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ABSTRACT 

Introduction: Hormones signal through various receptors and 
cascades of biochemical reactions to expand beta cell mass during 
pregnancy. Harnessing this phenomenon to treat beta cell dysfunc-
tion requires quantitative understanding of the signaling at the molec-
ular level. This study explores how different regulatory elements im-
pact JAK-STAT signaling through the prolactin receptor in pancreatic 
beta cells.  

Methods: A mechanistic computational model was constructed 
to describe the key reactions and molecular species involved in JAK-
STAT signaling in response to the hormone prolactin. The effect of 
including and excluding different regulatory modules in the model 
structure was explored through ensemble modeling. A Bayesian ap-
proach for likelihood estimation was used to parametrize the model to 
experimental data from the literature.  

Results: Receptor upregulation, combined with either inhibition 
by SOCS proteins, receptor internalization, or both, was required to 
obtain STAT5 dynamics matching experimental results for INS-1 cells 
treated with prolactin. Multiple model structures could fit the experi-
mental data, and key findings were conserved across model struc-
tures, including faster dimerization and nuclear import rates of 
STAT5B compared to STAT5A. The model was validated using ex-
perimental data from rat primary beta cells not used in parameter es-
timation. Probing the fitted, validated model revealed possible strate-
gies to modulate STAT5 signaling. 

Conclusions: JAK-STAT signaling must be tightly controlled to 
obtain the biphasic response in STAT5 activation seen experimen-
tally. Receptor up-regulation, combined with SOCS inhibition, recep-
tor internalization, or both is required to match experimental data. 
Modulating reactions upstream in the signaling can enhance STAT5 
activation to increase beta cell mass. 

1 INTRODUCTION  
Metabolic diseases impair the body’s ability to properly con-
vert nutrients into energy. Diabetes is a particularly harmful 
metabolic disease that affects over 30 million people in the 
United States alone.51 In cases of Type 1 diabetes, the body 
is unable to produce insulin, a key hormone that regulates the 
transport of glucose from the blood to the cells where it is used 
to produce energy. Patients with Type 2 or gestational diabe-
tes can produce some insulin, but not enough to properly reg-
ulate blood glucose levels. Recent advances in the study of 
pancreatic beta cells, the cells that produce and secrete insu-
lin, have shed light on the body’s ability to adapt in response 
to changes in metabolic demand.36 For example, in cases of 

high insulin demand, such as pregnancy or obesity, the body 
responds by increasing beta cell mass in the pancreas. In fact, 
studies have shown that over the approximately 20-day time 
course of pregnancy in mice, pancreatic beta cells both repli-
cate and grow in size, resulting in an increased beta cell 
mass.36 This phenomenon could potentially be harnessed to 
increase the number of functioning beta cells in diabetes pa-
tients. 

Beta cell compensation precedes insulin compensation 
and is driven by signaling through the prolactin recep-
tor4,17,23,47 (PRLR), which is closely related to the growth hor-
mone receptor. Signaling by placental lactogens through 
PRLR engages the JAK-STAT signaling cascade.34 Specifi-
cally, Janus Kinase 2 (JAK2) is constitutively associated with 
the PRLR7,15,38 and once the JAK2 kinase is activated, it re-
cruits and phosphorylates Signal Transducer and Activator of 
Transcription 5 (STAT5). STAT5 regulates the expression of 
several target genes in the nucleus, including genes related 
to the cell cycle18,41 and apoptosis.19,24,46 Although initial dis-
coveries were made in rodent models, human prolactin has 
been shown to protect human beta cells from apoptosis as 
well.46  

In this work, we investigate the mechanisms by which the 
pregnancy-related hormone prolactin (PRL) drives JAK-STAT 
signaling in pancreatic beta cells using a mathematical model 
of the signaling pathway. Mathematical models have been 
used to elucidate the balance between replication and apop-
tosis in beta cells29, but no molecular-detailed computational 
model exists for the beta cell response to pregnancy. Here, 
we use a systems biology approach to quantitatively analyze 
the beta cell response to hormone stimulation. We have con-
structed a computational model, calibrated the model with ex-
perimental data, and validated it by predicting new data not 
used for parameter estimation. During model construction, we 
explored the effect of different model structures on the pre-
dicted signaling dynamics through an approach known as en-
semble modeling.25,31 After validating the model, we analyzed 
how changes in kinetic parameters and initial values can lead 
to greater STAT5 activation.  

In particular, mathematical modeling is used to explore 
the effects of various regulatory mechanisms that control sig-
naling. Experimental data shows that when insulin-secreting 
cells of the INS-1 cell line are treated with a constant concen-
tration of PRL in vitro, the amount of phosphorylated STAT5 
has multiple peaks within six hours of stimulation.10,11 The 
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presence of these peaks is influenced by Suppressors of Cy-
tokine Signaling (SOCS) genes, which are transcribed in re-
sponse to STAT signaling and exert negative feedback on the 
system. Modeling the cytokine IFN- g in liver cells, Yamada et 
al. found that the presence of a nuclear phosphatase, in addi-
tion to SOCS negative feedback, are sufficient to cause a de-
crease in phosphorylated STAT after the initial peak, leading 
to multiple peaks in phosphorylated STAT dimer in the nu-
cleus.48 In addition, JAK-STAT signaling through the prolactin 
receptor (PRLR) has been shown to include positive feedback 
as nuclear STAT5 promotes transcription of PRLR 
mRNA.20,27,33,35 We hypothesize that positive feedback could 
play a role in explaining the initial peak, subsequent decline, 
then prolonged activation of STAT5 activity in INS-1 cells dis-
covered by Brelje and colleagues. Although these regulatory 
mechanisms significantly influence beta cell signaling, no 
model to our knowledge explores the interplay between SOCS 
feedback and positive regulation of PRL signaling. Therefore, 
we built upon the work of Yamada and colleagues to create a 
computational model of JAK-STAT signaling in pancreatic 
beta cells through PRLR. We applied the model to investigate 
the influence of these regulation schemes, individually and in 
combination, and found that model structures that include 
both positive and negative regulation produce multiple peaks 
in STAT5 phosphorylation within a tight range of parameter 
values. By fitting to experimental data using a Bayesian ap-
proach for likelihood estimation of parameter values, we show 
that the model can simultaneously determine the rates of 
STAT5 phosphorylation and nuclear translocation. The model 
predicts a faster dimerization and nuclear import rate for 
STAT5B dimers than STAT5A which can explain their differ-
ent activation profiles observed experimentally. Our experi-
mentally-derived mathematical model provides a quantitative 
framework needed to better understand signaling that medi-
ates beta cell increase.  

2 METHODS 
Model construction 
A mathematical model was constructed to describe the reaction kinet-
ics of the Janus kinase 2 (JAK2) and signal transducer and activator 
of transcription 5 (STAT5) signaling in pancreatic beta cells. The 
model is comprised of ordinary differential equations, which describe 
how the concentrations of the molecular species in the reaction net-
work evolve over time. Our model builds on the reactions and kinetic 
parameters from the work of Yamada, et al., who modeled control 
mechanisms of the JAK-STAT pathway in response to interferon-γ 
(IFN- γ) signaling.48 The model was adapted to include 2:1 ligand to 
receptor stoichiometry, which has been shown for the binding of pro-
lactin (PRL) to the prolactin receptor (PRLR).7,15 The receptor is as-
sumed to be pre-associated with JAK2 (represented by the species 
RJ) since JAK2 is constitutively associated with the prolactin recep-
tor.7,15,38 Once two RJ complexes are bound to one PRL hormone, the 
complex becomes activated. The receptor complex RJ has degrada-
tion and synthesis rates corresponding to a half-life on the cell mem-
brane of 45 minutes.10 Once the ligand is bound, the receptor has a 
higher degradation rate, which represents internalization of the ligated 
receptor to the endosome.1,7,10   

The activated receptor complex binds to the cytosolic form of 
STAT5 reversibly, and once bound, releases a phosphorylated form 
of STAT5 due to the kinase activity of JAK2. The pSTAT5 molecules 

dimerize in the cytosol and are transported into the nucleus. Three 
phosphatases are included in the model, which serve to attenuate the 
signaling after initial ligand binding: SH2 domain-containing tyrosine 
phosphatase 2 (SHP-2) dephosphorylates the activated receptor-JAK 
complex, and phosphatases in the cytosol and nucleus (termed PPX 
and PPN, respectively) dephosphorylate STAT5 species48. The phos-
phatase action is a form of negative feedback shown to be necessary 
for attenuation of STAT activation.48 pSTAT molecules are shuttled 
out of the nucleus when they are not dimerized with another molecule. 
The phosphorylated STAT5 dimer promotes transcription of several 
target genes once in the nucleus. Specifically, we include suppressors 
of cytokine signaling (SOCS), the prolactin receptor, and the anti-
apoptotic protein Bcl-xL as STAT5 targets. It has been shown that 
suppressors of cytokine signaling (SOCS) proteins bind competitively 
to the receptor JAK complexes and also target the receptors for ubiq-
uitination-based degradation.7,49 These mechanisms were incorpo-
rated in the model rather than the non-competitive binding used by 
Yamada, et al.48 

STAT5 dimers promote transcription of mRNA for the prolactin 
receptor. This has been shown in vitro in INS-1 cells20 and in vivo 
during pregnancy in mice. This positive feedback mechanism may 
play a role in the islet response to pregnancy20 and has not been ex-
plored computationally before. The phosphorylated STAT5 dimer in 
the nucleus also promotes transcription of cell-cycle genes such as 
cyclin D proteins18,41 and anti-apoptotic species such as Bcl-family 
proteins19,46. We included a module for the STAT5-mediated tran-
scription and translation of the response protein Bcl-xL. A full list of 
reactions is included in the supplementary File S1. MATLAB was used 
to carry out model simulations, and statistical analyses of the simu-
lated results were performed using R statistical computing lan-
guage.45 All code including MATLAB files, SBML files, and R scripts 
are publicly available at: https://github.com/ryland-mortlock/Modeling-
JAK-STAT-Regulation-Through-Prolactin-Receptor.  
 
Ensemble modeling 
The three optional modules (Fig. 1) were included or excluded from 
the core model. The induction of SOCS in response to STAT5 activa-
tion and its subsequent negative feedback on JAK-STAT signaling 
was the first optional module. The positive regulation due to up-regu-
lation of the PRL receptor in response to activated STAT5 was the 
second optional module. The third optional module was receptor in-
ternalization, as represented by an enhanced degradation rate for lig-
and-bound receptors. The three optional modules were included in 
different combinations to produce eight possible model structures. 

For each model structure, 100,000 Monte Carlo simulations were 
performed by sampling all free parameters and initial values from a 
log-uniform distribution. The parameters and initial values were varied  
two orders of magnitude above and below the initial guess (taken from 
previous models and literature evidence – see Supplementary File S1 
“Parameters” and “Initial Values” spreadsheets). The total amount of 
phosphorylated STAT5 was calculated by summing together all forms 
of pSTAT5 and multiplying by two if the molecule included a STAT 
dimer with both STAT molecules phosphorylated.  

We analyzed the features of the pSTAT5 concentration over time. 
The definitions of the characteristics of the pSTAT activation illus-
trated in Fig. 5A are as follows: 

𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛	𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ =
𝑚𝑎𝑥𝑖𝑚𝑢𝑚	𝑝𝑆𝑇𝐴𝑇
𝑡𝑜𝑡𝑎𝑙	𝑝𝑆𝑇𝐴𝑇  

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒	𝐹𝐵	𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ = 1 −
𝑚𝑖𝑛𝑖𝑚𝑢𝑚	𝑝𝑆𝑇𝐴𝑇	𝑎𝑓𝑡𝑒𝑟	𝑓𝑖𝑟𝑠𝑡	𝑝𝑒𝑎𝑘

𝑝𝑆𝑇𝐴𝑇	𝑎𝑡	𝑓𝑖𝑟𝑠𝑡	𝑝𝑒𝑎𝑘  

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝐹𝐵	𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ =
𝑚𝑎𝑥𝑖𝑚𝑢𝑚	𝑝𝑆𝑇𝐴𝑇	𝑎𝑓𝑡𝑒𝑟	𝑓𝑖𝑟𝑠𝑡	𝑝𝑒𝑎𝑘

𝑝𝑆𝑇𝐴𝑇	𝑎𝑡	𝑓𝑖𝑟𝑠𝑡	𝑝𝑒𝑎𝑘  
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𝑇𝑖𝑚𝑒	𝑜𝑓	𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 = 𝑡𝑖𝑚𝑒	(ℎ𝑟. )	𝑜𝑓	𝑓𝑖𝑟𝑠𝑡	𝑝𝑒𝑎𝑘 

 

𝑇𝑖𝑚𝑒	𝑜𝑓	𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛
= 𝑓𝑖𝑟𝑠𝑡	𝑡𝑖𝑚𝑒	(ℎ𝑟. )		𝑖𝑛	𝑤ℎ𝑖𝑐ℎ	𝑝𝑆𝑇𝐴𝑇	𝑔𝑜𝑒𝑠	𝑓𝑟𝑜𝑚	𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔	𝑡𝑜	𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 

The number of peaks in total pSTAT5 was quantified using the 
Matlab findpeaks function, which returned the value of total pSTAT5 
at local maxima as well as the time of the peak in hours. Thresholds 
for the findpeaks function were defined to have a minimum distance 
between peaks of 20 minutes and a minimum peak prominence of 
0.1% to avoid identifying noise in the data as peaks (see MATLAB 
findpeaks documentation).  

A detailed shape classification was performed based on the deci-
sion tree in Fig. S1 implemented through if statements in our MATLAB 
script. Parameter correlations were calculated in R using the cor func-
tion. The correlations shown in Fig. 5 are calculated using Monte 
Carlo simulations from the full model structure that included all three 
regulatory modules. Correlations with activation strength were calcu-
lated using all 100,000 simulations. Correlations with negative FB 
strength, positive FB strength, and time of attenuation could only be 
calculated for simulations that had a peak, n = 45,199. Correlations 
with the time of reactivation could only be calculated for simulations 
that had reactivation, n = 3,479.  

 
Model calibration 
Sensitivity analysis. A total of 30 parameters were chosen to fit to the 
31 experimental data points based on a global sensitivity analysis. We 
used the extended Fourier Analysis Sensitivity Test (eFAST) to deter-
mine which parameters significantly influence the model predictions.30 
The eFAST method uses a variance decomposition method to deter-
mine the sensitivity of model outputs to model inputs. The first-order 
sensitivity Si quantifies the fraction of variance in model output that is 
explained by the input variance in the parameter i. 

𝑆D =
𝜎DF

𝜎GHGIJF	
 

We calculated the first-order sensitivity of each kinetic parameter and 
non-zero initial value with the output being all species’ concentrations 
predicted by our model. We also estimated the total-order sensitivity 
STi for each kinetic parameter and initial value. STi is calculated as one 
minus the summed sensitivity index of complementary parameters SCi 
which is defined as all parameters except parameter i.  

𝑆KD = 1 −	𝑆LD 

In order to determine which parameters to fit to experimental 
data, we compared the total-order sensitivity index for all kinetic pa-
rameters and initial values on the predicted model outputs: phosphor-
ylated STAT5A (pSTATA), phosphorylated STAT5B (pSTATB), nu-
clear to cytoplasm ratio of STAT5A (STAT5An / STAT5Ac), and the 
nuclear to cytoplasm ratio of STAT5A (STAT5Bn / STAT5Bc). Alt-
hough we calculated STi for each parameter on all model outputs, we 
chose to focus on the effect of each parameter on those four model 
predictions because they are used in the objective function in model 
calibration (see below). 

We took the mean STi for each parameter or initial value over 
each of the four model outputs listed above at each timepoint for 
which we had experimental data from the literature. These sensitivity 
indices are included in the Supplementary File S1 on the sheet “Sen-
sitivity results.” The parameters and initial values that had a mean STi 

greater than that of the dummy variable, a factitious input which has 
no effect on model structure, were chosen as parameters to be fitted. 
In addition, the parameter k30a, which is the maximal rate of tran-
scription of the PRLR receptor in response to STAT5 binding, was 

added to the parameter list because no kinetic parameter affecting 
the positive feedback module emerged from sensitivity analysis. In 
order to deconvolute the fact that the dimerization and shuttling rates 
of the different forms of STAT5 would likely be correlated, we defined 
the following multiplicative factors: 

𝑚𝑢𝑙𝑡8𝐵 =
𝑘8𝐵
𝑘8𝐴 , 𝑚𝑢𝑙𝑡8𝐴𝐵 =

𝑘8𝐵
𝑘8𝐴 

𝑚𝑢𝑙𝑡14𝐵 =
𝑘14𝐵
𝑘14𝐴 , 𝑚𝑢𝑙𝑡14𝐴𝐵 =

𝑘14𝐴𝐵
𝑘14𝐴  

𝑚𝑢𝑙𝑡17𝐵 =
𝑘17𝐵
𝑘17𝐴	 

The parameters k8A and k8B describe the rate of homodimeri-
zation of STAT5A and STAT5B respectively while k8AB represents 
the rate of heterodimerization. The parameters k14A, k14B, and 
k14AB represent the rate of nuclear import of dimerized STAT5A di-
mers, STAT5B dimers, and heterodimers respectively.  The parame-
ters k17A and k17B represent the nuclear export rate of unphosphor-
ylated STAT5A and STAT5B respectively.  
 
Parameter estimation. Parameter fitting was performed by fitting the 
model simultaneously to all of the experimental data used for likeli-
hood estimation. The amount of phosphorylated STAT5A and 
STAT5B at the 10 min., 30 min., 1 hr., 2 hr., 4 hr., and 6 hr. timepoints 
were quantified using Plot Digitizer (Java) from Brelje et al. Fig. 7.11 
The nucleus to cytoplasm ratio of STAT5A and STAT5B at the 30 
min., 1 hr., 1.5 hr., 3 hr., and 6 hr. timepoints and the 5 min., 15 min., 
30 min., 1 hr., 2 hr., 3 hr., 4 hr., 5 hr., and 6 hr. timepoints respectively 
were quantified using Plot Digitizer from Brelje et al. Fig. 6 results for 
INS-1 cells.11 The fold change of the anti-apoptotic protein Bcl-xL in 
response for the timepoints 2, 4, 6, 8, 12, 18, and 24 hours were quan-
tified using Plot Digitizer on Fujinaka et al. Fig. 7E.19 All experimental 
data from both papers was for INS-1 cells treated with 200 ng/mL of 
PRL. 

A total of 25 independent fits were performed for each model 
structure using a Bayesian approach for likelihood estimation.21,28,44 
Within each independent fit, 10,000 iterations on the parameter val-
ues were performed to effectively sample from the posterior distribu-
tion for each parameter value. The values from the iteration with the 
lowest error were taken as fitted parameters for each of the 25 inde-
pendent fits. The formula for the sum of squared error is: 

𝑆𝑆𝐸 = 	RS
𝑃𝑟𝑒𝑑	𝑑𝑎𝑡𝑎 − 𝐸𝑥𝑝	𝑑𝑎𝑡𝑎

𝐸𝑥𝑝	𝑑𝑎𝑡𝑎
T
F

 

where Pred data and Exp data are vectors containing the model pre-
dictions and experimental measurements, respectively. Model predic-
tions correspond to the same time points as the experimental data. 
For Table 1, AIC was calculated from median SSE values for each 
model structure as: 

𝐴𝐼𝐶 = 𝑛	𝑥 log Z
𝑆𝑆𝐸
𝑛 [ + 2𝑘 

where n is the number of data points, SSE is the median error, and k 
is the number of parameters used to fit the model. 

To display the results for Fig. 6 and Fig. S2-S8, the predicted 
time courses were simulated for each of the 25 independent fits per 
model structure. The mean and standard deviation of the model pre-
dictions were quantified and shown. For model validation (Fig. 7), the 
dose response data for rat primary beta cells was quantified using 
Plot Digitizer from Brelje et al. Fig. 13.11  
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3 RESULTS 
3.1 Mechanistic model of JAK-STAT signaling in 

beta cells 
A mechanistic model of JAK2-STAT5 signaling through the 
prolactin receptor was constructed based on known reactions 
from the literature.8,26,34,39,43 The model builds on the prior 
work of Yamada, et al. 2003 modeling control mechanisms in 
JAK-STAT signal transduction48 and Finley, et al. 2011, which 
analyzed IL-12 mediated JAK-STAT signaling in T cells.16 

The mechanistic model includes a core network repre-
senting the canonical JAK-STAT signaling cascade, which in-
cludes 31 reactions and 24 molecular species (Fig. 1). Three 
regulatory modules are included or excluded from the network 
in order to consider their effect on STAT5 activation. These 
include: a) SOCS exerting negative feedback on STAT5 phos-
phorylation, b) receptor up-regulation due to transcriptional 
action of pSTAT5, and c) receptor internalization of the pro-
lactin receptor induced by ligand binding. Including each reg-
ulatory module individually and in all possible combinations 
leads to eight model structures to explore. The full signaling 
network with all three regulatory modules included has 47 re-
actions and 32 molecular species. A full list of reactions is in-
cluded in the supplementary material File S1. 
 

3.2 Effect of different regulatory modules on 
qualitative shape of pSTAT5 activation 

We defined eight model structures based on inclusion or ex-
clusion of the three regulatory modules from Fig. 1 and ran 
Monte Carlo simulations for each structure to explore model 
predictions across a wide area of the parameter space. Here, 

we varied all parameter values (i.e., the kinetic reaction rates) 
and non-zero initial conditions (see Methods). This enables us 
to efficiently explore the parameter space and characterize 
the simulated dynamics that are generated. Each simulation 
was classified as “No peak”, “Single Peak”, or “Multiple Peaks” 
based on the predicted time course of STAT5 phosphorylation 
(Fig. 2A). Within the model structures with only one regulatory 
module included, the structure that included SOCS feedback 
was most likely to show multiple peaks in STAT5 phosphory-
lation (Fig. 2B). The structure that included receptor internali-
zation was most likely to produce a single peak in STAT5 
phosphorylation. Our simulations demonstrate that at least 
one regulatory module is required to produce multiple peaks 
in STAT5 phosphorylation (red values listed in Fig. 2B). Over-
all, the likelihood of randomly sampled parameter sets pro-
ducing a time course of STAT5 phosphorylation with multiple 
peaks was very low for all model structures. Of the 8´105 sim-
ulations we performed, only 0.2% (1,207) exhibited multiple 
peaks. This indicates that tight control of the reaction rates is 
necessary to achieve the right balance of activation and atten-
uation. 

 From the Monte Carlo simulations, model predictions 
that had multiple peaks in STAT5 phosphorylation showed 
wide variation in the magnitude and time course of phosphor-
ylation. Therefore, we set out to define a more detailed clas-
sification to understand which model structures could give rise 
to STAT5 dynamics matching those observed in INS-1 cells, 
which show a defined profile for phosphorylated STAT5. Spe-
cifically, Brelje and colleagues showed that STAT5 reaches 
an initial peak at approximately 30 minutes following the initial 
stimulation, followed by attenuation between 1 – 3 hours, 
which reduces phosphorylation to below 70% of its initial 
peak. A second increase is observed after three hours, where 

Figure 1: Model Schematic of JAK-STAT signaling in pancreatic beta cells. PRL binds to the PRLr:JAK2 complex (RJ), which 
induces receptor dimerization and activation by JAK2 kinase activity. The activated receptor PRL:RJ2* phosphorylates STAT5, 
which dimerizes and transports into the nucleus, where it promotes transcription of target genes. Phosphatases attenuate the 
signaling at the membrane (SHP-2), in the cytosol (PPX), and in the nucleus (PPN). Signaling modules for ensemble modeling 
include a) STAT5-induced SOCS negative feedback, b) STAT5-induced receptor up-regulation, and c) ligand-induced receptor 
internalization. Green indicates positive feedback; red indicates inhibition of signaling. ECM, extracellular matrix. 
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phosphorylated STAT5 reaches or exceeds the initial level of 
phosphorylation.10,11 We first filtered the Monte Carlo simula-
tions, retaining those that resulted in an appreciable level of 
STAT5 phosphorylation (at least 1% of the initial STAT5 be-
comes phosphorylated), assuming a minimum amount of 
phosphorylation is required to promote downstream signaling 
and cell response. We then defined eight qualitative shapes 
of STAT5 activation based on the number of peaks and the 
time at which the peaks occur. The decision tree used to clas-
sify predicted time courses is shown in Fig. S1. 

This classification enabled a detailed characterization of 
the dynamics of phosphorylated STAT5. Almost one third of 

all simulations had no peak in STAT5 phosphorylation, show-
ing the general shape of saturating kinetics (Fig. 3A). Almost 
10% of simulations showed attenuation of the initial STAT5 
activation leading to a single peak in pSTAT5 (Fig. 3B). A se-
lect few parameter sets (0.09%) produced multiple peaks in 
STAT5 phosphorylation that did not match the qualitative 
shape of experimental data, such as having more than one 
oscillation within 6 hours (Fig. 3C) or showing a smaller sec-
ond peak characteristic of damped oscillation (Fig. 3D). Posi-
tive feedback can lead to unstable systems, and some simu-
lations (0.05%) had an early peak in STAT5 phosphorylation 
followed by a large increase in phosphorylation due to strong 
positive feedback (Fig. 3E). Over 2,000 (0.25%) simulations 
had an initial peak followed by minimal attenuation before re-
activation (Fig. 3F). These simulations are grouped into early, 
intermediate, and late simulations to preserve the qualitative 
shape when pooling simulations together. Another small 
group of simulations (0.02%) had multiple peaks in pSTAT5 
but did not match the time course of the experimental data, 
either because the reactivation was too fast (< 3 hr) or the 
initial peak was too slow (> 1 hr) (Fig. 3G).   

Finally, a small number of simulations (112) matched the 
qualitative shape of the experimental data (Fig. 3H). Simula-
tions classified as having this desired shape comprise just 
over 0.01% of the 800,000 total simulations, again pointing to 
the necessity of tightly controlled balance of positive feedback 
and negative feedback, both in terms of the strength and time-
scale of feedback. The eight distinct model structures contrib-
uted differently to the fraction of simulations that match the 
desired shape (Fig. 4). Although SOCS inhibition was suffi-
cient to cause multiple peaks in STAT5 phosphorylation (Fig. 
2), SOCS inhibition alone was not sufficient to cause an early 
peak followed by prolonged activation (Fig. 4, row 2). Model 
structures that included receptor up-regulation, combined with 
either SOCS inhibition, receptor internalization, or both had 
the highest likelihood of matching the desired qualitative 
shape (Fig. 4, rows 5, 7, and 8). 

Figure 2: Ensemble Modeling Predicts the Number of Peaks in 
STAT5 Phosphorylation. (A) Simulated time courses were classi-
fied into three shapes based on the number of peaks in STAT5 
phosphorylation over 6 hours of PRL stimulation. (B) Bar chart 
shows the percentage of Monte Carlo simulations from each model 
structure that were classified into each shape shown in panel A. 
Row labels correspond to the inclusion or exclusion of regulatory 
modules shown in Fig. 1. The data labels in red show the number 
of simulations that were classified as “Multiple Peaks” for each 
structure. n = 100,000 simulations per structure (800,000 total). MP, 
Multiple Peaks. 

Figure 3: Classification of Simulations into Qualitative Shapes. Simulated time course of STAT5 phosphorylation for each shape shows 
the mean (solid line) and 95% confidence interval (shaded area) of all Monte Carlo simulations (800,000 total) classified into that shape. All 
shapes are mutually exclusive, that is, all simulations were uniquely assigned to one shape (see Figure S1 for decision tree). Simulations 
that did not reach a threshold level of 1% of STAT5 phosphorylated were labeled as “weak activation” and filtered out, n = 431,024. 
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3.3 Effect of parameter values on time course of 
STAT5 activation  

Kinetic parameter values affect the strength of STAT5 activa-
tion, strength of feedback, and timescale of feedback. Several 
parameters from Monte Carlo simulations were strongly cor-
related with characteristics of the predicted time course of 
phosphorylated STAT5 (Fig. 5A). These characteristics in-
clude the activation strength, the strengths of the negative and 
positive feedback, and the times of attenuation and reactiva-
tion (see Methods section for more detail). The Pearson 

correlation coefficients for each influential parameter are 
shown in Fig. 5B-F, with the five parameters having the high-
est overall absolute value of the correlation coefficient labeled 
in each panel. The ratio of the ligand-bound receptor degra-
dation rate to the unbound receptor degradation rate (deg_ra-
tio) was highly correlated with all five defined characteristics 
of the pSTAT5 time course. As expected, higher values of 
deg_ratio decreased the activation strength (Fig. 5B), in-
creased the strength of negative feedback (Fig. 5C), and de-
creased the strength of positive feedback (Fig. 5D). Increased 
values of deg_ratio also led to a faster timescale of attenua-
tion (Fig. 5E) because the active receptor complex had a 
shorter half-life in the cell therefore less time to phosphory-
late STAT5. Although high values of deg_ratio reduced the 
strength and timescale of initial STAT5 phosphorylation, they 
also lead to faster reactivation in simulations, which pro-
duced multiple peaks (Fig. 5F) since faster initial attenuation 
allowed for a faster rebound of signaling. The parameter k2, 
the ligand-receptor binding rate, had a similar effect as 
deg_ratio on the strength and timescale of feedback (Fig. 5C-
F). However, it was positively correlated with the strength of 
activation. A faster rate of ligand binding leads to a stronger 
activation but stronger negative feedback due to increased 
internalization of ligand-bound receptors. 

Increased values of the initial concentration of the recep-
tor:JAK2 complex increased the activation strength (Fig. 5B) 
and decreased the strength of negative feedback (Fig. 5C). 
Predictably, parameters that govern the rate of interactions 
critical to STAT5 activation (k4, k5, and k6, corresponding to 
the rate at which the ligand-bound receptor complex is 

Figure 4: Breakdown of Simulations Matching Desired Shape by 
Structure. The y-axis shows the eight model structures defined by 
the inclusion or exclusion of the regulatory modules. Horizontal bars 
show the percentage contribution of each model structure to the 112 
simulations which matched the desired shape shown in Fig. 3H. 

Figure 5: Parameters Correlated with STAT5 Phosphorylation. Pearson correlation between each kinetic parameter or initial 
value and five quantitative characteristics of the STAT5 phosphorylation time course. (A) Illustration of five characteristics. (B) Acti-
vation strength. (C) Negative feedback strength. (D) Positive feedback strength. (E) Time of attenuation. (F) Time of reactivation. 
Only parameters with statistically significant (p < 0 .05) correlations are shown in the waterfall plots. The five parameters most 
highly correlated with each characteristic are labeled. RJ, initial value of PRLR:JAK2 complex; k6, phosphorylation rate of STAT5; 
k5, activation rate of JAK2; k4, dimerization rate of PRLR:JAK2 complexes; deg_ratio, ratio of degradation rate of ligand-bound 
receptor complexes to unbound complexes; k2, ligand binding on rate; k12, rate of dephosphorylation of pSTAT5 by cytoplasmic 
phosphatase; k_2, ligand binding off rate; k28, translation rate of PRLR mRNA; k25a, Vmax for transcription of PRLR mRNA; k11, 
binding rate of cytoplasmic phosphatase to pSTAT5; PPX, initial value of cytoplasmic phosphatase; k23, SOCS degradation rate. 
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activated, binds STAT5, and phosphorylates STAT5, respec-
tively) were positively correlated with the activation strength 
(Fig. 5B). Additionally, increases in k12, the rate at which cy-
tosolic phosphatase dephosphorylates STAT5, led to stronger 
negative feedback (Fig. 5C) and a faster timescale of attenu-
ation (Fig. 5E). Overall, this analysis provides mechanistic in-
sight into how specific biochemical reactions influence key 
features of STAT5 dynamics. Such results can guide experi-
mental studies to modulate the signaling network to enhance 
STAT5 response. 
 

3.4 Model calibration to STAT5 dynamics in INS-
1 cells  

The results presented thus far provide a detailed analysis 
of the model features that give rise to STAT5 dynamics that 
qualitatively agree with experimental data. We next aimed to 
produce a predictive model that quantitatively matches the 
data by calibrating the computational model to the experi-
mental data. Specifically, we fit the model to measurements 
for the time course of phosphorylation of STAT5A and 
STAT5B11, translocation of STAT5A and STAT5B from the cy-
toplasm to the nucleus11, and the fold change in protein level 
of the response protein Bcl-xL.19  

Fitting all eight possible model structures to the experi-
mental data reveals the relative importance of regulatory mod-
ules (Table 1). The model structure that included all three reg-
ulatory modules from Fig. 1 had the lowest median Sum of 
Squared Errors (SSE) and tightest range of SSE. Predictably, 
model structures which did not include receptor up-regulation 
(module b) could not achieve a second peak in STAT5 activa-
tion that was higher than the first (Fig. S2, S3, S5, S7). This 
result matches the results presented above in Results section 
2.2. The model structure with just SOCS feedback (regulatory 
module a) showed damped oscillations, in agreement with 
prior computational modeling of JAK-STAT regulation48 (Fig. 
S3). The model structure with just receptor internalization 
(module c) showed a strong attenuation of the initial peak but 
no reactivation (Fig. S5) and the model structure that only in-
cluded receptor up-regulation (regulatory module b) had very 
high SSE values because negative feedback was not strong 
enough to attenuate the initial peak in STAT5 activation (Fig. 
S5). Interestingly, the model structure that included only 

SOCS feedback and receptor up-regulation (modules a and 
b) had the lowest minimum SSE but the widest variation in 
SSE (Table 1). The high variation in fitted error value reflects 
the instability of a system with strong negative and positive 
feedback. Kinetic parameters must be tightly controlled for a 
system like this to achieve an oscillatory response.  

 
In addition to using the SSE to evaluate the model fits, 

we also use the Akaike Information Criterion (AIC), which al-
lows for comparison of model structures with different number 
of fitted parameters, penalizing structures that have more pa-
rameters.37,40 A lower value of AIC indicates a better fit. The 
model structure without SOCS negative feedback had the low-
est AIC. This structure fit the data similarly well as the full 
model, albeit with a wider variability in SSE. In summary, by 
studying the various model structures containing different sets 
of regulatory mechanisms, we are able to more fully under-
stand the mechanisms required to match experimental data.  

We analyzed the estimated parameter values and predic-
tions for the model that included all three regulatory modules, 
as that model structure produced the lowest median SSE and 
provided consistent parameter estimates. Model predictions 
for this full model are shown in Fig. 6, illustrating that this 
structure effectively captured the phosphorylation dynamics 
(Fig. 6A-B) and the nuclear import (Fig. 6C) of both STAT5A 
and STAT5B on the six-hour timescale. The dynamics of 
these two species share a similar qualitative shape because 
phosphorylation is necessary for shuttling of STAT5 to the nu-
cleus.  

Interestingly, although STAT5A and STAT5B show a sim-
ilar pattern in phosphorylation, they differ in the amount that is 
translocated into the nucleus.10,11 The model accounts for 
separate STAT5A and STAT5B species and allows for homo- 
and hetero-dimerization with separate rate constants for di-
merization, import of phosphorylated dimers into the nucleus, 
and export of dephosphorylated STATs from the nucleus. The 
fitted model predicts that STAT5B homodimers and STAT5AB 
heterodimers dimerize nearly three times faster than STAT5A 
homodimers, with ratios of 2.89 ± 1.15 and 2.78 ± 1.37, re-
spectively as compared to the STAT5A dimerization rate. The 
model also predicts the nuclear import rate to be faster for 
STAT5B homodimers and STAT5AB heterodimers than 
STAT5A homodimers, with ratios of 2.80 ± 1.12 and 2.40 ± 
1.04, respectively. The faster dimerization rate and nuclear 

Table 1: Comparison of Model Structures 
 - - - a - - - b - - - c a b - a - c - b c a b c * 

Range of SSE 2.09 – 
4.53 

0.84 – 
1.01 

2.41 – 
4.55 

0.93 - 
1.06 

0.28 – 
5.88 

0.93 - 
1.83 

0.56 – 
1.83 

0.41 – 
0.72 

Median SSE 3.91 0.89 3.14 0.99 2.04 0.99 0.79 0.59 

AIC 
(Δ AIC)† 

-22.19 
(41.69) 

-57.95 
(5.92) 

-23.03 
(40.85) 

-62.83 
(1.05) 

-26.40 
(37.48) 

-52.64 
(11.24) 

-63.88 
(0) 

-62.81 
(1.07) 

1 Columns represent the model structures defined by inclusion or exclusion of regulatory modules a, b, c from Fig. 1. A dash 
represents exclusion of a given regulatory module.  
†Δ AIC is the AIC for each model structure minus the AIC for the structure with lowest AIC, which is structure – b c. 
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import rate explains how more STAT5B localized to the nu-
cleus compared to STAT5A.  

In addition to predicting the upstream dynamics, the 
model also captures how a single oscillation in STAT5 activa-
tion on the six hour timescale can lead to a smooth increase 
in the concentration of a response protein on a longer time-
scale (Fig. 6D). We note that in both the full model and the 
structure without SOCS feedback, the dimerization rate and 
import rate of STAT5B and STAT5AB were faster than 
STAT5A, showing that this conclusion holds across multiple 
model structures.  

Taken as a whole, the fitting results suggest that multiple 
feedback mechanisms could explain the observed time 
courses in STAT5 phosphorylation, nuclear translocation, and 
protein response. However, receptor upregulation is required, 
and it must be combined with at least one of the other regula-
tory mechanisms (SOCS negative feedback or receptor inter-
nalization). The calibrated model containing all three regula-
tory modules produces the best fit to the data and generates 
consistent parameter estimates (Fig. S10).  

 

3.5 Validation of model predictions with data 
from rat primary beta cells  

We aimed to validate the calibrated model containing all three 
regulatory modules using separate experimental observa-
tions. The dose response curve for the ratio of STAT5B in the 
nucleus compared to the cytoplasm predicted by the compu-
tational model using fitted parameter values qualitatively 
matches what is observed for rat primary beta cells in vitro 

after 30 minutes of stimulation with PRL11 (Fig. 7A). Im-
portantly, both the experiments and model predictions show a 
biphasic response, in which the STAT5B level increases with 
increasing stimulation before decreasing. However, there is a 
difference in the time at which the maximum response pre-
dicted by the model matches the experimental measure-
ments. Specifically, the model predicts an increase in STAT5B 
translocation at the 30-minute timepoint (Fig. 7A, light blue 
bars) with increasing hormone concentration, with the maxi-
mal response occurring at a dose of 500 ng/mL. In compari-
son, the peak response occurs at the 1,000 ng/mL dose in the 
experimental data (Fig. 7A, grey bars). Given that the model 
produces the full time course of STAT5 levels, we can inves-
tigate why there is this difference between model and experi-
ments. The model predicts that the attenuation of the initial 
STAT5 activation occurs more rapidly for higher doses of PRL 
such that attenuation has already reduced STAT5 levels by 
the 30-minute timepoint (Fig. S9). We further analyzed the 
predicted STAT5 time course and found that considering the 
18-minute timepoint (Fig. 7A, dark blue bars) gives a maxi-
mum dose response at 1,000 ng/mL of PRL, which matches 
the experimental data. This difference in the timing may be 
due to having calibrated the model using in vitro measure-
ments, while the model validation data come from in vivo ex-
periments. Although one study found high concurrence be-
tween in vitro and in vivo enzyme catalytic rates13, another 
recent study showed lower catalytic efficiency of a specific en-
zyme in vivo versus in vitro 50. 

We also compared the model predictions to experimental 
data for Bcl-xL. Experiments conducted in rat primary beta 
cells showed that cell proliferation (as measured by Brdu-la-
beled nuclei) was about twice as high under 48 hours of con-
tinuous PRL treatment versus 48 hours of pulsed treatment. 
In the case of pulsed treatment, the researchers alternated 
between 1 hour of stimulus and 3 hours of wash.10 Using the 
fold change of the anti-apoptotic protein Bcl-xL as a proxy for 
cell proliferation, our fitted model predicts that the fold change 
of Bcl-xL is approximately two-times higher for continuous 
treatment versus pulsed (Fig. 7B).  

Overall, considering both of these data sets, the model is 
validated by experimental observations. This establishes con-
fidence that the model can generate reliable predictions and 
quantitative insight into JAK2-STAT5 signaling mediated in 
pancreatic beta cells. 

3.6 Perturbing the fitted, validated model  
After calibrating and validating the model, we examined the 
influence of varying individual parameters and initial values on 
model predictions. We varied each parameter or initial value 
that was determined by ensemble modeling to have a large 
impact on one of the various aspects of STAT5 activation (Fig. 
5B-F) individually within two orders of magnitude of the fitted 
values. In general, changing individual parameter and initial 
values could alter both the strength of activation and the feed-
back dynamics, suggesting that the feedback system can be 
modulated. The impact of altering the kinetic parameters k2 
and k12 as well as the initial values of RJ and PPX on the 

Figure 6: Model calibration. Model predictions for (A) Phos-
phorylated STAT5A, normalized to the 30 minute time point, (B) 
Phosphorylated STAT5B, normalized to the 30-minute time 
point, (C) Ratio of nuclear to cytosolic phosphorylated STAT5, 
and (D) Fold change of Bcl-xL. Lines show mean value of model 
predictions with shading indicating the standard deviation for 25 
independent fits. Squares show experimental data points from 
Brelje et al. for panels A, B, and C or from Fujinaka et al. for panel 
D. Error bars are included for experimental data points that had 
error bars shown in the previously published work. All experi-
mental data are for INS-1 cells treated with PRL at 200 ng/mL. 
Thirty parameters were fit simultaneously to the five data sets 
using a Bayesian likelihood estimation approach. Dark blue, 
STAT5A; light blue, STAT5B; purple, Bcl-xL. 
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nuclear import of STAT5A and STAT5B as well as the Bcl-xL 
fold change are shown in Fig. S12. 

We chose to investigate in detail two of the highest rank-
ing influential kinetic parameters and initial values, based on 
their ability to strongly modulate multiple aspects of STAT5 
activation. We quantified the initial peak in STAT5B nucleus 
to cytoplasm ratio which represents the strength of activation 
of the system. When varying the PRL ligand binding rate (k2) 
and the cytosolic phosphatase dephosphorylation rate (k12) 
two orders of magnitude, we found that the activation of 
STAT5 was more sensitive to changes in the ligand binding 
rate, as indicated by the increase in activation along the y-axis 
(Fig. 8A). The phosphatase did modulate activation, with 
higher values of k12 leading to lower activation, but the effect 
is less pronounced than that of k2. A similar result was ob-
tained when varying the initial value of the receptor:JAK com-
plex (RJ) and the cytosolic phosphatase (PPX). The activation 
was increased greatly when the initial value RJ approached 
ten times its fitted value (Fig. 8B). Higher initial values of PPX 
decreased the strength of initial value, but again, this effect is 
less pronounced than modulating signaling at the receptor 
level. Based on these results, we conclude that targeting pa-
rameters upstream in the signaling network has a larger im-
pact on the activation of STAT5, as compared to altering ki-
netic parameters and species further down the signaling cas-
cade.  

4 DISCUSSION 
Our mechanistic model of JAK-STAT signaling in pancreatic 
beta cells captures key dynamics of STAT5 activation via 
phosphorylation by the PRLR-JAK2 complex, followed by im-
port of phosphorylated STAT5 dimers into the nucleus. The 
model differentiates between STAT5A and STAT5B and iden-
tifies the kinetic rate parameters that are able to explain ex-
perimentally observed differences in the amount of the 

STAT5A and STAT5B entering the nucleus under prolactin 
stimulation.10,11 Specifically, the model shows that the rates of 
dimerization and translocation can account for the experi-
mental measurements. This mechanistic insight is relevant, 
as it has been hypothesized that this differential expression of 
STAT5A and STAT5B in the nuclear and cytosolic forms may 
be a form of tissue-specific regulation of JAK-STAT signaling2, 
arising from their differential affinity for STAT5 target genes.6 
The model simultaneously predicts experimental data for up-
stream activation of STAT5 and fold change of the response 
protein Bcl-xL to the same hormonal stimulus. In addition, the 
validity of the model predictions of STAT5 nuclear import was 
explored by simulating dose response curves and comparing 
continuous versus pulsed simulations. In both cases, the 
model recapitulated data that was not used to train model pa-
rameters.  

Our model validation is significant for two reasons. We 
show that the model can qualitatively and quantitatively match 
experimental data not used in model fitting. This demonstrates 
the predictive capability of the model. In addition, we establish 
that although the model was calibrated using data from INS-1 
cells, it can reproduce observations obtained using primary 
pancreatic beta cells. This is a particularly important point 
since INS-1 cells, while used as a model of primary beta cells, 
exhibit quantitative differences in their metabolism42 and insu-
lin secretion in response to glucose32, as compared to healthy 
beta cells. Thus, the model predictions are valid and reliable 
for a range of settings. 

The model includes reactions known to drive JAK-STAT 
signaling in pancreatic beta cells. There are a multitude of 
feedback modules affecting the signal transduction path-
way34,39, and we chose to explicitly explore the role of different 
feedback modules on the activation of STAT5 through ensem-
ble modeling. We hypothesized that positive feedback 
through STAT5-induced receptor up-regulation could explain 
the reactivation of STAT5 in INS-1 cells to a magnitude 
greater than the initial activation.10,11 Classifying Monte Carlo 
simulated time courses by their qualitative shapes revealed 
that model structures with both receptor up-regulation and an 

Figure 7: Model validation. (A) Model predicted dose response data 
for 30-minute timepoint (light blue) and 18-minute timepoint (dark 
blue), compared to experimental data from Brelje et al. treating rat pri-
mary beta cells with PRL shown in grey. Values are normalized to the 
amount of STAT5B in the nucleus with no PRL stimulation (0 ng/mL 
dose). Height of bars for model predictions show mean of 25 independ-
ent parameter sets with error bars indicating standard deviation. (B) 
The fold change in the concentration of the response protein Bcl-xL 
when treated with 200 ng/mL of PRL continuously for 48 hours (solid 
line) or pulsed with 1 hour of hormone every 4 hours (dashed line) to 
simulate the conditions tested by Brelje, et al. in rat primary beta cells. 
The line shows the mean model prediction from the 25 sets of fitted 
parameters with shading ± one standard deviation. 

Figure 8: Model perturbations. (A) The effect of varying the initial 
ligand-binding rate k2 and the cytosolic phosphatase dephosphoryla-
tion rate k12 between 0.1-fold and 10-fold of the fitted parameter val-
ues. (B) Varying the initial values of the receptor-JAK2 complex RJ 
and the cytosolic phosphatase PPX between 0.1-fold and 10-fold of 
the fitted values. Coloring of the heat map indicates the initial peak in 
the STAT5B cytoplasm to nucleus ratio, averaged over the 25 inde-
pendent fitted parameter sets for the full model structure including all 
regulatory modules. 
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inhibitory module (whether that be SOCS feedback of recep-
tor internalization) were most likely to show reactivation of 
STAT5, matching the shape of the experimental data. Quan-
tifying the impact of different parameter values on the time 
course of STAT5 activation helped us define which parame-
ters drive the dynamics. An increased ligand-bound receptor 
degradation rate, for example, decreased the strength of acti-
vation and timescale of feedback while increasing the nega-
tive feedback strength. We followed up on the most influential 
parameters from ensemble modeling by varying them within 
the fitted, validated model. Our simulations predict that mod-
ulating signaling at the receptor level produces larger in-
creases in STAT5 activation than altering the effect of an in-
dividual feedback mechanism (cytosolic phosphatase). This 
information is relevant for researchers aiming to enhance beta 
cell mass through activation of the JAK-STAT pathway. Ulti-
mately, we found that multiple model structures could fit the 
data well (Table 1), but there were emergent properties that 
were consistent across model structures, such as a faster rate 
of STAT5B dimerization and nuclear import, as compared to 
STAT5A.  

Our model motivates new experiments that can better 
elucidate the role of regulatory elements in JAK-STAT signal-
ing. We are drawn to the work of Apgar et al. on stimulus de-
sign for model selection and validation3 as a logical next step 
of our work. Based on our findings, multiple possible inhibitory 
mechanisms could explain the observed time course of 
STAT5 phosphorylation. By designing a time course stimulus 
of PRL on INS-1 cells that aims to discriminate between these 
different model structures, one could experimentally test 
which mechanism is most likely to occur within the cell. This 
in-depth exploration of signal transduction would benefit pre-
clinical researchers trying to design a therapy aimed at in-
creasing beta cell mass in model organisms of diabetes. 

Taken as a whole, our work points to the importance of 
regulatory modules in JAK-STAT signaling within pancreatic 
beta cells. Our model predicts that positive feedback com-
bined with inhibition, be that through negative feedback or en-
hanced degradation rate, can drive a single oscillation in 
STAT5 phosphorylation within six hours, followed by a second 
peak that is higher than the first. Based on the rarity of this 
behavior occurring within the wide parameter space sampled, 
we contend that the kinetic rate parameters within the cell 
must be well constrained to balance positive and negative 
feedback and achieve this behavior. In line with this hypothe-
sis, the kinetic parameters predicted by our model when fitting 
to experimental data were tightly constrained (Fig. S10). 

Excitingly, the mechanistic insight as to the detailed ef-
fects of the regulatory modules provides quantitative infor-
mation needed to identify strategies to increase beta cell 
mass. The ability to increase the beta cell mass in vivo could 
be a powerful new therapy for the treatment of diabetes.14 
Hormonal stimulus seeks to recapitulate the islet adaptation 
to pregnancy5 and has already achieved beta cell proliferation 
in rodent models9 in both female and male rodents.22  Despite 
these advances, potential therapies have failed to realize the 
same gains in beta cell proliferation in humans8,12,26,43, point-
ing to a need for better understanding of regulatory mecha-
nisms through the PRLR-JAK-STAT pathway.12 Here, we 

provide evidence that feedback modules play a key role in 
regulation of JAK-STAT signaling within a computational 
model relevant to the pancreatic beta cell. We also show that 
modulating upstream parameters such as the ligand binding 
rate and the initial value of receptor complexes can increase 
PRL-mediated STAT5 activation. We acknowledge the de-
pendence of our model predictions on the accuracy of the 
model structure, and therefore explored several potential 
structures through ensemble modeling. The inclusion and ex-
clusion of different regulatory modules gives insight into their 
relative importance and helps us understand the important 
predicted behaviors that emerge across multiple model struc-
tures. 
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