24 contacts (18 native, 6 non-native) as restraints.
(TIF)

S12 Fig. RMSD Overview during VHP REX simulation.
Heatmaps display the backbone RMSD time evolution across all replica. (A) REX
simulation with 75% TPR and 36 contacts (27 native, 9 non-native) as restraints. (B)
REX simulation with 75% TPR and 48 contacts (36 native, 12 non-native) as restraints.
(TIF)

S13 Fig. RMSD Overview during VHP REX simulation.
Heatmaps display the backbone RMSD time evolution across all replica. (A) REX
simulation with 50% TPR and 12 contacts (6 native, 6 non-native) as restraints. (B)
REX simulation with 50% TPR and 24 contacts (12 native, 12 non-native) as restraints.
(TIF)

S14 Fig. RMSD Overview during VHP REX simulation.
Heatmaps display the backbone RMSD time evolution across all replica. (A) REX
simulation with 50% TPR and 36 contacts (18 native, 18 non-native) as restraints. (B)
REX simulation with 50% TPR and 48 contacts (24 native, 24 non-native) as restraints.
(TIF)

S15 Fig. Example figure with percentiles.
Histogram shows the frequencies of occuring Global Distanc Test Total Scores (GDTTS),
during the reference VHP REX simulation. As an example the 80th, 90th and 100th TS
percentiles are indicated by red vertical lines.
(TIF)

S16 Fig. Local accuracy of VHP structures. (reference case)
(A) Displayed are the best observed structures ranked by High Accuracy (HA) score and
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color-coded based on the Cα-Cα distance to visualize the local accuracy. (B) Best
observed tertiary structure of VHP corresponding to the first line of subfigure A.
(TIF)

S17 Fig. Local accuracy of VHP structures. (36 contacts, 100% TPR)
(A) Displayed are the best observed structures ranked by High Accuracy (HA) score and
color-coded based on the Cα-Cα distance to visualize the local accuracy. (B) Best
observed tertiary structure of VHP corresponding to the first line of subfigure A.
(TIF)

S18 Fig. Local accuracy of VHP structures. (36 contacts, 50% TPR)
(A) Displayed are the best observed structures ranked by High Accuracy (HA) score and
color-coded based on the Cα-Cα distance to visualize the local accuracy. (B) Best
observed tertiary structure of VHP corresponding to the first line of subfigure A.
(TIF)

S19 Fig. Used restraints during Trp-Cage REX simulations at 100% TPR.
(A) Contact map displays native contacts as gray squares. Randomly selected contact
pairs which were used as restraints are colored based on their batch. (B) Tertiary
structure of VHP showing the contact pairs in the same color as in the contact map.
(TIF)

S20 Fig. Used restraints during Trp-Cage REX simulations at 75% TPR.
(A) Contact map displays native contacts as gray squares. Randomly selected contact
pairs which were used as restraints are colored based on their batch. (B) Tertiary
structure of VHP showing the contact pairs in the same color as in the contact map.
(TIF)

S21 Fig. Used restraints during Trp-Cage REX simulations at 50% TPR.
(A) Contact map displays native contacts as gray squares. Randomly selected contact
pairs which were used as restraints are colored based on their batch. (B) Tertiary
structure of VHP showing the contact pairs in the same color as in the contact map.
(TIF)

S22 Fig. Used restraints during VHP REX simulations at 100% TPR.
(A) Contact map displays native contacts as gray squares. Randomly selected contact
pairs which were used as restraints are colored based on their batch. (B) Tertiary
structure of VHP showing the contact pairs in the same color as in the contact map.
(TIF)

S23 Fig. Used restraints during VHP REX simulations at 75% TPR.
(A) Contact map displays native contacts as gray squares. Randomly selected contact
pairs which were used as restraints are colored based on their batch. (B) Tertiary
structure of VHP showing the contact pairs in the same color as in the contact map.
(TIF)

S24 Fig. Used restraints during VHP REX simulations at 50% TPR.
(A) Contact map displays native contacts as gray squares. Randomly selected contact
pairs which were used as restraints are colored based on their batch. (B) Tertiary
structure of VHP showing the contact pairs in the same color as in the contact map.
(TIF)
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