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Abstract

The aggregation and joint analysis of large numbers of
exome sequences has recently made it possible to de-
rive estimates of intolerance to loss-of-function (LoF)
variation for human genes. Here, we demonstrate
strong and widespread coupling between genic LoF-
intolerance and promoter CpG density across the human
genome. Genes downstream of the most CpG-rich pro-
moters (top 10% CpG density) have a 67.2% probability
of being highly LoF-intolerant, using the LOEUF metric
from gnomAD. This is in contrast to 7.4% of genes down-
stream of the most CpG-poor (bottom 10% CpG density)
promoters. Combining promoter CpG density with ex-
onic and promoter conservation explains 33.4% of the
variation in LOEUF, and the contribution of CpG den-
sity exceeds the individual contributions of exonic and
promoter conservation. We leverage this to train a sim-
ple and easily interpretable predictive model that out-
performs other existing predictors and allows us to clas-
sify 1,760 genes – which currently lack reliable LOEUF
estimates – as highly LoF-intolerant or not. These pre-
dictions have the potential to aid in the interpretation of
novel patient variants. Moreover, our results reveal that
high CpG density is not merely a generic feature of hu-
man promoters, but is preferentially encountered at the
promoters of the most selectively constrained genes, call-
ing into question the prevailing view that CpG islands
are not subject to selection.

Introduction

A powerful way of gaining insight into a gene’s con-
tribution to organismal homeostasis is by studying the
fitness effect exerted by loss-of-function (LoF) variants
in that gene. Fully characterizing this effect is challeng-
ing, as it requires estimation of both the selection coeffi-
cient for individuals with biallelic LoF variants, as well

as the dominance coefficient (Falconer, Mackay, 1996;
Fuller et al., 2019). However, recent studies based on the
joint processing and analysis of large numbers of exome
sequences have developed metrics which serve as ap-
proximations to genic LoF-intolerance in humans (Petro-
vski et al., 2013; Lek et al., 2016; Karczewski et al., 2019).
These metrics correlate with several properties indica-
tive of LoF-intolerance (such as enrichment for known
haploinsufficient genes; Lek et al. (2016) and Karczewski
et al. (2019)), and can substantially help in the assign-
ment of pathogenicity to novel variants encountered in
patients as recommended by the American College of
Medical Genetics and Genomics (Abou Tayoun et al.,
2018).

At the core of all these metrics is a comparison of
the observed to the expected number of LoF variants.
Hence, genes where the latter is small (e.g. due to small
coding sequence length or low mutation rate) will not
be amenable to this approach until the sample sizes be-
come much larger than they presently are. Currently
in gnomAD, the largest such effort with publicly avail-
able constraint data based on 125,748 exomes, approx-
imately 28% of genes lack reliable LoF-intolerance esti-
mates (Karczewski et al., 2019). It has been estimated
that even with 500,000 indviduals, the discovery of LoF
variants will remain far from saturation, with potentially
a sizeable fraction of genes still difficult to ascertain (Zou
et al., 2016).

The cardinal feature of highly LoF-intolerant genes,
i.e. genes depleted of even monoallelic LoF variants in
healthy individuals, is dosage sensitivity; a gene copy
containing one or more LoF variants produces mRNAs
that are typically degraded via nonsense-mediated de-
cay (Lykke-Andersen, Jensen, 2015; Lindeboom et al.,
2019). Therefore, the deleterious effects of LoF variants
in these genes are often mediated through a reduction of
the normal amount of mRNA used for protein produc-
tion. This in turn, implies that studying the character-
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Figure 1. The relationship between promoter CpG density and downstream gene loss-of-function
intolerance. (a) The distribution of genic LOEUF (as provided by gnomAD) in each decile of promoter CpG
density. The vertical line corresponds to the cutoff for highly LoF-intolerant genes (LOEUF < 0.35). (b) Odds
ratios and the corresponding 95% confidence intervals, quantifying the enrichment for highly LoF-intolerant
genes (LOEUF < 0.35) that is exhibited by the set of genes in each decile of promoter CpG density. For each of
the other deciles, the enrichment is computed against the 10th decile. The horizontal line corresponds to zero
enrichment. In both (a) and (b), CpG density deciles are labeled from 1-10 with 1 being the most CpG-poor
and 10 the most CpG-rich decile.

istics of regulatory elements controlling the expression
of highly LoF-intolerant genes has the potential to yield
two important benefits (Han et al., 2018; Wang, Gold-
stein, 2020). First, it can highlight the features of the
most functionally important regulatory elements in the
human genome. Second, such features can then pro-
vide the basis for predictive models of LoF-intolerance,
which can be applied to unascertained genes.

In promoters, one sequence feature that has been ex-
tensively studied is CpG density. A large number of
mammalian promoters harbor CpG islands (AP Bird,
1987; Deaton, A Bird, 2011), which typically remain
constitutively unmethylated in all cell types (Meissner
et al., 2008; Straussman et al., 2009). Recently, it has
been shown that clusters of unmethylated CpG dinu-
cleotides are recognized by CxxC-domain containing
proteins (Lee et al., 2001; Long et al., 2013), thereby facil-
itating the deposition of transcription-associated marks
such as H3K4me3 (Thomson et al., 2010; Clouaire et al.,
2012; Wachter et al., 2014). Additionally, there is now ev-
idence that unmethylated CpGs surrounding transcrip-
tion factor (TF) motifs may contribute to promoter ac-
tivity by also increasing the probability that the cognate
TFs will bind (White et al., 2013; Hartl et al., 2019).

Results

Promoter CpG density is strongly and quantitatively
associated with downstream gene LoF-intolerance

We discovered a strong relationship between the
observed-to-expected CpG ratio (hereafter referred to
as CpG density) of a promoter, and LoF-intolerance of
the downstream gene (Figure 1a, b); high CpG den-
sity is associated with high LoF-intolerance. To estab-
lish this, we used the LOEUF metric provided by gno-
mAD, an updated and more accurate measure of genic
LOF-intolerance compared to pLI (Karczewski et al.,
2019). LOEUF places human genes on a 0-to-2 con-
tinuous scale, with lower values indicating higher LoF-
intolerance. Following previous work (Cummings et al.,
2019), we classified genes with LOEUF < 0.35 as highly
LoF-intolerant. In Karczewski et al. (2019), genes with
≤ 10 expected LoF variants were found to have unreli-
able LOEUF estimates. Based on additional assessment
(Supplemental Figure S1; Methods), we here adopted
a more stringent threshold and considered 8,506 genes
with ≥ 20 expected LoF variants. We further filtered
this set down to 4,743 genes for which we could reli-
ably determine the canonical promoter (Supplemental
Figure S2; Methods; Supplemental Figure S3 contains
a schematic of our approach to partitioning genes ac-
cording to the reliability of their LOEUF estimate and
promoter annotation).

When ranked according to the CpG density of their
promoter, genes in the top 10% have a 67.2% probabil-
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Figure 2. The relationship between promoter CpG density and loss-of-function intolerance conditional
on downstream gene expression level and tissue specificity (τ). (a) The distribution of LOEUF, stratified by
promoter CpG density, in each quartile of downstream gene expression level, computed using the GTEx
dataset (Methods). (b) The distribution of LOEUF, stratified by promoter CpG density, in each quartile of
downstream tissue specificity. For each gene, tissue specificity is quantified by τ, and is computed using the
GTEX dataset (Methods). For both (a) and (b) quartiles are labeled from 1-4, with 1 being the quartile with the
lowest and 4 the quartile with the highest expression/tissue specificity, respectively. (c) The percentage of
LOEUF variance (adjusted r2) that is explained by downstream gene expression level, τ, the interaction
between the two, and promoter CpG density.

ity of being highly LoF-intolerant. This in contrast to
7.4% for genes in the bottom 10%, yielding a 25.6-fold
enrichment (p < 2.2 · 10−16; Figure 1b). We note that
there is a continuous gradient of enrichment across CpG
density deciles (Figure 1b). When splitting genes into
just two groups, consisting of those with CpG island-
overlapping promoters, and those without, we found
that the enrichment for highly LoF-intolerant genes in
the CpG-island-overlapping group is markedly weaker
(odds ratio = 3.71, p < 2.2 · 10−16), showing that this
dichotomy masks the more continuous nature of CpG
density. Finally, regression modeling revealed that CpG
density alone can explain 19.3% of the variation in
LOEUF (p < 2.2 · 10−16, β = −1.02; (Supplemental Fig-
ure S4; Methods), and that its effect on LOEUF is un-
changed when accounting for coding sequence length
(p < 2.2 · 10−16, β = −1.00).

We emphasize that our result remains pronounced
even when we omit the filtering for high-confidence
promoters, and merely consider all canonical promoters
with ≥ 20 expected LoF variants (p < 2.2 · 10−16; Sup-
plemental Figure S5). However, the association becomes
weaker (14.6-fold enrichment of highly LoF-intolerant
genes in the top CpG density decile), underscoring the
importance of accurate promoter annotation. We also
verified that the exact definition of the promoter (in
terms of the size of the interval around the TSS) has only

a small impact on strength of the relationship between
CpG density and LOEUF (Supplemental Figure S6).

The association between CpG density and LoF-
intolerance is not mediated through expression level
or tissue specificity

The more LoF-intolerant a gene is, the more broadly it
tends to be expressed across tissues, and at higher levels
(Lek et al., 2016; Karczewski et al., 2019). Even though
it is well established that promoter CpG density is asso-
ciated with these two properties as well (Saxonov et al.,
2006; Agarwal, Shendure, 2018; Hartl et al., 2019), we
found that neither variable explains our result (Figure 2,
Supplemental Figure S7). First, after stratifying genes
according to either expression level or tissue specificity
(using RNA-seq data from the GTEx consortium; Meth-
ods), we saw a clear relationship between promoter CpG
density and LOEUF within each stratum (Figure 2a, b).
Second, the effect of CpG density on LOEUF is almost
equally strong when adjusting for either expression level
or tissue specificity (regression β = −1.00 and −0.85, re-
spectively, p < 2.2 · 10−16 for both regression models).
Third, even the combination of the two expression prop-
erties explains less LOEUF variance than CpG density
by itself (Figure 2c).
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Figure 3. The loss-of-function intolerance of tissue-specific genes conditional on high promoter
CpG-density and promoter EZH2 binding. (a) The median number of ENCODE ChIP-seq experiments (out
of 14 total) where an EZH2 peak is detected, shown separately for tissue-specific (τ > 0.6) and broadly
expressed (τ < 0.6) genes, within each quartile of promoter CpG density. The quartiles are labeled from 1-4,
with 1 being the most CpG-poor and 4 the most CpG-rich. (b) The LOEUF distributions of tissue-specific
genes with high-CpG-density (top 25%) promoters, stratified according to whether their promoters show
EZH2 peaks in at least 2 ENCODE experiments, or in less than 2 experiments.

Regulatory factor binding at promoters provides infor-
mation about LoF-intolerance which adds to CpG den-
sity

We next turned our attention to the fraction of LOEUF
variation (80.7%) that remains unexplained by CpG den-
sity. We hypothesized that part of it might be explained
by preferential binding of specific regulatory factors at
LoF-intolerant gene promoters. Since a comprehensive
assessment of this is currently out of reach (due to the
lack of extensive genome-wide binding data for most
regulatory factors), we focused on EZH2 as a proof-of-
principle. EZH2 is a relatively well-characterized hi-
stone methylstransferase that specifically localizes to
CpG islands of non-transcribed genes (Figure 3a, Sup-
plemental Figure S8; Riising et al. (2014) and Berrozpe
et al. (2017)).

We discovered that tissue-specific genes with CpG-
dense and EZH2-bound promoters (EZH2 binding in at
least 2 ENCODE experiments) have lower LOEUF com-
pared to their EZH2-unbound counterparts (Figure 3b;
regression β = −5.66, p = 5.21 · 10−8, for the interaction
between CpG density and EZH2 binding, conditional
on tissue specificity τ > 0.6). In this subset of promot-
ers, the interaction of EZH2 binding with CpG density
explains an additional 27.1% of LOEUF variance on top
of what CpG density explains (2.1%).

Promoter CpG density with promoter and exonic
across-species conservation can collectively predict
LoF-intolerance with high accuracy

We then sought to develop a predictive model for LoF-
intolerance, with the goal of providing high-confidence
predictions for the 2,430 genes with currently unreliable
LOEUF scores and reliable promoter annotation. Specifi-
cally, we aimed to classify genes as highly LoF-intolerant
(LOEUF< 0.35) or not.

To build our model, we first separately computed
the promoter and exonic across-species conservation
for each gene (using the PhastCons score; Methods),
and asked if they provide information about LOEUF
complementary to CpG density. We found this to be
true (Figure S9c and Supplementary Figure S9a,b); no-
tably, CpG density explains at least as much LOEUF
variance as exonic or promoter conservation (Figure 4a).
When all three metrics are combined, 33.4% of the total
LOEUF variation is explained (Figure 4a). We note that
while EZH2 binding explains a substantial amount of
LOEUF variance when considering tissue-specific genes
with high-CpG-density promoters, these are a small sub-
set. Hence, inclusion of this feature only minimally in-
creases the overall explained variance (0.4% increase).
We therefore settled on training a logistic regression
model with CpG density, and promoter/exonic conser-
vation as three linear predictors. As our training set we
used 3,000 genes, randomly selected from the 4,743 with
high-confidence LOEUF estimates.

Our predictor, which we called predLoF-CpG (predic-
tor of LoF-intolerance based on CpG density) showed
strong out-of-sample performance on the test set of the
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Figure 4. Training and assessing predLoF-CpG: a predictor of loss-of-function intolerance based on CpG
density. (a) The percentage of LOEUF variance (adjusted r2) that is explained by CpG density, exonic or
promoter conservation, and their combinations. (b) The out-of-sample performance of predLoF-CpG. Shown
are the LOEUF distributions of 1,743 genes belonging to the holdout test set (which consists of genes with
reliable LOEUF estimates), stratified according to their classification as highly LoF-intolerant or not. The
dashed vertical line corresponds to the cutoff for highly LoF-intolerant genes (LOEUF < 0.35). (c) The
precision (y axis, left column) and negative predictive value (y axis, right column) plotted against the number
of correctly classified genes (x axis), for different predictors of loss-of-function intolerance. Each point
corresponds to a threshold. The thresholds span the [0,1] interval, with a step size of 0.05. We note that
because we are using two classification thresholds, a ROC curve would not be an appropriate evaluation
metric here.

remaining 1,743 genes. The precision (positive predic-
tive value) was 82.6% at the 0.75 prediction probabil-
ity cutoff, and the negative predictive value was 88.4%
at the 0.25 cutoff (Figure 4b); 144 genes were predicted
to be highly LoF-intolerant, 753 were predicted as non-
highly LoF-intolerant, and 806 (47.3%) were left unclas-
sified. We chose to use two thresholds instead of one,
at the expense of leaving a fraction of genes unclassi-
fied, since this endows our predictor with precision and
negative predictive value high enough to be useful in
the clinical setting. We note that our predictive accu-
racy is comparable to that of widely adopted tools for
predicting damaging missense variants (Sim et al., 2012;
Adzhubei et al., 2013). Further examining our out-of-
sample classifications, we found that a) the genes falsely
predicted as highly LoF-intolerant had a median LOEUF
of 0.49, indicating that at least half of them are very LoF-

intolerant despite not exceeding the 0.35 cutoff, and b)
the genes correctly predicted as non-highly LoF intoler-
ant had a median LOEUF of 0.86, suggesting that at least
half of them are likely to tolerate biallelic inactivation as
well (Figure 4b).

Regardless of the choices for the two classification
thresholds, predLoF-CpG outperforms all of the pre-
viously published predictors of LoF-intolerance (Fig-
ure 4c). Specifically, all models have comparable and
high negative predictive value, with ours being slightly
superior (Figure 4c). However, within a range of thresh-
olds that yield high precision, as would be required
for use in clinical decision making, predLoF-CpG pro-
vides clear gain versus the rest (Figure 4d, upper left
area of left column plots). As an additional evaluation,
we found that predLoF-CpG is capable of explaining
a greater proportion of out-of-sample LOEUF variance
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Figure 5. Using predLoF-CpG to classify currently unascertained genes as highly loss-of-function
intolerant or not. (a) The distribution of point estimates of the observed/expected proportions of LoF
variants. Genes are stratified according to their classification as highly LoF-intolerant or not. (b) The
proportion of promoters which harbor deletions in a sample of 14,891 healthy individuals. Promoters are
stratified according to downstream gene classification as highly LoF-intolerant or not. (c) The distribution of
the size of deletions harbored by promoters in a sample of 14,891 healthy individuals. Promoters are stratified
according to downstream gene classification as highly LoF-intolerant or not. (d) Odds ratios and the
corresponding 95% confidence intervals quantifying the enrichment for genes in each of the x-axis groups
that is exhibited by genes predicted as highly LoF-intolerant by predLoF-CpG. The enrichment is computed
against genes predicted as non-highly LoF-intolerant. The horizontal line at 1 corresponds to zero enrichment.

compared to the other three (Supplemental Figure S10).
Finally, we mention GeVIR, a recently developed met-

ric (primarily for intolerance to missense, but also use-
ful for LoF variation; Abramovs et al. (2020)) which
identifies regions depleted of protein-altering variation
(Havrilla et al., 2019), and weights these regions by con-
servation within each gene. As expected given its depen-
dency on observed variation, GeVIR exhibits substan-
tial correlation with the expected number of LoF vari-
ants (Spearman correlation = 0.42 vs 0.26 for predLoF-
CpG). This limits its applicability to genes with unre-
liable LOEUF, even though the weighting step slightly
alleviates this issue compared to LOEUF (Spearman cor-
relation = 0.49).

32.5% of currently unascertained genes in gnomAD re-
ceive high-confidence predictions by predLoF-CpG

We applied predLoF-CpG to genes with unreliable
LOEUF estimates in gnomAD. After filtering for these
with high-confidence promoter annotation, we retained
2,430 (out of 5,413). Of these, 104 were classified as
highly LoF intolerant, 1,656 as non-highly LoF intoler-
ant and 670 were left unclassified (Supplemental Table 1).
We first examined the ratio of observed-to-expected LoF
variants in these genes. Even though these point esti-
mates are uncertain, there is a clear difference in the
distribution of the point estimates between genes we
classify as highly LOF intolerant (median = 0.14) and
those as not (median = 0.70), with the difference be-
ing in the expected direction (Figure 5a; Wilcoxon test,

p < 2.2 · 10−16).
Next, to provide orthogonal support for our predic-

tions, we leveraged a set of 175,716 deletions detected
in 14,891 healthy individuals using whole-genome se-
quencing (Methods) (Collins et al., 2019). We reasoned
that LoF-intolerant gene promoters should be depleted
of such deletions; when they do harbor deletions, these
should be small. By only considering promoters, we
ensured that our assessment is not dependent on gene
length, which confounds LOEUF estimation. Using
the 4,743 genes with high-confidence LOEUF (from the
training and test sets), we first observed that low LOEUF
is indeed associated with the presence of both fewer
(p = 2.39 · 10−15) and smaller (p < 2.2 · 10−16) pro-
moter deletions (Supplemental Figure S11a, b), showing
that this is a legitimate assessment strategy. Turning to
our predictions, we found the same: genes predicted to
be highly LoF-intolerant are less likely to contain dele-
tions in their promoters compared to genes classified
as non-highly LoF-intolerant (Figure 5b; probability of
overlapping at least one deletion = 0.18 vs 0.33, permu-
tation one-sided p = 4 · 10−4 after 10,000 permutations);
when such deletions are observed, they tend to be much
smaller (Figure 4c; median size = 129 vs 1092; Wilcoxon
test, p = 4.49 · 10−5).

Finally, we found that our predictions are in strong
agreement with what would be expected based on
known mouse phenotypes, and membership in specific
gene classes (Figure 5d). First, the predicted highly
LoF-intolerant genes show a 27.6-fold enrichment for
genes heterozygous lethal in mouse (p = 1.03 · 10−12),
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when compared against those predicted as non-highly
LoF-intolerant. Second, they exhibit a 12.7-fold enrich-
ment for transcription factors (p < 2.2 · 10−16), consis-
tent with the known dosage sensitivity of these genes
(Jimenez-Sanchez et al., 2001; JG Seidman, C Seidman,
2002; Boukas et al., 2019). Third, they show a total
depletion (odds ratio = 0) of olfactory receptor genes
(p = 2.5 · 10−5).

predLoF-CpG reclassifies 101 genes with expected LoF
variants between 10 and 20 as highly LoF-intolerant

In our analyses so far, we have ignored 3,440 genes with
expected LoF variants between 10 and 20. Even though
in Karczewski et al. (2019) these were treated as having
reliable LOEUF estimates, our assessment suggests that
lack of power can affect whether they are categorized as
highly LoF intolerant or not (Supplementary Figure S1,
Methods). After filtering for reliable promoter annota-
tion, we applied predLoF-CpG to 2,772 genes, and ob-
tained high-confidence classifications for 1,675. For the
great majority (93.9%), we agree with the classification
obtained by purely considering whether their LOUEF is
< 0.35. However, we observed 101 genes that were clas-
sified as highly LoF-intolerant by predLoF-CpG but had
LOEUF≥ 0.35, a number not explained by the false posi-
tive rate of our predictor (Supplemental Table 2). 75% of
these genes have an observed/expected LoF point esti-
mate of 0.31, suggesting that they are indeed highly LoF-
intolerant, but do not exceed the required LOEUF thresh-
old because of inadequate power. Therefore, when inter-
preting LoF variants in these genes, we suggest that both
LOEUF as well as predLoF-CpG are taken into account.

Discussion

Our study reveals that: a) there exists a strong,
widespread coupling between promoter CpG density
and downstream gene LoF-intolerance in the human
genome, and b) this coupling can be exploited to predict
LoF-intolerance for almost 2000 genes that are otherwise
largely intractable with current sample sizes. Our pre-
dictions for these genes (which we make available in
Supplemental Table 1) can inform research into novel
disease candidates and now become incorporated in the
clinical genetics laboratory setting. Similarly to existing
tools for missense variants (Sim et al., 2012; Adzhubei et
al., 2013), they can provide corroborating evidence dur-
ing the evaluation of the pathogenicity of LoF variants
harbored by patients, as recommended by the American
College of Medical Genetics and Genomics (Abou Tay-
oun et al., 2018).

In terms of understanding the regulatory architecture
of the genome, our findings extend decades of work (AP
Bird, 1987; Deaton, A Bird, 2011) to show that high CpG
density is not just a prevalent feature of many promot-

ers, but is preferentially marking the promoters of the
most selectively constrained genes. We believe this casts
doubt on the prevailing view that CpG islands are not
under selection (Cohen et al., 2011), although we note
that our current results are correlative in nature.

If promoter CpG density is indeed under selection,
its presence at LoF-intolerant gene promoters has to
be advantageous, which raises the question of the un-
derlying biological mechanism. Our findings suggest
that this mechanism is not related to the high and con-
stitutive expression that LoF-intolerant genes typically
exhibit. An intriguing possibility has been recently
raised by single-cell expression measurements show-
ing that promoter CpG islands are associated with re-
duced expression variability (Morgan, Marioni, 2018).
We hypothesize that this decreased variability is benefi-
cial for many processes where LoF-intolerant genes are
known to play central roles, such as neurodevelopment
(Fahrner, Bjornsson, 2019).

Our work represents an attempt at deciphering the
link between regulatory element characteristics, and the
LoF-intolerance of the genes they control. The fact that
taking promoter EZH2 binding into account improves
our ability to recognize LoF-intolerant genes on top of
CpG density, implies that this mapping can be learned
with even greater accuracy by incorporating informa-
tion about other regulatory factors as well. However, a
current barrier to achieving this is the relative paucity
of genome-wide binding data across the full repertoire
of transcription factors: the human genome encodes ap-
proximately 1500 transcription factors (Vaquerizas et al.,
2009; Barrera et al., 2016; Lambert et al., 2018) and at
least 300 epigenetic regulators (Boukas et al., 2019). In
contrast to these numbers, currently ENCODE has pro-
filed only 330 regulatory factors in K562 cells, the most
extensively characterized cell line.

It is also natural to consider moving beyond promot-
ers to other regulatory elements. An initial step in this
direction has recently been taken in Wang, Goldstein
(2020), motivated by work in Drosophila showing that
developmentally important genes can have multiple re-
dundant enhancers (Perry et al., 2010; Frankel et al.,
2010). While this ”enhancer domain score” was not
designed to capture LoF-intolerance and has poor as-
sociation with LOEUF (adjusted r2 = 0.03), it has been
shown to have some predictive capacity for human dis-
ease genes, especially those with a developmental basis.

In summary, our study shows the existence of a strong
and widespread association between promoter CpG den-
sity and genic LoF-intolerance, and leverages this re-
lationship to predict LoF-intolerance for unascertained
genes.
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Methods

Selecting transcripts with high-confidence loss-of-
function intolerance estimates

In total, gnomAD (Karczewski et al., 2019) provides
LoF-intolerance estimates for 79,141 human protein-
coding transcripts (hereafter referred to as trancripts)
labeled with ENSEMBL identifiers, of which 19,172 are
annotated as canonical. For each transcript, these LoF-
intolerance estimates consist of the point estimate of the
observed/expected number of LoF variants, as well as a
90% confidence interval around it. The upper bound of
this confidence interval (LOEUF) is the suggested met-
ric of LoF-intolerance (Karczewski et al., 2019). For any
given transcript, the ability to reliably estimate LOEUF
is directly related to the expected number of LoF vari-
ants; when that expected number is small, there is un-
certainty around the point estimate (and thus a large
LOEUF value), because it is not possible to determine
whether an observed depletion of LoF variants is due to
negative selection against these variants in the popula-
tion, or due to inadequate sample size. Therefore, for
transcripts with high-confidence LOEUF values, there
should be a strong positive correlation between the
point estimate and LOEUF; in constrast, low-confidence
LOEUF transcripts will have small point estimates cou-
pled with large LOUEF values.

Based on this assessment, and consistent with Kar-
czewski et al. (2019), we considered transcripts with
≤ 10 expected LoF variants to have unreliable LOEUF
(34,232 out of 79,141 total transcripts; 5,413 out of
19,172 canonical transcripts; Supplemental Figure S1).
Throughout the text, we refer to the genes encoding for
these transcripts as ”unascertained”.

Even though in Karczewski et al. (2019) most of the
analyses were performed using transcripts with > 10
expected LoF variants, we saw that, with increasing
expected number of LoF variants, there was a non-
negligible increase in the probability (conditional on a
given point estimate) of a transcript belonging in the
highly LoF-intolerant category (LOEUF < 0.35). We
thus adopted a more stringent criterion, and considered
transcripts with ≥ 20 expected LoF variants (25,474 out
of 79,141 total transcripts; 8,506 out of 19,172 canoni-
cal transcripts; Supplemental Figure S1) to have high-
confidence LOEUF. After further filtering based on pro-
moter annotation (see the section “Annotating canonical
promoters in the human genome”), these are the tran-
scripts we used to establish the association between pro-
moter CpG density and LOEUF, and to train predLoF-
CpG.

Selecting transcripts with high-confidence annota-
tions in GENCODE v19

gnomAD supplies LOEUF estimates for 79,141 tran-
scripts in GENCODE v19. However, we conducted our
analyses at the gene level, based on the following rea-
soning: typically, transcripts from the same gene have
overlap in their coding sequence, which makes it hard
to disentangle their LOEUF estimates. For example, a
transcript whose loss does not have severe phenotypic
consequences, and therefore its promoter does not con-
tain informative features, may still have low LOEUF
merely because it overlaps with a different transcript
of the same gene.

For each gene, GENCODE labels a single transcript
as canonical, and recognizes the difficulty of accurately
annotating transcriptional start sites (TSS’s) (Harrow et
al., 2012). We manually inspected GENCODE’s choices
of canonical transcripts, and found some problematic
cases. An illustrative example is KMT2D (Supplemental
Figure S12). First, even though this gene is broadly ex-
pressed across tissues in GTEx, its canonical promoter
shows POLR2A (the major subunit of RNA PolII com-
plex) ChIP-seq peaks in only 4 ENCODE experiments
(out of 74 total). Even though there does exist a non-
canonical transcript whose promoter has POLR2A sig-
nal in 59 experiments, as would expected for a broadly
expressed gene, that non-canonical transcript has an un-
usually short coding sequence, which does not even en-
code for the catalytic SET domain. In this particular
case, we reasoned that the 5’ UTR of the canonical tran-
script needs to be extended up until the TSS of the non-
canonical transcript. Such an annotation would also be
consistent with the annotation of the mouse ortholog.
Importantly, if this annotation error is ignored, it is im-
possible to select a KMT2D transcript with accurate esti-
mates of both LOEUF and promoter CpG density.

With this example in mind, we developed an em-
pirical approach to only retain transcripts with high-
confidence GENCODE annotations in our analysis. First,
we defined promoters as 4kb elements centered around
the transcriptional start site (TSS). We then leveraged
the main hallmark of transcriptional initiation at protein-
coding gene promoters: binding of the RNA PolII com-
plex, the major subunit of which is POLR2A (Wintzerith
et al., 1992; Mita et al., 1995). We used data from
ENCODE (ENCODE Project Consortium, 2012) on the
genome-wide binding locations of POLR2A from 74
ChIP-seq experiments on several cell lines, originating
from diverse human tissues (see “POLR2A ENCODE
ChIP-seq data” section below).

As expected, we observed that genes that are broadly
expressed across the 53 different tissues in GTEx (τ <
0.6; see “GTEx expression data” section below) tend to
have promoters with POLR2A ChIP-seq peaks in mul-
tiple experiments, while the opposite is true for genes
expressed in a restricted number of tissues (τ > 0.6, Sup-

Boukas et al. | 2020 | bioRχiv | Page 8

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 26, 2020. ; https://doi.org/10.1101/2020.02.15.936351doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.15.936351


plemental Figure S2c). However, as in the KMT2D ex-
ample above, we also observed genes with broad expres-
sion and very low binding of POLR2A at their canonical
promoter (Supplemental Figure S2c), and a few genes
with restricted expression but POLR2A peaks at their
canonical promoter in multiple experiments (Supple-
mental Figure S2c), raising our suspicion that these re-
flect inaccurate annotation of the canonical TSS.

Therefore, we required that the canonical promoter
of a broadly expressed gene exhibits POLR2A peaks
in multiple ENCODE experiments, and the canonical
promoter of a gene with restricted expression exhibits
POLR2A peaks only in a small number of ENCODE ex-
periments. As additional layers of evidence for canon-
ical promoters, we used the presence of CpG islands,
which are known markers of promoters in mammalian
genomes (AP Bird, 1987; Deaton, A Bird, 2011), as well
as the concordance between the human TSS coordinate
and the TSS coordinate of a mouse ortholog transcript
(when the latter is mapped onto the human genome).

Specifically, we first excluded genes on the sex chro-
mosomes, since, due to X-inactivation in females and
hemizygosity in males, LoF-intolerance estimates have
different interpretion in these cases. This gave us 17,657
genes with at least one canonical transcript, of which
17,359 had expression measurements in GTEx. We then
applied the following criteria (when none of the criteria
were satisfied, we entirely discarded the gene):

Criterion 1: The gene is broadly expressed (τ < 0.6)
and the canonical promoter has a POLR2A peak in more
than 35 ENCODE experiments.

We found 7,250 cases satisfying this criterion, and kept
the canonical promoter annotation.

Criterion 2: The gene is broadly expressed (τ < 0.6),
the canonical promoter has a POLR2A peak in less than
10 ENCODE experiments, and there is an alternative pro-
moter with POLR2A peaks in more than 35 experiments.

We found 218 cases satisfying this criterion (Supple-
mental Figure S2d), and classified the alternative pro-
moter as the canonical (all such cases are provided in
Supplemental Table 3). When there were more than
one alternative promoters satisfying our requirement,
we distinguished the following subcases:
(a) If none of these alternative promoters overlapped a

CpG island, we classified the promoter correspond-
ing to the transcript with the greater number of ex-
pected LoF variants as the canonical.

(b) If exactly one of these alternative promoters over-
lapped a CpG island, we classified that promoter as
the canonical.

(c) If more than one of these alternative promoters
overlapped a CpG island, we classified the pro-
moter that, among the CpG-island-overlapping pro-
moters, had the greatest number of expected LoF
variants as the canonical.

For our subsequent analyses, we used the LOEUF

value of the newly annotated canonical promoter.
Criterion 3: The gene is not broadly expressed (τ >

0.6), the canonical promoter has a POLR2A peak in less
than 10 ENCODE experiments, and overlaps a CpG is-
land.

We found 1,862 cases satisfying this criterion, and kept
the canonical promoter annotation.

Criterion 4: The gene is not broadly expressed (τ >
0.6), the canonical promoter has a POLR2A peak in less
than 10 ENCODE experiments, none of the promoters
corresponding to the gene overlap a CpG island, and
there is a mouse ortholog TSS in RefSeq no more than
500bp away from the canonical human TSS.

We found 3,049 cases satisfying this criterion, and kept
the canonical promoter annotation.

Criterion 5: The gene is not broadly expressed (τ >
0.6), the canonical promoter has a POLR2A peak in less
than 10 ENCODE experiments, none of the promoters
corresponding to the gene overlap a CpG island, there
is no mouse ortholog TSS in RefSeq, and there are no
alternative transcripts with different TSS coordinates.

We found 1,411 cases satisfying this criterion, and kept
the canonical promoter annotation.

The promoters selected from the above 5 criteria along
with their coordinates are provided in Supplemental Ta-
ble 4.

Finally, regarding coding sequence annotations, errors
such as the one in KMT2D described at the beginning
of the section are difficult to systematically detect and
correct, and our manual inspection suggested that they
are also less frequent. We chose to entirely discard cases
where:
(a) the trascript we had selected after promoter filtering

had ≤ 10 expected LoF variants (placing the gene
into the ”unascertained” category), and

(b) there was an alternative transcript that had longer
coding sequence and ≥ 20 more expected LoF vari-
ants compared to the one our procedure selected.

This approach removes KMT2D and 14 more poten-
tially problematic cases such as ZNF609.

Calculating the CpG density of a promoter

Using the BSgenome.Hsapiens.UCSC.hg19 R package,
we obtained the sequence of each promoter with the get-
Seq function. We then calculated its CpG density using
the definition of the observed-to-expected CpG ratio in
Gardiner-Garden, Frommer (1987), applied to the entire
4 kb sequence (that is, without using sliding windows).

The impact of promoter definition

There is currently no single accepted definition of a pro-
moter in terms of the size of the interval around the TSS.
We therefore examined how this parameter affects the re-
lationship between CpG density and LOEUF, and found
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its impact to be small for 5 sensible choices (Supplemen-
tal Figure S6a,b).

Overlapping promoters

When defining the set of genes with high-confidence
LOEUF estimates, we excluded genes whose promot-
ers overlapped promoters of genes with less than 20
expected LoF variants, but whose observed/expected
LoF point estimate was suggestive of LoF-intolerance
(< 0.5). In cases of overlapping promoters with both
genes having ≥ 20 expected LoF variants, we kept the
promoter corresponding to the gene with the lowest
LOEUF. In cases of overlapping promoters with both
genes having at≤ 10 expected LoF variants, we kept the
promoter with the highest CpG density. Finally, when
defining the set of unascertained genes, we excluded
genes whose promoters overlapped promoters of genes
with greater than 10 expected LoF variants, unless there
was strong evidence that these were LoF-tolerant (ob-
served/expected LoF point estimate > 0.8 and at least
20 expected LoF variants.)

We recognize however, that in cases where promot-
ers overlap, the predictions are potentially informative
not only for the gene whose promoter was ultimately
used, but also for the genes with overlapping promot-
ers. In addition, in cases of genes predicted as highly
LoF-intolerant, these predictions might also have been
influenced by the overlapping promoter (there are only
3 potential such cases). With that in mind, in Supple-
mental Table 1, we provide such information under the
column ”other genes with overlapping promoter”.

Promoters in subtelomeric regions

It is known that subtelomeric regions are rich in CpG
islands, which are however different than those in the
rest of the genome, in that they appear in clusters, and
their CpG-richness is driven mainly by GC-biased gene
conversion (Cohen et al., 2011). We thus excluded pro-
moters residing in subtelomeric regions (defined as 2
Mb on each of the two chromosomal ends of each chro-
mosome) from our analyses.

ENCODE ChIP-seq data

We used the rtracklayer R package to download the
”wgEncodeRegTfbsClusteredV3” table from the ”Txn
Factor ChIP” track, as provided by the UCSC Table
Browser for the hg19 human assembly. We then re-
stricted to peak clusters corresponding to POLR2A. This
gave us a set of genomic intervals, each of which has
been derived from uniform processing of 74 POLR2A
ChIP experiments on 32 distinct cell lines (some cell lines
were represented by more than one experiments). Each
genomic interval was associated with a single number,
which ranged from 0 to 74 and indicated the number of

ChIP experiments where a peak was detected at that in-
terval. The EZH2 data were downloaded in an identical
manner.

GTEx expression data

We used the GTEx portal to download a matrix with the
gene-level TPM expression values from the v7 release,
derived from RNA-seq expression measurements from
714 individuals, spanning 53 tissues. (GTEx Consortium,
2017).

As the metric of tissue specificity for a given gene,
we used τ, which has been shown to be the most ro-
bust such measure when benchmarked against alterna-
tives (Kryuchkova-Mostacci, Robinson-Rechavi, 2017).
To calculate τ, we first computed the gene’s median ex-
pression across individuals, within each tissue. Since
it has been shown that the transcriptomic profiles of
the different brain regions are very similar, with the
exception of the two cerebellar tissues (GTEx Consor-
tium, 2015), which are similar to one-another, we aggre-
gated the median expression of each gene in the different
brain regions into two “meta-values”. One meta-value
corresponded to the median of its median expression
in the two cerebellar tissues, and the other to the me-
dian of its median expression in the other brain regions.
We then formed a matrix where rows corresponded to
genes, and columns to tissues, with one column for
the across-brain-regions meta-value and another for the
across-cerebellar-tissues meta-value; the entries in the
matrix were log2(TPM + 1) median expression values.
Finally, for each gene, τ was calculated as described in
(Kryuchkova-Mostacci, Robinson-Rechavi, 2017).

For our analyses of the association between promoter
CpG density and expression level, we used the median
(across individuals) expression (log2(TPM + 1)), com-
puted for the tissue where the gene had the maximum
median expression.

TSS coordinates of mouse orthologs

We used the biomaRt R package to obtain a list of mouse-
human homolog pairs, using the human Ensembl gene
IDs as the input. For this query, we set the ‘mmuscu-
lus homolog orthology confidence‘ parameter equal to
1 (indicating high-confidence homolog pairs). Then, for
each of the mouse homolog Ensembl IDs, we retrieved
the RefSeq mRNA IDs, again with biomaRt. We dis-
carded cases where the same RefSeq mRNA ID was as-
sociated with more than one Ensembl gene IDs. We
then used the rtracklayer R package to download the
”xenoRefGene” UCSC table, from the ”Other RefSeq”
track, containing the TSS coordinates for each of the
mouse RefSeq trancripts.
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Across-species conservation quantification

For each nucleotide, we quantified conservation
across 100 vertebrate species using the PhastCons
score (Siepel et al., 2005), obtained with the phast-
Cons100way.UCSC.hg19 R package. The PhastCons
score ranges from 0 to 1 and represents the probability
that a given nucleotide is conserved. As the promoter
PhastCons score for a given gene, we computed the
average PhastCons of all nucleotides in the 4kb region
centered around the TSS. As the exonic PhastCons for a
given gene, we pooled all nucleotides belonging to the
coding sequence of the gene (that is, excluding the 5’
and 3’ UTRs), and computed their average PhastCons.

Previously published LoF-intolerance predictions

The updated version of the score of Huang et al. (2010)
was downloaded from the DECIPHER database (https:
//decipher.sanger.ac.uk/files/download
s/HI Predictions Version3.bed.gz; accessed
November 2019). The scores of Steinberg et al. (2015)
and Han et al. (2018) were downloaded from the supple-
mental materials of the respective publications. In our
comparison we did not include HIPred (Shihab et al.,
2017), since it only provides binary haploinsufficiency
predictions for a small number of genes.

Structural variation data

We used the gnomAD browser to download a bed file
(https://storage.googleapis.com/gnomad-pu
blic/papers/2019-sv/gnomad v2.1 sv.sites.
bed.gz.tbi) containing the coordinates and charac-
teristics of structural variants in gnomAD v2. We then
restricted to deletions that passed quality control (“FIL-
TER” column value equal to ”PASS”). Subsequently, we
excluded deletions that overlapped more than one of
our high-confidence promoters, in order to avoid am-
biguous links between deletions and genes.

Gene catalogs

The following gene catalogs were used for Figure 5d:
(a) 404 heterozygous lethal genes in mouse from

https://github.com/macarthur-lab/g
nomad lof/blob/master/R/ko gene lis
ts/list mouse het lethal genes.tsv
(see the supplemental material of Karczewski
et al. (2019) for details on obtaining this set). We
mapped these genes to their human homolog
ensembl ids with the biomaRt R package using
the ”mgi symbol” filter, keeping only pairs with
the ‘mmusculus homolog orthology confidence‘
parameter equal to 1. This yielded a total of 390
human homologs.

(b) 1,254 high-confidence transcription factor genes
from Barrera et al. (2016)

(c) 371 olfactory receptor genes from https://gith
ub.com/macarthur-lab/gene lists/blob/
master/lists/olfactory receptors.tsv.

Enrichment quantification

All enrichment point estimates in the text correspond to
odds ratios, and the associated p-values were calculated
using Fisher’s exact test (two-sided) with the ”fisher.test”
function in R.

Code

Code used in this manuscript is available at https://
github.com/hansenlab/lof prediction paper
repro.
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Contents
1. Supplemental Table 1: predLoF-CpG predictions for genes unascertained in gnomAD. Prediction probabil-

ities are provided in the ”prediction probability of high LoF intolerance by predLoF-CpG” column. Prob-
abilities > 0.75 correspond to genes predicted as highly LoF-intolerant, and probabilities < 0.25 to genes
predicted as non-highly LoF-intolerant. ENSEMBL gene/transcript ids and coordinates of the promoters used
for prediction are also provided; all coordinates refer to hg19.

2. Supplemental Table 2: Similar to Supplemental Table 1, but for 101 genes with expected LoF variants between
10 and 20 that were classified as highly LoF-intolerant by predLoF-CpG but had LOEUF ≥ 0.35.

3. Supplemental Table 3: Promoter coordinates for cases where our promoter filtering procedure selected a
non-canonical promoter. The table contains the promoter coordinates and transcript ENSEMBL ids of both
the canonical, as well as the alternative transcript that was selected. All coordinates refer to hg19.

4. Supplemental Table 4: Promoter coordinates for 11,059 transcripts where our filtering procedure selected a
reliable promoter.

5. Supplemental Figures S1-S12.
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Supplemental Figures
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Supplemental Figure S1. Assessing the reliability of LOEUF estimates. Scatterplots of the point estimates of the
observed/expected proportion of loss-of-function variants (x axis), against LOEUF (y axis; defined as the upper
bound of the 90% confidence interval around the point estimate). Each point corresponds to a transcript. The
horizontal line corresponds to the 0.35 cutoff for highly LoF-intolerant genes. Shown for: (a) all transcripts, and
(b) canonical transcripts only (based on GENCODE annotation).
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Supplemental Figure S2. Assessing the relationship between tissue specificity of gene expression and
POLR2A binding at the canonical promoter. (a) The distribution of the number of ENCODE ChIP-seq
experiments showing POLR2A peaks, for all canonical promoters (4 kb regions centered around the TSS) in
Ensembl (hg19 assembly). (b) The distribution of τ computed using gene-level expression quantifications from
GTEx. (c) Scatterplot of τ against the number of ENCODE ChIP-seq experiments showing POLR2A peaks at the
canonical promoter. Each point corresponds to a gene-promoter pair. (d) Scatterplot of the number of ENCODE
ChIP-seq experiments showing POLR2A peaks at the canonical (x axis) promoter versus the corresponding
number at the promoter with the greatest number of detected peaks (out of all the alternative promoters of a gene;
y axis). Each point corresponds to a promoter pair for a single gene; shown are only genes that are broadly
expressed (τ < 0.6) but whose canonical promoter shows POLR2A binding in less than 10 ENCODE experiments.
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Supplemental Figure S3. Partitioning genes according to the reliability of their LOEUF estimates and
promoter annotation. Schematic illustrating our approach (see Methods for details). We start with 17,359 genes
that: a) are present in both GTEx and gnomAD, b) reside in autosomes, and c) their promoters are not
subtelomeric. We then filter these according to whether they have reliable promoter annotations, and in cases of
pairs of genes with overlapping promoters we only keep one pair. This gives us the set of high-confidence genes
that we use to establish the relationship between CpG density and LOEUF and to train predLoF-CpG, and the set
of unascertained genes to which we apply predLoF-CpG.
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Supplemental Figure S4. Scatterplot of promoter CpG density against downstream gene LOEUF. Each point
corresponds to a promoter-gene pair.
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Supplemental Figure S5. The effect of filtering for high-confidence promoter annotations on the relationship
between CpG density and LOEUF. Like Figure 1b, but shown both for the 4,859 genes with high-confidence
promoter annotations (red), and for 6,656 genes with canonical (based on GENCODE) promoter annotations and
at least 20 expected LoF variants, without further promoter filtering (blue).
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Supplemental Figure S6. The impact of the size of promoter definition on the relationship between CpG
density and LOEUF. (a) Like Figure 1a, but with different choices of the interval around the transcription start site
that is defined as the promoter. (b) The percentage of LOEUF variance (adjusted r2) that is explained by promoter
CpG density, for each of the promoter definitions in (a).
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Supplemental Figure S7. Distributions of downstream gene expression level and tissue specificity across
promoter CpG density deciles. Both expression level and τ were computed from the GTEx dataset (see Methods).
In all three figures, CpG density deciles are labeled 1-10, with 1 the most CpG-poor decile and 10 the most
CpG-rich. In (c), detectable expression in a given tissue is defined as median TPM > 0.3.
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Supplemental Figure S8. The proportion of promoters with EZH2 peaks in 1-14 ENCODE experiments,
stratified based on their CpG density and downstream gene tissue specificity. Tissue speciicity was quantified
from the GTEx dataset using τ (Methods). Low tissue specificity corresponds to τ < 0.6 and high tissue specificity
corresponds to τ > 0.6.
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Supplemental Figure S9. The relationship between promoter CpG density and loss-of-function intolerance
conditional on promoter and exonic across-species conservation. (a) The distribution of LOEUF, stratified by
promoter CpG density, in each quartile of promoter PhastCons score (Methods). (b) The distribution of LOEUF,
stratified by promoter CpG density, in each quartile of exonic PhastCons (Methods). For both (a) and (b) quartiles
are labeled from 1-4, with 1 being the least and 4 the most conserved, respectively.
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Supplemental Figure S10. The percentage of out-of-sample LOEUF variance explained by the different
predictors of LoF-intolerance. Each boxplots corresponds to a LoF-intolerance predictor as shown on the x-axis,
and shows the sampling distribution of the adjusted r2 after regressing the LOEUF of genes in the test set on the
corresponding predictor. We performed 1,000 random train/test splits. For predLoF-CpG, the regression was
performed on the prediction probably of high LoF-intolerance.
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Supplemental Figure S11. The relationship between promoter deletions seen in healthy individuals and
downstream gene loss-of-function intolerance. (a) The proportion of promoters harboring deletions across
different strata of downstream gene loss-of-function intolerance. For each stratum, the distribution is obtained via
the bootstrap. (b) The distribution of the size of deletions harbored by promoters across different strata of
downstream gene loss-of-function intolerance.
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Supplemental Figure S12. UCSC genome browser screenshot of a 10kb region containing the transcriptional
start sites of the canonical and one alternative KMT2D trasctipts. The precise coordinates are
chr12:49,446,107-49,456,107. The sequence of the canonical transcript extends beyond the 10kb region shown.
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