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Abstract    
 

Interactions between genetic variants – epistasis – is pervasive in model systems and 
can profoundly impact evolutionary adaption, population disease dynamics, genetic mapping, 
and precision medicine efforts. In this work we develop a model for structured polygenic 
epistasis, called Coordinated Interaction (CI), and prove that several recent theories of genetic 
architecture fall under the formal umbrella of CI. Unlike standard polygenic epistasis models 
that assume interaction and main effects are independent, in the CI model, sets of SNPs broadly 
interact positively or negatively, on balance skewing the penetrance of main genetic effects. To 
test for the existence of CI we propose the even-odd (EO) test and prove it is calibrated in a 
range of realistic biological models. Applying the EO test in the UK Biobank, we find evidence of 
CI in 14 of 26 traits spanning disease, anthropometric, and blood categories. Finally, we extend 
the EO test to tissue-specific enrichment and identify several plausible tissue-trait pairs. Overall, 
CI is a new dimension of genetic architecture that can capture structured, systemic interactions 
in complex human traits. 
 
 
Introduction 
 

Interaction between the phenotypic effects of genetic variants, or epistasis, is an 
essential component of biology with important consequences across multiple scientific 
domains. For example, epistasis significantly impacts evolutionary models, including response 
to selection or changing environment (Barton, 2017; Corbett-Detig et al., 2013). Epistasis also 
fundamentally shapes genetic architecture, as the direction of an allele’s effect can change 
based on genetic background (Park et al., 2018; Rau et al., 2019; Sittig et al., 2016). Epistatic 
interactions are pervasive in model systems, including in model organisms (Bloom et al., 2015; 
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Brem et al., 2005; Corbett-Detig et al., 2013; Forsberg et al., 2017; Huang et al., 2012; Mackay, 
2014) and in recent mammalian gene-level interaction screens (Dixit et al., 2016; Horlbeck et 
al., 2018; Norman et al., 2019). Moreover, these interactions often represent core biological 
functions. For example, the molecular chaperone HSP90 modifies diverse disease-model-
specific proteins (Chen and Wagner, 2012; Meares et al., 2004; Queitsch et al., 2002), and 
conceptually similar mechanisms protect the cell from aberrant translation at ribosomes 
(Hickey et al., 2019). Such structured interactions are a core focus of systems biology, and their 
genetic bases have long been hypothesized to influence complex human disease.  
 

While the observations in model organisms suggest that epistasis is also fundamental in 
humans (Mackay and Moore, 2014; Mackay, 2014), it remains poorly understood. This is largely 
because powerful, interpretable modelling tools are nascent. Genome-wide searches for 
interacting SNP pairs are computationally and statistically onerous, despite some success 
(Marchini et al., 2005). Additionally, recent methods for epistasis increase power by 
aggregating interactions across the whole genome (Crawford et al., 2017; Jannink, 2007; Park et 
al., 2018; Rau et al., 2019), and their results further support the potential importance of 
epistasis in complex traits. Interestingly, all of these approaches assume that epistasis is 
unstructured in that interaction effect sizes and directions are independent of main effects.  

 
This is in contrast with recent conceptual models of complex human traits that imply or 

are consistent with structured forms of epistasis.  For example, Zuk et al. describe a limiting 
pathway model of human disease that directly implies negative interactions between SNPs 
contributing to different pathways (Zuk et al., 2012). Also, the HSP90 community has discussed 
the possibility of a polygenic version of chaperon function (Milton et al., 2003), which would 
induce structured interactions between HSP90 buffer SNPs and exonic missense SNPs. Another 
example is the omnigenic model, which suggests that traits are determined by a few trait-
specific ``core’’ genes that are modified by many non-specific ``peripheral’’ genes (Boyle et al., 
2017; Liu et al., 2019). When these effects are non-linear, the omnigenic model implies 
structured epistasis between the SNPs contributing to ``core’’ and ``peripheral’’ genes. 
 

Motivated by these concerns, we propose a model for structured epistasis, which we 
call Coordinated Interaction (CI).  Conceptually, CI measures concerted interactions between 
pathways that are themselves additively heritable traits. We quantify CI with the parameter 𝛾, 
where 𝛾 < 0 indicates negative epistasis between genetic pathways, on average, dampening 
the marginal effects of trait-increasing variants; conversely, 𝛾 > 0 indicates positive epistasis, 
where trait-increasing SNP effects are actually magnified in the full organismal context relative 
to their GWAS estimates. 

 
 For simplicity in exposition, we usually discuss examples with positive-valued traits, 

where positive/negative epistasis coincide with the more interpretable notions of 
synergy/antagonism; in general, however, the skew in genetic risks driven by 𝛾 ≠ 0 may either 
dampen or exacerbate marginal genetic effects (Phillips, 2008). In Figure 1, we illustrate 𝛾 in the 
case of two latent interacting pathways under the positive phenotype assumption. The key is 
that 𝛾 ≠ 0 if there are heritable, positively (synergistically) or negatively (antagonistically) 
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interacting pathways (Figure 1b), while 𝛾 = 0 if the interactions are purely random or absent 
(Figure 1a). 

 
Testing for the existence of CI would be trivial if we knew which SNPs contributed to 

which pathways: we could simply build genetic predictors of each pathway and test their 
interaction. However, these pathways are generally unknown, making CI estimation seem 
impossible. Surprisingly, we show that testing for CI can be accomplished by randomly assigning 
independent sets of SNPs to arbitrary pathways. Concretely, we build polygenic risk scores 
(PRS) specifically for the even and odd chromosomes and then test their interaction in a linear 
regression on phenotype (Figure 1c). We call this the even-odd (EO) test and we prove 
analytically that EO reliably estimates CI under polygenicity. We also prove that under a 
polygenic model, any chromosome split, not just even-odd, gives identical results in 
expectation. Importantly, however, partitions aligned closely with the true latent pathways will 
have greater power. We leverage this fact to test for CI enrichment in specific genomic 
annotations. Specifically, we focus on tissue-specific annotations to ask whether complex traits 
are enriched for interactions between tissue-specific pathways.  
 

In this paper, we first introduce the concept of Coordinated Interaction (CI) formally and 
define the even-odd (EO) test. We then examine simulated data sets with assortative mating 
and population structure to show that EO is robust to confounding. Then we perform the EO 
test in the UK Biobank (UKBB) across 26 traits spanning multiple domains and find 14 with 
Bonferroni-significant CI. We validate the approach, which uses internally cross-validated PRS, 
by using PRS constructed from external data sources for 8 of the 26 traits. Finally, we estimate 
tissue-specific CI across thirteen tissues in the UKBB and find several biologically plausible 
tissue-trait pairs, as well as enrichment for interacting tissue pairs. We conclude with a 
discussion of limitations to our approach, implications for association testing and genetic 
architecture, and possible future extensions. 

 
 
Results 
 
Coordinated Polygenic interaction 
 
Throughout the paper, we assume a polygenic pairwise interaction model: 
 

y( = 	*G(,β,
.

,/0

+*G(, ∗ G(,3	Ω,,5
,6,5

+ ε( 

 
y( is the phenotype for individual 𝑖, and G(, is the genotype for individual 𝑖 at marker 𝑗.  
𝜀	~	𝑖. 𝑖. 𝑑.		𝑁(0, 𝜎B) is the residual error.  The vector β contains the marginal polygenic effects. 
Ω,,5 is the pairwise interaction effect of SNPs j not equal to j′, so Ω is the matrix of all pairwise 
SNP interaction effects in the genome. 
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The standard additive model assumes no epistasis, i.e. Ω = 0. In this model, SNP 𝑗 always has 
the same effect β,	on the phenotype, regardless of genetic background or environment. In the 
polygenic setting, where there are many more SNPs than individuals (M > N), total heritability 
can still be reliably estimated by the random-effect model GREML, which models β, as i.i.d. 
Gaussian (Yang et al., 2010)  
 
Epistatic models go further by allowing nonzero Ω. To date, epistatic tests have focused either 
on candidate SNPs or genome-wide screens for SNP pairs, which reduce M<N and facilitate 
simple fixed-effect models (Marchini et al., 2005). More recently, random-effect models akin to 
GREML have become popular for estimating the total size of Ω (i.e. the heritability from 
pairwise epistasis) (Cockerham, 1954; Henderson, 1985; Jiang and Reif, 2015; Young and 
Durbin, 2014). Another recent approach tests for interaction between a single SNP and a 
genome-wide kinship matrix, a useful compromise that provides SNP-level resolution and also 
aggregates genome-wide signal (Crawford et al., 2017). 
 
While these methods are useful for characterizing the existence and impact of epistasis, all are 
limited by the assumption that β	and Ω are independent. We are interested in an orthogonal 
question: When are β	and Ω deeply intertwined by latent interacting pathways? Conceptually, 
β	and Ω encode all relevant information, so the goal is to decode the presence of interacting 
pathways from these parameters. Concretely, we prove that these pathways exist if and only if 
the Coordinated Interaction γ is nonzero, where γ is defined as: 
 

γ = CovJKJ3 	(	β,	β,5, 	Ω,,5	) 
 
Intuitively, γ	< 0 negatively skews the total polygenic effect relative to additivity. In the case 
that phenotypes are positive, this is equivalent to dampening the aggregate additive 
heritability, or antagonism between main effects, and it skews the population of phenotypes 
toward 0. Conversely, γ	> 0 positively skews the population, increasing the probability of 
extremely high phenotypes. Note that γ = 0 does not imply that interactions are absent; rather 
that interactions do not necessarily live in the space of pathways that have main effects, which 
is exactly the model assumed by the above uncoordinated epistatic models. 
 
For example, imagine there are two genetically independent pathways that are each sufficient 
for T2D, one based on BMI and one based on pancreas function. Then γ	< 0 is expected, 
because high-BMI cases are not likely to also have high pancreas risk, which is rare. On the 
other hand, if a disease requires impairment across multiple distinct systems—e.g. if asthma 
requires both immune components and environmental exposures—then γ	> 0 is expected: the 
impact of a smoking SNP on asthma is much larger if the immune system is compromised. 
 
We provide a more rigorous exploration of coordination in the Supplementary Material. In 
particular, we prove that several biologically plausible interaction models induce CI, including 
the polygenic generalization of molecular buffers (Chen and Wagner, 2012), limiting disease 
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pathways (Zuk et al., 2012), trans genetic regulation (Liu et al., 2019), and gene-environment 
interaction with heritable environment (Dahl et al., 2020). 
 
The Even-Odd estimator for Coordinated Interaction 
 
We have defined our target, the Coordinated Interaction γ, as a function of the true genetic 
effects β and Ω. However, these parameters are not known; even worse, they are high-
dimensional and cannot be accurately estimated. Testing for nonzero γ seems hopeless. 
 
Our key idea in this paper is that randomly defined pathways can act as proxy for the true 
pathways. These random pathways will interact if and only if there are latent pathways that 
truly interact. Fundamentally, this is because the random approach appropriately sorts many 
pairs of SNPs into the right partition. Under true interacting pathways, these SNP pairs will drive 
interactions between the arbitrary PRS. Although the arbitrary pathways will miss some 
signal—from interacting pairs that are incorrectly placed in the same pathways—this does not 
cause false positives and, moreover, can be corrected post hoc under an infinitesimal model. 
 
We propose estimating γ by regressing on the interaction between PRS built specifically from 
even and odd chromosomes (PRSO  and PRSP): 
 

y	~	𝛼PPRSP +		𝛼OPRSO +	 	𝛾OP	PRSP ∗ PRSO  
 
The ordinary least squares estimate 𝛾ROP	is the Even-Odd estimator of the coordination 𝛾.  We 
prove that 𝛾OP = 0 if and only if 𝛾 = 0, so we can simply use a regression test for 𝛾ROP to test for 
the existence of CI. We describe the test formally in the Supplementary Material, including 
details of PRS construction, covariate adjustment, and modelling assumptions.  
 
Under an infinitesimal model, all random, independent SNP sets give identical CI results. With 
finite genomes, instead, we can evaluate several partitions to maximize power. It is important 
that SNPs are independent across pathways to avoid false positives from nonlinear per-variant 
epistasis, hence we always evaluate chromosome-level genome partitions. This is analogous to 
our choice to exclude the 	Ω,, terms from CI: in both cases, CI implies nonlinear effects of each 
individual SNP and the aggregate PRS, but the converse is not true. We use Bonferroni 
correction to adjust for multiple testing across multiple chromosome splits, but less 
conservative tests may add substantial power in the future as the EO test is highly correlated 
across different chromosome splits. 
 
Even-Odd distinguishes coordination from population structure, assortative mating, and 
uncoordinated interactions in simulation 
 
To examine the properties of the EO test, we simulate data and examine the PRS and 𝛾OP under 
three biologically plausible genetic architectures: additivity, uncoordinated (i.e. random) 
interaction, and Coordinated Interaction. For each architecture, we simulate either 
unconfounded genotypes and phenotypes, or add confounding population structure or 
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assortative mating (see Methods). Together, these settings represent a realistic range of causal 
and non-causal components of the genotype-phenotype map (Table 1).  
 
First, we regressed PRSO  on PRSP to calculate their correlation 𝜃OP, which is related to an 
existing estimate of assortative mating (Yengo et al., 2018). We found that the test for 𝜃OP ≠ 0 
reliably indicated the presence of assortative mating or uncorrected population structure. Note 
that after adjusting for PCs the test for 𝜃OP ≠ 0 was roughly null in the presence of population 
structure. 

 
Our main focus, though, is on the test for 𝛾OP ≠ 0. We find that the null is well-behaved both 
under pure additivity and under uncoordinated pairwise interaction, with false positive rates 
near .05 at a p<.05 threshold. The EO test has much higher signal under CI (power >70%), 
showing the test has power to detect true CI. Importantly, neither uncorrected population 
structure nor assortative mating induced false positives for the EO test. Nevertheless, in 
practice, we recommend adjusting for population structure when running the EO test. 

 
The power of the EO test is partially reduced by the fact that SNPs contributing to each of the 
latent interacting pathways are randomly distributed across the even and odd chromosomes 
(Supplementary Material). When we instead constructed PRS based on the true latent 
pathways, power to detect CI increased substantially, but the test was similar in all other 
respects (Supplementary Table 1). This shows that the EO test power indicates the accuracy of 
the partition used to construct PRS, increasing as the partition homes in on the true pathways.  
 
Identifying traits with Coordinated Interaction in UK Biobank 
 
We next tested for Coordinated Interaction with the EO test in the UK Biobank (UKBB) (Bycroft 
et al., 2018). We studied 21 quantitative and 5 binary traits (Supplementary Table 2) chosen to 
represent a range of trait classes including anthropometric, disease, and blood traits. We 
specifically analyzed the subjects classified as “White British” and filtered out related 
individuals to minimize population structure bias while retaining large sample sizes (max 
n = 393076; Supplementary Table 2). We calculated PRS for each chromosome for each sample 
using a standard clumping + thresholding approach (Euesden et al., 2015) (Methods). The total 
PRS is then the sum of the individual chromosomes’ PRS. Thresholds were chosen to maximize 
percent variance explained (PVE) by the total PRS (Methods). We used 10-fold cross validation 
to minimize bias from in-sample overfitting. We summarize these cross-validated PRS in Table 2 
and show the variability of across chromosomes in Supplementary Table 2. 
 
Unlike in perfectly infinitesimal models, in real data the EO test depends on the specific 
bifurcation of chromosomes used to estimate 𝛾. To minimize bias from choosing a single split, 
e.g. even vs. odd, in practice we analyzed CI estimates from 100 different random partitions of 
the 22 autosomes into two groups. To jointly analyze all bifurcations, we used Bonferroni 
adjustment, which is highly conservative as these tests are tightly correlated—taking height, for 
example, the correlation between the interaction terms (PRSP ∗ PRSO) is roughly 50% across 
splits, as expected under minimal inter-chromosomal LD (IQR is [48%,56%]). Following common 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 14, 2020. ; https://doi.org/10.1101/2020.02.14.949883doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.14.949883


 7 

practice (Finucane et al., 2018, 2015; Justice et al., 2019; Loh et al., 2018; Schoech et al., 2019; 
Zhu et al., 2018), we report the significant results per phenotype. The figures also denote the 
Bonferroni threshold over all splits and phenotypes, which is additionally overly conservative 
because of the high correlation between phenotypes.  
 
Despite this aggressively conservative multiple testing adjustment, we discovered 14 traits with 
significant Coordinated Interaction, including T2D, asthma, height, educational attainment (EA), 
and BMI (Figure 2). We also detected CI for 9 blood traits: mean platelet volume (MPV), platelet 
distribution width (PDW), sphered cell volume (SCV), low density lipoprotein (LDL), triglycerides 
(TG), and counts for platelets (PLAT), monocytes (MONO), lymphocytes (LYM), and eosinophils 
(EOS) (Figure 2). The CI estimates themselves revealed trait-specific patterns of 
positive/negative epistasis (Table 2, Supplementary Table 2, Supplementary Figure 1). For MPV, 
PDW, PLAT, height, SCV, LDL, TG, LYM, and BMI, every bifurcation yielded negative estimates of 
𝛾, suggesting the latent pathways generally interact negatively; also, 86%, 90%, and 99% of 
EOS, MONO, and T2D splits had 𝛾 < 0. Conversely, asthma and EA had positive estimates for 
90% and 100% of bifurcations, respectively, suggesting `and’ logic predominates across 
systems—e.g. stylistically, asthma results only if multiple systems fail. Importantly, these signs 
are invariant under modest phenotype rescaling (Supplementary Material). Taken together, 
these results show that Coordinated Interactions contribute the genetic architecture of multiple 
complex traits.  
 
To assess the potential for impact by population structure and assortative mating, we calculate 
the correlation between the even and odd PRS (𝜃OP). Similar to (Yengo et al., 2018), we found 
that EA and height had substantial 𝜃OP. Nonetheless, we observed no relationship between the 
𝜃OP	and 𝛾OP	across splits within phenotypes. Furthermore, we saw no inflation of the EO test in 
simulation even when population structure was uncorrected and assortative mating was 
present. We conclude that there is little evidence for confounding of the EO interaction test 
results by uncorrected structure or assortative mating.  
 
Replicating Coordinated Interaction with external PRS in UK Biobank 
 
Although we have cross-validated our PRS, we wish to additionally check that our results are 
not specific to a single population by overfitting dataset-specific confounders (Berg et al., 2019; 
Kerminen et al., 2019; Sohail et al., 2019).  We investigated this by constructing PRS using 
external summary statistics to remove the potential impact of cohort specific artifacts. We 
selected eight traits that have large external GWAS summary statistics: asthma, T2D, 
cardiovascular disease, height, BMI, TG, EA, and LDL.  
 
Our CI results replicated in sign and significance for asthma, BMI, TG, EA, and LDL (Table 2). 
However, significant CI did not replicate for height or T2D. The discrepancy for height may arise 
from well-known confounding issues in the GIANT summary statistics we used (Berg et al., 
2019; Sohail et al., 2019). The T2D non-replication likely reflects loss of power, on the other 
hand, as 93% of splits replicated the negative 𝛾 < 0 estimate from internal summary statistics. 
Broadly, the CI p-values were less significant using external PRS, likely due to a combination of 
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winner’s curse and the facts that external studies generally analyze datasets smaller than UKBB 
and do not perfectly match UKBB in terms of environment and genetic background. In addition 
to confirming our results, this analysis also suggests that CI can be reliably tested using 
internally-constructed PRS in the future. This can be essential for applications to less-studied 
traits, populations, or environmental contexts (Liu et al., 2018; Martin et al., 2019, 2017; 
Mefford et al., 2019; Mostafavi et al., 2019). 
 
Conservative step-down test adds confidence for Coordinated Interaction in UK Biobank 
 
Despite our use of genetic PCs, cross-validation, and external summary statistics, we remain 
concerned about the possibility of confounding by residual population structure. As an 
additional robustness check, we re-analyzed these data with 10-fold lower p-value thresholds 
for the PRS. This is conservative because stricter p-value thresholds provide lower predictive 
power but almost certainly reduce the correlation between PRS and population structure.  
 
We found broadly similar results, with most previous CI hits replicating (Supp Figure 2). 
Although several significant traits from the baseline analysis were no longer significant (internal 
height, SCV, LYM, TG, and external BMI and asthma), some of these traits retained support in 
their external/internal mirror image (e.g. BMI and asthma remain significant with internal PRS, 
and TG remains significant with external PRS). Moreover, the newly-insignificant traits were all 
near the threshold in the original analysis. Altogether, these results are consistent with 
moderate winner’s curse and reduced power from using a smaller set of SNPs as predictors, but 
the results do not suggest our EO test is severely inflated by population structure in the 
polygenic tail of small genetic effects. 
 
Tissue-specific coordination in UK Biobank 
 
Having demonstrated the existence of CI for several traits, we now consider the possibility that 
interacting pathways are enriched in trait relevant tissues. Specifically, we test for tissue-
specific enrichment of CI across the above 26 traits and 13 tissue-specific genomic annotations: 
7 based on specifically-expressed genes (Adipocytes, Blood Cells, Brain, Hippocampus, Liver, 
Muscles, Pancreas) (Fehrmann et al., 2015; Pers et al., 2015), and 6 based on tissue-specific 
chromatin-marker patterns (Adipose, Brain, Hippocampus, Liver, Pancreas and Skeletal Muscle) 
(Roadmap Epigenomics Consortium et al., 2015; The ENCODE Project Consortium, 2012) as 
used in (Finucane et al., 2018).  
 
For each tissue-trait pair, the tissue-specific EO test asks whether the coordination mediated 
through a specific tissue exceeds the genome-wide average. This test is conducted by first 
creating a tissue specific PRS on the even chromosomes (TPRSO) and testing it for interaction 
with the standard PRS on the odd chromosomes (PRSP). To ensure our test truly captures 
tissue-specific effects, rather than global effects that happen to be tagged by tissue-specific 
regions, we adjust for several covariates: the overall PRSO ∗ PRSP, PRSO , PRSP, and TPRSO. 
Further, we adjust for the average TPRS across all tissues to test whether specific tissues are 
more trait-relevant than others and thus further reduce potential confounding by non-tissue-
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specific genomic annotations. We then repeat the process, flipping the roles of the even and 
odd PRS. Finally, we repeat the process with 50 random bifurcations (Methods). We again used 
a conservative Bonferroni threshold adjusting for both the number of splits and, now, also the 
number of tissues. 
 
We found 7 instances of tissue-specific CI enrichment using internal PRS (Table 3). This includes 
liver enrichment for LDL, which is essentially a positive control given that many systems are 
involved in LDL and that the liver is a key regulator of LDL metabolism. Further confirming this 
result, liver-LDL was Bonferroni significant when using external PRS. The external PRS also 
suggestively implicate skeletal muscle and adipose, which are primary sinks for the triglycerides 
carried by LDL (Feingold and Grunfeld, 2000).   
 
Another biologically plausible set of tissue-trait pairs is for MPV, which also had the strongest 
ordinary CI of any trait. First, we find significant enrichment for liver, consistent with its known 
role as the main producer of the main regulator of platelet production, thrombopoietin (TPO) 
(Kaushansky, 2006). Second, we find significant CI enrichment for muscles, which also modestly 
produce TPO (Kaushansky, 2006); furthermore platelets are important in healing muscles. 
Third, we found suggestive CI with brain tissues—while the underlying biology is less obvious, 
there is evidence that TPO affects brain development (Ehrenreich et al., 2005). Additionally, 
recent complementary studies have found evidence that brain tissue plays a role in MPV 
(Barbeira et al., 2019). 
 
We also found that T2D had significantly enriched CI in the hippocampus. This is interesting as 
the hippocampus is widely conjectured to play a role in memory and behavior (Anacker and 
Hen, 2017; Vikbladh et al., 2019), and the hippocampus is one of many brain tissues that has 
been linked to BMI (Cherbuin et al., 2015; Raji et al., 2010). Moreover, T2D is associated with 
physiological changes to the hippocampus (Ho et al., 2013), further supporting this CI 
enrichment and also emphasizing the complex interplay between tissues in determining disease 
and comorbidities. Broadly, these lines of evidence suggest the T2D-hippocampus CI is driven 
by a behavioral component of T2D.  We caution, nonetheless, that hippocampus was the only 
specific brain region evaluated, and hence may primarily serve as a proxy for other brain 
regions; in particular, the hypothalamus has been robustly linked to metabolism and T2D 
(Smemo et al., 2014). The next three tissues prioritized for T2D—liver, pancreas, and adipose—
are also obvious candidates for specific pathways to T2D: all are deeply involved in energy 
homeostasis, with the liver producing glucose, the pancreas producing insulin, and adipose 
serving as a primary sink for excess triglycerides (Stern et al., 2016). As additional support, we 
note that liver and hippocampus have suggestive evidence for CI when using the external PRS-
based EO test.  
 
Finally, another interesting, suggestive pair, blood cells-asthma, likely reflects the fact that we 
did not include any immune tissues and, hence, genes expressed in whole blood are the best 
available proxy for immune cells—which are known to play essential roles in asthma (Deckers 
et al., 2013).  
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In general, the tissue-specific EO test can improve power over the ordinary EO test when the 
correct tissue is identified, despite the fact that the TPRS almost always explains less trait 
variation than the overall PRS. As one example, red blood cell count is not remotely significant 
in the EO tests (p=1.50E-02), but its tissue-specific test with muscle is nearly significant 
(p=1.90E-04), even though the TPRS explains less than half the variance explained by the PRS 
(2.6% vs 8.0%, Table 3). Another example is mean corpuscular hemoglobin (MCH): although the 
EO test is insignificant (p=1.90E-03), the brain- and muscle-specific EO tests are significant 
(p=3.10E-06 and 1.50E-04) despite the fact that the TPRS again explain less than half of the 
variance explained by the overall PRS. Moreover, for MCH, the tissue with lower variance 
explained (brain, 3.5%) had stronger CI signal than the tissue with higher variance explained 
(muscle, 5.8%), again demonstrating the distinction between the signal sought by CI and the 
linear signal from percent variance explained. Overall, additional traits have significant CI after 
homing in on relevant tissues, and this happens despite the fact that the tissue-specific PRS 
have lower predictive power than ordinary PRS and, also, that we have conditioned on 
additional PRS-based covariates. This is further evidence that CI is truly enriched in specific 
tissues for some traits. 
 
We chose to condition on the interaction between PRSP	and the across-tissue average TPRSO 
when testing for tissue-specific CI. We found that the latter adjustment is important for 
uncovering trait-specific tissues because the unadjusted analysis prioritizes many tissues for a 
few traits with largest ordinary CI (Supplementary Figure 3): for example, the top 14 tissue-trait 
pairs contain 6 EA associations and 6 MPV associations. As tissue-specific annotations are 
partially confounded by other important genomic features, we hypothesize that conditioning 
on the average TPRS partially adjusts for these factors. In a related context, s-LDSC addresses 
this bias through the ``baseline’’ genomic feature model (Finucane et al., 2018, 2015). More 
broadly, we caution that all standard caveats from genomic enrichment analyses apply—they 
are noisy, continually being improved, and liable to confounding from unadjusted genomic 
annotations, including both unmeasured tissues and more generic genomic features. 
 
Tissue-pair CI in UK Biobank 
 
We next ask whether CI can be detected between pairs of tissues based on the hypothesis that 
pathways may be tissue specific. Rather than test the interaction between tissue-specific PRSo 
and global PRSe, we now test for interaction between tissue 1-specific PRSo and tissue 2-specific 
PRSe.  For tissue-specific CI, we adjust for the same covariates as above, and now additionally 
adjust for	PRSO ∗ TPRSP and TPRSO ∗ PRSP .  In particular, these tissue-x-tissue tests are 
statistically independent of the even-odd tests and the tissue-specific tests in the above 
sections under the null hypothesis for tissue-tissue interaction. 
 
If tissue-x-tissue CI exists, it will likely cause tissue-specific CI, hence conditioning on tissue-trait 
pairs that are nominally significant will likely increase power. This reduction in testing 
dimension is particularly important for these tests because the number of tests multiplies by 
the number of evaluated tissues squared. We find several suggestive hits. This includes muscle-
brain coordination for MPV, bolstering and elucidating the muscle-specific CI for this trait, 
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which was by far the strongest signal in our tissue-specific EO test (Figure 3). LDL also had 
several suggestive results, including several interactions between liver and muscle, adipose, and 
whole blood. Similarly, T2D had several suggestive tissue interactions, including muscle, liver, 
and hippocampus.  
 
 
Discussion 
 
Epistatic interactions between genetic variants can have profound influences on phenotypic 
distributions and evolutionary landscapes (Phillips, 2008). While there are numerous examples 
of epistasis in model organisms and in vitro studies (Bloom et al., 2015; Brem et al., 2005; 
Corbett-Detig et al., 2013; Forsberg et al., 2017; Huang et al., 2012; Mackay, 2014), especially 
between pairs of genes, relatively few examples have been observed for complex polygenic 
traits in humans. In this work we propose a specific form of epistasis called Coordinated 
Interaction, in which many SNPs in one pathway jointly skew the effects of SNPs in other 
pathways. This model is inspired by recent theories of human genetic architecture (Boyle et al., 
2017; Zuk et al., 2012). These pathways could represent distinct biological concepts, including 
different tissues (e.g. neurons and astrocytes in Alzheimer’s Disease) (Masters et al., 2015), 
different systems within a tissue (e.g. stress and immune response in Amyotrophic Lateral 
Sclerosis) (Phani et al., 2012), or unknown subtypes of a disease with partially distinct genetic 
risk factors (Dahl et al., 2019; Zuk et al., 2012). Importantly, coordination is fundamentally 
different from previous polygenic epistatic models: in particular, existing models assume a 
purely uncoordinated form of epistasis.  
 
We next developed a test, called the Even-Odd test for Coordinated Interaction, based on 
testing the interaction between polygenic risk scores constructed from independent 
chromosomes. We showed via extensive analytical examination and empirical simulation that 
our test will detect Coordinated Interaction even though the pathways are unknown. We 
further show that our test is robust to (at least) moderate population structure and assortative 
mating. The sign of 𝛾 determines which direction CI skews the polygenic contribution, which is 
closely connected to the probability of observing extreme phenotypes in either direction. In the 
natural case where trait values are nonnegative, positive/negative epistasis corresponds to 
synergy/antagonism between main effects. 
 
We observed evidence of Coordinated Interaction from the Even-Odd test for many phenotypes 
in the UKBB including blood, anthropometric, and disease phenotypes. We interpret this as 
evidence that Coordinated Interaction likely affects a broad range of phenotypes across many 
domains. To further investigate the Coordinated Interaction, we examined PRS restricted to 
genomic regions annotated to specific tissues and found biologically plausible results. 
Interestingly, for several phenotypes, the tissue-specific EO p-value increased in significance 
despite the fact that the total variance explained decreased. This suggests that tissue-specific 
annotations are enriched for true latent pathways in a trait-relevant way.  
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There are several limitations to this work and potential avenues to improving the Even-Odd 
test. First, more accurate PRS will improve the power of the test, either through more 
sophisticated models for PRS or through larger external reference datasets. Second, the EO test 
uses a random split of SNPs into even and odd PRS, which has low correlation with the true 
latent pathways and in turn reduces power. Using tissue-specific PRS is a step toward 
identifying which genomic regions harbor the greatest CI. Nonetheless, current variant-level 
annotations are imprecise, and other annotations may be more relevant depending on 
researcher interest and underlying trait biology. For example, annotations for cell-type 
specificity, gene ontology, inferred co-expression networks, or other functional categories 
related to methylation and chromatin state may be worth exploring. Third, the Bonferroni 
correction we use is overly conservative due to the strong correlation between splits (and 
tissues); some recent theoretical progress on testing multiple exchangeable hypotheses may 
enable power gains in the future (Rosset et al., 2018).  Fourth, our random chromosome-
splitting procedure itself has noise, and jointly testing all 210 pairs of chromosome-specific PRS 
interactions may add power; however, this is infeasible for modest data sets or for the 
extensions to test annotation-specific CI enrichment. Fifth, as with any test of interaction, 
phenotypic scale can impact results. However, we show that the sign and existence of CI is 
preserved under rescaling, either on average or under smooth transformation, and hence CI is 
(approximately) ‘essential’ (Sverdlov and Thompson, 2018). Sixth, we have not yet directly 
connected CI estimates to their impact on genetic architecture and heritability, though we do 
outline a path forward in the Supplementary Methods. Finally, as for all epistasis tests, the EO 
test only detects statistical CI, not biological CI. For example, a disease that has two subtypes 
with distinct, purely additive genetic bases will exhibit CI even though neither subtype has any 
epistasis at all. On the other side of the coin, though, CI can be a useful way to demonstrate the 
existence of unmodeled subtypes. 

 
Going forward, several immediate extensions are interesting to explore. One could examine 
SNP x PRS interaction, or gene x PRS interaction as in TWAS (Gamazon et al., 2015; Gusev et al., 
2016). This will add substantial power when the main effect of a highly-penetrant gene or SNP 
depends heavily on genetic background. Second, expanding to other traits and annotations 
could help refine the pathways involved and increasingly home in on causal mechanisms. For 
example, annotation of SNPs based on association with environmental factors, such as diet, 
exercise, smoking, or stress, can inform the nature of GxE interactions. Third, SNPs in genes 
known to influence specific pathways from in vitro molecular assays could be examined at the 
population scale in the full organismal context. For example, the genes in the Ribosomal Quality 
Control pathway are known to influences degradation of misfolded proteins (Brandman et al., 
2012; Hickey et al., 2019), and this pathway may have important interactions with disease- or 
trait-specific coding variants segregating in the population. Finally, CI may have implications for 
medical interventions, which are generally pathway-specific. For example, if asthma exhibits 
strong positive CI between immune and lung pathways, intervening on either pathway will be 
sufficient to reduce disease burden; conversely, if LDL exhibits negative CI across liver- and BMI-
driven pathways, it may be important to simultaneously address both pathways in order to 
control blood cholesterol. 
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Methods 
 
Simulation description 
Phenotypes and genotypes were generated under three phenotypic models (additive, 
uncoordinated interaction, and coordinated interaction) and three population models (random 
mating, assortative mating, and population structure) (Supplementary Methods).  For each 
simulation, genotypes were generated for 2,000 individuals at 500 SNPs.  Half of the individuals 
were randomly selected for the training set, in which the phenotype 𝑦 was regressed on each 
genotype 𝑔J  to calculate the estimated effect,  𝛽XJ	, of each simulated SNP.  The estimated 
effects of 𝑔J  at each SNP were used as weights in the calculation of polygenic risk scores in the 
remaining 1,000 individuals (𝑃𝑅𝑆\ = 	∑ 𝑔J𝛽XJ^__

J/0 ). PRS were also calculated separately for even-
indexed and odd-indexed SNPs.  
  
Model testing 
To evaluate each population and phenotype model, linear regression was used to calculate the 
association between 1) the full PRS and phenotype, 2) the odd PRS and the even PRS, and 3) the 
interaction effect between the odd PRS and the even PRS on the phenotype.  Under the 
assumption of random mating within a population, PRS calculated from unlinked SNPs (i.e. 
even/odd indexed) should be uncorrelated. To demonstrate this in our simulated populations, 
and to show that it does not hold under the scenario of assortative mating and population 
structure, the PRS calculated from even-indexed SNPs was regressed on PRS from odd-indexed 
SNPs.  To test for models where the even-odd interaction between risk scores has a significant 
effect on phenotype, each phenotype was regressed on even PRS, odd PRS and an even by odd 
interaction term 𝑦	~	𝛽_ + 𝛽0𝑃𝑅𝑆O`Oa +	𝛽B𝑃𝑅𝑆Pbb + 𝛽c𝑃𝑅𝑆O`Oa𝑃𝑅𝑆Pbb.  The test was also 
performed conditional on the first 5 genetic PCs as covariates to evaluate this common 
approach to correct for population structure.     
 
UKBB data description 
Data was obtained from the UK Biobank project (Bycroft et al., 2018). We used imputed 
genomic data version 3.  We used the same phenotypic transformations as defined in (Finucane 
et al., 2018). Education level categories (data field #6138) were transformed to numerical 
values according to (Okbay et al. 2016 Nature) as follows: “College or University degree” = 20 
years; “A levels/AS levels or equivalent” = 13 years; “O levels/GCSEs or equivalent” = 10 years; 
“CSEs or equivalent” = 10 years; “NVQ or HND or HNC or equivalent“ = 19 years; “Other 
professional qualifications eg: nursing, teaching” = 15 years; “None of the above” = 7 years; 
“Prefer not to answer” = missing . BMI was used as computed by UKBB (data field #21001). Heel 
bone mineral density (BMD) T-score was computed as the sum of the left and right Heel BMD T-
score (data fields #4106 and 4125). Waist-hip Ratio was computed as the ratio of Waist 
circumference and Hip circumference (data fields #48 and 49). FEV1-FVC Ratio phenotype was 
computed as the ratio between data field ‘Forced vital capacity (FVC)’ (#3062) and ‘Forced 
expiratory volume in 1-second (FEV1)’ (#3063). T2D phenotype was based on data field 
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‘Diabetes diagnosed by doctor’ (#2443) where values as 'Prefer not to answer' and 'Do not 
know' were considered as missing data. Eczema allergy was based on data field ‘Blood clot, 
DVT, bronchitis, emphysema, asthma, rhinitis, eczema, allergy diagnosed by doctor’ (#6152) 
where the value ‘Hayfever, allergic rhinitis or eczema' was considered to define cases, 'Prefer 
not to answer' as missing, and the rest as controls. Asthma was based on the same data field, 
where only ‘Asthma’ values were considered as cases. High Cholesterol was determined based 
on samples with data code 1473 (‘high cholesterol’) in field ‘Non-cancer illness code, self-
reported’ (#20002), all other samples were defined as controls. Cardiovascular cases were 
defined according to (Gazal et al., 2018) as samples having any of the following codes in field 
‘Non-cancer illness code, self-reported’ (#20002): 1065 (hypertension); 1066 (heart/cardiac 
problem); 1067 (peripheral vascular disease); 1068 (venous thromboembolic disease); 1081 
(stroke); 1082 (transient ischaemic attack (tia)); 1083 (subdural haemorrhage/haematoma); 
1425 (cerebral aneurysm); 1473 (high cholesterol); 1493 (other venous/lymphatic disease). 
 
Sample selection 
Sample QC: We filtered out samples who were not classified as ‘White British’ (data field 
21000), or with discordance of genetic sex with declared sex (data fields 22001 and 31), or 
subjects who were identified as related to any other subject in the dataset as defined by UKBB 
(data field 22011). In total, 393076 subjects (180680 males, 212396 females) were included in 
further analysis. 
 
Genetic QC: We filtered out variants with minor allele frequency (MAF) lower than 0.1%. In 
total, 16,525,182 variants were included in farther analysis. We clumped the variants based on 
MAF with r2 threshold of 0.2 and distance of 250kb. In total, 3,425,447 variants were selected 
after clumping. Clumping was performed using Plink1.9 (Chang et al., 2015). For other steps we 
used Plink v2.00a (Chang et al., 2015). 
 
Internal PRS 
Cross validation by phenotype 
For each phenotype, we split subjects into 10 folds. For each fold we estimated effect size of 
each variant using the remaining 9 folds, and we then use these effect sizes to construct a PRS 
for the held-out fold. Quantitative phenotypes were normalized for each fold separately by first 
removing outliers as samples outside 1.5 times the interquartile range above the upper quartile 
or below the lower quartile, and then performing quantile normalization. Although such 
normalization will inevitably shrink the non-Gaussianity induced by true CI signal, we view this 
as an important normalization step to remain conservative. Moreover, we prove smooth 
monotone transforms cannot create, remove, or change the sign of CI in the SOM.  
 
PRS estimation consisted of two steps: (i) Effect size estimation; (ii) Compute PRS using selected 
variants. The first step is equivalent to performing a standard GWAS. For that purpose, we add 
as covariates the sex, age, center of assessment, genotyping batch, first 40 PCs as provided by 
UKBB, and BMI (except when BMI or T2D were the target phenotype). In the second step, PRS 
were computed for each fold for the 10% of samples that were not used to estimate the effect 
sizes. We computed PRS using a range of 11 P-values thresholds: 1.0, 0.1, 0.01, 0.05, 0.001, 
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0.0001, 1e-05, 1e-06, 1e-07, and 1e-08. Then for each phenotype, we chose the p-value 
threshold that maximized the percent variance explained in the held-out samples. We made an 
exception for asthma and used 0.0001, as the optimal choice (1e-05) gave zero weight to most 
chromosomes. 
 
External PRS 
An alternative approach is to use effect sizes estimated from external datasets. This must be a 
cohort with similar ancestry in which the UKBB subjects were not included. We used external 
summary statistics included in LD Hub (Zheng et al., 2017) from the following studies: Height 
[GIANT consortium (Wood et al., 2014)]; LDL and Triglycerides [Global Lipids Genetics 
Consortium (Willer et al., 2013)]; BMI [GIANT consortium (Locke et al., 2015)]; educational 
attainment [Social Science Genetic Association Consortium (Okbay et al., 2016)]; T2D 
[DIAGRAM Consortium (Morris et al., 2012)]; Asthma [A GABRIEL Consortium (Moffatt et al., 
2010)]; and CVD [CARDIoGRAMplusC4D Consortium (Nikpay et al., 2015)]. 
 
Tissue-specific variants 
Variants based on tissue-specific gene expression were defined as variants that fall within a 
100kb of the genes that were classified as differentially expressed genes by (Fehrmann et al., 
2015; Pers et al., 2015) similarly to (Finucane et al., 2018). Variants based on chromatin markers 
from the Roadmap project (Roadmap Epigenomics Consortium et al., 2015; The ENCODE 
Project Consortium, 2012). Any genomic location annotated with any of the DNase, H3K27ac, 
H3K36me3, H3K4me1, H3K4me3 and H3K9ac, was considered as ‘open chromatin’ region. To 
evaluate PRS based on tissue-specific variants, we used variants in the intersection of imputed 
variants from UKBB with MAF > 0.01% and variants that were classified as tissue-specific. We 
did not use the clumped set of variants, as the intersection of the two is small. 
 
Code Availability 
 
Code to generate internal and external PRS; to perform CI and tissue-specific CI tests; and for 
simulations: https://github.com/nadavrap/CoordinatedInteractions/ 
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Figure 1.  Coordinated Interaction and the Even-Odd test with two chromosomes. (a) In the 
additive model SNP effects from the two pathways are summed to produce the positive 
phenotype (𝛾 = 0). (b) Same as (a), except the pathways interact either positively 
(synergistically, ×, 𝛾 > 0) or negatively (antagonistically, ÷, 𝛾 < 0). (c) The even-odd test 
considers interaction from traits derived from the even and odd chromosomes in place of the 
unknown pathways truly driving the interaction.      
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Figure 2.   Coordinated Interaction in the UK Biobank. Minimum p-value split for EO test using 
cross-validated in-sample PRS for 21 quantitative traits (a) and 6 binary traits. (c) EO tests using 
external PRS for 8 of the quantitative and binary traits in (a) and (b) with external GWAS 
summary statistics available. In (a), the legend is only provided for the traits with highest mean 
–log10(p). 𝜏 is the p-value threshold used to construct the PRS and is chosen to maximize cross-
validated prediction accuracy. 
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Figure 3.  Tissue-specific Coordinated Interaction in the UK Biobank. Minimum p-value split for 
EO test using cross-validated in-sample PRS for 13 tissues and 21 quantitative traits (a) and 6 
binary traits (b). (c) EO tests using external PRS for 8 of the quantitative and binary traits in (a) 
and (b) with external GWAS summary statistics available. In (a), the legend is only provided for 
the traits with highest mean –log10(p). 𝜏 is the p-value threshold used to construct the PRS and 
is chosen to maximize cross-validated prediction accuracy. 
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Figure 4.  Candidate tissue-tissue CI in the UK Biobank. Points represent the minimum p-value 
for tissue-tissue CI over 100 splits of the chromosomes. Only tissue-trait pairs that are 
suggestively significant for tissue-specific CI are evaluated (i.e. p < 0.05/100 in Figure 3). 
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Table 1. Polygenic simulations under additivity, uncoordinated interaction, or coordinated 
interaction assuming random mating, population structure, or assortative mating. Mean, 
standard deviation, and positive rate are shown for estimates of 𝜃OP  and 𝛾OP for 10,000 
simulations, where all SNPs were randomly assigned to either PRSO	or PRSP .  PR is the positive 
rate, or the proportion of significant test statistics at 𝛼 = 0.05; sd is standard deviation.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0 1.0 (1.4) 0.0487 -- -- 1.0 (1.4) 0.0469 -- --
1 0 26.4 (10.2) 0.9992 -- -- 1.0 (1.4) 0.0496 -- --
0 1 7.6 (16.7) 0.3343 1.0 (1.4) 0.0502 1.0 (1.4) 0.0498 1.0 (1.4) 0.0504
0 0 1.0 (1.4) 0.0483 -- -- 1.0 (1.4) 0.0491 -- --
1 0 17.7 (8.3) 0.9845 -- -- 1.0 (1.4) 0.0513 -- --
0 1 7.5 (17.7) 0.3354 1.0 (1.4) 0.0519 1.0 (1.4) 0.0489 1.0 (1.4) 0.0507
0 0 1.0 (1.4) 0.0458 -- -- 18.7 (17.5) 0.7537 -- --
1 0 14.7 (10.1) 0.839 -- -- 55.4 (50.0) 0.8523 -- --
0 1 7.8 (17.7) 0.3345 1.0 (1.4) 0.0474 13.7 (13.9) 0.6884 14.9 (14.6) 0.712

PR α=0.05 PR α=0.05 PR α=0.05

-PCs

X 2 	(sd) X 2 	(sd) X 2 	(sd)X 2 	 (sd)

Additive

Uncoordinated 
Interaction

Coordinated 
Interaction

+PCs -PCs

Population 
Characteristics -eo:	PRSe	~	PRSo 5eo:	Y	~	PRSe	+	PRSo	+	PRSe*PRSo

Assortative 
Mating

Population 
Structure 

(FST = 0.1)

+PCs

PR α=0.05
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Table 2.  Even-odd test results for 12 traits with significant Coordinated Interaction in the UK 
Biobank. Significant traits, and external PRS replication for significant internal traits, are shown; 
results for all traits are shown in Supplementary Table 2. We summarize evidence for CI per 
trait using the minimum p-value over 100 random bifurcations, and we provide the CI estimate 
(g) for this top split. 𝜏 is the marginal SNP p-value threshold used to construct the PRS and is 
chosen to maximize cross-validated prediction accuracy.  “Int” indicates that the PRS was 
calculated using the cross-validation method with UKBB data (Methods).  “Ext” indicates that 
the PRS was calculated using GWAS summary statistics from external datasets (Methods).   PRS 
%VE describes the variance explained by the chosen PRS across all samples.  * indicates 
p<0.05/100 ; ** indicates p<.05/100/#tissues; and *** indicates 
p<.05/100/#tissues/#phenotypes 
 

Phenotype PRS Type 𝜏 Signif. Level Min p 𝛾 PRS %VE 
Platelet Vol. Int Cont 0.01 ** 2.60E-18 -1.60E-03 20.7 
Platelet # Int Cont 0.01 ** 1.30E-05 -9.40E-04 12.6 
Height Int Cont 0.1 * 1.10E-04 -3.00E-04 11.7 
Platelet Distn Width Int Cont 0.01 * 1.10E-04 -5.50E-04 9.3 
Sphered Cell Vol Int Cont 0.01 * 1.80E-04 -1.20E-03 9.2 
Monocyte # Int Cont 0.01 ** 1.40E-05 -6.20E-04 7.4 
LDL Int Cont 0.0001 ** 7.30E-11 -8.20E-03 5.9 
Edu Years Int Cont 1 ** 2.10E-06 4.10E-04 5.7 
BMI Int Cont 1 ** 1.80E-06 -3.00E-04 5.6 
Lymphocyte # Int Cont 0.1 * 4.40E-04 -3.40E-04 5.5 
Eosinophil # Int Cont 0.01 * 3.20E-04 -4.20E-04 5.0 
Triglycerides Int Cont 0.01 * 2.50E-04 -1.30E-03 4.8 
T2D Int Bin 0.001 * 3.30E-05 -5.00E-03 0.7 
Asthma Int Bin 0.001 ** 2.50E-07 5.60E-03 0.6 
Edu Years Ext Cont 1 ** 7.40E-07 1.50E-06 7.7 
Height Ext Cont 1 

 
2.90E-03 8.00E-07 7.3 

BMI Ext Cont 1 * 3.70E-04 -2.60E-06 5.6 
Triglycerides Ext Cont 0.01 * 5.50E-05 -1.10E-05 3.5 
LDL Ext Cont 0.01 ** 7.70E-08 -2.40E-05 2.6 
T2D Ext Bin 1 

 
4.90E-02 -1.30E-05 0.7 

Asthma Ext Bin 0.0001 * 2.90E-04 8.10E-05 0.6 
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Table 3.  Tissue-specific CI in the UK Biobank. Trait-tissue pairs with significant tissue-specific 
Coordinated Interaction. All pairs where at least one chromosome split has p < 0.05/100 are 
shown (*); ** indicates p<.05/100/#tissues; and *** indicates 
p<.05/100/#tissues/#phenotypes. The prefix “F.” indicates that the tissue annotation is derived 
from Franke lab (Fehrmann et al., 2015; Pers et al., 2015).  “Int” indicates that the PRS was 
calculated using the cross-validation method with UKBB data (Methods).  “Ext” indicates that 
the PRS was calculated using GWAS summary statistics from external datasets (Methods).  𝜏 is 
the marginal SNP p-value threshold used to construct the PRS and is chosen to maximize cross-
validated prediction accuracy.   
 

Phenotype Tissue PRS  𝜏 Signif.  Min p over bifurcations PRS % Variance Explained 
     Overall Tissue Overall Tissue Background 
CVD F.Brain Int 0.1 * 5.50E-03 1.50E-04 0.7 0.7 0.7 
Asthma F.Blood.Cells Int  0.001 * 2.50E-07 6.80E-05 0.6 0.6 0.6 

0.6 Liver * 2.00E-04 0.6 
BMI F.Blood.Cells Int 1 ** 1.80E-06 3.90E-06 5.6 1.2 4.0 

F.Muscles Ext 1 * 3.70E-04 2.40E-04 5.6 1.0 4.1 
Corp. 
Hemoglobin 

F.Brain Int  0.01 ** 1.90E-03 3.10E-06 12.8 3.5 11.6 
F.Muscles * 1.50E-04 5.8 

Eosinophil # F.Blood.Cells Int  0.01 * 3.20E-04 1.20E-04 5.0 3.1 4.4 
Adipose * 9.20E-05 3.1 

Heel BMD F.Liver Int 0.01 * 7.00E-02 1.70E-04 6.3 1.9 5.0 
LDL  F.Blood.Cells Int  0.0001  * 7.30E-11 9.80E-05 5.9  1.6 5.4  

F.Liver ** 1.00E-05 4.8 
F.Pancreas * 8.90E-05 3.8 
Brain * 1.40E-04 4.6 
Skeletal Muscle * 1.10E-04 4.3 
F.Liver Ext  0.01  ** 7.70E-08 8.40E-06 2.6  2.5 3.0  
Adipose * 8.30E-05 2.4 
Skeletal Muscle * 4.60E-05 2.2 

Lymphocyte # F.Brain Int 0.1 * 4.40E-04 1.40E-04 5.5 1.6 5.3 
F.Pancreas * 1.80E-04 1.5 

Platelet Distn 
Width 

F.Pancreas Int 0.01 * 1.10E-04 9.50E-05 9.3  4.1 9.2 
Liver * 7.10E-05 6.7 

Platelet Vol.  F.Brain Int  0.01  * 2.60E-18 3.50E-05 20.7  7.8 17.8  
F.Liver ** 1.40E-06 5.8 
F.Muscles *** 2.40E-07 7.4 
Brain * 4.00E-05 14 
Liver * 5.50E-05 13.1 

RBC Distn 
Width  

F.Hippocampus Int  0.01  * 1.90E-03 1.90E-04 8.0  2.6 8.5  
F.Muscles * 2.00E-04 3.1 
Skeletal Muscle * 1.50E-04 7.2 

Reticulocyte # Brain Int 0.01 ** 1.20E-02 4.90E-06 6.6 4.5 5.5 
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Hippocampus * 1.40E-04 4.0 
T2D 
 

F.Adipocytes Int 
 

0.001 
 

* 3.30E-05 
 

9.80E-05 0.7 
 

0.7 0.7 
 F.Hippocampus ** 1.20E-05 0.7 

F.Liver * 2.70E-05 0.7 
F.Pancreas * 9.50E-05 0.7 
Brain * 1.50E-04 0.7 
Pancreas * 1.40E-04 0.7 
Skeletal Muscle * 1.70E-04  
F.Brain Ext 1 * 4.90E-02 1.60E-04 0.7 0.7 0.7 
F.Liver * 1.50E-04 0.7 

WBC # F.Adipocytes Int 0.1 * 1.00E-03 1.20E-04 5.2 1.9 5.2 
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Supplementary Figure 1.  Coordinated Interaction estimates in the UK Biobank. Even-odd test 
statistics for CI using (a) cross-validated in-sample PRS for 21 quantitative traits (b) the same for 
5 binary traits and (c) external PRS for 8 quantitative and binary traits. In (a), the legend is only 
provided for the traits with highest mean –log10(p). Each small point represents a single 
bifurcation of 22 autosomes. Bifurcations passing a strict Bonferroni threshold are highlighted 
as squares. 
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Supplementary Figure 2.  Coordinated Interaction in the UK Biobank at stricter thresholds. 
Even-odd tests for CI using (a) cross-validated in-sample PRS for 21 quantitative traits (b) the 
same for 5 binary traits and (c) external PRS for 8 quantitative and binary traits. In (a), the 
legend is only provided for the traits with highest mean –log10(p). Compared to main Figure 2, 
these analyses used 10-fold smaller p-value thresholds when constructing PRS. 
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Supplementary Figure 3. Tissue-specific Coordinated Interaction in the UK Biobank, 
unadjusted. Minimum p-value split for EO test using cross-validated in-sample PRS for 13 
tissues and 21 quantitative traits (a) and 6 binary traits (b). (c) EO tests using external PRS for 8 
of the quantitative and binary traits in (a) and (b) with external GWAS summary statistics 
available. In (a), the legend is only provided for the traits with highest mean –log10(p). 𝜏 is the 
p-value threshold used to construct the PRS and is chosen to maximize cross-validated 
prediction accuracy. 
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Supplementary Table 1. Polygenic simulations under additivity, uncoordinated interaction, or 
coordinated interaction assuming random mating, population structure, or assortative mating 
using correct SNPs in each group. Mean, standard deviation, and positive rate are shown for 
estimates of 𝜃OP  and 𝛾OP for 10,000 simulations, where SNPs used to calculate PRSe and PRSo 

were the exact SNPs used to generate the phenotype.  Positive rate (PR) is the proportion of 
significant test statistics at 𝛼 = 0.05; sd is standard deviation. 
 

 
 
  

0 0 1.0 (1.4) 0.0489 -- -- 1.0 (1.4) 0.0481 -- --
1 0 2.4 (2.8) 0.222 -- -- 1.0 (1.4) 0.0517 -- --
0 1 6.7 (15.8) 0.3231 1.0 (1.4) 0.0487 1.0 (1.4) 0.0475 1.0 (1.4) 0.0493
0 0 1.0 (1.4) 0.0471 -- -- 1.0 (1.4) 0.0535 -- --
1 0 2.4 (2.8) 0.2152 -- -- 1.0 (1.4) 0.0503 -- --
0 1 6.8 (16.2) 0.3257 1.0 (1.4) 0.0472 1.0 (1.4) 0.0518 1.0 (1.5) 0.0549
0 0 1.0 (1.4) 0.0484 -- -- 185.2 (139.9) 0.9437 -- --
1 0 3.7 (3.9) 0.3646 -- -- 291.1 (220.4) 0.9527 -- --
0 1 7.9 (18.8) 0.3343 1.0 (1.4) 0.0498 167.7 (134.6) 0.9335 180.1 (141.5) 0.935

X 2 	(sd) PR α=0.05

Additive

Uncoordinated 
Interaction

Coordinated 
Interaction

X 2 	(sd) PR α=0.05 X 2 	(sd) PR α=0.05 X 2 	 (sd) PR α=0.05

Population 
Characteristics -eo:	PRSe	~	PRSo 5eo:	Y	~	PRSe	+	PRSo	+	PRSe*PRSo

Assortative 
Mating

Population 
Structure 

(FST = 0.1)

-PCs +PCs -PCs +PCs
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Supplementary Table 2.  Even-odd test results for all traits in the UK Biobank. We summarize 
evidence for CI per trait using the minimum p-value over 100 random bifurcations, and provide 
the CI estimate (g) for this top split. “Int” indicates that the PRS was calculated using the cross-
validation method with UKBB data (Methods).  “Ext” indicates that the PRS was calculated using 
GWAS summary statistics from external datasets (Methods).  𝜏 is the p-value threshold for the 
PRS and is chosen to optimize cross-validated prediction. PRS %VE describes the PRS variance 
explained. 
 

Phenotype PRS Type 𝜏 Signif. Level Min p 𝛾 PRS %VE 

Platelet Vol. Int Cont 0.01 ** 2.60E-18 -1.60E-03 20.69 
Corp. Hemoglobin Int Cont 0.01  1.90E-03 -5.20E-04 12.84 
Platelet # Int Cont 0.01 * 1.30E-05 -9.40E-04 12.63 
Height Int Cont 0.1 * 1.10E-04 -3.00E-04 11.68 
Platelet Distn Width Int Cont 0.01 * 1.10E-04 -5.50E-04 9.26 
Sphered Cell Vol Int Cont 0.01 * 1.80E-04 -1.20E-03 9.2 
RBC Distn Width Int Cont 0.01  1.90E-03 -7.00E-04 7.98 
Monocyte # Int Cont 0.01 * 1.40E-05 -6.20E-04 7.37 
Reticulocyte # Int Cont 0.01  1.20E-02 4.30E-04 6.58 
RBC # Int Cont 0.01  1.50E-02 -3.70E-04 6.31 
Heel Bone Mineral Dens. Int Cont 0.01  7.00E-02 -1.50E-04 6.25 
LDL Int Cont 0.0001 ** 7.30E-11 -8.20E-03 5.92 
Edu Years Int Cont 1 ** 2.10E-06 4.10E-04 5.69 
BMI Int Cont 1 ** 1.80E-06 -3.00E-04 5.57 
Lymphocyte # Int Cont 0.1  4.40E-04 -3.40E-04 5.54 
WBC # Int Cont 0.1  1.00E-03 -3.30E-04 5.18 
Eosinophil # Int Cont 0.01  3.20E-04 -4.20E-04 5.02 
Triglycerides Int Cont 0.01  2.50E-04 -1.30E-03 4.76 
FEV1FVCzSMOKE Int Cont 0.1  1.00E-02 2.00E-04 4.22 
Basal Metabolic Rate Int Cont 0.1  7.90E-02 -8.90E-05 3.53 
Glucose Int Cont 0.0001  2.70E-03 2.20E-05 2.77 
High Cholest. Int Bin 1.00E-05  4.50E-03 -1.10E-02 0.72 
CVD Int Bin 0.1  8.90E-03 2.00E-04 0.69 
T2D Int Bin 0.001 * 7.40E-05 -4.70E-03 0.67 
Asthma Int Bin 0.001 ** 4.50E-07 5.60E-03 0.61 
Eczema Int Bin 0.01  1.20E-02 8.80E-04 0.61 
Edu Years Ext Cont 1 ** 7.40E-07 1.50E-06 7.68 
Height Ext Cont 1  2.90E-03 8.00E-07 7.31 
BMI Ext Cont 1  3.70E-04 -2.60E-06 5.62 
Triglycerides Ext Cont 0.01 * 5.50E-05 -1.10E-05 3.49 
LDL Ext Cont 0.01 ** 7.70E-08 -2.40E-05 2.56 
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T2D Ext Bin 1  4.90E-02 -1.30E-05 0.68 
CVD Ext Bin 1  1.60E-01 1.20E-08 0.68 
Asthma Ext Bin 0.0001  4.80E-02 1.40E-04 0.57 
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