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Abstract 
Motivation: Oncogenes are genes whose malfunctions play critical roles in cancer development, and 

their discovery is a major aim of cancer mechanisms study. By counting the mutation frequency, onco-

genes have been identified with frequent mutations, while it is believed that many more oncogenes 

could be discovered by differential mutational profile analysis. However, it is common that current meth-

ods only utilize mutations in the cancer population, which have an obvious bias in background mutation 

modelling. 

Methods: To predict oncogenes efficiently, we developed a method, DGAT-onco that analyzed the 

frequency distribution and functional impacts of mutations in both cancer and natural population. Our 

method can capture the mutational difference of two population, and provide a comprehensive view of 

genomics basis underlying cancer development. DGAT-onco was constructed by germline mutations 

from the 1000 Genomes project and somatic mutations of 33 cancer types from the Cancer Genome 

Atlas (TCGA) dataset. Its reliability was verified on an independent test set including 19 cancers from 

other sources. 

Results: We demonstrated that our method is more effective than alternative methods in oncogenes 

discovering. Using this approach achieves higher classification performance in oncogene discovery 

than 6 alternative methods, and 22.8% significant genes identified by our method were verified as 

oncogenes by the Cancer Gene Census (CGC). 

Availability: DGAT-onco is available at https://github.com/zhanghaoyang0/DGAT-onco. 

Contact: yangyd25@mail.sysu.edu.cn or zhaohy8@mail.sysu.edu.cn 

 

 

1 Introduction  

Oncogenes are genes that provide the growth advantage of a cell when 

activated by mutations. These genes have potential in cancer develop-
ment, and their discovery may provide new insights in cancer diagnosis 

and therapies (Croce, 2008). Since functions of genes are associated with 

the impacts of mutations, it is believed that oncogenes can be recognized 

by detecting its specific mutation profile (Vogelstein, et al., 2013). How-

ever, apart from the most frequently mutated genes, it is difficult to de-
termine new oncogenes because mutations are highly heterogeneous 

among individuals and different cancer types (Pon and Marra, 2015). 

Therefore, it is necessary to develop computational methods for the dis-
covery. 

High-throughput cancer genome sequencing consortia like the Can-

cer Genome Atlas (TCGA) (Zhu, et al., 2014) and International Cancer 
Genome Consortium (ICGC) (Chin, et al., 2011) provide comprehensive 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 16, 2020. ; https://doi.org/10.1101/2020.02.15.947085doi: bioRxiv preprint 

https://github.com/zhanghaoyang0/DGAT-onco
https://doi.org/10.1101/2020.02.15.947085


K.Takahashi et al. 

insights of oncogenomics, based on which numerous methods for onco-

genes identification have been developed. For example, as an early at-

tempt, MutSig (Forrest and Cavet, 2007) performs mutational significance 

analysis to identify oncogenes. This method assumes a uniform back-
ground mutation rate across all genomic positions. To measure the back-

ground mutation rate, it splits mutations into serval categories by their 

similarity and accumulates the probabilities of observed mutations in each 
sample. Thus, oncogenes can be identified with greater observed mutation 

probabilities than the background ones. Implementation of MutSig in the 

breast and colorectal cancers achieved higher accuracies than other meth-
ods without utilizing the mutation probability of total genes. Considering 

that the background mutation rates might change across all genomic re-
gions, an improved method, MutSigCV (Lawrence, et al., 2013) estimates 

the background mutation rates based on silent mutations in each gene and 

non-coding mutations in its surrounding regions before frequency com-
parison. Additionally, it integrates covariates in DNA replication, tran-

scriptional activity, and mutation frequency variance across patients in the 

analysis. As a result, MutSigCV discovered more oncogenes than its pre-

vious version.  

Although these frequency-based methods successfully reveal can-

cer-related genes with a high frequency of mutations, such as TP53 and 
KRAS. Unfortunately, there are still two challenges ahead (Vogelstein, et 

al., 2013). First, it is difficult to identify genes with relatively few numbers 

of mutations but playing important roles in cancer development, because 
the background mutation varied among different patient and genomics re-

gions. Second, since many mutations occurring in genes may not damage 

its functions, it is a challenge to detect and exclude them before analysis 
to avoid a bias. In order to solve the issue, it is necessary to consider the 

impacts of mutations for an accurate prediction. Thus, considering the 

clustering tendency of mutation in specific protein regions, Oncodrive-
CLUST (Tamborero, et al., 2013) uses clustering scores to measure the 

clustering tendency in particular protein regions and synonymous muta-

tions. In this method, genes with significant clustering bias with respect to 
synonymous mutations are regarded as oncogenes. Since Oncodriver-

CLUST detects oncogenes with a different thought, its result had been 

proved to be a useful supplement of frequency-based methods. At the 
same time, with the development of pathogenic scoring approaches which  

prioritize the relationship between mutations and diseases, OncodriveFM 

(Gonzalez-Perez and Lopez-Bigas, 2012) has been developed to perform 
differential analysis based on gene functional impacts. The method uses 

SIFT (Ng and Henikoff, 2003), PolyPhen2 (Adzhubei, et al., 2010), and 

MutationAssessor (Reva, et al., 2011) to classify non-synonymous muta-
tions into several functional impact groups and constructs a matrix to rep-

resent the functional impacts of a gene in all samples. Thus, the method 

could detect genes with a greater bias of functional impacts. Its applica-
tions to glioblastoma cancer, ovarian cancer and leukemia detected most 

of genes found by previous method and revealed several new pathways 

with high functional bias. Later, OncodriveFML (Mularoni, et al., 2016) 
had been developed by further improving the measurement of function 

impacts. This method splits genomic positions into different element and 

calculates their function impact bias with different formulas. Recently, a 
new method WITER(Jiang, et al., 2019) described a regression-based 

method in oncogenes discovery. Unlike the methods using existing muta-

tion scoring systems, it pre-trained a score for each mutation based on 
Catalogue of Somatic Mutations in Cancer (COSMIC) data. Then, it used 

a stepwise procedure to derive the potential oncogenes one by one from a 

negative binomial model of mutations, until all genes in the model were 
non-significant. Moreover, in the datasets with a small sample size, it can 

also transfer the mutations of non-significant genes as background from 

large dataset to increase its statistical power. 

Although these methods have been proved to be effective in onco-

gene detection, the background mutation they used were estimated from 

only cancer samples without consideration of actual distributions from 
the healthy. To address this issue, DiffMut utilizes germline mutations 

from natural populations as background (Przytycki and Singh, 2017) to 
boost the power. For each gene, DiffMut compares the distributions of 

mutation number between TCGA population and the 1000 Ge-

nomes population. The distribution difference is estimated by the unidi-
rectional Earth Mover’s Difference (uEMD) (Rubner, et al., 2000), a sta-

tistics to measure the difference between two distributions or shapes. Be-

cause of the better estimation of the background mutation, DiffMut 

achieved higher discrimination than other methods. However, the 

method treated all mutations equally and neglected functional differences 
between mutations, which may lose power in mutation profile modelling. 

In this study, we have developed a new method DGAT-onco by 

weighing mutations according to functional impacts and using a back-
ground from the germline mutations in the 1000 genome project. This was 

also inspired by our previous studies to develop DGAT series of tools for 

disclosing disease-related genes and pathways for genome-wide associa-
tion studies study (Zhao, et al., 2016; Zhao, et al., 2017). By tested on 33 

cancers from TCGA and 19 cancers form other sources, DGAT-onco 
shows better performance than other methods when validated on the Can-

cer Gene Census (CGC) known oncogenes list.  

2 Methods 

2.1. Mutation Data Collection and Annotation 
TCGA dataset(Zhu, et al., 2014): all level 3 somatic mutation data was 
downloaded in September 2018 through four standardized variant calling 

pipelines (Muse, Mutect2, SomaticSniper and Varscan), each with 33 Mu-

tation Annotation Format (MAF) files for 33 cancer types. After keeping 
mutations appearing in all of these four pipelines, we obtained a total of 

2,024,409 mutations, namely TCGA dataset. 

TS19 dataset: for the independent test, we downloaded somatic mu-
tations of cancers from the cBioPortal (Cerami, et al., 2012) in November 

2019. The cancer data was selected by the following criteria: 1) This can-

cer type is included in the TCGA dataset; 2) The sample size is the largest 
of its cancer type; and 3) Its source is not from the TCGA. Finally, we 

obtained a total of 445,249 mutations from 19 cancer types (Armenia, et 

al., 2018; Bailey, et al., 2016; Dulak, et al., 2013; Imielinski, et al., 2012; 

Johansson, et al., 2016; Johnson, et al., 2014; Jones, et al., 2014; Kim, et 

al., 2015; Krauthammer, et al., 2012; Lowery, et al., 2018; Pereira, et al., 

2016; Reddy, et al., 2017; Sato, et al., 2013; Schulze, et al., 2015; Soume-
rai, et al., 2018; Stransky, et al., 2011; Tyner, et al., 2018; Vasaikar, et al., 

2019; Wang, et al., 2014), namely TS19 dataset. 

The 1000G dataset: the germline mutations were downloaded from 
the phase 3 whole-genome mutation data of the 1000 Genomes Project 

(released at 20130502) (Nature, 2015). The data consisted of 25 Variant 

Call Format (VCF) files for the 24 chromosomes and mitochondrial chro-
mosome. We excluded variants on the Y chromosome as it only contained 

information of males, and the mitochondrial chromosome as the TCGA 
dataset did not have such information. Finally, we obtained 84, 739, 838 

human genetic variants from 2504 individuals, namely the 1000G dataset.   

All the mutations in the three datasets were annotated by the ANNO-

VAR (Wang, et al., 2010) to obtain pathogenicity scores according to the 

dbnsfp33a database (Liu, et al., 2016). For the TCGA and TS19 datasets, 

we used the provided annotation of gene names and mutation types in the 
analysis. For the 1000G dataset without annotations, the gene names and 

mutation types were annotated based on the refGene database (hg19 ver-

sion) (O'Leary, et al., 2015). In the analyses, we kept only non-synony-
mous mutations that cause changes of coded amino acids. Table S1 de-

tailed the 3 datasets. 

2.2. Method Overview 
 DGAT-onco is a method to detect oncogenes with a significantly different 
mutational profile between somatic mutations in the cancer population and 

germline mutations in the natural population. In order to integrate the 

functional impacts of mutations, DGAT-onco assesses the mutational pro-
file of each gene by summing the predicted pathogenic scores of all its 

contained mutations. Here, we used 23 types of pathogenic scores depos-

ited in the dbnsfp33a database (Liu, et al., 2016), as detailed in Table S2. 
For comparison, we also used a constant scoring function to mimic the 

DiffMut, i.e., a gene profile as the number of mutations. Note that all these 

scores have been normalized to be in a range from 0 to 1, with a greater 

score indicating a higher probability to be damaging.  

As shown in Fig. 1, for a population, the summing scores of genes were 

presented in a matrix S = [sij] , where sij is the summed functional impact 
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scores over all mutations on gene i of individual j, sij  can be computed as 

𝑠𝑖𝑗 = ∑ 𝑎𝑥
X
𝑥=1 , where X is the total number of non-synonymous mutations 

in gene i of individual j, and: 

𝑎𝑥 = {

0, 𝑖𝑓  𝑛𝑜 𝑠𝑐𝑜𝑟𝑒 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑡ℎ𝑒 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛
annotated score, if the mutation is heterozygous

2 ∗ annotated score, if the mutation is homozygous 
 

Since TCGA dataset has not information about heterozygosity, its 
mutations are regarded as heterozygous. For 1000G dataset, all mutations 

in the X chromosome of males were considered to be homozygous. The 

matrix S was then normalized to a new matrix M with each value ranging 
from 0 to 1. Briefly, for each person j, all genes were ranked according to 

{sij, i=1, ngene}, and mij for gene i was computed as its rank divided by 

the total number of genes. Based on the matrix M = [mij], we evaluated the 
statistical distance of each gene between two populations by the uEMD, 

the same statistics method as previously used in DiffMut. In details, for a 

gene i, we divided the range 0 to 1 into 100 equal bins, and counted the 
proportions of {mij, j=1, npersons} falling in all bins. According to the 

proportions in all bins, the uEMD for each gene was computed as: 

uEMD = ∑ (𝐼(𝐷𝑘 > 0)100
𝑘=1 𝐷𝑘), 

𝐷𝑘 = ∑ (𝑃𝑙
𝐶 − 𝑃𝑙

𝑁)100
𝑙=𝑘 , 

where 𝑃𝑙
𝐶  and 𝑃𝑙

𝑁 are the proportions at the l bin for the cancer and natural 

individuals, respectively, and I() was an indicator function with output of 

1 when the condition is true, otherwise 0.  

To perform the statistical significant test for the obtained uEMD 
values, we calculated 5 random uEMD values by radomly shuffling the 

mutation ranks in each individual, and the P-value was computed by the 

one-sided one-sample t-tests. Q-value can be computed by the Benjamini 

and Hochberg method (Benjamini and Hochberg, 1995) as P*n_test/rank, 

where rank was the rank of a gene in the totally n_test genes according to 

P-values. All genes with Q-value < 0.05 were considered to be statistically 
significant. In addition, the largest P-value among these significant genes 

is taken as a threshold, and any gene with P-value less than the threshold 

is also considered significant, even if its Q-value is greater than 0.05 (Ben-

jamini and Hochberg, 1995). 

 
Fig. 1. Overview of DGAT-onco framework. DGAT-onco evaluates the oncogenicity of 

each gene by comparing its mutational profile between cancer and natural populations. (A) 

The input of DGAT-onco was a mutation matrix under a specific pathogenic scoring func-

tion. In the matrix, we measured the summation of mutation score (Sij) of each person and 

each gene, before conducting a rank-based normalization. (B) For each gene, we extracted 

and compared its distributions of normalized sij (mij) in natural and cancer population. (C) 

We measured the statistical difference between two distributions by uEMD and tested the 

significance. 

2.3. Methods to Compare 
There have been multiple popular methods for oncogene detection. Ac-

cording to their evaluation studies, we selected 3 recent methods (WITER, 

ITER (Jiang, et al., 2019), and DiffMut (Przytycki and Singh, 2017) and 
3 classic methods (OncodriveCLUST (Tamborero, et al., 2013), Onco-

driveFML (Mularoni, et al., 2016), and SomInaClust (Van den Eynden, et 

al., 2015)). Although DGAT-onco only need non-synonymous mutations, 

we provided all types of mutations for fair comparison. 

The performance of a method was evaluated by the area under the 

precision-recall curve (AUPRC) and the precision of top genes detected 

by the method. A gene was regarded as an oncogene if it has been marked 
as an oncogene according to the somatic mutations in the Cancer Gene 

Census (CGC) database (https://cancer.sanger.ac.uk/census). Table S2 de-

tailed the responding relationship of cancer names in the TCGA datasets 
and the CGC database, with a portion of names matched by reviewing lit-

eratures. The details of the usage of alternative 

methods and the measurement of AUPRC are described in Supplemen-

tary1 Notes. 

2.4. Assessing the Enrichments of Genes on Functional 

Categories 

The functions of genes identified by DGAT-onco were assessed by com-
paring these genes with numerous functional gene categories. These gene 

categories are defined by their role in biological processes, pathway mem-

bership, enzymatic function, and so on. The enrichment  analysis was per-
formed by Metascape (http://metascape.org/gp/index.html#/main/step1), 

an integrated portal leveraging knowledge from over 40 databases (Zhou, 

et al., 2019). 

3 Result  

3.1 Performances of DGAT-onco combined with Pathogenic 

scores 

Based on each pathogenic scoring function for mutations, we generated a 

mutation profile for each gene in a person, through which mutational dif-
ferential analysis was conducted to calculate the statistical difference 

(uEMD) of the gene between the TCGA and natural populations. The 

genes with high uEMD were considered to be candidate oncogenes. Fig. 
2A shows the average AUPRC over 33 cancer types for DGAT-onco com-

bined with 24 scoring functions (23 pathogenic scores and one constant 

score). The highest AUPRC of 0.208 was achieved by the one with the 
Mendelian Clinically Applicable Pathogenicity (M-CAP) (Jagadeesh, et 

al., 2016), a score function trained from multiple pathogenicity scores by 

a gradient boosting tree model. The model with MetaLR ranked the 2nd 
with an AUPRC of 0.192 that was 8% lower than the one with M-CAP. 

The model with phastCons20way ranked the 3rd with an AUPRC of 0.180, 

which is significantly lower than the one with M-CAP according to the 
paired t-test (P<0.01). Other 21 scoring functions resulted in AUPRC val-

ues ranging from 0.13 to 0.178, all significantly lower than the one with 

M-CAP by the paired t-tests. The one with the constant scoring function, 
which has been designed to mimic DiffMut method, ranked the 7th among 

the 24 scoring functions. The corresponding AUPRC was 0.175 that is 17% 

lower than the one by DGAT-onco with M-CAP function. Fig. S1 details 
the AUPRC values of 24 scoring functions in a heatmap. Direct compari-

sons in Fig. 2B shows that the model with M-CAP performed much better 

(>5% differences) for PCPG, TGCT and UVM cancer types, and lower 
for DLBC, CHOL, and SKCM than the models with Meta-LR, 

phastCons20way, and the constant scoring functions. 

When counting the performing ranks of 24 scoring functions on 33 
cancers (Table 1), the use of M-CAP ranked the 1st in 9 cancers and within 

top 3 in 19 cancers. Although the use of MetaLR ranked the 1st in 10 can-

cers, it ranked the top 3 for only 14. The use of the constant scoring func-
tion in DGAT-onco had the highest AUPRC for only two cancers. Thus, 

the M-CAP was used in our model if not specifically mentioned. 

 
Table 1. The number of cancer types where each pathogenic score ranked 

the 1st, 2nd, and 3nd in all scoring systems according to the AUPRC in the 

TCGA dataset. 

Score 1st 2nd 3rd 

MetaLR 10 3 1 
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M-CAP 9 7 3 

phastCons20way_mammalian 4 1 1 

SIFT_converted 3 3 1 

LRT_converted 2 1 1 

PROVEAN_converted 2 3 2 

Constant 2 3 4 

Others 1 12 20 

 

Fig. 2. AUPRC comparison of different scoring systems in TCGA da-

taset. (A) M-CAP outperforms other 23 scoring systems in comparison of 

average AUPRC across 33 cancers. For each scoring system, the bar indi-
cates the value of average AUPRC and the stars indicates its significance 

of mean difference compared with M-CAP. Mean differences were com-

pared by paired t-test. ** and ***indicates P-value <0.01 and <0.001 re-
spectively. (B) M-CAP generally performs better than other scoring func-

tions in each cancer type. In scatter plots, each plot indicates AUPRCs 

against two scoring systems in the same cancer. Points above the diagonal 

line mean that AUPRCs of M-CAP are higher than that of others. 

3.2 Comparisons with other methods in the TCGA and 

TS19 dataset 

We evaluated the performances of 7 different methods (DGAT-onco, 
DiffMut, OncodriveCLUST, OncodriveFML, SomInaClust, WITER, and 

ITER) in both TCGA and the TS19 dataset. The TS19 dataset from other 

sources was selected as the independent test. As shown in Table 2, DGAT-
onco has the highest average AUPRC in both TCGA and TS19 datasets 

(0.208 and 0.215 respectively), which are 17% and 5% higher than those 

of WITER, the 2nd best method. As a frequency-based method without the 
integration of mutation functional impacts, DiffMut achieved the 3rd best 

performance in the TCGA dataset but the worst performance in the TS19 

dataset, likely because TS19 has relatively lower number of mutations (av-
eragely 14674 mutations in TS19 compared to 48620 in TCGA of their 

corresponding 19 cancers). Paired t-tests indicated that DGAT-onco had 

signficantly higher AUPRC values than other methods except for WITER 
(Fig 3A) in the TCGA dataset, and better ones except for WITER and 

ITER in the TS19 dataset (Fig 3A). Fig S2 and S3 detailed the correspond-

ing PRC (Precision-Recall curve) and AUPRC values. 

Pair-wise comparison between DGAT-onco and 3 representative 

methods (WITER, DiffMut, OncodriveCLUST) were detailed in scatter 

plots (Fig. 3B). In both datasets, DiffMut was overtaken by DGAT-onco 
in most cancers, while WITER and OncodriveCLUST have their own ad-

vantages and disadvantages in different cancers. As for OncodriveCLUST, 

it achieves good performance in THCA and UVM (AUPRC greater than 

0.3) and performs badly (AUPRC less than 0.05) in several cancers (KIRC, 

LGG, MESO, PRAD, STAD). Although the average AUPRC of WITER 

is lower than that of DGAT-onco, points were surrounding near the diag-

onal line, and the classification superiority is not as clear as other methods. 

We further evaluated the precision of different methods. The preci-

sion between top 1 to 50 genes of each cancer of TCGA and TS19 dataset 

were measured and details in Fig. S4 and Fig. S5. The average precisions   
across all cancer in these two dataset are shown in Fig. 4. Overall, in 

TCGA dataset, DGAT-onco has the highest precision, followed by 

WITER and DiffMut. In TS19 dataset, since WITER and ITER have the 
same precision as DGAT-onco in top 1 genes, they are overtaken as the 

threshold widens. The performance of DiffMut also drops sharply in the 
independent dataset. Besides, , when we merge top10 genes of each cancer 

detected by three methods to three set and found that, although the average 

precision and AUPRC between DGAT-onco and WITER were similar, 
they do identify a different set of potential oncogenes (Fig. 3C). Based on 

a complementary principle to identify oncogenes, DGAT-onco could se-

lect genes that may be missed by other methods. 

Table 2. The comparison of average AUPRC values by DGAT-onco and 

other methods in the TCGA dataset. 

Dataset  Method Mean±SD Median(IQR) 

TCGA 

DGAT-onco 0.21±0.16 0.18(0.09,0.24) 

WITER 0.18±0.15 0.13(0.07,0.22) 

DiffMut 0.15±0.13 0.12(0.05,0.18) 

OncodriveCLUST 0.13±0.16 0.07(0.02,0.18) 

OncodriveFML 
0.12±0.16 0.06(0.03,0.11) 

ITER 0.1±0.08 0.08(0.03,0.15) 

SomInaClust 0.03±0.06 0(0,0.05) 

  
  

TS19 

DGAT-onco 0.22±0.16 0.17(0.12,0.25) 

WITER 0.21±0.17 0.14(0.1,0.24) 

ITER 0.2±0.17 0.13(0.1,0.24) 

SomInaClust 0.16±0.15 0.11(0.07,0.15) 

OncodriveCLUST 0.15±0.18 0.07(0.03,0.22) 

OncodriveFML 
0.08±0.07 0.05(0.04,0.13) 

DiffMut 0.08±0.07 0.07(0.02,0.11) 

SD = standard deviation 

IQR = interquartile range 
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Fig. 3, AUPRC comparison of difference methods. (A) DGAT-onco 
outperforms other 6 methods in comparison of average AUPRC. For each 

method, the bar indicates the value of average AUPRC and its significance 

of mean difference compared with DGAT-onco. Mean difference were 
compared by paired t-test. ** and ***indicates P-value <0.01 and <0.001, 

respectively. (B) DGAT-onco generally performs better in each cancer 

type. In scatter plots, each plot indicates AUPRCs against two methods in 
the same cancer. Points above the diagonal line mean that AUPRCs of 

DGAT-onco are higher than that of others. (C) DGAT-onco identidies dif-

ferent genes. For 3 methods, top 10 genes detected in each cancer are 
merged to a set. Venn plots show the relations of genes detected by 3 

methods. 

 

 

Fig. 4. Precision comparison of different methods in TCGA and TS19 

dataset. DGAT-onco generally outperformed other methods in the preci-
sion of top 10 genes in both dataset. For each method, the bar indicates the 

value of average precision and the stars indicates its significance of mean 

difference compared with DGAT-onco. Mean difference were compared 
by paired t-test. *, **, and ***indicates P-value <0.05, <0.01, and <0.001, 

respectively.  

3.3 Functions of oncogenes predicted by DGAT-onco 

 DGAT-onco’s effectiveness provides a comprehensive landscape of on-

cogenes in multiple cancer types. Based on the analysis in TCGA dataset, 

among genes with top 50 uEMDs in each cancer, a total of 840 significant 
genes from 33 cancers were derived as potential oncogenes. The method 

detected 5 or more significant genes in 26 cancers, and out of which 22 

cancers had more than 10 genes. Among these genes, 22.8% were verified 
as known oncogenes by CGC database. Details of significant genes and 

verified true oncogenes were shown in Supplementary3. The landscape of 

these genes was shown in a circos plot (Fig. 5A) (Gu, et al., 2014). In the 
plot, the length of the ring indicates the number of overlapped genes and 

the line represents their overlapping relationship. 30 out of 33 cancers 

have overlapped genes with other cancers. Ignoring cancer with equal to 
or less than 5 significant gene, COAD, BLCA and HNSC have the largest 

number of simultaneously significant genes with other cancers while 

COAD, CHOL and BRCA have the largest proportion of simultaneously 
significant genes (Fig. 5A). As expected, TP53 was the most common sig-

nificant gene (in 22 cancers), followed by PIK3CA (17 cancers) and 

KRAS (12 cancers). Cancer with more significant genes was inclined to 

have more specific genes and implied high heterogeneity.  

We further performed enrichment analysis to access the function of 

oncogenes predicted by DGAT-onco. After removing 3 cancers (CHOL, 
DLBC, UCS) with the lowest enrichment categories, 811 genes from 30 

cancers were input for category search. The top enriched pathways of dif-

ferent cancer types were visualized as a heatmap (Fig. 5B). Pathways in 
cancer are the most common category among all cancer datasets, followed 

by signaling by receptor tyrosine kinases and cellular response to nitrogen 

compound. These functional categories are all cancer-related. The recep-
tor tyrosine kinases are a major type of cell-surface receptors. Its signaling 

pathways have a various number of functions in cell proliferation, differ-

entiation and survival. Some of receptor tyrosine kinases pathways have 
been described to be related with human cancers. As for nitrogen com-

pound, since some of which have been prove to be carcinogens (Ward, 

2009), the change of activity of cells it caused may be a signature of cancer 

development.  

 
Fig. 5. Oncogenes detected by DGAT-onco.  (A) Circos plot of 840 sig-

nificant genes in 33 cancers. The ring represents the number of overlapped 
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significant genes with other cancers in a specific cancer type and the line 

represents the overlapping relationship between two cancers. (B) Signifi-

cant genes were enriched in cancer-related pathways. Each row is a path-

way or network and each column is a cancer set; the color in each cell 
indicates corresponding statistical significant (gray color indicates non-

significant). 

3.4 Case study: Predicting oncogenes in the ovarian cancer  

We further selected the ovarian cancer (OV) in the TCGA dataset as a ca

se to generate a set of predicted oncogenes. The detailed functions and ro

les of these genes in the cancer were obtained from the GeneCards databa
se (https://www.genecards.org/), PubMed Gene database (https://www.nc

bi.nlm.nih.gov/gene/), CGC database (https://cancer.sanger.ac.uk/census),

 and literature reviews. As shown in Table 3, among 16 significant genes,
 5 genes were reported to be associated with cancers and 4 genes were re

ported to be associated with multiple cancers. In the CGC database, 4 gen
es were marked as cancer-related genes, and 3 were oncogenes related wi

th multiple cancers.  

Literature reviews showed that 14 genes have were related with can-
cers (Ahn, et al., 2019; Chiou, et al., 2019; Ishiuchi, et al., 2002; Li, et al., 

2019; Li, et al., 2016; Li, et al., 2017; Liu, et al., 2019; Malik, et al., 2019; 

Michiels, et al., 2007; Oakes, et al., 2017; Wang, et al., 2019; Yao, et al., 
2018; Yu, et al., 2015). Among these genes, KRAS, NRAS and TP53 are 

common oncogenes in cancer studies, while CDH10, GABRG2, GRIA2, 

KCNK9, SOX5, ERCC5, HIST1H4H, LRRTM4 were recently verified as 
cancer-related gene by wet-lab experiments. The rest three genes (MRC1, 

PALM2-AKAP2, POLR2B) were discovered by other bioinformatics anal-

ysis study. 

Table 3. Description of significant genes in OV detected by DGAT-onco 

Gene 

Description 

(GeneCards) 

Effect of mutations 

(PubMed Gene) 

Role in 

cancer 

(CGC) 

Related so-

matic cancer 

(CGC) 

Role in can-

cer (litera-

ture) 

CABS1 

Calcium Bind-

ing Protein, 

Spermatid As-

sociated 1    

High muta-

tion preva-

lence in the 

Asian CRC 

cohort 

      

CDH10 Cadherin 10 

May be associated 

with lung and colorec-

tal cancer TSG Melanoma 

High risk 

factor of 

breast cancer 

in Pakistani 

      

ERCC5 

ERCC Exci-

sion Repair 5, 

Endonuclease 

Increase risk of skin  

cancer under 

 UV exposure   

     

GABRG

2 

Gamma-Ami-
nobutyric Acid 

Type A Recep-

tor Gamma2 

Subunit 

Associated with epilepsy and  

febrile seizures  

Inducing 
apoptosis in 

human glio-

blastoma 

cells 

     

GNAL 

G Protein Sub-

unit Alpha L 

Associated with bipolar disorder and  

schizophrenia   

      

GRIA2 

Glutamate Ion-

otropic Recep-

tor AMPA 

Type Subunit 2    

Transcription 

factors to 

control the 

cell cycle  

      

HIST1H
4H 

Histone Cluster 

1 H4 Family 
Member H    

Biomarker of 

hepatocellu-

lar carci-
noma 

     

KCNK9 

Potassium Two 

Pore Domain 

Channel Sub-

family K Mem-

ber 9 

Associated with Birk-Barel  

dysmorphism syndrome  

Biomarker of 

variety of 

cancers 

      

KRAS 

KRAS Proto-

Oncogene 

Associated with lung, 

pancreas, colorectal 

cancers Oncogene 

Pancreatic, 

colorectal, 

lung, thy-

roid, leukae-

mia, other 

Potential bi-

omarker of 

basal cell 

carcinoma 

      

LRRTM

4 

Leucine Rich 

Repeat Trans-

membrane 

Neuronal 4    

Biomarker of 

Lung cancer 

      

MRC1 

Mannose Re-

ceptor C-Type 

1    

Biomarker of 

metastatic 

colorectal 

cancer 

NRAS 

NRAS Proto-

Oncogene 

Associated with rectal 

cancer, thyroid cancer, 

juvenile myelomono-

cytic leukemia, lym-

phoproliferative syn-

drome, Noonan syn-

drome Oncogene 

Melanoma, 

myeloma, 

leukaemia, 

thyroid 

Promoting 

the growth 

and migra-

tion of ovar-

ian cancer 

      

PALM2-

AKAP2 

PALM2-

AKAP2 Fusion    

Potential bi-
omarker of 

lung and 

head and 

neck cancers 

      

POLR2

B 

RNA Polymer-

ase II Subunit 

B    

Biomarker of 

bladder car-

cinoma 

      

SOX5 SRY-Box 5    

Biomarker of 

variety of 

cancers 

      

TP53 

Tumor Protein 

P53 

Associated with a va-

riety of cancers 

Oncogene, 

TSG, fu-

sion 

Breast, colo-
rectal, lung, 

sarcoma,  

adrenocorti-

cal, glioma,  

Spitzoid tu-

mour, other  

 

4 Discussion 

The systematic genetic source from TCGA has initiated the wide practice 

of oncogene detection. Meanwhile, dbNSFP database including over 20 

pathogenic systems for mutations makes it possible to generate pathogenic 
score profiles for various mutations. Moreover, the current method 

DiffMut was proved to have excellent performance compared with previ-

ous methods, but it does not efficiently use the pathogenic score systems. 
Pathogenic scores are not only important in distinguishing driver muta-

tions from passenger ones, but also offers a reliable filtering criteria for 

oncogene detection. This motivated us to develop an improved method to 
integrate the useful pathogenic score features from available platforms in 

predicting oncogenes.  

The classical methods in predicting oncogenes were based on clas-
sifying mutations types, like missense or nonsense, and might filter down 

some of them in a step. However, these methods ignored that even in mis-

sense mutations, their pathogenic effects can be quite different. Thus, it is 
necessary to employ the pathogenicity classifier to interpret the functional 

impacts of mutations. This study utilized the functional impacts of the mu-

tations to detect the oncogenes and received an encouraging outcome. Alt-
hough many previous methods have also realized the importance of muta-

tion function impacts measurement, but most of them are limited in earlier 

pathogenic score like SIFT, PolyPhen-2, CADD (Kircher, et al., 2014). 
Our method reviewed the effectiveness of nearly all scoring systems in 

oncogenes detection systematically, including the latest systems had or 

had not been used by other methods. Besides, for background mutation 
modelling, we considered both the mutation number and their functional 

impacts in natural population, which offer a more accurate estimation than 

other methods. Although different pathogenicity score may focus on dif-
ferent purposes, 6 out of 23 pathogenicity score can contribute in onco-

gene prediction. In this study, the pathogenic score information was ex-

tracted from dbNSFP3.0 database, but any other source can be used for 

this purpose. In the future, as the development of better variant patho-

genicity classifiers, the predictive performance of our method will keep 

increasing based on their knowledge. 

Among 33 pathogenic scores, M-CAP shows the best performance 

in AUPRC measurement. M-CAP is a mutation scoring system developed 
on multiple pathogenic systems. As it was reported (Jagadeesh, et al., 

2016), M-CAP can be used to interpret mutation linked to Mendelian dis-
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eases and has the ability to exceed other scores in pathogenic variants clas-

sification. It is well known that Mendelian disorders play an important role 
in genetic diseases caused by germline mutations like cystic fibrosis and 

Duchenne muscular dystrophy (Dietz, 2010). Although cancer is a genetic 

disease result from somatic mutations in the lifetime of a patient, genetic 
relationships between Mendelian disorders and cancer had been found and 

reported (Melamed, et al., 2015), which may explain the power of M-CAP 

in DGAT-onco. 

To ensure that the classification superiority of DGAT-onco can be 

applied to genomics source other than TCGA, we selected an independent 

test dataset from other sources. The results clearly show that DGAT-onco 
outperforms alternative methods. Two frequency-based methods, DiffMut 

and ITER, are all overtaken by their improved versions (DGAT-onco and 

WITER) that integrated function impacts of mutations. Since the number 
of samples and mutations in the independent test dataset are much less 

than that of TCGA, the performance of DiffMut, drops significantly in the 

independent test dataset. At the same time, WITER and ITER, methods 
follows step-wise procedure to detect oncogenes from a mutation model, 

have advantages in the independent test dataset that has a small sample 

size.  

Besides, the enrichment results also showed that the genes identified 

by DGAT-onco are highly related with cancer. Apart from the most com-

mon category (pathways in cancer), pathways related with signaling, cell 
differentiation and impacts of compound have been identified. Since can-

cer is disease initiated by out of control, potential risk factors such as ig-

noring signals to differentiate, damage in important signaling pathways 

and accumulation of contaminants may play a role in cancer development. 

Currently, DGAT-onco does not consider the mutations in introns 

such as 3-UTR and 5-UTR because no M-CAP score annotations were 

conducted in these regions. Nevertheless, due to the potential contribu-

tions of non-coding mutations on cancer (Fredriksson, et al., 2014; Puente, 

et al., 2015), the development of new metric aimed at non-coding muta-
tions may improve the performance of DGAT-onco. Another option to 

solve this issue may be summarizing the information of this region by fre-

quency-based methods without pathogenicity score, but the detail of com-
bination between the non-coding region and coding region need to be con-

sidered carefully. Additionally, since cancer is a disease that may be con-

tributed by a set of genes (Creixell, et al., 2015), it is critical to interpreting 
its mechanisms by biological pathways and protein-protein interactions 

(Kar, et al., 2009). However, DGAT-onco is a single gene comparison 

method neglecting the effect or situation of other genes, which the features 
are not fully used in such a framework. Using a network-based method to 

integrate the known interaction network or conducting genes cluster mem-

ber search to making the results more interpretability may improve the 

performance of DGAT-onco. 
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