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Abstract 

Comparisons between cohabitating spouses have been proposed as an 

aetiological design method to reduce confounding and evaluate effects of the shared 

adulthood environment. However, assortative mating, a phenomenon where 

individuals select phenotypically similar mates, could distort associations. We 

evaluated the use of spousal comparisons, as in the within-spouse pair (WSP) 

model, for aetiological epidemiological research. 

Using directed acyclic graphs and simulations, we demonstrated that the 

WSP model can reduce confounding if spouses are correlated for an unmeasured 

confounder, but that WSP comparisons are susceptible to collider bias induced by 

assortative mating. Empirical analyses using spouse pairs in UK Biobank found 

evidence that genetic association estimates from the WSP model are attenuated 

compared to random pairs for single nucleotide polymorphisms (SNPs) associated 

with height (shrinkage: 23%; 95% CI 20%, 25%), educational attainment (74%; 95% 

CI 66%, 81%) and body mass index (23%; 95% CI 14%, 32% ) as well as for an 

alcohol consumption SNP (29%, 95% CI 5%, 46%). Some of these attenuations are 

likely to reflect effects of assortative mating because height and educational 

attainment are unlikely to be strongly influenced by the adulthood environment. In 

contrast, effect estimates of increasing age on coronary artery disease and systolic 

blood pressure were found to be concordant between random and spouse pairs.  

Assortative mating is likely to induce phenotypic and genetic structure 

between an individual and their spouse which complicates the interpretation of 

spousal comparisons in an aetiological context. A further consideration is that the 

joint participation of non-independent spouses in cohort studies could induce 

selection bias.  
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Introduction 

Human spouses are often highly similar for many traits 1. One mechanism 

underlying spousal similarities is that cohabitating spouses share a common 

environment during their relationship 2 which may act to increase phenotypic 

similarity, such as for behavioural (e.g., physical activity and alcohol use) or 

personality traits 3; 4. The shared adulthood environment between spouses has 

prompted the use of spouses in a variety of contexts in epidemiological and genetic 

research using a model that we refer to as the “within-spouse pair” (WSP) model. 

The WSP model involves modelling the similarities and differences of spouses, 

either by analysing the differences between each pair or by modelling spousal 

relationships as a covariate in a fixed-effect model. For example, previous studies 

have used the WSP model to estimate effects of the shared adulthood environment 

5-8, while the WSP model has been proposed as an approach to reduce confounding 

bias in aetiological research with environmental confounders likely to be strongly 

correlated between spouses 9.  

However, for many traits, there is evidence suggesting that phenotypic 

similarities do not substantially increase during a relationship 10. An alternative 

mechanism that induces spousal correlations is assortative mating – a phenomenon 

where humans are generally more likely to select a phenotypically similar 3; 4; 11-15 or, 

in some instances 16, dissimilar 17; 18 mate. For example, height and years in 

schooling are often fixed prior to partnership formation, suggesting that spousal 

similarities for these phenotypes reflect assortment rather than effects of the shared 

adulthood environment. Furthermore, geographical, ancestral and cultural factors 

often have strong influences on both phenotypic variation and partner selection 

patterns, illustrated by the ancestral similarities of spouses 19. Therefore, some 

degree of spousal phenotypic similarities is likely to be explained by spousal 

assortment on factors not typically defined as phenotypes, such as place of birth or 

religion.  

Assortative mating complicates the interpretation of spousal analyses as it 

suggests that spousal similarities may not relate to the shared environment. 

Furthermore, the WSP model may be susceptible to collider bias. Collider bias 

occurs when conditioning on a variable which is influenced by two or more factors. 
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This bias can induce spurious associations between these factors in the conditioned 

or selected sample. For example, associations between risk factors for a disease are 

likely to be distorted in samples of only diseased cases 20; 21. Similarly, spousal 

samples condition on spousal compatibility, a pairwise measure of how likely two 

individuals are to enter a relationship. If spousal compatibility is a function of 

phenotypic similarity across multiple phenotypes, then collider bias could potentially 

arise if we adjust for spousal pairing (Figure 1) 20; 22. Previous spousal studies have 

acknowledged assortative mating, but whether assortment could distort WSP 

comparisons has not been investigated extensively. For example, the possibility of 

collider bias has been little discussed. Therefore, we evaluated the use of spouses, 

(in e.g. the WSP model), for aetiological epidemiology. 

 

Figure 1: Potential for collider bias when comparing spouses and siblings 

 

 

First, we used directed acyclic graphs (DAGs) and simulated data to illustrate 

that the WSP model can be used to reduce confounding but is also susceptible to 

collider bias induced by assortative mating. Second, we used a WSP model applied 

to a sample of ~47,000 previously derived spouse-pairs from UK Biobank 23 to 

estimate the effects of increasing age on systolic blood pressure (SBP) and coronary 

artery disease (CAD). We generated and compared estimates from both spouse 

pairs and random non-assorted pairs, derived by reordering the spouse-pair sample. 
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Third, we report estimates of spousal similarities, distinct from the WSP model, for 

phenotypic and genetic measures of height, educational attainment, body mass 

index, systolic blood pressure, coronary heart disease and alcohol consumption. 

Fourth, we used the WSP model to estimate effect sizes for genetic variants 

associated with these traits, compared with estimates from random pairs. 

 

Results 
Within-spouse pair model: assortative mating, spousal correlations and 
collider bias 
 

Here, we present results from simulations evaluating the WSP model under 

assortative mating. In the first simulation model A, the relationship between an 

exposure and an outcome is confounded by an unmeasured factor. Spouses are 

positively correlated for the unmeasured confounder, either because of assortative 

mating or because of shared environmental factors during cohabitation. It follows 

that WSP estimates of the effect of the exposure on the outcome will be less biased 

(Figure 2: panel A). 

In the second simulation model B, two independent exposures influence an 

outcome. Since assortment is influenced by the two exposures, it is a collider 

between them. It follows that the WSP estimates of the effect of either exposure on 

the outcome will be susceptible to collider bias dependent on the degree of 

assortment. However, if only one or neither exposure influences the outcome, the 

WSP estimates will not be affected (Figure 2: panel B).  
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Figure 2: Simulated models of assortative mating, spousal correlations and collider 
bias 

 

The WSP design uses pairwise spousal differences (e.g. 𝑋𝑀1 −  𝑋𝐹1 & 𝑌𝑀1 − 𝑌𝐹1) in 
regression models, fitting each spouse pair as a single observation. 

A) Within-spouse pair: spousal correlations for confounders.  

Exposure 𝑋; Outcome 𝑌; Unmeasured confounder 𝐸; Spousal assortment 𝐴; WSP 
exposure 𝑋∗ (𝑋∗ = 𝑋𝑀 − 𝑋𝐹); WSP outcome 𝑌∗ (𝑌∗ = 𝑌𝑀 − 𝑌𝐹); WSP environmental 
confounder (the non-shared portion of the set of confounders) 𝐸∗ (𝐸∗ = 𝐸𝑀 − 𝐸𝐹). 

This figure illustrates the effect of an exposure on an outcome in the presence of an 
unmeasured confounder. Here, spousal pairing is determined by an assortment 
variable correlated with the confounder (indicated by A, a child of the confounder E). 
It follows that the value of spouses’ confounders will be correlated. In this example, a 
WSP model will reduce bias in the estimate of the effect of X on Y. In this figure we 
assume that spousal correlations for the confounder reflect assortment but in 
practice they could also relate to the shared spousal environment. 

B) Within-spouse pair: assortative mating and collider bias.  

Exposures 𝑋1 𝑋2; Outcome 𝑌; Spousal assortment 𝐴; WSP exposures 𝑋1
∗, 𝑋2

∗;  WSP 
outcome 𝑌∗ (𝑌∗ = 𝑌𝑀 − 𝑌𝐹). 

This figure illustrates the effect of an exposure on an outcome when two, otherwise 
independent exposures influence both the outcome and spousal assortment. It 
follows that associations will be present in the WSP model between the two 
exposures, which will distort the WSP estimated effect of the exposure on the 
outcome. We quantify the effect of potential collider bias in the WSP model at 
different levels of assortment on the two exposures. 

Dashed lines indicate associations induced by spousal assortment.  
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Simulations 

We used simulated data to quantify the effect of the exposure on the outcome 

using the WSP model under two models. We generated 1,000 males (𝑀1. .  𝑀1000) 

and 1,000 females (𝐹1. .  𝐹1000). Male-female spouse pairs were determined using a 

spousal matching variable 𝐴, ordered such that 𝐴𝑀1 ≥  𝐴𝑀2 ≥. . 𝐴𝑀1000 and 𝐴𝐹1 ≥

 𝐴𝐹2 ≥. . 𝐴𝐹1000, and pairs were then matched on the assortment variable, i.e. 𝐴𝑀1 

with 𝐴𝐹1.  

Model A: Within-spouse pair: spousal correlation for confounders 

In this model we investigated the bias in WSP estimates of the effect of an exposure 

on an outcome if spouses assort on the measured confounder. The simulations 

demonstrate that the WSP estimate converges to the simulated unbiased estimate of 

0.3 as the spousal correlation for the confounder tends to 1 (Figure 3: panel A/ 

Supplementary Table 1). 

Model B: Within-spouse pair: assortative mating and collider bias 

In this model, we evaluated the potential bias in WSP estimates when spousal 

assortment is a collider between two exposures. Simulations showed that the degree 

of bias in the effect estimate is a function of the degree of assortment on the two 

exposures with more bias when spouses strong assort on both traits. For example, 

under this model and using plausible assortment estimates for educational 

attainment (0.5) and height (0.2) 24, the expected bias would be around 13% when 

estimating the effect of education on a trait which is also influenced by height 

(Figure 3: panel B/ Supplementary Table 2).   
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Figure 3: Simulation results for WSP models 

 

 

 

A – Simulations for Model A: Spousal correlations controlling for confounding. 

As the strength of spousal assortment on the confounder (𝐸) increases, the 
between-spouse association of 𝑋∗ on 𝑌∗ unadjusted for 𝐸 becomes less biased.  

B – Simulations for Model B: Between-spouse: assortment and collider bias. 

Spousal assortment can induce collider bias in WSP estimates. If spouses assort on 
two phenotypes 𝑋1 and 𝑋2 and affect outcome 𝑌, then the association of 𝑋1 and 𝑌 is 
a biased estimate of the causal effect of 𝑋1 and 𝑌. This bias monotonically increases 
in the degree of assortment on either 𝑋1 or 𝑋2. 

 

Empirical analyses using spouse pairs in UK Biobank 

Within-spouse pair: age, SBP and CAD 

We performed empirical analyses to evaluate the WSP design, using a sample of 

47,435 spouse-pairs from UK Biobank, previously derived using household sharing 

information 15. The spouse-pair sample were broadly of European descent, as 

determined by principal component analysis, and had an average age of 59.5 years 

A

B
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(on January 2010). Further characteristics of the sample for phenotypes of interest 

are contained in Supplementary Table 3.  

As a positive control, we estimated the effects of increasing age on outcomes known 

to be related to age (CAD and SBP) in the spouse sample. For comparison, we 

calculated within-pair estimates using the same model in samples of non-assorted 

pairs. Pairwise age differences were found to be greater between random pairs 

which is evidence of assortative mating by age. We found consistent estimates of the  

effect of age on CAD and SBP between analyses conducted in the spouse and 

random pair samples (Table 1).   

 

Table 1: Increased age and age-related outcomes. 

Phenotype Spouse-pairs (N= 
47,435) 

Random pairs 
(N=47,435): 

Median estimate from 
100 simulations 

Average age difference 
(years); 
Median (Q1, Q3) 

2.0 (1.0, 4.0) 7.0 (3.0, 13.0) 

Systolic blood pressure 
(Change in mmHg per 1-
year increase in age; 95% 
C.I.) 

0.74 (0.69, 0.80) 0.80 (0.78, 0.83) 

Coronary artery disease 
(OR per 1-year increase 
in age; 95% C.I.) 

1.05 (1.04, 1.05) 1.05 (1.04, 1.05) 

All analyses were adjusted for sex of the index individual. 

 

Spousal phenotypic and genotypic correlations 

We investigated the potential mechanisms influencing spousal phenotypic similarities 

using genetic data in UK Biobank 13; 15; 24. Spousal genetic associations (SGG) for 

genetic variants associated with a phenotype provide evidence for spousal 

assortment as genotype is fixed from birth and cannot be changed by the shared 

adulthood environment. Whereas, associations of an individual’s genotype and their 

partner’s phenotype (SGP) may relate to assortment or social genetic effects of an 

individual on their partner. Phenotypic correlations (SPP) between spouses may 

capture assortative mating, environmental effects or factors such as social 

homogamy, where individuals may assort on social factors which influence the 
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exposure. Note that these analyses compare an individual to their spouse, distinct to 

the WSP model which compares spouse pairs to other spouse pairs. 

We estimated spousal associations for height, educational attainment, body mass 

index, systolic blood pressure and coronary heart disease using both observed and 

genetic measures of the phenotypes. We scaled SGP and SGG associations to be on 

the same scale as the SP×P estimates using an instrumental variable framework, 

Mendelian randomization for SG×P and a similar approach for SGG . All phenotypes 

were concordant between spouses with some evidence of SGP associations for 

height, education and body mass index. Notably, the SPP associations were greater 

for all traits except for education where a stronger SGP association was observed. 

Evidence of genotype-genotype correlations was evident only for height and 

educational attainment, with a substantial but imprecise scaled estimate for 

educational attainment (Table 2).  

 

 

 

 

 

 

 

 

 

Table 2: Spousal phenotypic and genotypic associations 

Phenotype SPP (95%CI): 
S.D. increase in 

individual 
phenotype per S.D. 
increase in spousal 

phenotype 

Scaled SGP (95%CI) 

S.D. increase in 
individual phenotype 
per S.D. increase in 

spousal GRS 

Scaled SGG (95%CI)  
S.D. increase in 

individual GRS per 
unit increase in 
spousal GRS 

Height 0.23 (0.22, 0.24) 0.19 (0.17, 0.21) 0.27 (0.12, 0.42) 
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Educational 
attainment 

0.46 (0.45, 0.46) 0.71 (0.62, 0.80) 2.00 (0.64, 3.36) 

Body mass index 0.24 (0.23, 0.25) 0.15 (0.10, 0.21)     -0.27 (-0.95, 0.40) 

Systolic blood 
pressure 

0.09 (0.08, 0.09) 0.01 (-0.03, 0.04)      0.06 (-0.27, 0.38) 

Coronary heart 
disease 

0.02 (0.01, 0.03)     -0.04 (-0.13, 0.06)     -0.51 (-2.54, 1.53) 

All analyses were adjusted for sex and age 

 

 

Within-spouse pair: genetic and phenotypic associations 

We performed empirical analyses using genetic data to evaluate the WSP 

model in the context of evaluating genetic associations. Starting with Genome-wide 

Association Study (GWAS) data for height, SBP, body mass index, educational 

attainment and CAD, we extracted independent (r2 < 0.001) single nucleotide 

polymorphisms (SNPs) reaching genome-wide significance in previous GWAS 

(P<5×10-8) of traits of interest. We then estimated and compared SNP effect sizes 

when applying the WSP model to spouse and random pair samples. We found 

strong evidence of smaller effect sizes in the spouse sample for height (shrinkage: 

23%; 95% CI 20%, 25%), educational attainment (shrinkage: 74%; 95% CI 66%, 

81%) and body mass index (shrinkage: 23%; 95% CI 14%, 32%). There was some 

evidence of shrinkage for genetic variants associated with systolic blood pressure 

(shrinkage: 9%; 95% CI 1%, 17%), although this result would not pass adjustment 

for multiple testing, and limited evidence for coronary artery disease variants (Table 

3). 

 

Table 3: Genetic variant effect size comparison between spouse-pairs and random 
male-female pairs 

Phenotype Number of 
SNPs 

Shrinkage in spouse-pair 
estimate compared to random 

pairs: % (95% C.I.) 

Height  381 0.23 (0.20, 0.25) 

Educational 
attainment  

69 0.74 (0.66, 0.81) 
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Body mass 
index 

68 0.23 (0.14, 0.32) 

Coronary artery 
disease 

40 0.03 (-0.15, 0.22) 

Systolic blood 
pressure 

190 0.09 (0.01, 0.17) 

 

For alcohol consumption, we considered only a single well-characterised variant in 

ADH1B. Each minor allele of the SNP was associated with an increased weekly 

alcohol consumption of 3.55 units (95% C.I. 3.03, 4.08) in the spouse sample 

compared to the median random-pair estimate of 4.98 units (95% C.I. 4.31, 5.64), an 

effect estimate shrinkage of 29% (95% C.I. 5%, 46%: heterogeneity P-value = 

0.001). 

Discussion 

In this study, we used directed acyclic graphs, simulations and empirical data 

to evaluate the use of the WSP model in aetiological epidemiology. We showed that 

the WSP model can account for unmeasured confounding if spouses are correlated 

for the confounder but that comparing assorted spouses can also induce collider 

bias. Empirically, we found that WSP effect estimates for age on coronary heart 

disease and systolic blood pressure were concordant between spouse and non-

spouse pairs. Contrastingly, we found evidence that within-pair effect estimates for 

height, educational attainment, body mass index and alcohol consumption genetic 

loci are attenuated when comparing assorted spouses over non-spouse pairs.  

There are several possible explanations for these attenuations. First, 

simulated data showed that if spouses assort on a confounder of the exposure and 

outcome, then the WSP association is a less biased estimate of the causal effect 

than a conventional model unadjusted for the confounder. An example of potential 

confounding is shared ancestry or place of birth, which is likely to be more correlated 

between spouses that for non-spouse pairs. Second, simulations also suggested that 

the WSP model applied to genetic associations may be susceptible to collider bias. 

Spousal assortment may induce biased associations between genetic and non-

genetic influences on the trait of interest, with the degree of bias increasing with the 

strength of assortment, leading to the WSP model underestimating the true effect. 

The possibility that collider bias induced by assortment contributed to the shrinkage 
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is supported by the greater effect size attenuations observed for traits with evidence 

of strong spousal assortment (height, educational attainment and alcohol 

consumption). Third, reduced phenotypic variation between spouses induced by 

assortment could lead to effect sizes attenuating towards the null because of the 

increased proportion of measurement error to variation. Fourth, the spousal 

environment could be influenced by individual’s genotypes leading to reduced 

spousal phenotypic differences. For example, if an individual has high genetic liability 

to increased alcohol consumption this could lead to their partner consuming similar 

amounts of alcohol independent of their genotype.  

The WSP model is comparable to any covariate adjusted causal model where 

adjustment could both reduce confounding bias and induce collider bias 25. The 

merits of WSP estimates are dependent on their overall bias relative to the causal 

effect of interest. In empirical studies the size of this bias is likely to be difficult to 

quantify as the true causal effect will be unknown. In our positive control example of 

age on health outcomes, bias did not increase discernibly; we found little evidence 

that the within-pair effect estimates of age on CAD and SBP were distinct between 

spouse and non-spouse pair samples. These findings suggest that, in some 

instances, the WSP estimates are unlikely to be affected by collider bias, potentially 

when traits are not strongly assorted on as for CAD and SBP. Indeed, the phenotypic 

correlations for CAD and SBP (measured at study enrolment) are likely to reflect 

shared environmental factors rather than direct assortment.  

A key implication is that spousal similarities and differences are not 

necessarily random or attributable solely to the shared adulthood environment. 

Amidst growing evidence that genetic epidemiological studies can be susceptible to 

bias from fine-scale population structure, dynastic effects and assortative mating 26-

35, there is considerable interest in using genotype data from pedigrees to 

disentangle these effects and more accurately estimate trait heritability 5-8; 26-28; 33; 34; 

36-40. Family designs such as the transmission disequilibrium test 41 and sibling 

comparisons are protected from many of these biases by random segregation at 

meiosis 42; 43. However, in contrast, inferences from spousal analyses are not as 

robust to bias, thus it is important to understand and model the assortment in 

spousal designs. A further implication is that assortative mating is likely to contribute 

to the phenotypic and genetic structure of epidemiological studies. Large studies 
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such as the UK Biobank, frequently incidentally sample participants who are 

partnered with another study participant 15. These individuals will be non-

independent. The consequences of jointly enrolled spouses are unclear but are one 

mechanism influencing study participation. 

Previous studies have incorporated spousal relationships in variance 

component models as a measure of the shared environment during adulthood 5-8. 

Although researchers have acknowledged that assortative mating may induce bias in 

these models 5, the possibility of collider bias suggests that modelling spousal 

similarities without accounting for assortment could induce bias beyond the levels 

previously envisaged. It is difficult to discern whether WSP genetic associations are 

more accurate than conventional estimates; spousal assortment on ancestry may 

reduce bias, or collider bias induced by assortative mating may attenuate the 

associations. However, time spent in full-time education and height are unlikely to be 

affected by adult environment, providing evidence that effects are driven by spousal 

assortment. Our findings are consistent with recent work showing that assortative 

mating can induce bias in negative control studies 44, where paternal exposures are 

used as a control for effects of maternal exposures on offspring via the in-utero 

environment 45. 

Our study has several important limitations. First, as described in our previous 

study 15, derived spouse-pairs were identified using household sharing information 

so may be susceptible to a degree of classification error with non-spouse pairs being 

incorrectly identified as spouses. Second, the mechanisms by which spouses jointly 

participate in UK Biobank may have induced selection bias into empirical analyses 

as these pairs could be more similar than pairs that did not jointly participate. Third, 

given that the exact mechanisms of assortment are not widely understood, our 

simulations and assumptions may not accurately capture the mechanisms underlying 

spousal assortment. In simulations we assumed that factors influencing assortment 

are independent across the population but in practice, factors influencing assortment 

are often correlated (e.g. height and education). Future research could use more 

complex simulations to evaluate models that can distinguish the effects of social 

homogamy, migration and measurement error. Fourth, it is important to note that 

educational attainment as defined by qualifications when study participants are aged 

over 40 will also capture individuals with degrees obtained during adulthood, 
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suggesting that educational similarities could also plausibly relate to the shared 

adulthood environment.  

To conclude, we provided evidence that WSP estimates for height, alcohol 

consumption, body mass index and educational attainment genetic variants are 

attenuated when compared to non-assorted pairs. Contrastingly, age-related 

associations were consistent between spouse and non-assorted pairs. Simulations 

suggested that a substantial proportion of these attenuations could be explained by 

assortative mating, emphasising the importance of considering assortative mating 

when using parental data in epidemiological and genetic studies.   

 

Methods 

Data sources 

UK Biobank 

Study description 

UK Biobank is a large-scale prospective cohort study which sampled 503,325 

individuals aged between 38-73 years at baseline, recruited between 2006 and 2010 

from across the United Kingdom. The cohort has been described in detail previously 

23; 46. For the purposes of this study, we used a subsample of the cohort of derived 

spouse-pairs, which has been described in detail in a previous study 15. In brief, 

47,549 male-female pairs believed to be cohabitating spouses were identified from 

using household sharing information, including home coordinates (to the nearest km) 

and marital status, with closely related pairs identified and removed using a genetic 

relationship matrix.  

Phenotype data 

At baseline, the height of study participants was measured using a Seca 202 device 

at the assessment centre (field ID: 12144-0.0), body mass index was derived 

manually from measures of standing height and weight (field ID: 21001.0.0), systolic 

blood pressure was measured using an automated reading from an Omron Digital 

blood pressure monitor (field ID: 4080-0.0). Educational attainment was defined as in 

a previous study 47, using questionnaire data on qualifications to estimate the 

number of years spent in full-time education (field ID: 6138). Coronary artery disease 

cases were diagnosed using International Classification of Disease (10th edition) 
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(ICD10) and Operating Procedure System (OPS) codes from either hospital events 

(Hospital Episode Statistics) or underlying cause of death from the death register. 

The following ICD10 (I21, I22, I23, I24, I25, Z955) and OPS codes (K40-K46, K471, 

K49, K50, K75) 48 were used to classify diseased cases.  

Genotyping 

UK Biobank study participants (N= 488,377) were assayed using the UK BiLEVE 

Axiom™ Array by Affymetrix1 (N= 49,950) and the UK Biobank Axiom™ Array (N= 

438,427). Directly genotyped variants were pre-phased using SHAPEIT3 49 and then 

imputed using Impute4 using the UK10K 50, Haplotype Reference Consortium 51 and 

1000 Genomes Phase 3 52 reference panels. Post-imputation, data were available 

for approximately ~96 million genetic variants. More detail is contained in previous 

publications 23; 53. 

Genome-wide Association Studies 

Summary statistics from previous published GWAS, independent from UK Biobank, 

were used for information on SNPs associated with coronary artery disease 54, body 

mass index 55, educational attainment 47 and height 56.  

Genome-wide summary data were not available for a recent systolic blood pressure 

GWAS 57, so we performed a GWAS of systolic blood pressure using UK Biobank. 

To remove sample overlap, we excluded the 47,539 spouse pairs from the analysis 

and used the remaining sample of 367,963 individuals of self-report European 

descent. A GWAS was conducted on this sample using a linear mixed model (LMM) 

association method as implemented in BOLT-LMM (v2.3)58. To model population 

structure in the sample we used 143,006 directly genotyped SNPs obtained after 

filtering on MAF > 0.01; genotyping rate > 0.015; Hardy-Weinberg equilibrium p-

value < 0.0001 and LD pruning to an r2 threshold of 0.1 using PLINK v2.0 59. We 

included the age and sex of participants as covariates in the model.  

A set of Genome-wide significant SNPs were generated for each trait by LD 

clumping relevant summary statistics (P<5×10-8, r2<0.001, kb=10000) using the 1000 

Genomes Phase 3 GBR samples 52 as the reference panel. For alcohol 

consumption, we used a missense variant (rs1229984) in ADH1B strongly 

associated with alcohol behaviour, as in a previous study 15. 
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Theory of within-spouse pair comparisons 

The phenotype 𝑃 of individual 𝐼 can be modelled as a function of independent 

factors; genetics 𝐺, the environment 𝐸, age, sex and a stochastic variance term ∈. 

𝑃𝐼 =  𝐺𝐼  +  𝐸𝐼 +  𝐴𝑔𝑒𝐼 + 𝑆𝑒𝑥𝐼 + ∈𝐼 

When considering male-female spouse pairs, we can decompose the influence of 

the environment 𝐸 on 𝑃 into effects of the shared environment between spouses 𝑆𝐸 

(e.g. during cohabitation) and effects of the non-shared environment 𝑁𝑆𝐸. For 

example, for the male 𝑀 and female 𝐹 in pair 𝐾: 

𝑃𝐾𝑀 =  𝐺𝐾𝑀  +  (𝑆𝐸𝐾   +  𝑁𝑆𝐸𝐾𝑀)  + 𝐴𝑔𝑒𝐾𝑀 + 𝑆𝑒𝑥𝐾𝑀 + ∈𝐾𝑀 

 𝑃𝐾𝐹 =  𝐺𝐾𝐹  +  (𝑆𝐸𝐾   +  𝑁𝑆𝐸𝐾𝐹)   + 𝐴𝑔𝑒𝐾𝐹 + 𝑆𝑒𝑥𝐾𝐹  + ∈𝐾𝐹 

We then define the WSP model across spouse pairs as: 

𝑃∗ = 𝐺∗ + 𝐸∗ + 𝐴𝑔𝑒∗ + 𝑆𝑒𝑥∗ +∈∗ 

where the differences between the spouses for each factor are included in the model 

(e.g. for pair 𝐾, 𝑃𝐾
∗ = 𝑃𝐾𝑀 − 𝑃𝐾𝐹, 𝐺𝐾

∗ = 𝐺𝐾𝑀 − 𝐺𝐾𝐹 ,  𝐸𝐾
∗ = 𝑁𝑆𝐸𝐾𝑀 − 𝑁𝑆𝐸𝐾𝐹). The shared 

environmental terms are by definition equal for men and women and drop out of the 

model. 

For the WSP model to generate an unconfounded estimate of the causal effect of 𝐺 

on 𝑃, we require that the genetic and environmental difference terms in the between-

spouse model are independent, i.e. 𝐶𝑜𝑟𝑟(𝐺∗, 𝐸∗) = 0, an assumption that could be 

violated by several factors: e.g. population stratification bias or dynastic effects. 

Random and non-random mating 

Consider the between-spouse model applied to three distinct sets of pairs; a) a 

random set of males and females (non-spouses), b) spouse pairs under random 

mating (random spouses), and c) spouse-pairs under assortative mating (assorted 

spouses). In theory, the environmental differences between pairs would decrease 

with cohabitation and under assortment on environmental factors such as place of 

birth and socio-economic status:  

𝐸∗𝑁𝑜𝑛𝑆𝑝𝑜𝑢𝑠𝑒 > 𝐸∗𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑝𝑜𝑢𝑠𝑒 > 𝐸∗𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑𝑆𝑝𝑜𝑢𝑠𝑒 
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Note that as the environmental differences between pairs tends to zero (𝐸∗ → 0), the 

bias in the estimated association between 𝑃 and 𝐺 will also tend to zero 

(𝑏𝑖𝑎𝑠(𝑃~𝐺) → 0) even if 𝐺∗ and 𝐸∗ are correlated in the WSP model (𝐶𝑜𝑟𝑟(𝐺∗, 𝐸∗) ≠

0) because the pair would be matched for the confounder, suggesting that 

comparing assorted pairs could reduce the effect of environmental biases. 

We define the mechanism by which spouses assort as spousal compatibility 𝐴, a 

pairwise measure of how likely it is that two individuals enter a relationship. If several 

phenotypes influence assortment, then assortative mating can induce collider bias. 

For example, assortment on a phenotype influenced by genetic and environmental 

factors will induce spousal correlations in both genetic and environmental 

determinants of the phenotype, i.e. 𝐶𝑜𝑟𝑟(𝐺𝐾𝑀, 𝐺𝐾𝐹) > 0  & 𝐶𝑜𝑟𝑟(𝐸𝐾𝑀, 𝐸𝐾𝐹) > 0. It 

follows that in the WSP model, spousal genetic differences will be inversely 

associated with spousal environmental differences, i.e. 𝐶𝑜𝑟𝑟(𝐺∗, 𝐸∗) < 0.  

Statistical methods 

Simulations 

Model 1: Within-spouse pair: spousal correlation for confounders 

In this model, in a sample of 1000 males and 1000 females, an exposure 𝑋 

influences an outcome 𝑌 but the relationship is confounded by life-course exposure 

to an environmental factor 𝐸 which influences both 𝑋 and 𝑌. Spousal correlations for 

𝐸 are modelled by generating a spousal assortment measure 𝐴, correlated with 𝐸 

such that Corr(𝐸, 𝐴)=𝐶, that determines spousal pairing as follows. The spousal 

matching variable 𝐴 is ordered such that 𝐴𝑀1 ≥  𝐴𝑀2 ≥. . 𝐴𝑀1000 and 𝐴𝐹1 ≥  𝐴𝐹2 ≥

. . 𝐴𝐹1000, and male-female pairs are matched, i.e. 𝐴𝑀1 with 𝐴𝐹1. We evaluated 

whether spousal correlations for the confounder 𝐸 influence the WSP estimates of 𝑋 

on 𝑌 by generating WSP estimates at a range of values of C (0.1, 0.2, 0.3, 0.4, 0.5, 

0.6, 0.7, 0.8, 0.9). 

 

Model 2: Within-spouse pair: assortative mating and collider bias 

In this model, in a sample of 1000 males and 1000 females, individuals assort on two 

independent phenotypes 𝑋1 and 𝑋2 , that also influence an outcome 𝑂 such that 

𝑌~𝑋1  + 𝑋2 +∈. Assortment is modelled by a spousal compatibility variable 𝐴 which is 
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correlated with 𝑋1 and 𝑋2 such that corr(𝑋1, 𝐴)=𝐶1 & corr(𝑋2 𝐴)=𝐶2. The spousal 

compatibility variable is ordered for both males and females separately (𝐴𝑀1 ≥

 𝐴𝑀2 ≥. . 𝐴𝑀1000 and 𝐴𝐹1 ≥  𝐴𝐹2 ≥. . 𝐴𝐹1000), with pairs then matched on the 

compatibility variable, i.e. 𝐴𝑀1 with 𝐴𝐹1. In this context, we estimated the effect of 𝑋1 

on 𝑌 using the WSP model.       

We used simulations to evaluate the extent of collider bias with varying degrees of 

spousal assortment (𝐶1/𝐶2 = 0, 0.1, 0.2, 0.3, 0.4, 0.5). The WSP regression model is 

defined as 𝑌∗~𝑋1
∗ where 𝑌∗  = 𝑌𝐾𝑀 − 𝑌𝐾𝐹  and 𝑋1

∗  = 𝑋1𝐾𝑀
− 𝑋1𝐾𝐹

 for each assorted 

pair.  

 

Empirical analysis in the UK Biobank 

Within-spouse pair: age, SBP and CAD 

In the sample of 47,435 spouse pairs, we defined the phenotypic differences 

between spouse pair 𝐾 as follows: 

 𝐴𝑔𝑒𝐷𝑖𝑓𝐾 = 𝐴𝑔𝑒𝐾𝐴 − 𝐴𝑔𝑒𝐾𝐵 

𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝐷𝑖𝑓𝐾 = 𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝐾𝐴 − 𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝐾𝐵 

where 𝐴 and 𝐵 refers to the two individuals in the spouse pair. In the context of 

binary outcomes, the pair were rearranged so that the phenotypic difference could 

take the value of either 0 or 1 for the purposes of logistic regression, with other 

variables rearranged accordingly.  

The WSP effect estimates of age on CAD and SBP were then estimated using the 

following regression model (linear or logistic dependent on the outcome of interest), 

including sex of the reference individual and the age difference between-spouses as 

covariates: 

𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝐷𝑖𝑓𝐾 ~ 𝐴𝑔𝑒𝐷𝑖𝑓𝐾 + 𝑆𝑒𝑥𝐾𝐴 

Random male-female pairs 

As a point of comparison, we repeated the analysis using random male-female pairs 

to evaluate effects of spousal assortment. Using the same regression models 

described above, we repeated analyses using random male-female pairs. Starting 
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with the 47,435 spouse-pairs, we generated 100 distinct datasets of random male-

female pairs by rearranging couples at random. Across simulations, we reported the 

median effect size and standard error for each model. 

Spousal phenotypic and genotypic similarities  

We estimated associations between spouses for phenotypic and genotypic 

measures of height, educational attainment, BMI, SBP and CHD. Specifically, we 

estimated spousal phenotype-phenotype (SPP), genotype-phenotype (SGP) and 

genotype-genotype (SGG) associations for each trait.  

We estimated SPP associations using a regression of the observed trait in the index 

individual against the observed trait in their partner, including sex of the index 

individual and age of both spouses as covariates.  

We estimated scaled SGP associations using a Mendelian randomization framework 

43, similar to a previous publication 15. To do this, we selected independent (r2<0.001 

within 10,000kb) SNPs reaching genome-wide significance (p<5x10-08), which we 

used to construct a genetic risk score (GRS) using allele counts and effect sizes 

from the GWAS summary data. We then tested whether GRS for each trait were 

associated with a) phenotypes in the index individual (adjusting for sex, age and the 

first 10 PCs of index individual) and b) with the trait in the partner (adjusting for sex 

of index individual and age/ first 10 PCs of both spouses) using linear models in R. 

As in Mendelian randomization, the scaled SGP estimate is defined as the ratio of 

these estimates (estimate b divided by estimate a) and was calculated using the 

seemingly unrelated regression (SUR) package in R which accounts for correlation 

between standard errors. 

We used a similar framework to above to estimate the scaled SGG associations. 

Using the GRS described above, we tested whether GRS for each trait were c) 

associated with the same GRS in their partner, including sex of the index individual 

and age of both spouses as covariates. By analogy with Mendelian randomization, 

the SGG estimate can be scaled by dividing the genetic correlation estimate (estimate 

c) by the association of the GRS with phenotype in the same individual (estimate a) 

squared. Again, we calculated the scaled SGG associations using SUR in R. Relevant 

mathematical equations are contained in the supplementary material of a previous 

manuscript 15.  
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Within-spouse pair: genetic and phenotypic differences 

We defined the genotype difference for spouse pair 𝐾 for each variant of interest as: 

𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝐷𝑖𝑓𝐾 = 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝐾𝐴 − 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝐾𝐵 

The WSP effect estimates of each genetic variant on the relevant phenotype of 

interest (height, body mass index, systolic blood pressure, educational attainment, 

coronary artery disease or alcohol consumption) were estimated using the following 

regression model (again linear or logistic), including sex of the reference individual 

and age difference between the spouses as covariates: 

𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝐷𝑖𝑓𝐾 ~ 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝐷𝑖𝑓𝐾 + 𝐴𝑔𝑒𝐷𝑖𝑓𝐾 + 𝑆𝑒𝑥𝐾𝐴 

Comparing between-spouse and between-random pair estimates across genetic 

variants 

As above, we calculated the associations using the WSP model using the actual 

spouses and then repeated analyses using 100 distinct datasets of random male-

female pairs. We then took the ratio of effect estimates between the spouse sample 

estimate and the median effect estimate from the 100 random-pair estimates, with 

standard errors of ratios calculated using the delta method. A fixed effects model 

using the metafor package 60 in R was then used to meta-analyse the ratios across 

all SNPs for each trait of interest assuming independence of SNPs. A shrinkage 

estimate was then generated by subtracting the meta-analysis result and confidence 

interval from 1. 

We removed outlying variants for each trait to prevent convergence problems in the 

meta-analysis. Outliers were defined as variants where the ratio of effect sizes 

between the spouse and random-pair models were more than five times the 

interquartile range away from the mean ratio. In practice we removed two outlying 

variants for educational attainment. 

As we investigated only a single genetic variant for alcohol consumption, we were 

unable to investigate a trend across genetic variants. Instead we tested for a 

difference between two means for the WSP and median random-pair estimate 61.  
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Data and code availability 

Relevant code for simulations is available at the following repository 

https://github.com/LaurenceHowe/Between-spouse. A list of derived spouse-pairs is 

available on request from UK Biobank.  
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