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ABSTRACT  
Motivation:    Recombinant   protein   production   is   a   widely   used   technique   in   the   biotechnology  
and   biomedical   industries,   yet   only   a   quarter   of   target   proteins   are   soluble   and   can   therefore  
be   purified.  
Results:    We   have   discovered   that   global   structural   flexibility,   which   can   be   modeled   by  
normalised   B-factors,   accurately   predicts   the   solubility   of   12,216   recombinant   proteins  
expressed   in    Escherichia   coli .   We   have   optimised   B-factors,   and   derived   a   new   set   of   values  
for   solubility   scoring   that   further   improves   prediction   accuracy.   We   call   this   new   predictor   the  
‘Solubility-Weighted   Index’   (SWI).   Importantly,   SWI   outperforms   many   existing   protein  
solubility   prediction   tools.   Furthermore,   we   have   developed   ‘SoDoPE’   (Soluble   Domain   for  
Protein   Expression),   a   web   interface   that   allows   users   to   choose   a   protein   region   of   interest  
for   predicting   and   maximising   both   protein   expression   and   solubility.  
 
Availability  
The   SoDoPE   web   server   and   source   code   are   freely   available   at    https://tisigner.com/sodope  
and    https://github.com/Gardner-BinfLab/TISIGNER-ReactJS ,   respectively.  
The   code   and   data   for   reproducing   our   analysis   can   be   found   at  
https://github.com/Gardner-BinfLab/SoDoPE_paper_2020 .  
 
 
 

INTRODUCTION  
High   levels   of   protein   expression   and   solubility   are   two   major   requirements   of   successful  
recombinant   protein   production    (Esposito   and   Chatterjee   2006) .   However,   recombinant  
protein   production   is   a   challenging   process.   Almost   half   of   recombinant   proteins   fail   to   be  
expressed   and   half   of   the   successfully   expressed   proteins   are   insoluble  
( http://targetdb.rcsb.org/metrics/ ).   These   failures   hamper   protein   research,   with   particular  
implications   for   structural,   functional   and   pharmaceutical   studies   that   require   soluble   and  
concentrated   protein   solutions    (Kramer   et   al.   2012;   Hou   et   al.   2018) .   Therefore,   solubility  
prediction   and   protein   engineering   for   enhanced   solubility   is   an   active   area   of   research.  
Notable   protein   engineering   approaches   include   mutagenesis,   truncation   (i.e.,   expression   of  
partial   protein   sequences),   or   fusion   with   a   solubility-enhancing   tag    (Waldo   2003;   Esposito  
and Chatterjee 2006; Trevino, Martin Scholtz, and Nick Pace 2007; Chan et al. 2010; Kramer
et   al.   2012;   Costa   et   al.   2014) .   
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Protein   solubility,   at   least   in   part,   depends   upon   extrinsic   factors   such   as   ionic   strength,  
temperature   and   pH,   as   well   as   intrinsic   factors—the   physicochemical   properties   of   the  
protein   sequence   and   structure,   including  molecular   weight,   amino   acid   composition,  
hydrophobicity,   aromaticity,   isoelectric   point,   structural   propensities   and   the   polarity   of  
surface   residues    (Wilkinson   and   Harrison   1991;   Chiti   et   al.   2003;   Tartaglia   et   al.   2004;  Diaz  
et   al.   2010) .   Many   solubility   prediction   tools   have   been   developed   around   these   features  
using   statistical   models   (e.g.,   linear   and   logistic   regression)   or   other   machine   learning  
models   (e.g.,   support   vector   machines   and   neural   networks)    (Hirose   and   Noguchi   2013;  
Habibi   et   al.   2014;   Hebditch   et   al.   2017;   Sormanni   et   al.   2017;   Heckmann   et   al.   2018;   Z.   Wu  
et   al.   2019;   Yang,   Wu,   and   Arnold   2019) .   

In   this   study,   we   investigated   the   experimental   outcomes   of   12,216   recombinant   proteins  
expressed   in    Escherichia   coli    from   the   ‘Protein   Structure   Initiative:Biology’   (PSI:Biology)  
(Chen   et   al.   2004;   Acton   et   al.   2005) .   We   showed   that   protein   structural   flexibility   is   more  
accurate   than   other   protein   sequence   properties   in   predicting   solubility    (Craveur   et   al.   2015;  
M.   Vihinen,   Torkkila,   and   Riikonen   1994) .   Flexibility   is   a   standard   feature   that   appears   to  
have   been   overlooked   in   previous   solubility   prediction   attempts.   On   this   basis,   we   derived   a  
set   of   20   values   for   the   standard   amino   acid   residues   and   used   them   to   predict   solubility.   We  
call   this   new   predictor   the   ‘Solubility-Weighted   Index’   (SWI).   SWI   is   a   powerful   predictor   of  
solubility,   and   a   good   proxy   for   global   structural   flexibility.   In   addition,   SWI   outperforms   many  
existing    de   novo    protein   solubility   prediction  tools.  
 
 
 

RESULTS  
Global   structural   flexibility   performs   well   at   predicting   protein   solubility  
We   sought   to   understand   what   makes   a   protein   soluble,   and   develop   a   fast   and   accurate  
approach   for   solubility   prediction.   To   determine   which   protein   sequence   properties   accurately  
predict   protein   solubility,   we   analysed   12,216   target   proteins    from   over    196   species   that   were  
expressed   in    E.   coli    (the   PSI:Biology   dataset;   see   Supplementary   Fig   S1   and   Table   S1A)  
(Chen   et   al.   2004;   Acton   et   al.   2005) .   These   proteins   were   expressed   either   with   a  
C-terminal   or   N-terminal   polyhistidine   fusion   tag   (pET21_NESG   and   pET15_NESG  
expression   vectors,   N=8,780   and   3,436,   respectively).   They   were   previously   curated   and  
labeled   as   ‘Protein_Soluble’   or   ‘Tested_Not_Soluble’    (Seiler   et   al.   2014) ,   based   on   the  
soluble   analysis   of   cell   lysate   using   SDS-PAGE    (R.   Xiao   et   al.   2010) .   A   total   of   8,238  
recombinant   proteins   were   found   to   be   soluble,   in   which   6,432   of   them   belong   to   the  
pET21_NESG   dataset.  Both   the   expression   system   and   solubility   analysis   method   are  
commonly   used    (Costa   et   al.   2014) .   Therefore,   this   collection   of   data   captures   a   broad   range  
of   protein   solubility   issues.  
 
We   evaluated   nine   standard   and   9,920   miscellaneous   protein   sequence   properties   using   the  
Biopython’s   ProtParam   module   and   ‘protr’   R   package,   respectively    (Cock   et   al.   2009;   N.  
Xiao   et   al.   2015) .   For   example,   the   standard   properties   include   the   Grand   Average   of  
Hydropathy   (GRAVY),   secondary   structure   propensities,   protein   structural   flexibility   etc.,  
whereas   miscellaneous   properties   include   amino  acid   composition,   autocorrelation,   etc.  
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Strikingly,   protein   structural   flexibility   outperformed   other   features   in   solubility   prediction  
[Area   Under   the   ROC   Curve   (AUC)   =   0.67;   Fig   1,   Supplementary   Fig   S2   and   Table   S2].   
 
 

 
 
Fig   1.   Global   structural   flexibility   outperforms   the   other   standard   protein   sequence  
properties   in   protein   solubility   prediction.    ROC   analysis   of   the   standard   protein   sequence  
features  for   predicting   the   solubility   of   12,216   recombinant   proteins   expressed   in    E.   coli    (the  
PSI:Biology   dataset).   AUC   scores   (perfect   =   1.00,   random   =   0.50)   are   shown   in   parentheses.  
The   ROC   curves   are  shown   in   two   separate   panels   for   clarity.   Dashed   lines   denote   the  
performance   of   random   classifiers.   See   also   Supplementary   Fig   S2   and   Table   S2.   AUC,  
Area   Under   the   ROC   Curve;   GRAVY,   Grand   Average   of   Hydropathy;   PSI:Biology,   Protein  
Structure   Initiative:Biology;   ROC,   Receiver   Operating   Characteristic.  
 
 
The   Solubility-Weighted   Index   (SWI)   is   an   improved   predictor   of   solubility  
Protein   structural   flexibility,   in   particular,   the   flexibility   of   local   regions,   is   often   associated  
with   function    (Craveur   et   al.   2015) .   The   calculation   of   flexibility   is   usually   performed   by  
assigning   a   set   of   20   normalised   B-factors—a   measure   of   vibration   of   C-alpha   atoms   (see  
Supplementary   Notes)—to   a   protein   sequence   and   averaging   the   values   by   a   sliding   window  
approach    (Ragone   et   al.   1989;   Karplus   and   Schulz   1985;   M.   Vihinen,   Torkkila,   and   Riikonen  
1994;   Smith   et   al.   2003) .   We   reasoned   that   such   sliding   window   approach   can   be  
approximated   by   a   more   straightforward   arithmetic   mean   for   calculating   global   structural  
flexibility   (see   Supplementary   Notes).    We   determined   the   correlation   between   flexibility  
(Vihinen    et   al. ’s   sliding   window   approach   as   implemented   in   Biopython)   and   solubility   scores  
calculated   as   follows:  
 

                                                                                                             (1)  L
1 (∑L

i=1
Bi)  

 
where     is   the   normalised   B-factor   of   the   amino   acid   residue   at   the   position   ,   and     is   the Bi i L  

sequence   length.   We   obtained   a   strong   correlation   for   the   PSI:Biology   dataset   (Spearman’s  
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rho   =   0.98,   P-value   below   machine’s   underflow   level).   Therefore,   we   reasoned   that   the  
sliding   window   approach   is   not   necessary   for   our  purpose.  
 
We   applied   this   arithmetic   mean   approach   (i.e.,   sequence   composition   scoring)   to   the  
PSI:Biology   dataset   and   compared   four   sets   of   previously   published,   normalised   B-factors  
(Bhaskaran   and   Ponnuswamy   1988;   Ragone   et   al.   1989;   M.   Vihinen,   Torkkila,   and   Riikonen  
1994;   Smith   et   al.   2003)    Among   these   sets   of   B-factors,   sequence   composition   scoring   using  
the   most   recently   published   set   of   normalised   B-factors   produced   the   highest   AUC   score  
(Supplementary   Fig   S3,   AUC   =   0.66).  
 
To   improve   the   prediction   accuracy   of   solubility,   we   iteratively   refined   the   weights  of   amino  
acid residues using the Nelder-Mead optimisation algorithm (Nelder and Mead 1965). To
avoid   testing   and   training   on   similar   sequences,   we   generated   10   cross-validation   sets   with   a  
maximised   heterogeneity   between   these   subsets   (i.e.   no   similar   sequences   between  
subsets).    We   first   clustered   all   12,216   PSI:Biology   protein   sequences   using   a  40%   similarity  
threshold   using   USEARCH   to   produce   5,050   clusters   with   remote   similarity     (see   Methods  
and   Supplementary   Fig   S4).  The   clusters   were   grouped   into   10   cross-validation   sets   of  
approximately   1,200   sequences   each   manually.   We   did   not   select   a   representative   sequence  
for   each  cluster   as   about   12%   of   clusters   contain   a   mix   of   soluble   and   insoluble   proteins 
(Supplementary   Fig   S4C).   More   importantly,   to   address   the   issues   of   sequence   similarity   and  
imbalanced   classes,   we   performed   1,000   bootstrap   resamplings   for   each   cross-validation  
step   (Fig   2A   and   Supplementary   Fig   S5).    We   calculated   the   solubility   scores   using   the  
optimised   weights   as   Equation   1   and   the   AUC   scores   for   each   cross-validation   step.   Our  
training   and   test   AUC   scores   were   0.72     ±     0.00   and   0.71     ±   0.01,   respectively,   showing   an  
improvement   over   flexibility   in   solubility   prediction   (mean   ±   standard   deviation;   Fig   2B   and  
Supplementary   Table   S3).  
 
The   final   weights   were   derived   from   the   arithmetic   means   of   the   weights   for   individual   amino  
acid   residues  obtained   cross-validation   (Supplementary   Table   S4).   We   observed   over   a   20%  
change   on   the   weights   for   cysteine   (C)   and   histidine   (H)   residues   (Fig   2C   and  
Supplementary   Table   S4).   These   results   are   in   agreement   with   the   contributions   of   cysteine  
and   histidine   residues   as   shown   in   Supplementary   Fig   S2B.   We   call   the   solubility   score   of   a  
protein   sequence   calculated   using   the   final   weights   the   Solubility-Weighted   Index   (SWI). 
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Fig   2.   Derivation   of   the   Solubility-Weighted   Index   (SWI).   (A)    Flow   chart   shows   an  
iterative   refinement   of   the   most   recently   published   set   of   normalised   B-factors   for   solubility  
prediction    (Smith   et   al.   2003) .   The   solubility   score   of   a   protein   sequence   was   calculated  
using   a   sequence   composition   scoring   approach   (Equation   1,   using   optimised   weights   , W  

instead   of   normalised   B-factors   ).   These   scores   were   used   to   compute   the   AUC   scores  for B  

training   and   test   datasets.    (B)    Training   and   test   performance   of   solubility   prediction   using  
optimised   weights   for   20   amino   acid   residues   in   a  10-fold   cross-validation   (mean   AUC   ±  
standard   deviation).   Related   data   and   figures   are   available   as   Supplementary   Table   S3   and  
Supplementary   Fig   S4   and   S5.    (C)    Comparison   between   the   20   initial   and   final   weights   for  
amino   acid   residues.   The   final   weights   are   derived   from   the   arithmetic   mean   of   the   optimised  
weights   from   cross-validation.   These   weights   are   used   to   calculate   SWI,   the   solubility   score  
of   a   protein   sequence,   in   the   subsequent   analyses.   Filled   circles,   which   represent   amino   acid  
residues,   are   colored   by   hydrophobicity    (Kyte   and   Doolittle   1982) .   Solid   black   circles   denote  
aromatic   amino   acid   residues   phenylalanine   (F),   tyrosine   (Y),   tryptophan   (W).   Dotted  
diagonal   line   represents   no   change   in   weight.   See   also   Supplementary   Table   S4   and   Fig   S4.  
AUC,   Area   Under   the   ROC   Curve;   ROC,   Receiver   Operating   Characteristic;   ,   arithmetic W  

mean   of  the   weights   of   an   amino   acid   residue   optimised   from   1,000   bootstrap   samples   in   a  
cross-validation   step.  
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To   validate   the   cross-validation   results,   we   used   a   dataset   independent   of   the   PSI:Biology  
data   known   as   eSOL    (Niwa   et   al.   2009) .   This   dataset   consists   of   the   solubility   percentages   of  
E.   coli    proteins   determined   using   an    E.   coli    cell-free   system   (N   =   3,198).   Our   solubility  
scoring   using  the   final   weights   showed   a   significant   improved   correlation   with    E.   coli    protein  
solubility   over   the   initial   weights   (Smith    et   al. ’s   normalised   B-factors)   [Spearman’s   rho   of   0.50  
(P   =   9.46   ✕   10 -206 )   versus   0.40   (P   =   4.57   ✕   10 -120 )].   We   repeated   the   correlation   analysis   by  
removing   extra   amino   acid   residues   including   His-tags   from   the   eSOL   sequences  
(MRGSHHHHHHTDPALRA   and   GLCGR   at   the   N-   and   C-termini,   respectively).   This   artificial  
dataset   was   created   based   on   the   assumption   that   His-tags   have   little   effect   on   solubility.   We  
observed   a   slight   decrease   in   correlation   for   this   artificial   dataset   (Spearman’s   rho   =   0.47,   P=  
3.67 ✕ 10-176), which may be due to the effects of His-tag in solubility and/or the
limitation(s)   of   our   approach   that   may   overfit   to   His-tag   fusion   proteins.  
 
We   performed   Spearman’s   correlation   analysis   for   both   the   PSI:Biology   and   eSOL   datasets.  
SWI   shows   the   strongest   correlation   with   solubility   compared   to   the   standard   and   9,920  
protein   sequence   properties   (Fig   3   and   Supplementary   Fig   S2,   respectively).   SWI   also  
strongly   correlates   with   flexibility,   suggesting   that   SWI   is   also   a   good   proxy   for   global  
structural   flexibility.  
 
 

 
 
Fig   3.   SWI   strongly   correlates   with   solubility.   (A)    Correlation   matrix   plot   of   the   solubility   of  
recombinant   proteins   expressed   in    E.   coli    and   their   standard   protein   sequence   properties  
and   SWI.   These   recombinant   proteins   are   the   PSI:Biology   targets   (N   =   12,216)   with   a   binary 
solubility   status   of   ‘Protein_Soluble’   or   ‘Tested_Not_Soluble’ .     Related   data   is   available   as  
Supplementary   Table   S5.    (B)    Correlation   matrix   plot   of   the   solubility   percentages   of    E.   coli  
proteins   and   their   standard   protein   sequence   properties   and   SWI.   The   solubility   percentages  
were   previously   determined   using   an    E.   coli    cell-free   system   (eSOL,   N   =   3,198).   Related  
data   is   available   as   Supplementary   Table   S6.   GRAVY,   Grand   Average   of  Hydropathy;  
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PSI:Biology,   Protein   Structure   Initiative:Biology;   Rs ,   Spearman’s   rho;   SWI,  
Solubility-Weighted   Index.  
 
 
We   asked   whether   protein   solubility   can   be   predicted   by   surface   amino   acid   residues.   To  
address   this   question,   we   examined   a   previously   published   dataset   for   the   protein   surface  
‘stickiness’   of   397    E.   coli    proteins    (Levy,   De,   and   Teichmann   2012) .   This   dataset   has   the  
annotation   for   surface   residues   based   on   previously   solved   protein   crystal   structures.  We  
observed   little   correlation   between   the   protein   surface   ‘stickiness’   and   the   solubility   data   from  
eSOL   (Spearman’s   rho   =   0.05,   P   =   0.34,   N   =   348;   Supplementary   Fig   S6A).   Next,   we  
evaluated   if   amino   acid   composition   scoring   using   surface   residues   is   sufficient,   optimising  
only the weights of surface residues should achieve similar or better results than SWI. As
above,   we   iteratively   refined   the   weights   of   surface   residues   using   the   Nelder-Mead  
optimisation   algorithm.   The   method   was   initialised   with   Smith    et   al. ’s   normalised   B-factors  
and   a   maximised   correlation   coefficient   was   the   target.   However,   a   low   correlation   was  
obtained   upon   convergence   (Spearman’s   rho   =   0.18,   P   =   7.20   ✕   10 -4 ;   Supplementary   Fig  
S6B).   In   contrast,   the   SWI   of   the   full-length   sequences   has   a   much   stronger   correlation   with  
solubility   (Spearman’s   rho   =   0.46,   P   =    2.97    ✕   10 -19 ;   Supplementary   Fig   S6C).   These   results  
suggest   that   the   full-length   of   sequences   contributes   to   protein   solubility,   not   just   surface  
residues,   in   which   solubility   is   modulated   by   cotranslational   folding    (Natan   et   al.   2018) .  
 
To   understand   the   properties   of   soluble   and   insoluble   proteins,   we   determined   the  
enrichment   of   amino   acid   residues   in   the   PSI:Biology   targets   relative   to   the   eSOL   sequences  
(see   Methods).   We   observed   that   the   PSI:Biology   targets   are   enriched   in   charged   residues  
lysine   (K),   glutamate   (E)   and   aspartate   (D),   and   depleted   in   aromatic   residues   tryptophan  
(W),   albeit   to   a   lesser  extend   for   insoluble   proteins   (Supplementary   Fig   S7A).   As   expected,  
cysteine   residues   (C)   are   enriched   in   the   PSI:Biology   insoluble   proteins,   supporting   previous  
findings   that   cysteine   residues   contribute   to   poor   solubility   in   the    E.   coli    expression   system  
(Diaz   et   al.   2010;   Wilkinson   and   Harrison   1991) .   
 
In   addition,   we   compared   the   SWI  of   random   sequences   with   the   PSI:Biology   and   eSOL  
sequences.   We   included   an   analysis   of   random   sequences   to   confirm   whether   SWI   can  
distinguish   between   biological   and   random   sequences.   We   found   that   the   SWI   scores   of  
soluble   proteins   are   higher   than   those   of   insoluble   proteins   (Supplementary   Fig   S7B),   and  
that   true   biological   sequences   also   tend   to   have   higher   SWI   scores   than   random   sequences,  
highlighting   a   potential   evolutionary   selection   for   solubility.  
 
 
SWI   outperforms   many   protein   solubility   prediction   tools  
To   confirm   the   usefulness   of   SWI   in   solubility   prediction,   we   compared   it   with   the   existing  
tools   Protein-Sol    (Hebditch   et   al.   2017) ,   CamSol   v2.1    (Sormanni,   Aprile,   and   Vendruscolo  
2015;   Sormanni   et   al.   2017) ,   PaRSnIP    (Rawi   et   al.   2018) ,   DeepSol   v0.3    (Khurana   et   al.  
2018) ,   the   Wilkinson-Harrison   model    (Davis   et   al.   1999;   Harrison   2000;   Wilkinson   and  
Harrison   1991) ,   and   ccSOL   omics    (Agostini   et   al.   2014) .   We   did   not   include   the   specialised  
tools   that   model   protein   structural   information   such   as   surface   geometry,   surface   charges  
and   solvent   accessibility   because   these   tools   require   prior   knowledge   of   protein   tertiary  

7  
 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 26, 2020. ; https://doi.org/10.1101/2020.02.15.951012doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.15.951012
http://creativecommons.org/licenses/by/4.0/


 

257
258
259
260
261
262
263
264

structure.   For   example,   Aggrescan3D   and   SOLart   accept   only   PDB   files   that   can   be  
downloaded   from   the   Protein   Data   Bank   or   produced   using   a   homology   modeling   program  
(Kuriata   et   al.   2019;   Hou   et   al.   2019) .   SWI   outperforms   other   tools   except   for   Protein-Sol   in  
predicting    E.   coli    protein   solubility   (Table   1,   Fig  4A).   Our   SWI   C   program   is   also   the   fastest  
solubility   prediction   algorithm   (Table   1,   Fig   4B   and   Supplementary   Table   S7).  
 
 
Table   1.    Comparison   of   protein   solubility   prediction   methods   and   software.  

Approaches  Features  Wall   time a  
(s   per  
sequence)  

PSI:Biology b  
(AUC)  

eSOL  

  [R s    (P-value)]  

SWI  ● Arithmetic   mean   (this  
study).  

● A   set   of   20   values   for  
amino   acid   residues  
derived   from   Smith    et   al. ’s  
normalised   B-factors (Smith  
et   al.   2003)    by   the  
Nelder-Mead   simplex  
algorithm.  

● Trained   and   tested   using  
the   PSI:Biology   dataset  
curated   by   DNASU    (Seiler  
et   al.   2014) .  

● Available   at  
https://tisigner.com/sodope  
and  
https://github.com/Gardner- 
BinfLab/SoDoPE_paper_2 
020  

1  0.00   ±  
0.00  

0.71   ±   0.01  

 
0.50  
(2.51  
✕   10 -205 )  

Protein-Sol  ● Linear   model    (Hebditch   et  
al.  2017) .  

● Trained   and   tested   using  
eSOL   dataset    (Niwa   et   al.  
2009) .  

● Available   at  
https://protein-sol.manches 
ter.ac.uk  

10  1.16   ±  
0.75  

0.68   ±    0.02  0.54  
(2.37      10 -240 )  

Flexibility  ● A   sliding   window   of   9  
amino   acid   residues    (M.  
Vihinen,   Torkkila,   and  
Riikonen   1994) .  

● Vihinen    et   al. ’s  
n ormalised   B-factors  
derived   from   PDB.  

● Available   at  
https://github.com/biopytho 
n/biopython  

1  0.38   ±  
0.04  

0.67   ±   0.02  0.37  
(7.73   ✕   10 -106 )  

DeepSol  
S2  

● Neural   network   models  
(Khurana   et   al.   2018) .  

57   (11  
types)  

2069.77   ±  
1613.63  

0.67 d  
   ±   0.02  0.23  

(5.82   ✕   10 -41 ) c  

8  
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● Trained   and   tested   using   a  
PSI:Biology   dataset  
curated   by   ccSOL   omics.  

● Available   at  
https://github.com/sameerk 
hurana10/DSOL_rv0.2  

 

DeepSol  
S3  

2075.93   ±  
1613.80  

0.66 d  
   ±   0.02  0.35  

(7.48   ✕   10 -91 ) c  

DeepSol  
S1  

2081.93   ±  
1612.71  

0.64 d  
   ±   0.03  0.39  

(9.52   ✕  
10 -116 ) c  

CamSol  
intrinsic  
web   server  

● Linear   and   logistic  
regression   models  
(Sormanni,   Aprile,   and  
Vendruscolo   2015;  
Sormanni   et   al.   2017) .  

● Trained   and   tested   using  
previously   published  
datasets    (Família   et   al.  
2015) .  

● Available   at  
http://www-vendruscolo.ch. 
cam.ac.uk/camsolmethod.h 
tml  

4  NA  0.66   ±   0.01  0.44  
(4.53   ✕   10 -148 )  

PaRSnIP  ● Gradient   boosting   machine  
model (Rawi et al. 2018).

● Trained   and   tested   using   a  
PSI:Biology   dataset  
curated   by   ccSOL   omics.  

● Available   at  
https://github.com/RedaRa 
wi/PaRSnIP  

8,477  
(14
types)  

2055.50   ±  
1621.11

0.61   ±   0.02  0.29  
(3.57 ✕ 10-65 )

Wilkinson-  
Harrison  
model  

● Linear   model   using   charge  
average   and   turn-forming  
residue   fraction    (Davis   et  
al.  1999;   Harrison   2000;  
Wilkinson   and   Harrison  
1991) .  

● Available   at  
https://github.com/brunoV/ 
bio-tools-solubility-wilkinso 
n  

2  0.09   ±  
0.00  

0.55   ±   0.03  -0.06  
(1.16   ✕   10 -4 )  

ccSOL  
omics   web  
server  

● Support   vector   machine  
model    (Agostini   et   al.  
2014) .   

● Trained   and   tested   using   a  
PSI:Biology   dataset  
curated   in-house.  

● Available   at  
http://s.tartaglialab.com/ne 
w_submission/ccsol_omics 
_file  

5  NA  0.51   ±   0.01  -0.02  
(0.18)  

Boldface   values   are   the   best   results.  
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a The   wall   time   was   reported   at   the   level   of   machine   precision   (mean   seconds   ±   standard  
deviation).   A   total   of   10   sequences   were   chosen   from   the   PSI:Biology   and   eSOL   datasets,  
related   to   Fig   4B   and   Supplementary   Table   S7   (see   Methods).  
b For   SWI,    mean   AUC   ±   standard   deviation   was   calculated   from   a   10-fold   cross-validation   (see  
Methods).   For   other   tools,   no   cross-validations   were   done   as   the   AUC   scores   were  
calculated   directly   from   the   individual   subsets   used   for   cross-validation.  
c DeepSol   reports   solubility   prediction   as   probability   and   binary   classes.   The   probability   of  
solubility   was   used   to   calculate   AUC   and   Spearman’s   correlation   due   to   better   results.  
AUC,   Area   Under   the   ROC   Curve;   NA,   not   applicable;   PDB,   Protein   Data   Bank;   PSI:Biology,  
Protein   Structure   Initiative:Biology;   ROC,   Receiver   Operating   Characteristic;   R s ,   Spearman’s  
rho;   SWI,   Solubility-Weighted   Index;   s,   seconds.  

 
 

 
 
Fig   4.   SWI   outperforms   existing   protein   solubility   prediction   tools.   (A)    Prediction  
accuracy   of   solubility   prediction   tools   using   the   above   cross-validation   sets   (Fig   2A).   For  
SWI,   the   test   AUC   scores   were   calculated   from   a   10-fold   cross-validation   (i.e.,   a   boxplot  
representation   of   Fig   2B).   For   other   tools,   the   test   AUC   scores   were   calculated   directly   from  
the   individual   subsets   used   for   cross-validation.   No   cross-validations   were   done.   CamSol  
and   ccSOL   omics   are   only   available   as   web   servers   (no   fill   colors).    (B)    Wall   time   of   protein  
solubility   prediction   tools   per   sequence   (log   scale).   All   command   line   tools   were   run   three  
times   using   10   sequences   selected   from   the   PSI:Biology   and   eSOL   datasets.   Related   data   is  
available   as   Supplementary   Table   S7.   AUC,   Area   Under   the   ROC   Curve;   PSI:Biology,  
Protein   Structure   Initiative:Biology;   ROC,   Receiver   Operating   Characteristic;   SWI,  
Solubility-Weighted   Index;   s,   seconds.  
 
 
To   demonstrate   a   use   case   for   SWI,   we   developed   the   Soluble   Domain   for   Protein  
Expression   (SoDoPE)   web   server   (see   Methods   and    https://tisigner.com/sodope ).   Upon  
sequence   submission,   the   SoDoPE   web   server   enables   users   to   navigate   the   protein  
sequence   and   its   domains   for   predicting   and   maximising   protein   expression   and   solubility.  
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DISCUSSION  
Protein   structural   flexibility   has   been   associated   with   conformal   variations,   functions,   thermal  
stability,   ligand   binding   and   disordered   regions    (Mauno   Vihinen   1987;   Teague   2003;   Ma  
2005;   Radivojac   2004;   Schlessinger   and   Rost   2005;   Yuan,   Bailey,   and   Teasdale   2005;   Yin,  
Li,   and   Li   2011) .   However,   the   use   of   flexibility   in   solubility   prediction   has   been   overlooked  
although   their   relationship   has   previously   been   noted    (Tsumoto   et   al.   2003) .   In   this   study,   we  
have   shown   that   flexibility   strongly   correlates   with   solubility   (Fig   3).   Based   on   the   normalised  
B-factors   used   to   compute   flexibility,   we   have   derived   a   new   position   and   length   independent  
weights   to   score   the   solubility   of   a   given   protein   sequence   (i.e.,   sequence   composition   based  
score).   We   call   this   protein   solubility   score   as   SWI.  
 
Upon   further   inspection,   we   observe   some   interesting   properties   in   SWI.   SWI   anti-correlates  
with   helix   propensity,   GRAVY,   aromaticity   and   isoelectric   point   (Fig   2C   and   3),   suggesting  
that   SWI   incorporates   the   key   propensities   affecting   solubility.   Amino   acid   residues   with   a  
lower   aromaticity   or   hydrophilic   are   known   to   improve   protein   solubility    (Trevino,   Martin  
Scholtz,   and   Nick   Pace   2007;   Niwa   et   al.   2009;   Kramer   et   al.   2012;   Warwicker,   Charonis,  
and   Curtis   2014;   Han   et   al.   2019;   Wilkinson   and   Harrison   1991) .   Consistent   with   previous  
studies,   the   charged   residues   aspartate   (D),   glutamate   (E)   and   lysine   (K)   are   associated   with  
high   solubility,   whereas   the   aromatic   residues   phenylalanine   (F),   tryptophan   (W)   and   tyrosine  
(Y)   are   associated   with   low   solubility   (Fig   2C   and   Supplementary   Fig   S7A).   Cysteine   residue  
(C)   has   the   lowest   weight   probably   because   disulfide   bonds   couldn’t   be   properly   formed   in  
the    E.   coli    expression   hosts    (Stewart,   Aslund,   and   Beckwith   1998;   Rosano   and   Ceccarelli  
2014;   Jia   and   Jeon   2016;   Aslund   and   Beckwith   1999) .   The   weights   are   likely   different   if   the  
solubility   analysis   was   done   using   the   reductase-deficient,    E.   coli    Origami   host   strains,   or  
eukaryotic   hosts.   
 
Higher   helix   propensity   has   been   reported   to   increase   solubility    (Idicula-Thomas   and   Balaji  
2005;   Huang   et   al.   2012) .   However,   our   analysis   has   shown   that   helical   and   turn  
propensities   anti-correlate   with   solubility,   whereas  sheet   propensity   lacks   correlation   with  
solubility,   suggesting   that   disordered   regions   may   tend   to   be   more   soluble   (Fig   3).   In  
accordance   with   these,   SWI   has   stronger   negative   correlations   with   helix   and   turn  
propensities.   These   findings   also   suggest   that   protein   solubility   can   be   largely  explained   by  
overall   amino   acid   composition,   not   just   the   surface   amino   acid   residues.   This   idea   aligns  
with   our   understanding   that   protein   solubility   and   folding   are   closely   linked,   and   folding  
occurs   cotranscriptionally,   a   complex   process   that   is   driven   various   intrinsic   and   extrinsic  
factors    (Wilkinson   and   Harrison   1991;   Chiti   et   al.   2003;   Tartaglia   et   al.   2004;   Diaz   et   al.  
2010) .   However,   it   is   unclear   why   sheet   propensity   has   little   contribution   to   solubility   because  
β-sheets   have   been   shown   to   link   closely   with   protein   aggregation    (Idicula-Thomas   and  
Balaji   2005) .  
 
We   conclude   that   SWI   is   a   well-balanced   index   that   is   derived   from   a   simple   sequence  
composition   scoring   method.   To   demonstrate   the  usefulness   of   SWI,   we   developed   a   web  
server   called   SoDoPE   (Soluble   Domain   for   Protein   Expression;    https://tisigner.com/sodope ).  
SoDoPE    calculates   the   probability   of   solubility   of   a   user-selected   region   based   on   SWI,  
which   can   either   be   a   full-length   or   a   partial   sequence   (see   Methods   and   Supplementary  
Table   S8).    This   implementation   is   based   on   our   observation   that   some   protein   domains   tend  
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to   be   more   soluble   than   the   others.   To   demonstrate   this   point,   we   have   analysed   three  
commercial   monoclonal   antibodies   and   the   severe   acute   respiratory   syndrome   coronavirus  
proteomes   (SARS-CoV   and   SARS-CoV-2)    (Wang   et   al.   2009;   Marra   et   al.   2003;   F.   Wu   et   al.  
2020)    (Supplementary   Fig   S8   and   S9).   These   soluble   domains   may   enhance   protein  
solubility   as   a   whole.   SoDoPE   also   provides   options   for   solubility   prediction   at   the   presence  
of   solubility   fusion   tags.   Similarly,   solubility   tags   may   act   as   soluble   ‘protein   domains’   that  
can   outweigh   the   aggregation   propensity   of   insoluble   proteins.   However,   some   soluble   fusion  
proteins   may   become   insoluble   after   proteolytic   cleavage   of   solubility   tags    (Lebendiker   and  
Danieli   2014) .   In   addition,   SoDoPE   is   integrated   with   TIsigner,   a   gene   optimisation   web  
service   for   protein   expression.   This   pipeline   provides   a   holistic   approach   to   improve   the  
outcome   of   recombinant   protein   expression.  
 
 
 

METHODS  
Protein   sequence   properties  
The   standard   protein   sequence   properties   were   calculated   using   the   Bio.SeqUtils.ProtParam  
module   of   Biopython   v1.73    (Cock   et   al.   2009) .   All   miscellaneous   protein   sequence   properties  
were   computed   using   the   R   package   protr   v1.6-2    (N.   Xiao   et   al.   2015) .   
 
 
Protein   solubility   prediction  
We   used   the   standard   and   miscellaneous   protein   sequence   properties   to   predict   the  
solubility   of   the   PSI:Biology   and   eSOL   targets   (N=12,216   and   3,198,   respectively)    (Seiler   et  
al.   2014;   Niwa   et   al.   2009) .   For   method   comparison,   we   chose   the   protein   solubility  
prediction   tools   that   are   scalable   (Table   1).   Default   configurations   were   used   for   running   the  
command   line   tools.  
 
To   benchmark   the   wall   time   of   solubility   prediction   tools,   we   selected   10   sequences   that   span  
a   large   range   of   lengths   from   the   PSI:Biology   and   eSOL   datasets   (from   36   to   2389   residues).  
All   the   tools   were   run   and   timed   using   a   single   process   without   using   GPUs  on   a   high  
performance   computer   [ /usr/bin/time   -f   '%E'   <command> ;   CentOS   Linux   7   (Core)  
operating   system,   72   cores   in   2×   Broadwell   nodes   (E5-2695v4,   2.1   GHz,   dual   socket   18  
cores   per   socket),   528   GiB   memory].   Single   sequence   fasta   files   were   used   as   input   files.  
 
 
SWI  
To   improve   protein   solubility   prediction,   we   optimised   the   most   recently   published   set   of  
normalised   B-factors   using   the   PSI:Biology   dataset    (Smith   et   al.   2003)    (Fig   2).   To   avoid  
including   homologous   sequences   in   the   test   and   training   sets,   we   clustered   the   PSI:Biology  
targets   using   USEARCH   v11.0.667,   32-bit    (Edgar   2010) .   His-tag   sequences   were   removed  
from   all   sequences   before   clustering   to   avoid   false   cluster   inclusions.   We   obtained   5,050  
clusters   using   the   parameters:    -cluster_fast   <input_file>    -id   0.4   -msaout  
<output_file>   -threads   4 .   These   clusters   were   divided   into   10    subsets  with  
approximately   1,200   sequences   per    subsets   manually .   The   subsequent   steps  were   done  
with   His-tag   sequences.   We   used   Smith    et   al. ’s   normalised   B-factors   as   the   initial   weights   to  
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maximise   AUC   using   these   10    subsets    with   a   10-fold   cross-validation.   Since   AUC   is  
non-differentiable,   we   used   the   Nelder-Mead   optimisation   method   (implemented   in   SciPy  
v1.2.0),   which   is   a   derivative-free,   heuristic,   simplex-based   optimisation    (Oliphant   2007;  
Millman   and   Aivazis   2011;   Nelder   and   Mead   1965) .   For   each   step   in   cross-validation,   we  
used   1,000   bootstrap   resamplings   containing   1,000   soluble   and   1,000   insoluble   proteins.  
Optimisation   was   carried   out   for   each   sample,   giving   1,000   sets   of   weights.   The   arithmetic  
mean   of  these   weights   was   used   to   determine   the   training   and   test  AUC   for   the  
cross-validation   step   (Fig   2A).   
 
 
Bit   score  
To   examine   the   enrichment   of   amino   acid   residues   in   soluble   and   insoluble   proteins,   we  
compute   the   bit   scores   for   each   amino   acid   residue   in   the   PSI:Biology   soluble   and   insoluble  
groups   (Supplementary   Fig   S7A),   we   normalised   the   count   of   each   residue     in   each x)(  

group   by   the   total   number   of   residues   in   that   group.   We   used   the   normalised   count   of   amino  
acid   residues  using   the   eSOL    E.   coli    sequences   as   the   background.   The   bit   score   of   residue  

  for   soluble   or   insoluble   group   is   then   given   by   the   following   equation: x)(   

 

                                       (2) it score (x)  log i soluble, insoluble]  b i =  2 ( f  (x)i

f  (x)eSOL
) ,  = [   

 
where     is   the   normalised   count   of   residue     in   the   PSI:Biology   soluble   or   insoluble  (x)f i x)(  

group   and      is   the   normalised   count   in   the   eSOL   sequences.  (x)f eSOL  

 
For   a   control,   random   protein   sequences   were   generated   by   incrementing   the   length   of  
sequence,   starting   from   a   length   of   50   residues   to   6,000   residues   with   a   step   size   of   50  
residues.   A   hundred   random   sequences   were   generated   for   each   length,   giving   a   total   of  
12,000   unique   random   sequences.  
 
 
The   SoDoPE   web   server  
To   estimate   the   probability   of  solubility   using   SWI,   we   fitted   the   following   logistic   regression  
to   the   PSI:Biology   dataset:  
 
                                               (3) robability of  solubility 1/(1 exp( ax b)))p =  +  − ( +   

 
where,     is   the   SWI   of   a   given   protein   sequence,       and     .   The x  81.05812a =   − 2.7775b = 6  

P-value   of   log-likelihood   ratio   test  was   less   than   machine   precision.   Equation   3   can   be   used  
to   predict   the   solubility   of   a   protein   sequence   given   that   the   protein   is   successfully   expressed  
in    E.   coli    ( Supplementary   Table   S8 ).  
 
On   this   basis,   we   developed   a   solubility   prediction   webservice   called   the   Soluble   Domain   for  
Protein   Expression   (SoDoPE).   Our   web   server   accepts   either   a   nucleotide   or   amino   acid  
sequence.   Upon   sequence   submission,   a  query   is   sent   to   the   HMMER   web   server   to  
annotate   protein   domains   ( https://www.ebi.ac.uk/Tools/hmmer/ )    (Potter   et   al.   2018) .   Once   the  
protein   domains   are   identified,   users   can   choose   a   domain   or   any   custom   region   (including  
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full-length   sequence)   to   examine   the   probability   of   solubility,   flexibility   and   GRAVY.   This  
functionality   enables   protein   biochemists   to   plan   their   experiments   and   opt   for   the   domains  
or   regions   with   high   probability   of   solubility.   Furthermore,   we   implemented   a   simulated  
annealing   algorithm   that   maximised   the   probability   of   solubility   for   a   given   region   by  
generating   a   list   of   regions   with   extended   boundaries.   Users   can   also   predict   the  
improvement   in   solubility   by   selecting   a   commonly   used   solubility   tag   or   a   custom   tag.  
 
We   linked   SoDoPE   with   TIsigner,   which   is   our   existing   web   server   for   maximising   the  
accessibility   of   translation   initiation   sites    (Bhandari,   Lim,   and   Gardner   2019) .   This   pipeline  
allows   users   to   predict   and   optimise   both   protein   expression   and   solubility   for   a   gene   of  
interest.   The   SoDoPE   web   server   is   freely  available   at    https://tisigner.com/sodope .  

 
Statistical   analysis  
Data   analysis   was   done   using   Pandas   v0.25.3    (McKinney   2010) ,   scikit-learn   v0.20.2  
(Pedregosa   et   al.   2011) ,   numpy   v1.16.2    (van   der   Walt,   Colbert,   and   Varoquaux   2011)    and  
statsmodel   v0.10.1 (Seabold   and   Perktold   2010) .   Plots   were   generated   using   Matplotlib  
v3.0.2    (Caswell   et   al.   2018)    and   Seaborn   v0.9.0    (Waskom   et   al.   2014) .   
 
 
Code   and   data   availability  
Jupyter   notebook   of   our   analysis   can   be   found   at  
https://github.com/Gardner-BinfLab/SoDoPE_paper_2020 .   The   source   code   for   our   solubility  
prediction   server   (SoDoPE)   can   be   found   at  
https://github.com/Gardner-BinfLab/TISIGNER-ReactJS .  
 
 
 
ACKNOWLEDGEMENTS   
We  thank  New  Zealand  eScience  Infrastructure  for  providing  a  high  performance  computing             
platform.  We  are  grateful  to  Harry  Biggs  for  proofreading  our  manuscript  and  providing              
feedback  for  the  web  server.  This  work  was  supported  by  the  Ministry  of  Business,               
Innovation   and   Employment,   New   Zealand   (MBIE   grant:   UOOX1709).  
 
 
 
AUTHOR   CONTRIBUTIONS  
C.S.L.  conceived  the  work;  B.K.B.  and  C.S.L.  analysed  the  data  and  C.S.L.  contributed              
flexibility  analysis;  B.K.B.  and  P.P.G  formulated  SWI;  B.K.B.  developed  the  SoDoPE  web             
server;   B.K.B.,   P.P.G.   and   C.S.L.   wrote   the   manuscript.  
 
 
 
COMPETING   INTERESTS  
The   authors   declare   no   competing   interests.  
 

14  
 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 26, 2020. ; https://doi.org/10.1101/2020.02.15.951012doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.15.951012
http://creativecommons.org/licenses/by/4.0/


 

482
483

484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531

REFERENCES  

Acton,   Thomas   B.,   Kristin   C.   Gunsalus,   Rong   Xiao,   Li   Chung   Ma,   James   Aramini,   Michael   C.  
Baran,   Yi-Wen   Chiang,   et   al.   2005.   “Robotic   Cloning   and   Protein   Production   Platform   of  
the   Northeast   Structural   Genomics   Consortium.”    Methods   in   Enzymology    394:   210–43.  

Agostini,   Federico,   Davide   Cirillo,   Carmen   Maria   Livi,   Riccardo   Delli   Ponti,   and   Gian  
Gaetano   Tartaglia.   2014.   “ccSOL   Omics:   A   Webserver   for   Solubility   Prediction   of  
Endogenous   and   Heterologous   Expression   in   Escherichia   Coli.”    Bioinformatics     30   (20):  
2975–77.  

Aslund,  F.,   and   J.   Beckwith.   1999.   “The   Thioredoxin   Superfamily:   Redundancy,   Specificity,  
and   Gray-Area   Genomics.”    Journal   of   Bacteriology    181   (5):   1375–79.  

Bhandari,   Bikash   K.,   Chun   Shen   Lim,   and   Paul   P.   Gardner.   2019.   “Highly   Accessible  
Translation   Initiation   Sites   Are   Predictive   of   Successful   Heterologous   Protein 
Expression.”    bioRxiv .   https://doi.org/ 10.1101/726752 .  

Bhaskaran,   R.,   and   P.   K.   Ponnuswamy.   1988.   “Positional   Flexibilities   of   Amino   Acid  
Residues   in   Globular   Proteins.”    International   Journal   of   Peptide   and   Protein   Research .  
https://doi.org/ 10.1111/j.1399-3011.1988.tb01258.x .  

Caswell,   Thomas   A.,  Michael   Droettboom,   John   Hunter,   Eric   Firing,   Antony   Lee,   David  
Stansby,   Elliott   Sales   de   Andrade,   et   al.  2018.    Matplotlib/matplotlib   v3.0.2    (version  
3.0.2).   https://doi.org/ 10.5281/zenodo.1482099 .  

Chan,   Wen-Ching,   Po-Huang   Liang,   Yan-Ping   Shih,   Ueng-Cheng   Yang,   Wen-Chang   Lin,   and  
Chun-Nan   Hsu.   2010.   “Learning   to   Predict   Expression   Efficacy   of   Vectors   in  
Recombinant   Protein   Production.”    BMC   Bioinformatics    11   Suppl   1   (January):   S21.  

Chen,   Li,   Rose   Oughtred,   Helen   M.   Berman,   and   John   Westbrook.   2004.   “TargetDB:   A  
Target   Registration   Database   for  Structural   Genomics   Projects.”    Bioinformatics     20   (16):  
2860–62.  

Chiti,   Fabrizio,   Massimo   Stefani,   Niccolò   Taddei,   Giampietro   Ramponi,   and   Christopher   M.  
Dobson.   2003.   “Rationalization   of   the   Effects   of   Mutations   on   Peptide   and   Protein  
Aggregation   Rates.”    Nature    424   (6950):   805–8.  

Cock,   Peter   J.   A.,   Tiago   Antao,   Jeffrey   T.   Chang,   Brad   A.   Chapman,   Cymon   J.  Cox,   Andrew  
Dalke,   Iddo   Friedberg,   et   al.   2009.   “Biopython:   Freely   Available   Python   Tools   for  
Computational   Molecular   Biology   and   Bioinformatics.”    Bioinformatics     25   (11):   1422–23.  

Costa,   Sofia,   André   Almeida,   António   Castro,   and   Lucília   Domingues.   2014.   “Fusion   Tags   for  
Protein   Solubility,   Purification   and   Immunogenicity   in   Escherichia   Coli:   The   Novel   Fh8  
System.”    Frontiers   in   Microbiology    5   (February):   63.  

Craveur,   Pierrick,   Agnel   P.   Joseph,   Jeremy   Esque,   Tarun   J.   Narwani,   Floriane   Noël,   Nicolas  
Shinada,   Matthieu   Goguet,   et   al.   2015.   “Protein   Flexibility   in   the   Light   of   Structural  
Alphabets.”    Frontiers   in   Molecular   Biosciences    2   (May):   20.  

Davis,   G.   D.,   C.   Elisee,   D.   M.   Newham,   and   R.   G.   Harrison.   1999.   “New   Fusion   Protein  
Systems   Designed   to   Give   Soluble   Expression   in   Escherichia   Coli.”    Biotechnology   and  
Bioengineering    65   (4):   382–88.  

Diaz,   Armando   A.,   Emanuele   Tomba,   Reese   Lennarson,   Rex   Richard,   Miguel   J.   Bagajewicz,  
and   Roger   G.   Harrison.   2010.   “Prediction   of   Protein   Solubility   in   Escherichia   Coli   Using  
Logistic   Regression.”    Biotechnology   and   Bioengineering    105   (2):   374–83.  

Edgar,   Robert   C.   2010.   “Search   and   Clustering   Orders   of   Magnitude   Faster  than   BLAST.”  
Bioinformatics     26   (19):   2460–61.  

Esposito,   Dominic,   and   Deb   K.   Chatterjee.   2006.   “Enhancement   of   Soluble   Protein  
Expression   through   the   Use   of   Fusion   Tags.”    Current   Opinion   in   Biotechnology    17   (4):  
353–58.  

Família,   Carlos,   Sarah   R.   Dennison,  Alexandre   Quintas,   and   David   A.   Phoenix.   2015.  
“Prediction   of   Peptide  and   Protein   Propensity   for   Amyloid   Formation.”    PloS   One    10   (8):  

15  
 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 26, 2020. ; https://doi.org/10.1101/2020.02.15.951012doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.15.951012
http://creativecommons.org/licenses/by/4.0/


 

532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582

e0134679.  
Habibi,   Narjeskhatoon,   Siti   Z.   Mohd   Hashim,   Alireza   Norouzi,   and   Mohammed   Razip  

Samian.   2014.   “A   Review   of   Machine   Learning   Methods   to   Predict   the   Solubility   of  
Overexpressed   Recombinant   Proteins   in   Escherichia   Coli.”    BMC   Bioinformatics    15  
(May):   134.  

Han,   Xi,   Wenbo   Ning,   Xiaoqiang   Ma,   Xiaonan   Wang,   and   Kang   Zhou.   2019.   “Improve  
Protein   Solubility   and   Activity   Based   on   Machine   Learning   Models.”    bioRxiv .  
https://doi.org/ 10.1101/817890 .  

Harrison,   R.   G.   2000.   “Expression   of   Soluble   Heterologous   Proteins   via   Fusion   with   NusA  
Protein.”    Innovations    11:   4–7.  

Hebditch,   Max,   M.   Alejandro   Carballo-Amador,   Spyros   Charonis,   Robin   Curtis,   and   Jim  
Warwicker.   2017.   “Protein-Sol:   A   Web   Tool   for   Predicting   Protein   Solubility   from  
Sequence.”    Bioinformatics     33   (19):   3098–3100.  

Heckmann,   David,   Colton   J.   Lloyd,   Nathan   Mih,   Yuanchi   Ha,   Daniel   C.   Zielinski,   Zachary   B.  
Haiman,   Abdelmoneim   Amer   Desouki,   Martin   J.   Lercher,   and   Bernhard   O.   Palsson.  
2018.   “Machine   Learning   Applied   to   Enzyme   Turnover   Numbers   Reveals   Protein  
Structural   Correlates   and   Improves   Metabolic   Models.”    Nature   Communications    9   (1):  
5252.  

Hirose,   Shuichi,   and   Tamotsu   Noguchi.   2013.   “ESPRESSO:   A   System   for   Estimating   Protein  
Expression   and   Solubility   in   Protein   Expression   Systems.”    Proteomics    13   (9):   1444–56.  

Hou,   Qingzhen,   Raphaël   Bourgeas,   Fabrizio   Pucci,   and   Marianne   Rooman.   2018.  
“Computational   Analysis   of   the   Amino   Acid   Interactions   That   Promote   or   Decrease  
Protein   Solubility.”    Scientific   Reports .   https://doi.org/ 10.1038/s41598-018-32988-w .  

Hou,   Qingzhen,   Jean-Marc   Kwasigroch,   Marianne   Rooman,   and   Fabrizio   Pucci.   2019.  
“SOLart:   A   Structure-Based   Method   to   Predict   Protein   Solubility   and   Aggregation.”  
Bioinformatics    ,   October.   https://doi.org/ 10.1093/bioinformatics/btz773 .  

Huang,   Hui-Ling,   Phasit   Charoenkwan,   Te-Fen   Kao,   Hua-Chin   Lee,   Fang-Lin   Chang,  
Wen-Lin   Huang,   Shinn-Jang   Ho,   Li-Sun   Shu,   Wen-Liang   Chen,   and   Shinn-Ying   Ho.  
2012.   “Prediction   and   Analysis   of   Protein   Solubility   Using   a   Novel   Scoring   Card   Method  
with   Dipeptide   Composition.”    BMC   Bioinformatics    13   Suppl   17   (December):   S3.  

Idicula-Thomas,   Susan,   and  Petety   V.   Balaji.   2005.   “Understanding   the   Relationship  
between   the   Primary   Structure   of   Proteins   and   Its   Propensity   to   Be   Soluble   on  
Overexpression   in   Escherichia   Coli.”    Protein   Science:   A   Publication   of   the   Protein  
Society    14   (3):   582–92.  

Jia,   Baolei,   and   Che   Ok   Jeon.   2016.   “High-Throughput   Recombinant   Protein   Expression   in  
Escherichia   Coli:   Current   Status   and   Future   Perspectives.”    Open   Biology    6   (8).  
https://doi.org/ 10.1098/rsob.160196 .  

Karplus,   P.   A.,   and   G.   E.   Schulz.   1985.   “Prediction   of   Chain   Flexibility   in   Proteins.”    Die  
Naturwissenschaften    72   (4):   212–13.  

Khurana,   Sameer,   Reda   Rawi,   Khalid   Kunji,   Gwo-Yu   Chuang,   Halima   Bensmail,   and  
Raghvendra   Mall.   2018.   “DeepSol:   A   Deep   Learning   Framework   for   Sequence-Based  
Protein   Solubility   Prediction.”    Bioinformatics     34   (15):   2605–13.  

Kramer,   Ryan   M.,   Varad   R.   Shende,   Nicole   Motl,   C.   Nick   Pace,   and   J.   Martin   Scholtz.   2012.  
“Toward   a   Molecular   Understanding   of   Protein   Solubility:   Increased   Negative   Surface  
Charge   Correlates   with   Increased   Solubility.”    Biophysical   Journal .  
https://doi.org/ 10.1016/j.bpj.2012.01.060 .  

Kuriata,   Aleksander,   Valentin   Iglesias,   Jordi   Pujols,   Mateusz   Kurcinski,   Sebastian   Kmiecik,  
and   Salvador   Ventura.   2019.   “Aggrescan3D   (A3D)   2.0:   Prediction   and   Engineering   of  
Protein   Solubility.”    Nucleic   Acids   Research    47   (W1):   W300–307.  

Kyte,   J.,   and   R.   F.   Doolittle.   1982.   “A   Simple   Method   for   Displaying   the   Hydropathic  
Character   of   a   Protein.”    Journal   of   Molecular   Biology    157   (1):   105–32.  

16  
 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 26, 2020. ; https://doi.org/10.1101/2020.02.15.951012doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.15.951012
http://creativecommons.org/licenses/by/4.0/


 

583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633

Lebendiker,   Mario,   and   Tsafi   Danieli.   2014.   “Production   of   Prone-to-Aggregate   Proteins.”  
FEBS   Letters    588   (2):   236–46.  

Levy,   E.   D.,   S.   De,   and   S.   A.  Teichmann.   2012.   “Cellular   Crowding   Imposes   Global  
Constraints   on   the   Chemistry   and   Evolution   of   Proteomes.”    Proceedings   of   the   National  
Academy   of   Sciences .   https://doi.org/ 10.1073/pnas.1209312109 .  

Ma,   Jianpeng.   2005.   “Usefulness   and   Limitations   of   Normal   Mode   Analysis   in   Modeling  
Dynamics   of   Biomolecular   Complexes.”    Structure     13   (3):   373–80.  

Marra,   Marco   A.,   Steven   J.   M.   Jones,   Caroline   R.   Astell,   Robert   A.   Holt,   Angela  
Brooks-Wilson,   Yaron   S.   N.   Butterfield,   Jaswinder   Khattra,   et   al.   2003.   “The   Genome  
Sequence   of   the   SARS-Associated   Coronavirus.”    Science    300   (5624):   1399–1404.  

McKinney,   Wes.   2010.   “Data   Structures   for   Statistical   Computing  in   Python.”   In    Proceedings  
of   the   9th   Python   in   Science   Conference ,   51–56.  

Millman,   K.   J.,   and   M.   Aivazis.   2011.   “Python   for   Scientists   and   Engineers.”    Computing   in  
Science   Engineering    13   (2):   9–12.  

Natan,   Eviatar,   Tamaki   Endoh,   Liora   Haim-Vilmovsky,   Tilman   Flock,   Guilhem   Chalancon,  
Jonathan   T.   S.   Hopper,   Bálint   Kintses,   et   al.   2018.   “Cotranslational   Protein   Assembly  
Imposes   Evolutionary   Constraints   on   Homomeric   Proteins.”    Nature   Structural   &  
Molecular   Biology    25   (3):   279–88.  

Nelder,   J.   A.,   and   R.   Mead.   1965.   “A   Simplex   Method   for   Function   Minimization.”    Computer  
Journal    7   (4):   308–13.  

Niwa,   Tatsuya,   Bei-Wen   Ying,   Katsuyo   Saito,   Wenzhen   Jin,   Shoji   Takada,   Takuya   Ueda,   and  
Hideki   Taguchi.   2009.   “Bimodal   Protein   Solubility   Distribution   Revealed   by  an  
Aggregation   Analysis   of   the   Entire   Ensemble   of   Escherichia   Coli   Proteins.”    Proceedings  
of   the   National   Academy   of   Sciences   of   the   United   States   of   America    106   (11):   4201–6.  

Oliphant,   T.   E.   2007.   “Python   for   Scientific   Computing.”    Computing   in   Science   Engineering    9  
(3):   10–20.  

Pedregosa,   Fabian,   Gaël   Varoquaux,   Alexandre   Gramfort,   Vincent   Michel,   Bertrand   Thirion,  
Olivier   Grisel,   Mathieu   Blondel,   et   al.   2011.   “Scikit-Learn:   Machine   Learning   in   Python.”  
Journal   of   Machine   Learning   Research:   JMLR    12   (Oct):  2825–30.  

Potter,   Simon   C.,   Aurélien   Luciani,   Sean   R.   Eddy,   Youngmi   Park,   Rodrigo   Lopez,   and   Robert  
D.   Finn.   2018.   “HMMER   Web   Server:   2018   Update.”    Nucleic   Acids   Research    46   (W1):  
W200–204.  

Radivojac,   P.   2004.   “Protein   Flexibility   and   Intrinsic   Disorder.”    Protein   Science .  
https://doi.org/ 10.1110/ps.03128904 .  

Ragone,   R.,   F.   Facchiano,   A.   Facchiano,   A.   M.   Facchiano,   and   G.   Colonna.   1989.   “Flexibility  
Plot   of   Proteins.”    “Protein   Engineering,   Design   and   Selection.”  
https://doi.org/ 10.1093/protein/2.7.497 .  

Rawi,   Reda,   Raghvendra   Mall,   Khalid   Kunji,   Chen-Hsiang   Shen,   Peter   D.   Kwong,   and  
Gwo-Yu   Chuang.   2018.   “PaRSnIP:   Sequence-Based   Protein   Solubility   Prediction   Using  
Gradient   Boosting   Machine.”    Bioinformatics .  
https://doi.org/ 10.1093/bioinformatics/btx662 .  

Rosano,   Germán   L.,   and   Eduardo   A.   Ceccarelli.   2014.   “Recombinant   Protein   Expression   in  
Escherichia   Coli:   Advances   and   Challenges.”    Frontiers   in   Microbiology    5   (April):   172.  

Schlessinger,   Avner,   and   Burkhard   Rost.   2005.   “Protein   Flexibility   and   Rigidity   Predicted  
from   Sequence.”    Proteins    61   (1):   115–26.  

Seabold,   Skipper,   and   Josef   Perktold.   2010.   “Statsmodels:   Econometric   and   Statistical  
Modeling   with   Python.”   In    Proceedings   of   the   9th   Python   in   Science   Conference .  
http://conference.scipy.org/proceedings/scipy2010/pdfs/seabold.pdf .  

Seiler,   Catherine   Y.,   Jin   G.   Park,   Amit   Sharma,   Preston   Hunter,   Padmini   Surapaneni,   Casey  
Sedillo,   James   Field,   et   al.   2014.   “DNASU   Plasmid   and   PSI:Biology-Materials  
Repositories:   Resources   to   Accelerate   Biological   Research.”    Nucleic   Acids   Research    42  

17  
 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 26, 2020. ; https://doi.org/10.1101/2020.02.15.951012doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.15.951012
http://creativecommons.org/licenses/by/4.0/


 

634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684

(Database   issue):   D1253–60.  
Smith,   David   K.,   Predrag   Radivojac,   Zoran   Obradovic,   A.   Keith   Dunker,   and   Guang   Zhu.  

2003.   “Improved   Amino   Acid   Flexibility   Parameters.”    Protein   Science:   A   Publication   of  
the   Protein   Society    12   (5):   1060–72.  

Sormanni,   Pietro,   Leanne   Amery,   Sofia   Ekizoglou,   Michele   Vendruscolo,   and   Bojana  
Popovic.   2017.   “Rapid   and   Accurate   in   Silico   Solubility   Screening   of   a   Monoclonal  
Antibody   Library.”    Scientific   Reports    7   (1):   8200.  

Sormanni,   Pietro,   Francesco   A.   Aprile,   and   Michele   Vendruscolo.   2015.   “The   CamSol  
Method   of   Rational   Design   of   Protein   Mutants   with   Enhanced   Solubility.”    Journal   of  
Molecular   Biology .   https://doi.org/ 10.1016/j.jmb.2014.09.026 .  

Stewart,   E.   J.,   F.   Aslund,   and   J.   Beckwith.   1998.   “Disulfide   Bond   Formation   in   the  
Escherichia   Coli   Cytoplasm:   An   in   Vivo   Role   Reversal   for   the   Thioredoxins.”    The   EMBO  
Journal    17   (19):   5543–50.  

Tartaglia,   Gian   Gaetano,   Andrea   Cavalli,   Riccardo   Pellarin,   and   Amedeo   Caflisch.   2004.  
“The   Role   of   Aromaticity,   Exposed   Surface,   and  Dipole   Moment   in   Determining   Protein  
Aggregation   Rates.”    Protein   Science:   A   Publication   of   the   Protein   Society    13   (7):   1939.  

Teague,   Simon   J.   2003.   “Implications   of   Protein   Flexibility   for   Drug   Discovery.”    Nature  
Reviews.   Drug   Discovery    2   (7):   527–41.  

Trevino,   Saul   R.,   J.   Martin   Scholtz,   and   C.   Nick   Pace.   2007.   “Amino   Acid   Contribution   to  
Protein   Solubility:   Asp,   Glu,   and   Ser   Contribute   More   Favorably   than   the   Other  
Hydrophilic   Amino   Acids   in   RNase   Sa.”    Journal   of   Molecular   Biology .  
https://doi.org/ 10.1016/j.jmb.2006.10.026 .  

Tsumoto,   Kouhei,   Daisuke   Ejima,   Izumi   Kumagai,   and   Tsutomu   Arakawa.   2003.   “Practical  
Considerations   in   Refolding   Proteins   from   Inclusion   Bodies.”    Protein   Expression   and  
Purification    28   (1):   1–8.  

Vihinen,   Mauno.   1987.   “Relationship   of   Protein   Flexibility   to   Thermostability.”    “Protein  
Engineering,   Design   and   Selection.”    https://doi.org/ 10.1093/protein/1.6.477 .  

Vihinen,   M.,   E.   Torkkila,   and   P.   Riikonen.   1994.   “Accuracy   of   Protein   Flexibility   Predictions.”  
Proteins    19   (2):   141–49.  

Waldo,   Geoffrey   S.   2003.   “Genetic   Screens   and   Directed   Evolution   for  Protein   Solubility.”  
Current   Opinion   in   Chemical   Biology    7   (1):   33–38.  

Walt,   Stéfan   van   der,   S.   Chris   Colbert,   and   Gaël   Varoquaux.   2011.   “The   NumPy   Array:   A  
Structure   for   Efficient   Numerical   Computation.”    Computing   in   Science   &   Engineering    13  
(2):   22–30.  

Wang,   Xiaoling,   Tapan   K.   Das,   Satish   K.   Singh,   and   Sandeep   Kumar.   2009.   “Potential  
Aggregation   Prone   Regions   in   Biotherapeutics:   A   Survey   of   Commercial   Monoclonal  
Antibodies.”   mAbs    1   (3):   254–67.  

Warwicker,   Jim,   Spyros   Charonis,   and   Robin   A.   Curtis.   2014.   “Lysine   and   Arginine   Content  
of   Proteins:   Computational   Analysis   Suggests   a   New   Tool   for   Solubility   Design.”  
Molecular   Pharmaceutics    11   (1):   294–303.  

Waskom,   Michael,   Olga   Botvinnik,   Paul   Hobson,   John   B.   Cole,   Yaroslav   Halchenko,   Stephan  
Hoyer,   Alistair   Miles,   et   al.   2014.   “Seaborn:   v0.5.0   (November   2014),”   November.  
https://doi.org/ 10.5281/zenodo.12710 .  

Wilkinson,   D.   L.,   and   R.   G.   Harrison.   1991.   “Predicting   the   Solubility   of   Recombinant  
Proteins   in   Escherichia   Coli.”    Bio/technology     9   (5):   443–48.  

Wu,   Fan,   Su   Zhao,   Bin   Yu,   Yan-Mei   Chen,   Wen   Wang,   Yi   Hu,   Zhi-Gang   Song,   et   al.   2020.  
“Complete   Genome   Characterisation   of   a   Novel   Coronavirus   Associated   with   Severe  
Human   Respiratory   Disease   in   Wuhan,   China.”    bioRxiv .  
https://doi.org/ 10.1101/2020.01.24.919183 .  

Wu,   Zachary,   S.   B.   Jennifer   Kan,   Russell   D.   Lewis,   Bruce   J.   Wittmann,   and   Frances   H.  
Arnold.   2019.   “Machine   Learning-Assisted   Directed   Protein   Evolution   with   Combinatorial  

18  
 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 26, 2020. ; https://doi.org/10.1101/2020.02.15.951012doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.15.951012
http://creativecommons.org/licenses/by/4.0/


 

685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700

Libraries.”    Proceedings   of   the   National   Academy   of   Sciences   of   the   United   States   of  
America    116   (18):   8852–58.  

Xiao,   Nan,   Dong-Sheng   Cao,   Min-Feng   Zhu,   and   Qing-Song   Xu.   2015.   “protr/ProtrWeb:   R  
Package   and   Web   Server   for   Generating   Various   Numerical   Representation   Schemes   of  
Protein   Sequences.”    Bioinformatics     31   (11):   1857–59.  

Xiao,   Rong,   Stephen   Anderson,   James   Aramini,   Rachel   Belote,   William   A.   Buchwald,  
Colleen   Ciccosanti,   Ken   Conover,   et   al.   2010.   “The   High-Throughput   Protein   Sample  
Production   Platform   of   the   Northeast   Structural   Genomics   Consortium.”    Journal   of  
Structural   Biology    172   (1):   21–33.  

Yang,   Kevin   K.,   Zachary   Wu,   and   Frances   H.   Arnold.   2019.   “Machine-Learning-Guided  
Directed   Evolution   for   Protein   Engineering.”    Nature   Methods    16   (8):   687–94.  

Yin,   Hui,   Yi-Zhou   Li,   and   Meng-Long   Li.   2011.   “On   the   Relation   between   Residue   Flexibility  
and   Residue   Interactions   in   Proteins.”    Protein   and   Peptide   Letters    18   (5):   450–56.  

Yuan,   Zheng,   Timothy   L.   Bailey,   and   Rohan   D.   Teasdale.   2005.   “Prediction   of   Protein  
B-Factor   Profiles.”    Proteins:   Structure,   Function,   and   Bioinformatics .  
https://doi.org/ 10.1002/prot.20375 .  

19  
 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 26, 2020. ; https://doi.org/10.1101/2020.02.15.951012doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.15.951012
http://creativecommons.org/licenses/by/4.0/

