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ABSTRACT 26 

The red algae Kappaphycus alvarezii is the most important aquaculture species in 27 

Kappaphycus, widely distributed in tropical waters, and it has become the main crop of 28 

carrageenan production at present. The mechanisms of adaptation for high temperature, 29 

high salinity environments and carbohydrate metabolism may provide an important 30 

inspiration for marine algae study. Scientific background knowledge such as genomic 31 

data will be also essential to improve disease resistance and production traits of K. 32 

alvarezii. 43.28 Gb short paired-end reads and 18.52 Gb single-molecule long reads of 33 

K. alvarezii were generated by Illumina HiSeq platform and Pacbio RSII platform 34 

respectively. The de novo genome assembly was performed using Falcon_unzip and 35 

Canu software, and then improved with Pilon. The final assembled genome (336 Mb) 36 

consists of 888 scaffolds with a contig N50 of 849 Kb. Further annotation analyses 37 

predicted 21,422 protein-coding genes, with 61.28% functionally annotated. Here we 38 

report the draft genome and annotations of K. alvarezii, which are valuable resources 39 

for future genomic and genetic studies in Kappaphycus and other algae. 40 
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Background & Summary 48 

Kappaphycus alvarezii, also known as elkhorn sea moss, has the largest individual wet 49 

weight in red algae, and is mainly distributed in tropical waters 1. They provide 50 

important raw materials used for extracting carrageenan, and are large-scale 51 

commercially cultivated, mainly in Southeast Asian countries, such as Indonesia, 52 

Malaysia, Vietnam and Philippines 2-4. Owing to its important economic value as a food 53 

source and in the carrageenan industry, K. alvarezii cultivation has been introduced into 54 

other tropical and subtropical countries 5, and the cultivation of the seaweeds K. 55 

alvarezii and Eucheuma spp. has become the most popular in the largest aquaculture 56 

production, because κ-Carrageenan as commercial carrageenan applied in food industry 57 

is mainly extracted from K. alvarezii 4. Since in the 1980s K. alvarezii was introduced 58 

to China, its production is expanded in a large scale 6,7.  59 

It is known that red algae with more than 6,000 described species represent the 60 

biggest species-rich group in marine macrophytes 8. And in evolutionary perspective, 61 

red algae are also within the phylogenetic group formed during the endosymbiosis event 62 

according to endosymbiosis theory 9, and their genes and genomes are crucial for 63 

understanding eukaryote evolution. Especially, K. alvarezii is ecologically an important 64 

component in many marine ecosystems, including rocky intertidal shores and coral 65 

reefs. Compared with other unicellular algae and higher land plants, there is a lack of 66 

genomic knowledge for Kappaphycus. In the macro-algae subclass of Florideophyceae 67 

in red algae, the genome of Chondrus crispus was firstly published 10, whose size is 68 

105 Mb. Therefore, the 336 Mb genome assembly of K. alvarezii reported here is 69 
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effectively promoting the researches in biological metabolism, comparative genomic 70 

analysis in algae and eukaryotic evolution, and also potentially provides valuable 71 

information for improving economic quality and resistance to environmental changes 72 

in aquaculture. 73 

Methods 74 

Sample collection and sequencing 75 

K. alvarezii strain No.2012020004A provided by Ocean University of China was 76 

selected as genomic DNA donor for whole genome sequencing. It was originally from 77 

Sulawesi in Indonesia, and cultivated in China by vegetative propagation. To remove 78 

the contaminants, the frond (sporophyte) tender tissue was carefully washed in pure 79 

water and cut before being immersed in 0.5 g/L I2-KI for 15 seconds. And then tissues 80 

were washed multiple times and cultivated in sterile sea water at 24°C and 3000 lx for 81 

light intensity. The clean frond tissues were used for genomic DNA extraction with the 82 

improved CTAB method 11, and the library construction was followed.  83 

The pair-end sequencing on Illumina HiSeq platform was performed at Beijing 84 

Institute of Genomics, Chinese Academy of Sciences (BIG, CAS) based on the standard 85 

protocols. Genomic DNA was fragmented by sonication in Covaris S220 (Woburn, 86 

Covaris), and libraries with 300-bp and 500-bp insert size were constructed by using 87 

NEBNext® Ultra™ II DNA Library Prep (Ipswich, NEB). The pair-end sequencing 88 

was performed, and a total of 214 M reads were generated, i.e. 43.28 Gb raw data, 89 

which was about 128-fold coverage of the genome size. At the same time, high-90 

molecular-weight DNA was extracted and 20-kb SMRTbell library was built with size 91 
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selection protocol on the BluePippin. The K. alvarezii genome was sequenced using 16 92 

SMRT cells P6-C4 chemistry on the PacBio RS II platform (at BIG, CAS). The 93 

sequencing produced about 18.52 Gb data with an average read length of 10,165 bp, 94 

and represented about 55-fold coverage of the genome. All information about 95 

sequencing data are shown in Table 1. The raw HiSeq data was filtered using 96 

SolexaQA+ software before further analysis 12.  97 

De novo genome assembly and preliminary evaluation  98 

De novo genome assembly of PacBio reads were first performed using Canu with the 99 

default parameters to yield the first primary assembly 13. And meanwhile, the PacBio 100 

reads were assembled into phased diploid assembly using FALCON and FALCON-101 

Unzip, which produced a set of partially phased primary contigs and fully phased 102 

haplotigs which represent divergent haplotyes. Then a consensus assembly was 103 

generated from the two primary assemblies by canu and FALCON (Fig. 1), by using 104 

our locally written Perl scripts. Short reads from Illumina platform were aligned to the 105 

assembly using bwa 14, followed with duplication removal using Picard tools 106 

(http://broadinstitute.github.io/picard/). Pilon was used to do the polish step to correct 107 

single insertions and deletions 15.  108 

We screened all the assembled contigs, and found 11 ones which can be almost 100% 109 

mapped to K. alvarezii chloroplast complete genome (NCBI accession KU892652.1). 110 

Only one contig covered the whole chloroplast genome, and all the 11 chloroplast 111 

contigs have been removed out of the assembled contigs. However, we did not find any 112 

mitochondrial contigs with a blastn against the complete mitochondrial genome (NCBI 113 

accession NC_031814.1). In addition, we tried to filter the bacterial contigs by using 114 
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blastn against the nt database, and none were found with identity > 90%. Finally, this 115 

led to a genome assembly of 336,052,185 Mb with a contig N50 size of 849,038 bp, 116 

and the quality of this assembly is high enough for the downstream analysis (Table 2).  117 

Furthermore, to evaluate the completeness of the assembly, a set of ultra-conserved 118 

core eukaryotic genes identified by CEGMA were mapped to the assembled genome 119 

using CEGMA 16 and BUSCO 17, which quantitatively assess genome completeness 120 

using evolutionarily informed expectations of gene content. CEGMA assessment 121 

showed that our assembly captured 228 (91.94%) of the 248 ultra-conserved core 122 

eukaryotic genes, of which 214 (86.29%) were complete (Table S1). BUSCO 123 

assessment showed that the assembly captured 264 (87.13%) of the 303 ultra-conserved 124 

core eukaryotic genes (eukaryota_odb9), of which 259 (85.5%) were complete, while 125 

10.2% were considered missing in the assembly (Table 3). It was comparable with the 126 

results of C. crispus assembly.  127 

Repeat annotation in the genome assembly 128 

We used two methods to identify the repeat contents in K. alvarezii genome, i.e. 129 

homology-based one and de novo prediction. The homology-based analysis was 130 

performed by RepeatMasker (http://www.repeatmasker.org/) using the repetitive 131 

database of RepBase 18. In de novo prediction, RepeatMasker (version 3.3.0) was used 132 

to identify transposable repeats in the genome with a de novo repeat library constructed 133 

by RepeatModeler v1.0.8 (http://www.repeatmasker.org/RepeatModeler/). Blast 134 

searches were followed to classify those elements, at the DNA level: E-value <=1e-5, 135 

identity percent >=50%, alignment coverage>=50%, and the minimal matching 136 

length >=80bp; and at the protein level: E-value <=1e-4, identity percent >=30%, 137 
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alignment coverage>=30%, and the minimal matching length >=30 amino acids. In 138 

conclusion, more than 179 million bases were found as interspersed repeats in the K. 139 

alvarezii genome, covered about 53.35% of the genome size (Table 4). The most 140 

abundant transposable elements were LTR elements (27.58%), LINES (8.61%), and 141 

DNA transposons (5.75%).  142 

Gene prediction and functional annotation 143 

Three approaches for gene model prediction, i.e. homology detection, expression-144 

evidence-based predictions and ab initio gene predictions, were combined to get 145 

consensus gene structures. To identify homology patterns in K. alvarezii, the BLASTX 146 

19 search was conducted against the NCBI non-redundant protein database with E-value 147 

<10-5, and then the proteins were aligned for their gene structure by GeneWise 20, and 148 

introns and frameshifting errors were identified. For expression evidences, published 149 

ESTs, transcripts and RNA-seq datasets were aligned to the genome. AUGUSTUS was 150 

used for ab initio gene prediction 21 after that repeated elements in the nuclear genome 151 

were masked by RepeatMasker. Gene model parameters for the programs were trained 152 

based on long transcripts and known Kappaphycus genes. And then, all these de novo 153 

gene predictions, homolog-based methods and RNA-seq data were combined to 154 

determine the consensus gene sequences using EVidenceModeler (EVM) 22, and PASA 155 

was used to update the EVM consensus predictions by adding UTR annotations, 156 

merging genes, splitting genes, boundary adjustments 23. It resulted in 21,422 protein-157 

coding gene models. The gene length distribution, coding sequences (CDS), exons, 158 

introns, and the distribution of exon number per gene were shown in Table 5. Totally 159 
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254 contigs do not contain protein-coding genes, i.e. 12,285,700 bp in length and 3.6% 160 

of the whole assembly.  161 

For functional assignment and annotation, the BLAST search of gene models was 162 

carried out against NR, Swissprot and TrEMBL protein database 24 with E-value <10-5. 163 

While InterProScan program 25 was used to perform functional classification of Gene 164 

Ontology (GO) of the genes, and also generate family information from Interpro. 165 

Pathway analysis was performed using the Kyoto Encyclopedia of Genes and Genomes 166 

(KEGG) annotation service KAAS with the default bitscore threshold of 60 26. Totally 167 

13,011 proteins were annotated, i.e. 60.7% of all predicted proteins (Table 6 & Table 168 

S2). The all-vs-all BLAST search against genes themselves identified the distribution 169 

of gene copies in the whole genome based on the identity (Fig. S1), and it showed that 170 

the most genes were with one or two copies for 100% identity, and more homologs were 171 

identified with smaller identity.  172 

Furthermore, we selected 22 conserved genes and downloaded their homologous 173 

sequences from 14 plant species, including spermatophyte, Bryophyta, Charophyta, 174 

Chlorophyta, Glaucophyta, and Rhodophyta. We built a phylogenetic tree based on 175 

these homologous sequences, and found that K. alvarezii was placed with a close 176 

position to C. crispus (Fig. 2), which is consistent with the result in the Nr database 177 

search (Fig. 3).  178 

Data Records 179 

All of the raw reads have been deposited at SRA under the accession numbers of 180 

SRP101845 and SRP128943. This whole genome shotgun project has been deposited 181 
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at DDBJ/ENA/GenBank under the accession NADL00000000. The version described 182 

in this paper is NADL01000000.2. The raw sequence data has also been deposited in 183 

the Genome Sequence Archive 27 in BIG Data Center 28, Beijing Institute of Genomics 184 

(BIG), Chinese Academy of Sciences, under accession numbers PRJCA000373 that are 185 

publicly accessible at http://bigd.big.ac.cn/gsa.  186 

Technical Validation 187 

Genome size was estimated by the k-mer method using Jellyfish and gce program 29. 188 

K-mer analysis was performed by using 34.15 Gb clean sequences from 300 and 500 189 

bp insert size libraries, and the estimated genome size of K. alvarezii was 334,905,000 190 

bp. Furthermore, it is shown in a previous study that there are ten chromosomes (n = 191 

10) in K. alvarezii nucleus, and the g/2C genome size based on the cytophotometry was 192 

estimated to be 0.28~0.32 pg 30. The genome of K. alvarezii was therefore extrapolated 193 

to be 273.8~313 Mb (0.978 x 109 bp/pg) 31, which is consistent with the genome 194 

assembly in this study.  195 

Furthermore, the assembled contigs were evaluated based on the following 196 

analysis. Firstly, the coverage peaks for 17 kmer were about 65X and 35X for HiSeq 197 

and PacBio reads respectively (Fig. S2A and B), and only one peak was found for 17-, 198 

25- and 30-kmer (Fig. S2C), which suggested a reliable assembly. Secondly, we did 199 

BLAST alignment of the assembled contigs against NCBI Nr database, and found the 200 

majority was with the hits to C. crispus, a species of red algae (Fig. 3). Finally, the 201 

depths of HiSeq and Pacbio reads were shown a relatively stable distribution across the 202 

assembled contigs, and it suggested no severe bias for both the sequencing methods 203 
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(Fig. S3).  204 

It was reported that the three second components (fast, intermediate, and slow) in 205 

the DNA reassociation kinetic analysis corresponded to the highly repetitive sequences 206 

(12%), mid-repetitive sequences (38%) and unique sequences (50%) 30, and our repeat 207 

ratio of 53.35% further confirmed that almost half of the K. alvarezii genome is not 208 

unique.  209 

Usage Notes 210 

We report the first genome sequencing, assembly, and annotation of the red alga K. 211 

alvarezii. The assembled draft genome will provide a valuable genomic resource for 212 

the study of essential genes, especially Carrageenan and other useful polysaccharides; 213 

for the alignment of sequencing reads, for example, RNA-seq and low-coverage 214 

genome resequencing. And the well-annotated gene sequences are also helpful to 215 

conduct more comprehensive evolution analysis of genes in Florideophyceae algae, and 216 

understand the genomic evolution in algae.  217 

 218 

Code Availability 219 

Software used for read preprocessing, genome assembly and annotation is described in 220 

the Methods section together with the versions used.  221 
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Table 1: Summary statistics of sequence data in K. alvarezii strain No.2012020004A 237 

Library 
insert size 
(bp) 

Platform Number of reads Read length 
(bp) 

Total bases 
(Gb) 

Sequencing 
depth (X) 

300 HiSeq 125,092,853  101 25.27 75.21  
500 HiSeq 89,174,954  101 18.01 53.6  
20000 Pacbio 2,241,889  NA 18.52 55.12  
Total NA 216,509,696  NA 61.80 183.93  

Note: Sequencing depth was calculated based on assembled genome size of 336 Mb.  238 

 239 

Table 2: Summary statistics of the genome assemblies in K. alvarezii and C. crispus 240 

Genome features K. alvarezii C. crispus 
Assembly size 336,052,185 103,905,190 
Longest scaffold 6,313,668 449,226 
Number of scaffolds 888 925 
Average length of contigs 378,437 32,059 
Contig N50 849,038 64,000 
Scaffold N50 849,038 240,000 
GC level 45.36% 52.92% 

 241 
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Table 3: Summarized benchmarking in BUSCO notation for the assembly 242 

 K. alvarezii  C. crispus 
 Number Percent Number Percent 

Complete BUSCOs (C) 259 85.50% 263 86.80% 
  Complete and single-copy BUSCOs (S) 176 58.10% 254 83.80% 
  Complete and duplicated BUSCOs (D) 83 27.40% 9 3.00% 
Fragmented BUSCOs (F) 13 4.30% 10 3.30% 
Missing BUSCOs (M) 31 10.20% 30 9.90% 

Note: totally 303 BUSCO groups were searched. BUSCO was run in mode genome, 243 
the lineage dataset is eukaryota_odb9. 244 

 245 

Table 4: Summary statistics of annotated repeats in the assembly 246 

 Number of 
elements 

Length occupied 
(bp) 

Percentage of 
sequence 

SINEs 355  76,627  0.02% 
LINEs 65,095  28,994,744  8.61% 
LTR elements 67,843  92,875,333  27.58% 
DNA elements 36,440  19,350,040  5.75% 
Unclassified 121,683  38,353,941  11.39% 
Total interspersed repeats 291,416 179,650,685  53.35% 

Note: most repeats fragmented by insertions or deletions have been counted as one 247 
element. 248 

 249 

Table 5: Summary statistics of gene structure 250 

 K. alvarezii C. crispus 
Protein-coding loci 21,422 9,606 
Average length of transcript 1089.12 - 
Average length of cds 981 1,080 
Average length of exon 500.90 789 
Average number of exon 1.98 1.32 
Average length of intron 422.03 123 

 251 

Table 6: Statistics for functional annotation 252 

 Number Percent (%) 
Nr 12666 59.69% 
Swissprot 8145 38.78% 
TrEMBL 12705 59.86% 
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InterPro 9202 43.65% 
KEGG 4,448 19.72% 
GO 9,642 42.74% 
Total 13,011 61.28% 

 253 

Figure Legends 254 

Figure 1: Assembly pipeline for the K. alvarezii genome.  255 

Figure 2: Molecular Phylogenetic analysis by Maximum Likelihood method, inferred 256 

by using the Maximum Likelihood method based on the Le_Gascuel_2008 model 257 

(LG+G). Arabidopsis thaliana, arat; Chlamydomonas reinhardtii, chlr; Chondrus 258 

crispus, choc; Cyanidioschyzon merolae, cyam; Cyanophora paradoxa, cyap; 259 

Galdieria sulphuraria, gals; Kappaphycus alvarezii, kapa; Klebsormidium flaccidum, 260 

klef; Marchantia polymorpha, marp; Oryza sativa, orys; Physcomitrella patens, phyp; 261 

Porphyridium purpureum, porp; Pyropia yezoensis, pyry; Volvox carteri, volc; Zostera 262 

marina, zosm.  263 

Figure 3: Blast annotation against the NCBI nr database. 264 

 265 

Supplemental materials 266 

Figure S1: The frequency of self-blast alignments of genes, multiple hits for each query 267 

were shown in different colors, sorted by blast scores.  268 

Figure S2: K-mer distribution in the K. alvarezii genome. In A for HiSeq and B for 269 

PacBio, the x-axis is frequency (depth) of 17 k-mer; the y-axis is the proportion which 270 

represents the frequency at that depth divide by the total frequency of all the depth. C, 271 

comparison of 17, 25, and 30 k-mer.  272 
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Figure S3: Sequencing depth of the contigs, calculated respectively from HiSeq (A) 273 

and PacBio (B) data, with 20 kb window size. Contigs larger than 1 Mb were selected 274 

for calculation. 275 

 276 

Table S1: Statistics of the completeness of the genome based on CEGMA. 277 

Table S2: Annotation of all genes in the assembly.  278 

 279 

 280 
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