
Learning polygenic scores for human blood cell traits 
 

 

Yu Xu1-3,*, Dragana Vuckovic4,5, Scott C Ritchie1-3,6,7, Parsa Akbari3,5, Tao Jiang3, Jason Grealey2,8, 

Adam S. Butterworth3,5,12, Willem H Ouwehand4-6,9,10, David J Roberts5,9,11,Emanuele Di 

Angelantonio3-7,12, John Danesh3-7,12, Nicole Soranzo4-6, Michael Inouye1-3,6,7,12,13,* 

 

1. Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, 

University of Cambridge, Cambridge, UK 

2. Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, 

Victoria, Australia 

3. British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and 

Primary Care, University of Cambridge, Cambridge, UK 

4. Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK 

5. National Institute for Health Research Blood and Transplant Research Unit in Donor Health and 

Genomics, University of Cambridge, Cambridge, UK 

6. British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, 

UK 

7. National Institute for Health Research Cambridge Biomedical Research Centre, University of 

Cambridge and Cambridge University Hospitals, Cambridge, UK 

8. Department of Mathematics and Statistics, La Trobe University, Bundoora, Victoria, Australia 

9. National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, 

Cambridge, UK 

10. Department of Haematology, University of Cambridge, Cambridge, UK 

11. National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford 

and John Radcliffe Hospital, Oxford, UK 

12. Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, 

Cambridge, UK 

13. The Alan Turing Institute, London, UK 

 

* Corresponding authors: mi336@medschl.cam.ac.uk (MI) or yx322@medschl.cam.ac.uk (YX) 

     

 

Abstract 

Polygenic scores (PGSs) for blood cell traits can be constructed using summary statistics from genome-

wide association studies. As the selection of variants and the modelling of their interactions in PGSs 

may be limited by univariate analysis, therefore, such a conventional method may yield sub-optional 

performance. This study evaluated the relative effectiveness of four machine learning and deep learning 

methods, as well as a univariate method, in the construction of PGSs for 26 blood cell traits, using data 

from UK Biobank (n=~400,000) and INTERVAL (n=~40,000). Our results showed that learning 

methods can improve PGSs construction for nearly every blood cell trait considered, with this 

superiority explained by the ability of machine learning methods to capture interactions among variants. 

This study also demonstrated that populations can be well stratified by the PGSs of these blood cell 

traits, even for traits that exhibit large differences between ages and sexes, suggesting potential for 

disease prevention. As our study found genetic correlations between the PGSs for blood cell traits and 

PGSs for several common human diseases (recapitulating well-known associations between the blood 

cell traits themselves and certain diseases), it suggests that blood cell traits may be indicators or/and 

mediators for a variety of common disorders via shared genetic variants and functional pathways. 
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Introduction 

Blood cells play essential roles in a variety of biological processes, such as oxygen transport, iron 

homeostasis, and pathogen clearance1–3. Abnormalities in blood cell traits, such as the number of cells, 

the proportions of different types, their sizes and morphology and so their likely functions, have been 

associated with a range of human diseases, such as reticulocyte indices with coronary heart disease4, or 

eosinophil counts with asthma5.  

Blood cell traits are heritable, and their genetic architecture has been found to be highly polygenic. 

Analysis of the UK Biobank (UKB)6,7 and INTERVAL8 cohorts have suggested that between 18% to 

30% of the variance in erythrocyte counts and morphology can be explained by hundreds of common 

autosomal variants4. It is expected, therefore, that levels of these traits can to some extent be predicted 

by genetic variants via polygenic scores (PGSs)9. Blood cell traits can be considered part of intermediary 

biological processes which may be involved in pathogenesis, and thus PGSs for blood cell traits may 

help better identify innate inter-individual differences in these traits, those which are related to disease 

risk, and those which may help identify novel therapeutic targets10.  

A PGS is most commonly constructed as a weighted sum of genetic variants, typically single nucleotide 

polymorphisms (SNPs), carried by an individual, where the genetic variants are selected and their 

weights quantified via univariate analysis in a corresponding genome-wide association study 

(GWAS)9,11. As is the nature of univariate analysis, this conventional PGS method largely relies on hard 

cut-off thresholds to identify associated variants at the population level, e.g. p-value thresholding for 

selection of significant variants and r2 thresholding for selection of independent variants12. However, 

usage of harder or softer thresholds would either lead to weakly predictive PGSs, or bring in unrelated 

and/or over-representative variants, e.g. variants in high linkage disequilibrium (LD), that could weaken 

predictive power13. In practice, it is challenging to find an ideal set of thresholds that identify the 

associated variants from millions of other variants for maximal prediction power of a given trait or 

disease. Thus, PGSs obtained through this method are likely under-predictive.  

A further limitation of the conventional PGS approach is its inherent assumption of linearity. Estimation 

of the weight of each variant alone through univariate association tests leaves no modelling 

considerations for joint effects between variants. However, studies have shown that variants, for 

example in the MHC region, can exhibit significant non-linear effects on traits/diseases through 

interactions14–18. Thus, in particular for traits of complex architecture, there may be considerable scope 

for improvement in genomic prediction compared to the linear univariate approach taken to construct 

most previous PGSs18–20.  

Machine learning techniques have demonstrated superiority in constructing polygenic scores for several 

traits and diseases, largely immune-related, e.g. celiac disease, type 1 diabetes, and Crohn's disease19–

23. Owing to their simplicity and efficiency, multivariate linear models, such as elastic net and support 

vector machines, are one of the most widely used categories of machine learning methods for PGS 

construction. Although these approaches also entail assumptions of linearity, they may implicitly model 

interactions amongst variants via effect size shrinkage and variant selection techniques, e.g. L1 and L2 

norms20. Non-linear models, e.g. polynomial regression, provide an explicit way to model the mutual 

interactions among input features; however, traditional non-linear learning methods usually suffer from 

poor efficiency and do not scale effectively when applied to high-dimensional genomic data. The rapid 

development of deep learning methods, e.g. Multilayer Perceptrons (MLPs) and Convolutional Neural 

Networks (CNNs), known for their power to model a wide spectrum of linear and non-linear 

correlations, and their supporting hardware architectures, e.g. Graphical Processing Units (GPUs) and 

Tensor Processing Units (TPUs), allow us to train complex non-linear models on large datasets within 

a reasonable timeframe and computing power.  

This study aims to evaluate the relative effectiveness of the machine learning, deep learning and 

univariate methods in construction of PGSs for blood cell traits (see Figure 1 for study workflow). We 

investigate three key questions: 1) To what extent can machine learning or deep learning methods 

improve construction of PGSs for blood cell traits? 2) What potential insights into the genetic 
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architecture of blood cell traits and its relevance to disease can learned PGSs offer? and 3) Can PGSs 

be used to stratify trajectories of blood cell traits? To answer these questions, we examined the relative 

performances of the univariate PGS method, two linear machine learning methods that have different 

regularization techniques (elastic net and Bayesian ridge), and two deep learning methods that can 

model complex linear and non-linear correlations, namely Multilayer Perceptrons (MLPs) and 

Convolutional Neural Networks (CNNs). Taken together, we construct and externally validate PGSs 

for 26 blood cell traits, and make these PGSs available to the community via the PGS Catalog24. 

 

Figure 1. The study workflow of PGS construction of blood cell traits using learning methods and its applications. Five 

PGS methods were evaluated in this study: univariate method (UNI), elastic net (EN), Bayesian ridge (BR) and multilayer 

precepton (MLP) and convolutional neural network (CNN). 
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Data and Methods 

Data and Quality Control  

This study analysed 26 different traits across three blood cell types: platelets, red blood cells, and white 

blood cells (Table S1 and Table S2) that were measured in UK Biobank6,7 and INTERVAL8 cohorts. 

The UK Biobank is a cohort including 500,000 individuals living in the UK who were recruited between 

2006 and 2010, aged between 40 and 69 years at recruitment. INTERVAL is a randomised trial of 

50,000 healthy blood donors, aged 18 years or older at recruitment. As construction and evaluation of 

PGSs are highly dependent on the quality of both phenotype and genotype data used, we adopted the 

established protocols described in the previous work4, adjusting measured values for blood cell trait 

values to help account for a variety of environmental and technical factors,  as well as the first 10 genetic 

principal components. Technical variables include the time between venepuncture and full blood cell 

analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic 

differences in equipment; environmental variables include sex, age, and lifestyle factors, including diet, 

smoking and alcohol consumption. Approaches to quality control and imputation of the genotype data 

of UK Biobank have been described previously7, which filtered the samples to the European-ancestry 

only; similarly, the quality control and imputation of the genotype data of INTERVAL has been 

described in the previous work4. For algorithmic purposes, any remaining missing genotypes were mean 

imputed.  

Variant Selection and Interaction Detection 

To construct PGSs for blood cell traits, a key step is to select genetic variants (e.g. SNPs), that are not 

only significantly associated with the trait but also independently contribute to the trait. Thus, a GWAS 

was first performed for each trait on the UKB cohort to select variants significantly associated with the 

trait, in which a MAF threshold of 0.005% was applied to ensure there are enough minor alleles per 

variant in the population for association tests; an INFO threshold of 0.4 was used to guarantee the 

confidence in genotype imputation accuracy, and a p-value threshold of 8.31×10-9 was used to identify 

significantly associated variants. Based on these significantly associated variants of each trait, a 

conditional analysis (CA) with a r2 threshold of 0.9 was further performed to identify the variants that 

are independently associated with a trait and can best represent the underlying genetic signals of that 

trait.  

The conditional analysis was performed using a stepwise multiple linear regression approach4,25. For 

each blood cell trait, the set of genome wide significant variants was first partitioned into the largest 

number of blocks such that no pair of blocks are separated by fewer than 5Mb, and no block contains 

more than 2,500 variants. For each block, variants within the block are tested separately using the 

multiple-stepwise regression algorithm and independently associated variants are put forward into a 

larger chromosome wide pool on which a second multiple-stepwise regression algorithm is executed. 

The multiple-stepwise regression algorithm starts by adding in variants that pass the genome-wide 

significance threshold (8.31×10-9) and have a LD r2 score lower than 0.9. Then, it fits a multivariate 

linear regression to remove variants that have a p-values larger than the genome-wide significance 

threshold, which step is iterated until no more variants can be removed from the model. Note that we 

only keep those CA variants whose genotype data are available on both UKB and INTERVAL studies 

for the convenience of external tests in this study. 

To investigate capability of learning methods in modelling interactions, variants interaction tests were 

performed on all the pairs of CA variants of a trait on the UKB cohort using multivariate linear 

regression: y = β0 + β1SNP1 + β2SNP2 + β3SNP1SNP2, and the interaction terms with p-value < 1×10-8
 

are deemed as valid variants interactions. 

Polygenic Scoring Methods 

We constructed PGSs for 26 blood cell traits using a conventional univariate method as well as a variety 

of widely used machine learning and deep learning methods. This subsection describes fundamental 
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aspects of the univariate (UNI), elastic net (EN), Bayesian ridge (BR) and multilayer precepton (MLP) 

and convolutional neural network (CNN) methods. 

Univariate Method (UNI). UNI method assumes that the genetic variants have linear additive effects 

on PGSs of the trait and constructs polygenic scores of a blood cell trait using the weighted sum of 

genotypes of the selected variants for that trait13: 

   𝑃𝐺𝑆𝑖̂ = ∑ 𝛽𝑗𝑗∈𝑆 × 𝑥𝑖𝑗   (1) 

where S is the set of SNPs that are identified in the variants selection step; βj is the effect size of the 

SNP j that is obtained through the univariate statistical association tests in the GWAS using the UKB 

cohort; xij is the genotype dosage of SNP j of the individual i. 

Elastic Net (EN).  EN also assumes that the variants have linear additive effects on the PGS of a trait, 

i.e. Eq. (1), but the effect sizes of variants are obtained using a different way. These effect sizes are 

estimated by minimizing the penalized squared loss function: 

𝐿𝑜𝑠𝑠 = ∑(𝑦𝑖 − 𝑃𝐺𝑆̂𝑖)2 +  

𝑖∈𝑁

𝛼 × 𝜆 × ∑ |𝛽𝑗| +  

𝑗∈𝑆

𝛼(1 − 𝜆)

2
× ∑ 𝛽𝑗

2

𝑗∈𝑆

              (2)  

in which, N is the set of training samples for a given trait; the second term is L1 norm and the third term 

is L2 norm; α and λ are coefficients used to control the contribution of L1 and L2 norms in the model, 

which are usually set via cross-validation. In EN, effect sizes of the variants selected for a trait are 

jointly estimated which provides an implicit way to model the mutual interactions among these variants, 

and the use of L1 and L2 norms helps to control model complexity to address the over-fitting problem 

in which L1 controls the sparsity of the model and L2 controls the contribution of each variable. It has 

been shown that the application of these regularized multivariate models offers an effective way to 

improve PGS construction in practice19,20. 

Bayesian Ridge (BR). Similarly, BR also has a linear assumption for the effects of the variants, i.e. 

Eq.(1). Different from EN, BR assumes that PGSs of a trait follow a Gaussian distribution, and the prior 

for effect sizes of variants is also given by a spherical Gaussian: 

𝑝(𝑃𝐺𝑆̂|𝒙, 𝜷, 𝛼) ~ 𝑁 (𝑃𝐺𝑆̂| ∑ 𝑥𝑗𝛽𝑗

𝑗∈𝑆

, 𝛼−1)              (3),   

𝑝(𝜷|𝜆) ~ 𝑁(𝜷|0, 𝜆−1)     (4) 

where α and λ are coefficients of the model and subject to two Gamma distribution: Gamma(α1, α2) and 

Gamma(λ1, λ2). These two prior Gamma distributions can be set via a validation step. The β, α, λ are 

then estimated by maximizing the log of the corresponding posterior distribution with respect to β by 

combining Eq. (3) and Eq.(4) on the training data26. 

Multilayer Perceptron (MLP). MLP is also named Deep Forward Neural Networks. Unlike other 

statistical learning methods, e.g. EN and BR, MLP makes no prior assumptions on the data distribution 

and can be trained to approximate virtually any smooth, measurable functions including non-linear 

functions27. A MLP typically consists of many different functions (or neurons) which are composed 

through a directed acyclic graph28. Figure 2 shows an example of a three-layer MLP in which the first 

layer is known as input layer consisting of the input features, i.e. SNPs in the context of this study; the 

last layer outputs the final result of the model and the layer(s) in between are called hidden layer(s). A 

function node in hidden and output layers typically transforms the inputs from the previous layer with 

a weighted linear sum followed by an activation function23. For example, f1 in Figure 2 can be 

represented as: 

𝑓1(𝑆𝑁𝑃1, 𝑆𝑁𝑃2, 𝑆𝑁𝑃3) =  𝑓𝑎𝑐𝑡(𝑆𝑁𝑃1 × 𝑤11 + 𝑆𝑁𝑃2 × 𝑤12 + 𝑆𝑁𝑃3 × 𝑤13 + 𝑏10)  (5) 
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where w11, w12 and w13, are weights of the three inputs of function f1 and b10 is the intercept (or bias); 

SNP1, SNP2 and SNP3 are the genotype dosages of three SNPs in our context; fact is an activation 

function which typically plays the role of introducing non-linearity into the model. Thus, the network 

architecture and its components of an MLP, e.g. activation function, determine a linear/non-linear 

mapping space, from which a model, i.e. all the weights across the given network that can best represent 

the data, is supposed to be learned. Details on the selection of network architectures for this study are 

given in the next subsection. This learning process is typically implemented by minimizing the 

difference, i.e. cost function, between the training data and the model distribution, through a back-

propagation algorithm28.  

 

Figure 2. An example of a three-layer MLP. The output y = f3( f1(SNP1, SNP2, SNP3), f2(SNP1, SNP2, SNP3)). 

  

Figure 3. (a) An example of a one-dimensional CNN. (b) An example of a convolution operation.  (c) An example of a 

max pooling operation. The convolution kernel in (b) has a size of 1*2 and operates with a stride of 1. The max pooling filter 

in (c) has a size 1*2 and operates with a stride of 1. The CNN in (a) has an input of a one-dimensional vector with n units, and 

has a convolution layer and a pooling layer. The dimension m of a newly generated representation via a convolution operation 

relies on the size of the kernel being applied as well as other possible factors, e.g. padding approaches, and the number of new 

representations l is equivalent to the number of kernels used in the model. The dimension k of a new representation after 

pooling is decided by the filter size being used. 

Convolutional Neural Networks (CNNs). CNNs are a specialized neural network for processing data 

that have a grid-like topology28, e.g. time-series data, image data, genome sequence data29. As 
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regularized versions of MLPs, CNNs construct its hidden layers using convolutional and pooling 

operations which are usually followed by fully connected layers and the output layer. The convolution 

operation limits the number of input units for an output unit by using kernels, and leads to a sparse 

connectivity of the network, which allows us to store fewer parameters and largely improve statistical 

efficiency. A typical convolutional layer in CNNs performs multiple convolutions in parallel which lead 

to multiple representations of the input units. To help generalise these representations and reduce the 

chance of overfitting, a pooling layer is usually followed to replace each representation at a certain 

location with a summary statistic of the nearby output units28. There are different pooling operations 

that can be applied based on different application context, e.g. max pooling and average pooling. Figure 

3 shows an example of a simple one-dimensional CNN with illustrations on convolution and pooling 

operations.  

Measurement and Hyperparameter Tuning 

We used Pearson r to measure the performance of various polygenic scoring methods. For each trait 

and each learning method, we randomly and equally partitioned the UKB samples into 5 portions, from 

which any 4 portions (80% of the samples) are used as training data to learn a model, and test the 

respective model’s performance on the remaining 20% of UKB samples, as well as an external 

validation using the whole INTERVAL cohort. For each learning method and each trait, we obtained 5 

different models, each with a performance measurement for both the internal UKB test and the external 

INTERVAL test. By doing so, the training and internal testing covered the whole UKB cohort, affording 

an effective way to avoid evaluation bias. The UNI method was also tested on the five different UKB 

testing sets, and the whole INTERVAL cohort. 

Hyperparameters turning is a crucial step for machine learning and deep learning methods as the choice 

of hyperparameters can greatly influence the model performance. In this study, a 10-fold cross-

validation was performed on the training data to select the two hyperparameters α and λ of EN. To 

identify two appropriate gamma distributions in BR i.e. the selection of α1, α2, λ1 and λ2, a grid search 

across the set [-1010, -105,-10, 0, 10, 105, 1010] was conducted on the training set in which 10% of the 

samples were used as a validation set. EN and BR are implemented using the scikit-learn package 

(scikit-learn.org). As this work is, to our knowledge, the first attempt to employ MLPs and CNNs for 

genomic prediction of blood cell traits, there was no prior information that could be used for the design 

of network architecture for this task. Therefore, similar to the previous work23, we used a genetic 

algorithm to search for the optimal MLP and CNN architectures as well as other hyperparameters, e.g. 

the number of layers, the number of neurons at each layer, activation functions, optimizers, dropouts, 

etc., on the train set, in which 10% of the samples were used as a validation set. MLPs and CNNs were 

implemented using Keras (keras.io).  

Derivation of PGS for disease on INTERVAL 

The polygenic risk score used for coronary artery disease (CAD) was our previously published CAD 

meta-GRS30; a polygenic score comprising 1.75 million variants derived from a meta-analysis of three 

PGSs for CAD in UK Biobank. Briefly, the three meta-analysed CAD PGSs were: (1) an earlier PGS31 

comprising 46,000 metabochip variants and their log odds for CAD in the 2013 

CARDIoGRAMplusC4D consortium GWAS meta-analysis32; (2) a PGS comprising 202 variants 

whose association with CAD in the 2015 CARDIoGRAMplusC4D consortium GWAS meta-analysis33 

were significant at a false discovery rate (FDR) < 0.05; and (3) a genome-wide PGS derived from the 

same summary statistics33 LD-thinned at r2=0.9 threshold in UK Biobank (version 2 genotype data, 

imputed to the HRC panel only). 

PGSs for schizophrenia, Crohn’s disease, rheumatoid arthritis, allergic disease and asthma were derived 

from summary statistics from their respective genome wide association studies (GWAS) by filtering to 

variants that overlapped with a set of 2.3 million linkage disequilibrium (LD)-thinned (r2 < 0.9), high-

confidence (imputation INFO score > 0.4), common (MAF > 1%), unambiguous SNPs (A/T and G/C 

SNPs excluded) in the UK Biobank version 3 genotype data6,34 (imputed to the 1000 genomes, UK10K, 

and haplotype reference consortium (HRC) panels35). GWAS summary statistics used for schizophrenia, 
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Crohn’s disease, rheumatoid arthritis, allergic disease, asthma, and lung function were those published 

in the previous works36–40.  

Levels of each PGS in each INTERVAL participant were calculated using the UNI method 

implemented in plink version 2.0041. In the case of missing genotypes, the frequency of the effect allele 

in INTERVAL was used in its place. For each PGS, these total sums were subsequently standardised to 

have mean of 0 and standard deviation 1 across all INTERVAL participants. Variants with 

complementary alleles (e.g. A/T and G/C variants) were excluded to avoid incorrect effect allele 

matching due to strand ambiguity. Variants with INFO < 0.3 were removed. Where there were duplicate 

variants the one with the highest INFO score was kept. In total, 54,069,889 variants passed QC for PGS 

calculation of these diseases.  

 

Figure 4. Performance comparison of different learning methods with the univariate method. Pearson r score 

performance of the UNI method for PGS construction of 26 blood cell traits are presented in testing on UKB or INTERVAL. 

Relative to the UNI method, performance of the four learning methods: EN, BR, MLP and CNN, are presented for each blood 

cell trait in descending order left to right according to EN (largest Pearson r increases on left). Given a particular method, a 

trait and a cohort, the averaged r performance of the 5 trained models, corresponding to the 5 different training-testing data 

partitions, is shown.  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 18, 2020. ; https://doi.org/10.1101/2020.02.17.952788doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.17.952788
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results 

We first compared the performance of the four learning methods with that of the univariate method for 

constructing PGSs for 26 blood cell traits (Figure 4). The three learning methods (EN, BR and MLP) 

consistently outperform the univariate method in terms of Pearson r for nearly every blood cell trait. 

Notably, the performance of EN and BR were nearly indistinguishable and were the top performing 

methods overall. With any of the three learning methods, PGSs for 11 blood cell traits achieved a nearly 

2% or more increase in Pearson r in internal tests. The following five blood cell traits each achieved 

about or more than 2% improvement in both internal and external tests using any of the three learning 

methods, in comparison with the UNI method: monocyte percentage (MONO%), white blood cell count 

(WBC#), mean platelet volume (MPV), monocyte count (MONO#) and plateletcrit (PCT). We found 

that incorporation of nonlinearity factors, as in MLP and CNN, did not improve genomic prediction of 

blood cell traits, compared with linear models. For nearly half of blood cell traits we studied, the CNN 

resulted in PGS with approximately the same or lower Pearson r as the univariate approach.   

BR and EN outperformed UNI due largely to differences in variant effect size estimation (Figure 5 and 

Figure S1). We found that no effect sizes were set to zero by BR and EN, and effect sizes of most 

variants using BR or EN are the same or similar to those of the UNI method. This is consistent with a 

model where most common genetic variants are independently and additively contributing to each blood 

cell trait. Additionally, we also found both EN and BR tended to shrink the effects (sometimes greatly) 

of variants with low MAF; however, this did not necessarily contribute substantially to improved PGS. 

For example, effects of numerous low-MAF variants for traits like WBC# and hematocrit (HCT) were 

substantially shrunk by BR and EN; PGS construction of WBC# achieved significant improvement (~2% 

increases in Pearson r), while PGS for HCT saw little improvement. The effect shrinkage of low-MAF 

variants mainly resulted in better model generalization since many training samples did not have minor 

alleles of these low-MAF variants.  

We found that the superior performance of BR and EN was largely due to EN and BR changing the 

weights of variants with evidence of interaction effects on the blood cell trait (Figure 5, Figure S1). 

For example, there were 12 significant interactions detected among 11 genetic variants closely located 

to each other on chromosomes 3 and 16 for trait MONO%, and effect sizes for most of these variants 

saw relatively large differences by EN and BR, with even some variant effects changing direction, 

compared to UNI. Similarly, there were 2 significant variants interactions detected in the MHC region 

and 2 interactions detected outside the MHC region for trait WBC#, and, as expected, effect sizes of 

these variants were substantially different in EN and BR compared to UNI. 

To further demonstrate the role of interaction variants in PGS construction of blood cell traits, we 

removed the significant SNP-SNP interaction variants from the set of conditional analysis (CA) variants 

for each trait, and observed the r improvements using learning methods EN and BR, in comparison with 

UNI, on the pruned variants set on UKB and INTERVAL (Table S3). We found that the learning 

methods did not perform as well without the interaction variants compared with using the full CA 

variant set, for nearly every trait. For example, removing the 11 interaction variants for MONO% 

decreased the Pearson r improvement from 2.65% to 0.93% in UKB testing, and from 2.4% to 1.02% 

in INTERVAL; the removal of 7 interaction variants for WBC# reduced r improvement from 2.93% to 

2.03% in UKB testing and from 2.28% to 1.5% in INTERVAL. These results demonstrated that the 

SNP-SNP interactions of a blood cell trait, among even a small set of variants, make significant 

contributions to its PGS, and the univariate PGS do not sufficiently capture these epistatic interactions42; 

whereas, data-driven learning may partially capture these epistatic effects by better adjusting 

combinations of marginal effects20.  

Across nearly every blood cell trait we found that, even with prediction performance declining after 

removing interacting SNPs, BR and EN still saw consistent improvements compared with the UNI 

method. To test their robustness to redundant information, as would be expected from full genome-wide 

modelling, we allowed different sets of genetic variants to enter the model in addition to the variant set 

from conditional analysis (CA). We found that both EN and BR perform consistently well across the 

variants sets and all the blood cell traits, while the performance of UNI largely worsens after adding 
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other variant sets (Figure S2). Overall, our results demonstrate the generally superior performance of 

learning methods, particularly BR and EN.  

 

Figure 5. Comparison of variants effect sizes from UNI and BR method for trait MONO% and WBC#.  EN and BR 

generated almost the same effect sizes for the variants of all the traits, thus for simplicity, this figure only compares the variants 

effect sizes between BR and UNI. The mean of the 5 effect sizes in the 5 trained BR models for each variant is used as the 

variant effect size of BR in this figure. Those variants from MHC region (25Mbp to 33Mbp on chromosome 6) are marked in 

red and the variants whose MAF is smaller than 1% are marked in green. Other variants are marked in blue. Those variants 

are both in the MHC region and have MAF<1% are considered as MAF<1% variants. Left section of the figure shows the 

overall distribution of all the variants of a blood cell trait. The right section is a zoomed-in area of the left section and its x-

axis and y-axis only cover the ranges of these variants that have been detected with epistatic interactions. The two variants of 

each detected interaction of a trait are connected using dotted line on the right section of the figure. Those variants, whose 

effect sizes have the largest difference (top 10%) between the UNI and BR methods and are detected with epistatic interactions, 

are enlarged and marked with a variant identifier in the format of chromosome number, base pair position, reference allele 

and alternative allele. 

    
Maximising the accuracy of PGSs for blood cell traits raises opportunities for insights into underlying 

biology, potentially of relevance to disease risk. We next compared the extent to which EN-trained 

PGSs would be used to stratify the levels of blood cell traits in men and women over the age ranges of 

INTERVAL and UKB (Figure 6 and Figure S3). There were a wide range of age-dependent dynamics 

in blood cell traits in both UKB and INTERVAL, with the EN-trained PGS offering stratification largely 

consistent with Pearson r of the trait. Blood cell traits exhibited well-known sex differences43. 

Interestingly, PGS for about half of blood cell traits showed different levels of stratification for men 

and women with 10 blood cell traits with a Bonferroni-adjusted significant interaction between sex and 
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PGS (Table 1). For example, white blood cell indexes in women significantly decrease after menopause 

age, while the level of these traits in men were relatively stable44. Importantly, in both men and women, 

the EN-trained PGSs continued to stratify the trait levels even after the trait levels themselves changed. 

Average trait levels in the top versus bottom PGS quintiles were substantially different. The top quintile 

of the PGS for WBC# had an additional ~1.5 white blood cells per nanolitre (nL) on average in 

INTERVAL compared to the bottom quintile (an increase of ~25%); similarly, the difference between 

the top vs bottom 1% PGS for WBC# was ~2.2 white blood cells per nL (a 40% increase). For mean 

corpuscular volume, individuals in the top PGS quintile had red blood cells with ~5 femtolitres (fL) 

greater volume on average than those in the bottom PGS quintile, and these differences were maintained 

over all age ranges for both men and women. 

 

Figure 6. Trait levels by quintiles of EN-trained trait PGSs in men and women for trait MCV, WBC# and Neutrophil 

count (NEUT#) on INTERVAL. The shaded areas represent 95% confidence intervals.  
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Table 1. Summary statistics of PGS-Sex interaction tests for blood cell traits on INTERVAL. Interactions between PGSs 

and sex were tested for all the traits on the INTERVAL cohort by using the multivariate linear regression: y = β0 + β1*PGS + 

β2*Sex + β3*PGS*Sex, where y is the actual trait levels adjusted for technical artefacts, season, age and the first 10 genetic 

principal components; PGSs are construed using EN-trained models using UKB samples and standardised in the model. There 

are 10 traits whose p-values of interaction term passed the Bonferroni significance threshold 10-3, which are listed in the table. 

Standard deviation is abbreviated as SD. 

Trait 

Abbr. 
Trait Name 

Effect Size P-value 

Sex 

(Male) 

PGS  

(per SD) 
Interaction Sex PGS Interaction 

EO% 
Eosinophil Percentage 

of While Cells 
4.12E-01 1.30E+00 3.21E-01 <2.2E-16 <2.2E-16 9.60E-11 

EO# Eosinophil Count 1.30E-02 9.12E-02 1.22E-02 <2.2E-16 <2.2E-16 2.20E-04 

HCT Hematocrit 3.68E+00 1.70E+00 5.09E-01 <2.2E-16 <2.2E-16 3.50E-09 

HGB 
Hemoglobin 

Concentration 
1.48E+00 5.58E-01 2.41E-01 <2.2E-16 <2.2E-16 <2.2E-16 

HLSR# 
High Light Scatter 

Reticulocyte Count 
6.05E-04 1.92E-03 2.92E-04 <2.2E-16 <2.2E-16 2.03E-05 

MCHC 
Mean Corpuscular Haem-

oglobin Concentration 
7.00E-01 7.40E-01 1.40E-01 <2.2E-16 <2.2E-16 2.63E-05 

MONO% 
Monocyte Percentage 

of White Cells 
9.01E-01 1.73E+00 1.86E-01 <2.2E-16 <2.2E-16 1.37E-05 

PCT Plateletcrit -3.28E-02 5.06E-02 -5.72E-03 <2.2E-16 <2.2E-16 4.59E-07 

PLT# Platelet Count -2.91E+01 5.62E+01 -7.53E+00 <2.2E-16 <2.2E-16 1.71E-12 

RET% 
Reticulocyte Fraction 

of Red Cells 
-1.04E-03 2.99E-01 -2.43E-02 7.34E-01 <2.2E-16 8.84E-04 

 

Finally, we examined the genetic correlations between the EN-trained PGSs of blood cell traits and 

PGSs of several common human diseases (Figure 7). We found many genetic correlations passing 

Bonferroni adjusted significance (p-value<10-4) and several were consistent with well-known 

associations between the blood cell traits themselves and the disease. For example, it is well known that 

asthma has a strong association with eosinophilic indices4, consistent with our analyses which show 

PGSs for EO# and EO% were strongly correlated with the asthma PGS. The strongest correlation of the 

schizophrenia PGS was with the PGS for WBC#, consistent with studies suggesting a potential 

correlation between WBC# itself and schizophrenia risk45. Our analyses also uncovered the shared 

genetic basis for previous trait-level observations for EO# and allergy disease46 as well as WBC# and 

Crohn’s disease47, while also demonstrating extensive shared polygenic basis for blood cell traits and 

rheumatoid arthritis, coronary artery disease, schizophrenia and Crohn’s disease, suggesting that, via 

shared genetics, blood cell traits may be either indicators or mediators for a variety of common disorders. 

 

 

 

Figure 7. Correlation between PGSs for blood cell traits and PGSs for diseases in INTERVAL. PGSs for blood cell traits, 

diseases are adjusted for the first 10 genetic principal components before the calculation of correlations.  
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Discussion 
Improved polygenic models of blood cells traits promises to aid our understanding of myriad biological 

processes and diseases. This study demonstrated that machine and deep learning methods outperform 

conventional univariate methods in constructing polygenic scores for blood cell traits. In particular, our 

study’s results demonstrate that EN and BR methods can capture the effects of interactions among 

variants by adjusting their marginal effects in a linear model, thereby enabling these methods to 

outperform conventional approaches. This study also showed that PGSs are able to stratify age-

dependent trait levels in both men and women in a population; that many blood cell trait PGSs have 

sex-specific interactions; and that there are extensive associations between PGSs of blood cell traits and 

various diseases. Collectively, these observations suggest the potential for these improved PGSs to help 

interrogate disease biology, enhance imputation of traits for association studies, and stratify populations 

into meaningful blood cell trait trajectories. 

Our analysis indicates that EN and BR can partially capture interactions amongst genetic variants, 

resulting in improved PGSs. We observed consistent outperformance of EN and BR (compared with 

UNI) after removing the detected interaction variants, indicating the learning methods implicitly capture 

non-linear factors beyond these detected pair-wise interactions obtained using rigorous thresholds, e.g. 

multi-variants interactions and potentially interactions missed from univariately detected variants. The 

results also demonstrated the superiority of EN and BR in handling input noises, i.e. when incorporating 

redundant variants into the input variants set. This supports the use of loose input thresholds to 

incorporate more variants that may contribute to the trait, as the use of EN and BR would effectively 

dampen input noise allowed to enter the model. 

Compared with EN and BR, MLP has a much looser model assumption, including the linear and non-

linear models, but the increased model complexity did not result in improvements for PGSs construction 

of blood cell traits. In other words, the explicit incorporation of non-linearity factors in the model do 

not play a significant role for better PGSs construction of these trait as compared to EN and BR. This 

conclusion can also be supported by the results that the linear activation function was always selected 

in at least one of the top 10 MLP architectures (these models showed close performance on the 

validation data) for all the traits. On the other hand, it is also observed that many of activation functions 

in the selected top 10 MLPs is nonlinear for those traits showing significant improvements, e.g. MPV 

and WBC#, which hints at the existence of non-linear associations between the variants and the trait. 

Compared with MLP, CNN has a stricter model assumption and assumes an output unit in the network 

is only associated with the nearby input units. Its relatively poor performance (compared with other 

learning methods) in construction of PGS for blood cell traits suggests that this assumption could not 

fully capture the associations between the variants and these traits, and variants are associated with the 

trait in a more free manner. However, for both MLP and CNN, unlike the simple form of traditional 

machine learning models, the complex architecture of neural networks limits their interpretability.  

This study demonstrated that populations can be well stratified by the PGSs of these blood cell traits, 

even for traits that exhibit quite large differences between ages and sexes. This shows the accuracy and 

robustness of the PGS construction method for these traits. By having accurate PGSs of these traits, it 

could help us to understand whether the existing differences in trait levels of an individual are due to 

genetic factors or/and other environmental factors in combination with sex, and furthermore, may allow 

us to identify individualized preventive or therapeutic targets. For example, it is known that some drugs, 

such as clozapine and dapsone48, have neutropenia side effects. The difference between top and bottom 

quintile of the neutrophil count PGS was ~1000 neutrophils per microlitre; therefore, there may be 

clinical utility in a priori knowledge that an individual may have genetically lowered neutrophil counts 

so as to guide pharmacotherapy.  

The extensive sharing of the polygenic basis for blood cell traits and various common human diseases, 

was consistent with known trait-level associations and raised various new hypotheses. For example, 

both eosinophil count and neutrophil count are important risk factors for rheumatoid arthritis (RA), and 

their respective PGSs reflected these associations. Knowledge of their shared genetics and 
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corresponding PGSs may enable early stratification of individuals at increased risk of eosinophil- or 

neutrophil-related RA. Such insights represent new avenues for using PGS to interrogate disease 

biology, and to facilitate that we have made the blood cell trait PGSs constructed here using EN 

available at the PGS Catalog24. 

Overall, this study evaluated a variety of machine learning methods to construct PGSs for blood cell 

traits, highlighting the importance of moving beyond standard univariate methods and the capacity of 

learning methods to capture interactions amongst genetic variants. We make these PGS available to the 

community, and demonstrate that they can stratify sex- and age-dependent trajectories, and identify 

their shared polygenic basis with various common diseases. In the future, leveraging the totality of 

genetic variation for blood cell traits, as revealed in recent studies49, may represent further 

improvements of PGSs of these traits;  Clinical uses of these PGSs will be another important focus of 

future studies.   
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Table S2. The number of samples and variants used in UK biobank and INTERVAL for each blood cell trait. This table 

presents the number of valid samples for each trait after the quality control steps and the number of variants selected via 

conditional analysis.  

 

Trait 
Number of Valid Samples 

Number of Variants 
UK Biobank INTERVAL 

PLT# 391232 38939 762 

MPV 391598 37224 681 

PDW 391450 37262 579 

PCT 390803 37306 726 

RBC# 408069 40262 707 

MCV 407157 40080 739 

HCT 408112 40340 513 

MCH 406517 40108 682 

MCHC 407850 40265 252 

HGB 407739 40329 532 

RET# 396720 40253 590 

RET% 396811 40286 572 

IRF 396408 40227 390 

HLSR# 400334 40244 605 

HLSR% 400438 40225 594 

MONO# 403994 39177 674 

NEUT# 406788 39138 512 

EO# 406470 40276 623 

BASO# 404718 39986 198 

LYMPH# 407277 39191 639 

WBC# 408032 40466 659 

MONO% 403136 39189 583 

NEUT% 407114 39190 452 

EO% 406417 40326 589 

BASO% 404532 40133 160 

LYMPH% 407319 39178 489 
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Table S3. R performance improvement comparison of PGSs construction for blood cell traits using learning methods 

with/without detected interaction variants in UK biobank and INTERVAL. The detected interaction variants were 

removed from the set of conditional analysis variants for each trait, and then the pruned variants set was used to evaluate the 

performance of UNI, EN and BR on UKB and INTERVAL (the same procedure described in the Data and Methods section). 

The table presents the gained r improvements using EN and BR, compared with UNI, on the full conditional variants set and 

the pruned variants set in UKB and INTERVAL.  

 

Traits 
Number of 

Interactions 

Number of  

Interaction 

Variants 

UK Biobank INTERVAL 

With 

Interaction 

Variants 

Without 

Interaction 

Variants 

Difference 

With 

Interaction 

Variants 

Without 

Interaction 

Variants 

Difference 

MONO% 12 11 2.65% 0.93% 1.71% 2.40% 1.02% 1.39% 

MONO# 13 15 2.02% 0.79% 1.23% 2.07% 0.92% 1.15% 

MCHC 8 14 0.39% 0.21% 0.18% 1.03% 0.17% 0.86% 

WBC# 4 7 2.93% 2.03% 0.90% 2.28% 1.50% 0.78% 

LYMPH# 18 12 1.78% 0.25% 1.54% 1.10% 0.36% 0.73% 

MPV 15 20 2.11% 1.36% 0.74% 2.23% 1.57% 0.66% 

PLT# 6 11 2.13% 1.70% 0.43% 1.72% 1.21% 0.51% 

HCT 3 5 0.79% 0.20% 0.59% 0.40% 0.13% 0.27% 

EO% 4 8 1.04% 0.75% 0.29% 1.07% 0.84% 0.23% 

NEUT# 3 5 0.74% 0.50% 0.24% 0.69% 0.49% 0.20% 

RET% 1 2 1.88% 1.82% 0.06% 1.43% 1.25% 0.18% 

PCT 5 8 1.88% 1.61% 0.27% 2.00% 1.84% 0.17% 

EO# 5 9 0.82% 0.56% 0.26% 0.69% 0.52% 0.17% 

IRF 4 5 1.66% 1.11% 0.56% 1.88% 1.74% 0.14% 

HGB 1 2 0.43% 0.39% 0.05% 0.39% 0.26% 0.13% 

RET# 4 7 1.33% 1.05% 0.29% 0.95% 0.89% 0.06% 

NEUT% 1 2 0.23% 0.11% 0.11% 0.38% 0.36% 0.02% 

HLSR# 1 2 1.22% 1.22% 0.00% 0.75% 0.74% 0.01% 

HLSR% 1 2 0.88% 0.87% 0.00% 0.20% 0.19% 0.01% 

BASO# 0 0 0.43% 0.43% 0.00% 0.53% 0.53% 0.00% 

BASO% 0 0 0.03% 0.03% 0.00% 0.00% 0.00% 0.00% 

LYMPH% 0 0 0.19% 0.19% 0.00% 0.33% 0.33% 0.00% 

PDW 4 7 1.92% 0.94% 0.98% 1.19% 1.26% -0.08% 

MCV 28 31 3.04% 1.29% 1.75% 1.24% 1.37% -0.13% 

MCH 27 31 2.93% 1.31% 1.62% 0.87% 1.09% -0.22% 

RBC# 6 6 2.21% 0.81% 1.39% 0.09% 0.83% -0.74% 
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Figure S1. Comparison of variants effect sizes using UNI and BR methods for trait MPV, MONO# and PCT. 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 18, 2020. ; https://doi.org/10.1101/2020.02.17.952788doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.17.952788
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S2. Performance of UNI, EN and BR methods on different sets of variants. Using CA variants as a base set, we 

increasingly add in the top significant variants by the step of 1000 (based on the GWASs on the UKB cohort) to form different 

sizes of variants sets, in which the CA variants are removed from the top significant variants list. It means the starting point of 

each curve is the r performance of the corresponding method on the CA variants set of a trait. We then observe the performance 

of BR, EN and UNI on different variants sets. Similarly, five models were trained corresponding to the five partitions of the 

UKB samples for each learning method, each trait and each variants set, whose r measurements are averaged in the figure. 
The results indicate that BR and EN are robust to redundancy in variants which appear to be through two different avenues: 

effect sizes of the CA variants generated by the two methods are very similar; however, EN tends to make the effect sizes of 

those non-contributing variants as zeros due to the use of L1 norm, while BR tends to make their effect sizes very small or can 

cancel each other due to the use of the L2 norm.  
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Figure S3. Trait levels by quintiles of EN-trained trait PGSs in men and women for trait MCV, WBC# and NEUT# on 

UKB.  
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