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The increasing use of spatially-modulated imaging and
single-pixel detection techniques demands computa-
tionally efficient methods for light transport model-
ing. Herein, we report an easy-to-implement yet sig-
nificantly more efficient Monte Carlo (MC) method for
simultaneously simulating spatially modulated illumi-
nation and detection patterns accurately in 3-D complex
domains. We have implemented this accelerated al-
gorithm, named “photon sharing”, in our open-source
MC simulators, reporting 13.6× and 5.5× speedups in
mesh- and voxel-based MC benchmarks, respectively.
In addition, the proposed algorithm is readily used
for accelerating the solving of inverse problems in
spatially-modulated imaging systems by building Jaco-
bians of all illumination-detection pattern pairs concur-
rently, resulting in a 12.4-fold speed improvement.

https://doi.org/10.1101/2020.02.16.951590

1. INTRODUCTION

Diffuse optical tomography (DOT) and fluorescence molecular
tomography (FMT) with near-infrared light have impacted an in-
creasing number of clinical and pre-clinical applications over the
last decade, such as monitoring breast tumor response to therapy
and quantifying drug delivery in small animals [1]. The appeal
of these model-based imaging methods is largely elicited by
their non-ionizing nature, high sensitivity, functional imaging,
and multiplexing capabilities, in addition to relatively low cost.
Recently, new DOT/FMT instrumentation methodologies based
on structured-light, including spatial-frequency domain imag-
ing (SFDI), have been proposed to improve upon the traditional
point-source illumination schemes [2, 3]. Enabled by spatial
light modulators (SLMs) such as digital micro-mirror devices
(DMDs), the illumination/detected light can be spread/acquired
over large surfaces. This allows the total illumination power
to be significantly higher than those in point-source modali-
ties without damaging the tissue being probed. As a result,
the signal-to-noise ratio (SNR) of the collected measurements is
significantly enhanced, especially when performing wide-field

patterned detection, leading to dramatically reduced acquisition
times. Moreover, modulations via patterns can be imparted both
in the illumination and detection optical paths to enable 3D quan-
titative probing over a large field-of-view [4, 5]. However, quan-
titative and efficient analyses of wide-field spatially-encoded
imaging systems impose new challenges for light transport mod-
eling and image reconstruction techniques.

Among methods used to model light propagation in turbid
bio-tissues, the Monte Carlo (MC) method is recognized as the
gold standard thanks to its accuracy and generality over a wide
range of conditions, including the mesoscopic regime [6], low
albedo tissues, and early-arriving photons [7]. Benefiting from
the rapid development in parallel computing hardware, and
especially that of graphical processing units (GPUs), MC has
become the forward model of choice in many DOT and FMT
applications. A typical MC simulation involving millions of
photons can now be accomplished within seconds on a personal
computer (PC), making it viable to apply such accurate forward
models in more challenging DOT/FMT data processing applica-
tions where repeated simulations are required. Additionally, MC
provides high flexibility to accommodate the implementations of
complex illumination and detection strategies, making it a con-
venient platform for exploring and optimizing structured-light
based imaging systems. To meet this growing need, we have pre-
viously developed open-source structured-light-capable model-
ing platforms – Monte Carlo eXtreme (MCX) [8] and Mesh-based
Monte Carlo (MMC) [9, 10].

These open-source simulators are able to accurately and effi-
ciently simulate complex illumination patterns and flexible pho-
ton detection approaches, making them well suited for the de-
velopment of structured-light imaging systems [9, 11]. However,
solving the inverse problems for wide-field spatially encoded
DOT/FMT experiments requires the processing of hundreds of
illumination and detection pattern combinations [5], strongly
necessitating additional speed accelerations to achieve practical
feasibility. To mitigate this computational burden, Belanger et
al. [4] proposed simulating a pencil beam source and convolving
the solution with each illumination pattern to produce all fluence
distributions required to compute the whole Jacobian. However,
this approach works only for homogeneous media with pre-
sumed translational invariance in space and time [12]. In the
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case of SFDI systems with Fourier patterns, Gardner et al. de-
rived a complex photon weight from the SFD radiative transfer
equation (RTE) to incorporate the effects of spatial modulation
on a photon’s initial weight [13], allowing solutions for multiple
spatial frequencies to be estimated in a single MC simulation.
However, this approach cannot be used with other encodings,
such as Hadamard, Haar or speckle patterns [11].

In this letter, we report a general approach to performing
MC simulations for structured light illumination and detection
strategies with the ability to obtain the full set of forward so-
lutions for all illumination or detection patterns using only a
single forward simulation. This feature greatly reduces the com-
putational burden of structured light transport modeling by
leveraging our understanding that a photon’s trajectory in an
MC simulation is independent of the weight imposed by source
or detection patterns. As a result, the propagation of a photon
can be effectively “shared” between all structural patterns. We
refer to this approach as “photon sharing”.

The remainder of the paper is organized as follows. In Sec-
tion 2, we first describe this approach in the context of for-
ward modeling using a sample single-pixel wide-field DOT plat-
form [4, 5]. Then we demonstrate the benefit of leveraging this
approach to rapidly compute the perturbed measurements and
sensitivity matrix, i.e. Jacobian, for inverse problems. In addi-
tion, the considerations on memory optimization to implement
this algorithm on the GPU are discussed. In Section 3, we vali-
date the proposed algorithm and quantify speed improvements
compared to conventional approaches. The speedup ratios are
obtained for a set of commonly used structured-light patterns.
Finally, we summarize our findings and discuss future works.

2. MATERIALS AND METHODS

A. Paralleled forward model for multiple light patterns

To better describe the proposed algorithm, we show a sample
schematic of a single-pixel-camera imaging system [4, 5] in Fig. 1,
where structured illumination is combined with single-pixel de-
tection to provide wide-field spatially-modulated DOT. Modu-
lated by the illumination DMD, a set of structured light patterns
are sequentially projected to the surface of the tissue to be im-
aged. The diffuse light that transmits through the phantom is
encoded with another set of patterns generated by the detection
DMD and redirected to a photon detector, such as a photomulti-
plier tube (PMT). For each of the patterns, the spatial intensity
variance is represented using a two-dimensional (2-D) raster
image, Is and Id, with a normalized intensity value (floating-
point numbers between 0 and 1) assigned at each pattern pixel.
Without losing generality, in Fig. 1, we assume Ns illumination
patterns and Nd detection patterns are needed.

In sequential MC simulations, when simulating the i-th
source pattern, a photon packet’s initial weight is first assigned
as the normalized source pattern intensity value, wi

s, at the
launch position, indicated by a red-square in Fig. 1. After prop-
agating the photon packet over its trajectory, consisting of a
discrete set of line segments with lengths lk and absorption coef-
ficients µk

a, indicated by red-arrows in Fig. 1, the photon exits the
domain at a location, indicated by a blue-square, within the field-
of-the-view of the detector. In conventional MC simulations, this
results in an additional multiplication by the normalized detec-
tor pattern weights, wj

d for the j-th detector pattern.
In our accelerated simulations, we recognize that the time-

consuming photon trajectory simulations within turbid media
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Fig. 1. An illustration of a structured-light based diffuse optical
imaging system with single-pixel camera detection.

are independent of the assigned initial weight wi
s and the detec-

tor weight wj
d; therefore, they can be effectively “shared” among

all source and detector patterns. To enable this parallel simula-
tion, we first assign a uniform value 1.0 for all launched photon
packets. In the meantime, the initial weights corresponding to
all source patterns (see red-squares in Fig. 1) are concatenated
into a vector ws = [w1

s , w2
s , · · · , wNs

s ] and stored in the local
memory of the computing thread that handles such photons.
As the photon traverses across different voxels or elements of
the domain, the weight loss, ∆w, is accumulated in voxels to
generate the volumetric fluence, i.e. the forward solution. At the
k-th path segment, the weight losses for all source patterns can
be computed simultaneously as

∆wk = ws × e−∑k−1
i=1 µi

a li
(

1− e−µk
a lk
)

(1)

and accumulated in the memory for all source patterns after
each propagation step k. Therefore, after a single MC forward
simulation, we can obtain the fluence maps for all sources.

B. Accelerated perturbation Monte Carlo formulation for
single-pixel imaging system

The perturbation MC method (pMC) [14] is often used to rapidly
recompute detector readings without rerunning the full MC
simulation. Here we propose an accelerated pMC approach to
quickly obtain measurements for all combinations of patterned
sources and detectors using just a single MC forward simulation.

The rasterized source patterns (Is) and detector patterns (Id)
are pre-defined and thus, instead of storing the initial weight
vector, ws, for all detected photons, we only store the linear
index, M, by treating the i-th source pattern Ii

s as a 1-D vector.
In other words, with the saved launch position index M, we can
recreate the initial weight vector by ws = {wi

s = Ii
s[M]}i=1,2,...,Ns .

When a patterned source is used in conjunction with a non-
patterned detector (such as a disk), one can rapidly recompute
the detected photon weight W using the stored index M and
the partial pathlength vector {Lt}t=1,2,...,Nt , i.e. the accumulative
path-lengths for each tissue type, for Nt tissue types, as

W = ws ×
(

e−∑
Nt
t=1 µ̂t

a Lt
)

(2)

where µ̂t
a denotes the perturbed absorption coefficient for the

t-th tissue type.
The above formula can be extended for patterned detectors.

In this case, if a photon is detected by a patterned detector,
we can also store the exit-position (or detector pattern index),
with which one can compute the detector weight vectors wd =

[w1
d, w2

d, · · · , wNd
d ]. By performing an outer product between the
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initial weight vector ws and wd for a given detected photon,
we can recreate its detected weights wi,j at all source/detector
pattern pairs as

W =

 w1,1 · · · w1,Nd
...

. . .
...

wNs ,1 · · · wNs ,Nd

 = wT
s wd ×

(
e−∑

Nt
t=1 µ̂t

a Lt
)

. (3)

C. Accelerated Jacobian computation for structured light DOT
C.1. The adjoint Monte Carlo

The Jacobian formulations derived in [15] based on the ad-
joint Monte Carlo (aMC) can be readily applied to the dual-
DMD system shown in Fig. 1. For the combination of the i-th
(i = 1, 2, · · · , Ns) illumination and j-th (j = 1, 2, · · · , Nd) detec-
tion pattern, referred to as the pattern pair (i, j) , the continuous-
wave Jacobians for absorption (µa) and scattering (µs) perturba-
tions can be expressed as

Jµa
i,j (Ωk) = −α

∫
Ωk

Φi(r)Φj(r)
φi,j

dr (4)

Jµs
i,j (Ωk) = α

∫
Ωk

OΦi(r) ·OΦj(r)

3µ2
s (r)(1− g) · φi,j

dr (5)

where Ωk denotes the k-th spatial region; α denotes the scaling
factor between diffuse reflectance and fluence at the bound-
ary [15]; Φi(r) and Φj(r) are the normalized fluence distribu-
tions for the i-th source pattern and j-th detection pattern, re-
spectively; φi,j is the measurement of the total diffuse reflectance
or transmittance (R) for pattern pair (i, j) computed by

φi,j = Ri,j =
∑detected wi,j

Aj ·∑launched wi
0

(6)

where ∑launched wi
0 is the total simulated photon weights for

the i-th source pattern; ∑detected wi,j is the total detected photon
weights for pattern pair (i, j), with wi,j computed by Eq. 3; Aj
is the effective area covered by the j-th detection pattern. By
applying the proposed algorithm, building Jacobians via aMC
only needs two MC simulations: one forward simulation of all
illumination patterns to compute Φi(r) and φi,j, and another one
for Φj(r) by projecting detection patterns as the time reverse
“adjoint” sources.

C.2. The “replay” Monte Carlo

In [15], we reported a direct approach, referred to as photon
“replay”, to rapidly create the Jacobians derived from pMC [16].
Briefly, the photon replay algorithm involves two steps – first,
in the “baseline” MC simulation, the random number generator
(RNG) seeds of all detected photons are stored; secondly, in the
replay step, detected photons are relaunched using the RNG
seed saved earlier. The detected photon weights are precom-
puted before the re-propagation, during which the weighted
photon path lengths and weighted scattering numbers are de-
posited to produce spatially and temporally resolved Jacobians.
By applying Eq. 3 for computing the detected photon weights
during the output storage, we can then apply Eqs. (6-7) in
Ref [15] to obtain the Jacobians using photon replay.

D. Memory optimization
Please note that the storage of initial weight vectors ws within
each computing thread may produce substantial computational
overhead if handled improperly. To minimize such overhead,

we strongly recommend reordering the source/detector pattern
array dimensions so that the inner-most (i.e. the fastest) index
is the dimension corresponding to the pattern index. Such a
memory layout allows a thread to access all source/detector
pattern weights over a contiguous section of memory, which is
often more efficient than accessing non-contiguous locations.

The above suggested memory layout is particularly im-
portant on memory-limited processors such as GPUs. Load-
ing/saving data for all patterns within a GPU thread can be
done much more efficiently when the pattern-related data are
stored along contiguous memory spaces. In such cases, the GPU
can access data with significantly less latency. As a matter of fact,
on modern GPUs, every global-memory read retrieves a contigu-
ous 128-byte cache line [17], corresponding to 32 single-precision
numbers. This suggests that reading one or 32 single-precision
values from the global memory has roughly the same memory la-
tency. Therefore, storing pattern data using a pattern-index-first
order can maximize such cache efficiency.

In addition, as we showed in Eq. 1, the ws vector is repeatedly
used for every step along a photon’s trajectory. To minimize the
memory latency in our GPU implementation [8], we store ws
using the high-speed shared memory [17].

3. RESULTS AND DISCUSSIONS

In this section, we first demonstrate the improved speed of
MCX and MMC, in runtime (s) per pattern, by comparing the
proposed algorithm against the conventional approach where
simulations of structured light patterns are performed sequen-
tially. In Fig. 2(b), the speedup ratio is further quantified by
testing over varying numbers of simultaneously simulated pat-
terns (or groups) for a fixed total pattern count (128). Group size
of 1, 2, 4, 8, 16, 32, 64 and 128 are tested. All patterns have the
same dimension of 32× 32 pixels. For MCX [8], the patterns
are projected to a 40× 40 mm2 illumination area through the
bottom surface of a 60× 60× 30 mm3 slab-shaped homogeneous
optical phantom, with an absorption coefficient µa = 0.01 mm−1

, scattering coefficient µs = 10 mm−1 , anisotropy g = 0.9, and
refractive index n = 1.37. A heterogeneous mesh model gener-
ated from the Digimouse atlas is used for benchmarks on MMC
(sample images shown in Fig. 2(a)). The mesh data and the op-
tical properties are detailed in [18]. The illumination area is a
20× 40 mm2 rectangle on the back of the mouse. In addition,
the influence of pattern complexity on speed is assessed for a
fixed group size (32). Light patterns with varying resolutions
are tested, ranging from 8× 8 to 1024× 1024 [see Fig. 2(c)]. A
total of 109 and 108 photons are launched for MCX and MMC
simulations, respectively. All benchmarks are performed on a
desktop running Ubuntu 16.04, with an NVIDIA TITAN V GPU
for MCX and an AMD Ryzen 9 3950X CPU for MMC.

In all benchmarks, the fluence distributions produced by
the proposed algorithm show excellent agreement with those
computed individually through conventional approaches (not
shown). In Fig. 2(b), with increased pattern numbers, the run-
time per pattern for MMC decreases monotonically, achieving
a speedup ratio ranging between 9.38× (Fourier, 389.0 vs. 41.5
s/pattern) and 13.6× (Hadamard, 338.2 vs. 24.9 s/pattern) when
simulating all 128 patterns together. However, on GPU-based
MCX, simulating 16 patterns per batch produces the highest
speedup – ranging between 5.03× for Fourier (59.2 vs. 11.7
s/pattern) and 5.5× for Hadamard (59.5 vs. 10.7 s/pattern).
The performance degradation when simulating more than 16
patterns together on the GPU is likely a result of reduced active
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Fig. 2. Sample (a) fluence (top/bottom) and sensitivity (middle) maps in a heterogeneous mouse atlas and speed assessments by
(b) varying the number of simultaneously simulated pattern count (for a total of 128 patterns), (c) varying isotropic pattern pixel
dimensions, and (d) varying the simultaneously replayed pattern pairs for a Jacobian with 64 source and 64 detector patterns.

thread-blocks due to increased use of shared memory [17].
In Fig. 2(c), the average runtime over a range of pattern reso-

lutions are reported for four pattern bases, including Hadamard,
Haar, Fourier and speckle (all patterns are normalized between
0− 1). From this plot, we can observe that the speed is rela-
tively steady, indicating that this algorithm can readily support
high resolution light patterns with low computational overhead.
In addition, we also observe slight speed variations between
different simulated patterns. The speed is roughly inversely
correlated to the fill factor of the patterns (i.e. percentage of
non-zero values) due to the associated memory overhead. For
instance, Fourier patterns lead to the slowest runtimes because
there are very few zeros, while Hadamard patterns show the
highest speed as they are binary patterns with around 50% zeros.

Next, we quantify the performance improvement of photon
“replay” for MCX. The simulation setup is similar to the MCX
benchmark discussed earlier except that Hadamard patterns
are used not only for illumination, but also to cover a 40 ×
40 mm2 area of the top surface to perform single-pixel detection,
as shown in Fig. 1. In Fig. 2(d), the average replay runtime
against varying numbers of total illumination-detection pattern
pairs is reported. The highest speedup ratio is achieved at 12.4×
(20.4 vs. 1.7 s/pair) when the sensitivity matrices of 256 pattern
pairs are computed simultaneously. The slight speed decrease
when using more than 256 simultaneous pattern pairs may also
be a result of limited shared memory space.

4. CONCLUSION

In summary, we reported a general and highly efficient al-
gorithm to accelerate Monte Carlo simulations in emerging
structured-light and single-pixel detection based imaging ex-
periments. Compared to conventional sequential approaches,
this algorithm is capable of simulating multiple source patterns
simultaneously. We show that such acceleration can be extended
to single-pixel camera systems with detector patterns and gener-
alized for pMC and sensitivity calculations.

Enabled by the proposed algorithm, the CPU-based MMC
demonstrated a monotonic increase in simulation speed with in-
creasing pattern numbers and achieved 9.38× to 13.6× speedups
in benchmarks of a Digimouse atlas. In addition, GPU-based
MCX achieved the highest speedup of over 5-fold at groupings
of every 16 patterns. Further increasing the simultaneous pat-
tern number showed a drop in speed on the GPU due to the
impact of shared memory utility. Finally, we combine “photon

sharing” with our “photon replay” [15] algorithm, resulting in
a 12.4× overall speed improvement. This improved MC algo-
rithm is specifically optimized for structured-light based diffuse
optical imaging techniques and can be a valuable tool towards
the development of fast, quantitative imaging platforms, paving
the way for bedside studies of dynamic physiology and/or fluo-
rescence guided interventions. The photon sharing feature has
been incorporated into both of our MC simulators and can be
freely downloaded from http://mcx.space/.
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