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Abstract 
Animals avoid predators and find the best food and mates by learning from the consequences of their behavior. 
However, reinforcers are not always uniquely appetitive or aversive but can have complex properties. Most intoxicating 
substances fall within this category; provoking aversive sensory and physiological reactions while simultaneously 
inducing overwhelming appetitive properties. Here we describe the subtle behavioral features associated with 
continued seeking for alcohol despite aversive consequences. We developed an automated runway apparatus to 
measure how Drosophila respond to consecutive exposures of a volatilized substance. Behavior within this Behavioral 
Expression of Ethanol Reinforcement Runway (BEER Run) demonstrated a defined shift from aversive to appetitive 
responses to volatilized ethanol. Behavioral metrics attained by combining computer vision and machine learning 
methods, reveal that a subset of 9 classified behaviors and component behavioral features associate with this shift. We 
propose this combination of 9 behaviors can be used to navigate the complexities of operant learning to reveal 
motivated goal-seeking behavior. 
 
Keywords:  Drosophila,  behavior, addiction, alcohol, self-administration, learning, memory, operant, instrumental, 
runway

Introduction 
Animals define value and adapt to their environment by learning 
the consequences of their behavior. In a natural environment, 
stimuli are complex, forcing animals to integrate appetitive and 
aversive properties to initiate appropriate behavioral responses. 
As an animal learns new information with consecutive 
experiences, it initiates an adaptive response. However, we have 
very little understanding of the micro-behaviors that define these 
subtle behavioral shifts. In depth understanding of these subtle 
behaviors is key to understanding how the brain processes 
complex stimuli.   
Intoxicating drugs are powerful tools to study these subtle 
behavioral features. They have both aversive and appetitive 
properties, and ultimately induce lasting reward drives, which 
persist despite aversive consequences. Understanding the switch 
in response from aversion to reward will clarify how drugs 
misregulate the brain’s valence system to result in compulsive 
seeking behavior. To understand how the reward response 
overrides the aversive response, it’s critical to first understand the 
behavioral features associated with this switch.  
 
The recent development of high-throughput tracking methods 
coupled with machine learning has drastically improved the 
resolution and capability of behavioral characterization. This 
consequently provides an opportunity to increase our 
understanding of motivated behavior to better inform 
neurobiological efforts. A runway model of self-administration is 
ideal for investigating this switch because it permits tight control of 
timing and amount of drug delivery, requires a goal-directed 
response to release the drug, and has adequate space to observe 
a range of behavioral features that change with consecutive trials. 

It also permits dissociation of the behavioral features associated 
with Classical conditioning, where an animal associates cues with 
the intoxicating experience, and Operant conditioning, where a 
behavioral response is reinforced by the drug.   
 
Runway paradigms have been effectively used to study motivated 
behavior for cocaine [1-3], opioids [4-6], nicotine [7, 8] and alcohol 
[9] in rodent models. We developed a runway-based memory 
apparatus for Drosophila, the Behavioral Expression of Ethanol 
Reinforcement Runway (BEER Run), in which the consequence of 
traversing the runway and entering the mechanically gated end 
chamber is an intoxicating dose of volatilized ethanol. This assay 
coupled with high-throughput tracking and machine learning 
allows for behavioral characterization of drug-seeking motivated 
behavior.  
 
We demonstrate Drosophila can effectively be used to identify 
subtle behavioral features that occur as a consequence of 
aversive and appetitive experiences. Through analysis of 25 
behaviors, we found that the intersection between latency to leave 
the start chamber, average velocity and pausing defines the switch 
in preference indicative of motivation for alcohol. This thorough 
behavioral characterization coupled with the extensive array of 
neurogenetic tools available in Drosophila provides a high 
resolution, high precision opportunity to understand the 
neurobiological basis of motivated operant behavior. 

Results 
The BEER Run is an automated runway platform (Figures 1A and         
Additional Supplementary Item 1A) that provides an opportunity to   
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Figure 1. Behavioral expression of ethanol reinforcement Runway (BEER Run) experimental paradigm reveals Drosophila travel more direct 
paths to receive 50% ethanol. (A) Schematic diagram of BEER Run operant administration assay. (B) Side-view schematic of one-of-six lanes within 
BEER Run apparatus depicting the five main stages of this operant administration assay: (i) acclimation within the start chamber, (ii) time out in the 
runway, (iii) volatized-ethanol or air administration in the end chamber, (iv) time out in the runway, and (v) fifty-minute inner-interval period in the start 
chamber. (C) Previously mentioned stages represent one trial of operant administration within the full experimental paradigm across two days that 
includes six trials. Tracking data was not collected during start chamber acclimation, the time out in runway directly following ethanol exposure, or the 
fifty-minute inner-interval periods within trials. (D) Example automated tacking results of fly coordinate position during time out in the runway for trials 1-
6 recorded at 15 frames per second. (E) Average angular velocity counts were recorded for six spaced operant administration trials over two-days at 
varying concentrations of ethanol (i. 30%; ii. 40%; iii. 50%; iv. 80; v. 85%; vi. 90%). Average angular velocity during the operant task was collected for 
each fly in air and ethanol receiving groups and plotted across six trials standardized to trial one behavior. Square-points indicate group mean +/- SE. 
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examine animal behavior during the preconditioning, conditioning 
and postconditioning phases of operant learning. We sought to 1) 
identify an ethanol concentration that sufficiently stimulated 
seeking behavior, 2) understand how behavior changes as 
animals learn a task, and 3) identify a subset of behaviors that can 
be accurately used to measure motivated operant behavior in 
animals.  
 
In order to pursue these questions, we defined parameters within 
BEER Run such that the consequence of a single-fly traversing the 
runway and entering the end chamber (runway task) was a defined 
dose of volatilized ethanol (Figure 1B). Each fly was presented 
with this choice three times per day for two consecutive days 
(Figure 1C). The ethanol receiving flies were compared to age-
matched control flies that received air in the end chamber upon 
runway task completion. To quantify fly behavior, the BEER Run 
apparatus is paired with robust, high resolution tracking software 
that tracks fly coordinate position (x,y) at 15fps (Figure 1D). BEER 
Run and the tracking software are integrated and controlled 
through an easy-to-use graphical user interface (GUI) (Additional 
Supplementary Item 1). This tracking data in combination with 
Ctrax computer vision [10] and JAABA machine learning [11] open 
source software allowed us to consider 25 different behaviors and 
behavioral features during the runway task and ethanol 
administration. 
 
Dose responsivity of ethanol as a reinforcer   
Individual flies were exposed to a fixed concentration of volatized 
ethanol (30%, 40%, 50%, 80%, 85% or 90%) or humidified air for 
10min at 30 cm3/min upon end chamber entry for all 6 trials. 
Coordinate position measurements at 15fps were converted to 
operant task metrics including angular velocity, velocity, distance, 
latency, and time to traverse runway (Figures 1E-1G, S1 and S2). 
Angular velocity (aka turning velocity) during the operant task 
showed differences across trials at 3 ethanol concentrations when 
compared to flies receiving air in the end chamber. These 
concentrations include a range of low (30% ethanol: air n = 5, 
ethanol n = 6), moderate (50% ethanol: air n =23, ethanol n = 23) 
and high (90%: air n = 12, ethanol n = 9) ethanol concentrations 
(Repeated Measures ANOVA with Posthoc Bonferroni corrections: 
30%, F(2,18) = 4.08, p = 0.03; air v. ethanol T3, T4 p=0.011, 0.047, 
air group T2,T3 p=0.039, T3,T6 p=0.049, ethanol group T1,T4 
p=0.031; 50%, F(2,80) = 12.06, p = 0.00; air v. ethanol T2, T5, T6 
p=0.029, 0.036, 0.022, ethanol group T1,T2 p=0.007, T4,T5 
p=0.048, T4,T6 p=0.018; 90%, F(5,95) = 5.069 p=0.000; air v. 
ethanol T1, T2, T6 p=0.012, 0.005, 0.015, air group T1-T2 
p=0.018, T1-T6 p=0.040) (Figures 1E-1Gi). Only in the 50% 

ethanol group did angular velocity show significant differences 
between groups regarding all of day 1 (p=0.033) and day 2 
(p=0.007) and decrease throughout the course of each day, 
indicating more directed paths to ethanol administration. 
Comparing velocity on subsequent trials to T1 demonstrated that 
administration of 50% ethanol decreased operant task velocities 
on trial 2 and trial 6 compared to air controls (MANOVA F(2,39) = 
3.16,  p =0.05; Wilk’s V = 0.86, ω2 = 0.14; T2, T6 p=0.005, 0.011) 
(Figures 1F, 1Gii, S1Aiii, and S2C, S2E, Additional Supplemental 
Item 2).    
For 50% ethanol, latency to leave the end chamber and time to 
complete runway task were not significantly altered by ethanol 
exposure (Figure 1F and S1). However, high concentrations (85%, 
90%)  of ethanol increased latency on day 1 (85%: F(1.33,55.76) 
= 3.91, p = 0.04,Greenhouse Geisser correction ε=0.66; day 1 
p=0.010, T2,T3,T5 p=0.006, 0.053, 0.024; 90%: F(1.11,21.17) = 
4.73, p = 0.04; air v. ethanol p=0.025, day 1 p=0.026, T2 p=0.027) 
and increased time taken to complete the task on day 2 (90%: 
F(2,38) = 3.77, p = 0.03; air v. ethanol p=0.033, day 2 p=0.046). 
Increased latencies on day 1 and increased times on day 2 
cumulatively indicate learned aversion for ethanol, suggesting that 
high concentrations may confound the ability to detect appetitive 
behavior in this two-day paradigm. 
 
Behaviors demonstrated during ethanol exposure  
To examine behaviors demonstrated during 50% ethanol 
exposure, coordinate position measurements at 15fps were 
converted to velocity (Figure 2A-F). Further we ran experiment 
video files through computer vision (Ctrax) [10] and machine 
learning software (JAABA) [11] to quantify a series of custom 
behaviors (pausing, pacing, thrashing) in a randomized subset of 
the data (50% ethanol, n =12; air, n = 12). Power analysis for k=2 
groups, a significance level of 0.05 and a power of 0.8 indicated 
that an n=8 would be sufficient to determine differences between 
groups. 50% ethanol exposure significantly decreased velocity on 
the first exposures of each day (F(1.58,63.30) = 28.18, p = 0.00, 
Greenhouse Geisser Correction ε=0.79; T1, T4 p=0.000, 0.003) 
(Figures 2A and 2D). However, consecutive exposure to ethanol 
resulted increased velocity on the last trial of day 2 (T6, p=0.027). 
 
Behaviors obtained through machine learning, pausing, pacing, 
and thrashing distinctly changed due to repeated ethanol exposure 
(Figure 2G-2I and S3). During the later trials of each day the 50% 
ethanol receiving flies showed significantly less pausing (F(2,44) 
= 14.09, p = 0.00; day 1, 2 p= 0.004 ,0.001, T3,T5,T6 p=0.001, 
0.006, 0.000) (Figure 2G, 2H, 2Ii and S3B). Pacing behavior  

Figure 1 continued… Repeated ANOVA with planned contrasts for each concentration 30%, 40%, 50%, 80%, 85%, 90% indicate that (i) 30% ethanol 
(air n = 5, ethanol n = 6) and (ii) 40% ethanol (air n =10, ethanol n = 12) groups show significant differences on day two (30% F(2,18) = 4.08, p = 0.03; 
air v. ethanol T3, T4  p=0.011, 0.047; 40% F(2,40) = 4.73, p = 0.01, trials T1,T3 p=0.031, T4,T5 p=0.001, T4,T6 p=0.003) If Mauchly’s test indicated that 
the assumption of sphericity had been violated, the Greenhouse-Geiser correction was applied to the data. All posthoc analysis was performed with 
Bonferroni corrections. (iii) 50% ethanol group (air n = 23, ethanol n = 19) show significant differences on both days (F(2,80) = 12.06, p = 0.00; air v. 
ethanol T2,T5,T6 p=0.029, 0.036, 0.022, ethanol group T1,T2 p=0.007, T4,T5 p=0.048, T4,T6 p=0.018). (iv) 80% ethanol group (air n = 23, ethanol n = 
30) did not show significance on either day (F(1.77,90.24) = 0.18, p = 0.81). (v) 85% ethanol (air n = 22, ethanol n = 22) and (vi) 90% ethanol (air n = 
12, ethanol n = 9) groups shows significant differences predominantly on day 1 (85% F(2,84) = 7.95, p = 0.00; trials T1,T3 p=0.004, T4,T6 p=0.026; 90% 
F(2,38) = 5.73, p = 0.01; air v. ethanol day 1 p=0.048, T1,T2,T6 p=0.012, 0.005, 0.015, air group T1,T2 p=0.004, ethanol group T2,T3 p=0.028). See 
also Figure S1.(F) A heatmap of behavioral dynamics comparing the 50% ethanol group to the air group (air n = 23, ethanol n = 19) for all trials. Rows 
correspond to a behavior (angular velocity, velocity, latency, distance, time) and columns correspond to trials 1-6. Each grid corresponds to a behavior 
index calculated by first scaling and centering (mean = 0, sd = 1) behavior data for each fly within the ethanol and air receiving groups, and then 
calculating a behavior index for each behavior across trials: behavior index = [ 1

n
∑ (behaviorexp(trial y))i

n
i=1 ]- [ 1

n
∑ (behaviorcon(trial y))i

n
i=1 ]. Color indicates how 

much more (red) or less (blue) the behavior occurred in the ethanol group compared to the air group. See also Figure S2.(G) Significant trials identified 
per behavior. 50% ethanol group shows significant differences in (Eiii, F, Gi) angular velocity (reported above) and (F, Gii) velocity (MANOVA, Wilks’ 
Lambda day*trials*group: V = 0.86, F(2,39) = 3.16,  p =0.05, ω2 = 0.14; air v. ethanol T2,T6 p=0.005, 0.011, air group T1,T2 p=0.004, T1,T3 p=0.000, 
T3,T6 p=0.05, ethanol group T1,T2 p=0.000, T1,T3 p=0.002, T4,T6 p=0.004). See also Figure S2. 
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Figure 2. Drosophila behaviors during initial ethanol experiences. (A-F) Velocity counts for each trial were binned over 15 second periods, averages 
across biological replicates (air n = 23, ethanol n =19), and plotted against time. Lines depict mean +/- SE. (Aii, Bii, Cii, Dii, Eii, Fii) Average group 
velocity across 600s of exposure is recorded as boxplots. Repeated measures ANOVA with planned contrasts and posthoc Bonferroni corrections 
indicate a significant interaction between ethanol administration velocity and trial number (F(1.58,63.30) = 28.18, p = 0.00, Greenhouse Geisser 
Correction ε=0.79; air v. ethanol T1, T4, T6 p=0.000, 0.003, 0.027). Ctrax version 0.3.1 computer vision software paired with “fixerrors-0.2.23” protocol 
extension were used to collect more detailed trajectory information for 24 flies (50% ethanol, n =12; air, n = 12). These videos and trajectory data were 
paired with three behavioral classifiers (pausing, pacing, thrashing) previously trained in this laboratory using supervised machine learning, JAABA. (G) 
Representative behavioral classifier ethograms that depict pausing (green), pacing (pink) and thrashing (orange) occurrences for six-trials over 600s of  
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 increased over the course of each day, and was significantly 
increased on the last trial of day one (F(2,44) = 9.56, p = 0.00; T3 
p=0.015) (Figure 2G, 2H, 2Iii and S3C). During the first trial of each 
day, ethanol significantly increased thrashing behavior 
(F(1.17,25.74) = 5.77, p = 0.02, Greenhouse Geisser Correction 
ε=0.67; day 1,2 p = 0.033, 0.048, T1,T4 p=0.031, 0.020) (Figure 
2G, 2H, 2Iiii and S3D).   
Analysis of ethanol body content in these flies indicate that 
immediately following 10min of 50% ethanol exposure, flies 
contain 42.81 +/- 9.69 mM/fly ethanol, and following 50min of rest 
during the inter-interval trial internal ethanol concentration is 
significantly reduced to 6.70 +/- 4.22 mM/fly (Independent Group 
t-test t(16) = 3.976, p = 0.002) (Figure S3E-G). Importantly, the 
ethanol body content following 50min rest is not significantly 
different from air control levels (Independent Group t-test t(16) = -
1.214, p = 0.242), indicating that ethanol receiving flies have time 
to fully metabolize ethanol in between operant tasks (Figure S3F).  
 
Behaviors demonstrated during ethanol seeking  
To better understand the complex behavioral dynamics that result 
in the development of seeking behavior despite the aversive 
properties of ethanol, Ctrax [10] and JAABA [11] were applied to 
videos of flies during the runway operant task (Figure 3A). The 15 
per-frame features and 5 behavioral classifiers used to quantify fly 
behavior (50% ethanol, n =12; air, n = 12) revealed the dynamic 
nature of behavioral features across trials (Figures 3B-D, S4, S5 
and Additional Supplementary Item 3). Upon first entry into BEER 
run flies explore the full apparatus at the fastest times exhibited 
within this paradigm (23.48 +/- 1.24 seconds). Thus, we split 
operant task into 2 phases: the time spent in the start chamber 
before initiating the task (start chamber behavior - Figure 3C), and 
the last 25 seconds of the trial (Figure 3B). Analysis of the time in 
the start chamber revealed that ethanol group flies generally faced 
walls more before initiating the task (T2,T3,T6 p=0.030, 0.055, 
0.010) (Figure S5A). In addition to significant differences seen in 
angle2wall (T1,T6 p=0.015, 0.007) and dphi (T3,T4 p=0.001, 
0.055) during the entire operant trial (Figure S5B), the last 25 
seconds of the task included significant differences in speed and 
turning related features: angle2wall (T1, T6 p=0.016, 0.000), dphi 
(T3 p=0.015), signdtheta (T1 p=0.019), and theta (T2 p=0.013) 
(Figure 3B, S5B, S5C).  
 
Based on speed and turning behaviors that were most dynamic 
and significant across trials (angle2wall, signdtheta, phi, theta, 
absdv_cor, absdtheta) (Figure S5A-C, S5A, S4) and previous 
findings suggesting stagnant wall behavior is associated with 
avoidance [12], we hypothesized that behavioral features that 
incorporate turning, speed and position in the arena would be 
important for quantifying motivated response. Turning related 
behavioral features revealed that flies from the both the ethanol 
and air groups did not have signdtheta values significantly different 
from 0 for all trials following initial exposure (F(1,22) = 6.96, p = 
0.02, T1 p=0.023), indicating that flies generally turned left and 
right equally (Figure S4 and S5A). No significant differences were 

seen between groups in the following speed related behavioral 
features phisideways (F(2,44) = 1.70, p = 0.19), yaw (F(2,44) = 
0.32, p = 0.727), absdtheta (F(2,44) = 0.31, p = 0.74), signdtheta 
(F(2,44) = 0.28, p = 0.18), flipdvcor (F(2,44) = 1.78, p = 0.76), 
absdv_cor (F(2,44) = 0.96, p = 0.39), phi (F(2,44) = 0.34, p = 0.71), 
absyaw (F(2,44) = 1.11, p = 0.34), and velmag (F(2,44) = 0.15, p 
= 0.86) (Figures 3B and S4). Similarly, position in arena features 
including dist2wall (F(2,44) = 1.05, p = 0.36), and angle2corner 
(F(1.50,32.90) = 2.46, p = 0.11, Greenhouse-Geisser Correction 
ε=0.75) show no significant differences (Figure 3B and S4).  
 
To further investigate which behaviors were learned responses to 
the appetitive and aversive properties of ethanol, we investigated 
how ethanol affected pausing, advancing, retreating, pacing and 
thrashing (Figures 3B, 3C and S4). Pausing, pacing and thrashing 
were chosen due to human observed behaviors and classified 
using JAABA. Advancing and retreating behaviors were classified 
to determine if flies exhibited approach-avoidance conflict [13] 
seen in other runway models [2]. Interestingly, on day 2 the ethanol 
group flies showed significantly decreased pausing (air v. ethanol 
p=0.008, day 2 p=0.01, T3,T5 p=0.05, 0.03) and increased 
advancing (T5 p=0.032) during the last 25 seconds of the operant 
task (Figure 3B), supporting appetitive goal-seeking behavior. No 
significant differences were seen between groups for retreating 
(F(2,44) = 0.50, p = 0.61), pacing (F(2,44) = 0.06, p = 0.94), and 
thrashing (F(1.30,28.69) = 3.01, p = 0.08, Greenhouse Geiser 
Correction ε=0.65) behaviors (Figure S5A) . 
 
Combinations of behavioral features that define motivation 
for a complex stimulus.  
Our data thus far suggests flies demonstrate behavioral 
complexity as valence for ethanol shifts from aversive to appetitive. 
Observation of how behaviors change over time suggests that 
behaviors occur in combination (Figure 3), and clusters of 
behaviors may be more useful for defining a motivated response. 
To visualize how behaviors cluster together, we summed 
occurrences of behavior over the six trials to obtain a single metric 
for each behavior and constructed behavior matrices for air (Figure 
4A) and ethanol (Figure 4Aii) treated flies. We observed that 
behavioral contributions differed in the air and ethanol conditions 
with angular velocity and absyaw; velocity and absdtheta; latency, 
angle2wall, advancing, and pausing being positively correlated 
with each other and strong negative correlations between pausing 
and absdtheta; theta and angle2wall in the ethanol condition 
(Figure 4A). 
 
To visualize the impact of multiple behaviors during the runway 
task, principal component analysis (PCA) was used to reduce 
animal behavior exhibited during trials onto 2 principal 
components, and cluster analysis was used to identify groups of 
similarly behaving animals. Nine of the most dynamic behaviors 
that highlighted significant differences between air and ethanol 
groups were selected for PCA analysis including angular velocity,  

Figure 2 continued… exposure to air (i) and 50% ethanol (ii). (H) A heatmap of behavioral dynamics comparing behavior during 50% ethanol exposure 
to air exposure (air n = 12, ethanol n = 12) for all trials. Rows correspond to a behavior (pausing, pacing, thrashing) and columns correspond to trials 1-
6. Each grid corresponds to a behavior index calculated as previously stated in Fig.1. Color indicates how much more (red) or less (blue) the behavior 
occurred in the ethanol group compared to the air group. See also Figure S3. (I) Significant administration trials identified per behavior. Repeated 
measures ANOVA with planned contrasts and posthoc Bonferroni corrections indicate that the 50% ethanol group shows significant differences in 
administration behavior regarding (H, Ii) pausing (F(2,44) = 14.09, p = 0.00;  air v. ethanol p=0.001, day 1, 2 p=0.004, 0.001, T3, T5, T6 p=0.001, 0.006, 
0.000, air group T1,T2 p=0.004,T1,T3 p=0.000, T2,T3 p=0.001, T4,T5 p=0.001, T4,T6 p=0.000, T5,T6 p=0.041), (H,Iii) pacing (F(2,44) = 9.56, p = 0.00; 
air v. ethanol T3 p=0.002, air group T1,T4 p=0.044, ethanol group T1,T3 p=0.015), and (H,Iiii) thrashing (F(1.17,25.74) = 5.77, p = 0.02; air v. ethanol 
p=0.023, day 1,2 p=0.033, 0.048, T1, T4 p=0.031, 0.020, ethanol group T1,T2 p=0.005, T1,T3 p=0.016, T4,T5 p=0.002, T4,T6 p=0.002). See also Figure 
S3. 
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Figure 3. Behavioral features and classifiers associated with progressive ethanol administration. (A) Behavioral analysis pipeline including the 
(i) BEER run operant task, (ii) detailed trajectory analysis using Ctrax version 0.3.1 software, (iii) perframe feature behavioral output that is used to inform 
machine learning (iv) behavioral classification. This pipeline was used to collect behavioral counts for 24 flies (50% ethanol, n =12; air, n = 12). (B-C) 
Heatmaps for the last 25 seconds of the task (B) and the period before task initiation (C) were constructed to compare behavioral dynamics in 50% 
ethanol group to the air group. Heatamps include behavioral perframe features: angle2corner, dist2wall, theta, dphi, flipdv_cor, phi, velmag_ctr, absyaw, 
ddist2wall, signdtheta, absdv_cor, absdtheta, phisideways, angle2wall, yaw (see also Figure S4), and behavioral classifiers: pausing, pacing, thrashing, 
advancing, and retreating. Each grid corresponds to a behavior index calculated as previously stated in Fig.1. Color indicates how much more (red) or 
less (blue) the behavior occurred in the ethanol group compared to the air group. (B) Repeated measures ANOVA with planned contrasts and posthoc 
Bonferroni corrections indicate significant differences during the last 25 seconds of the operant task included significant differences in angle2wall (F(2,44) 
= 4.54, p = 0.02; air v. ethanol day 2 p=0.001, T1, T6 p=0.016,0.000, air group T1,T4 p=0.005, T3,T6 p=0.000, T5,T6 p=0.005), signdtheta (F(1,22) = 
6.52, p = 0.02; air v. ethanol T1 p=0.019, air group T1,T4 p=0.021), dphi (F(2,44) = 4.00, p = 0.03; air v. ethanol T3 p=0.015, air group T4,T5 p=0.044, 
ethanol group T3,T6 p=0.014), theta (F(2,44) = 3.36, p = 0.04; air v. ethanol T2 p=0.013, air group T1,T2 p=0.005, T2,T3 p=0.040), pausing (MANOVA, 
Wilks’ Lambda trials*group: V = 0.97, F(2,21) = 0.25,  p =0.023, ω2 = 0.30; air v. ethanol p=0.008, day 2 p=0.01, T3, T5 p=0.05, 0.03, air group T1,T2 
p=0.003, T1,T3 p=0.000, T4,T5 p=0.000, T4,T6 p=0.000, ethanol group T1,T2 p=0.036, T1,T3 p=0.001, T4,T5 p=0.042, T4,T6 p=0.023), and advancing 
(F(2,44) = 3.22, p = 0.05; air v. ethanol T5 p=0.032). (C) The latency period before initiating the trial included significant differences in angle2wall (F(2,44) 
= 6.18, p = 0.00; air v. ethanol T2,T3,T6  p=0.030, =0.055, 0.010, air group T1,T2 p=0.017, T2,T3 p=0.003), absdtheta (F(1,22) = 4.36, p = 0.05; air v. 
ethanol T6 p=0.032), and signdtheta (F(1.59,34.96) = 4.11, p = 0.03; air v. ethanol day 2 p=0.024, T1,T3 p=0.019, 0.038, air group T1,T4 p=0.035). 
Significant differences were not observed for other behavioral features and behavioral classifiers. See also Figure S5. For per-frame feature descriptions 
see Additional Supplement Table S3. 
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velocity, advancing, pausing, theta, absdtheta, angle2wall, and 
absyaw (Figures 4, S4, and S5). There was a large overlap in fly 
behavior for ethanol group flies and air group flies in trials 1 (Figure 
4B), 2 (Figure 4C) and 3 (Figure 4D). This trend was anticipated 
because during the first day of exposures ethanol receiving flies 
are learning to associate the end chamber with ethanol and the 
consequences of ethanol intoxication. By trial 4 the ethanol flies 
begin to group tighter together (Figure 4E). On trial 5, 50% of 
ethanol flies cluster together driven by velocity and advancing 
which contribute to PC1 by -0.791 and PC2 by 0.362 respectively 
(Figure 4F, Additional Supplemental Item 4). The grouping is most 
significant on trial 6, where 75% of ethanol flies cluster together in 
the upper quadrant cluster driven predominantly by advancing and 
theta, which contribute to PC1 by -0.512 and PC2 by 0.587 
respectively (Figure 4G, Additional Supplemental Item 4).  
This data suggests a shift in behavior between Trials 5 and 6 from 
aversive to appetitive behavior. To highlight the behavioral 
dynamics driving the formation of these clusters over trials, we 
compared the patterns of behaviors between Trials 5-6 to Trials 2-
3 (Figures 4H and 4I). Behaviors that tended toward an increase 
in between Trials 5 and 6, including angular velocity, pausing, 
theta, and absyaw did not show a similar pattern between Trials 2 
and 3. Similarly, behaviors that trended toward a decrease 
between Trials 5 and 6 including velocity, absdtheta, latency, 
advancing and angle2wall (paired t-test: angle2wall T5,T6 t(11) = 
3.46, p = 0.01), did not show a similar pattern between Trials 2 and 
3 (Figure 4I).  
 
Discussion  
Flies exhibit preference for an odor associated with moderate dose 
ethanol intoxication one to seven days after pairing [14, 15]. 
However, this Pavlovian assay lacks the tracking resolution to 
quantify behavior during ethanol administration. Operant runway 
models are commonly used as a tool for studying goal-seeking 
motivated behavior [2, 9, 16]. An unfortunate disadvantage of this 
model is that it can be difficult to assess how much effort the 
animal is expending to achieve the reward [2, 9]. Our assay 
overcomes this disadvantage by using high content tracking which 
adds a rich repertoire of behavioral metrics that can be associated 
with different aspects of the task in this apparatus. Moreover, the 
high-content behavioral data allowed us to identify the subtle 
behavioral dynamics contributing to the shift from ethanol aversion 
to preference. 
 
Our runway-based operant administration data here reveal that 
flies willingly self-administer ethanol following initial exposure, 
despite finding the ethanol aversive. Interestingly, the ethanol 
dose that induced the most striking behavioral responses in the 
runway task is similar to the one that induced the highest appetitive 
response in a Pavlovian odor-ethanol association memory task 
[15]. We found that within each day, initial ethanol administration 
induced early bouts of thrashing behavior, followed by decreasing 
velocity and increased levels of pausing, cumulatively supporting 
aversion. Remarkably however, even though the ethanol exposure 
appeared aversive, flies readily self-administered 50% ethanol 
within 5 minutes of being presented with the choice. However, 
within later trials, flies pause significantly less while receiving 
ethanol, and while velocity remains steadily above control 
behavior, these flies begin pacing in the absence of thrashing. 
Together these behavioral data are suggestive of formation of 
behavioral ethanol tolerance with consecutive ethanol exposures. 

We postulate this tolerance alters the perceived valence of the 
ethanol stimulus. Behavior in the runway suggests that ethanol 
was initially aversive, resulting in slower velocities and increased 
turning on day 1, followed by a switch in behavior on day 2 where 
flies travel more goal-directed paths to the end chamber. This 
transition from aversive to appetitive response appears to shift 
between Trial 5 and Trial 6, characterized by a combination of 9 
behaviors that comprise the position, direction and movement of 
the animals. 
 
Behavior during our runway task thus supports the biphasic 
actions of ethanol intoxication, which include initial ‘euphoria’ 
associated with reward induced by volatized ethanol 
administration, followed by negative ‘dysphoria’ as intoxication 
declines [17]. Presence of the biphasic action of ethanol coupled 
with the development of opposing behaviors during the runway 
task (e.g. decreased velocity and increased latency but decreased 
angular velocity) are supported by the opponent process theory, 
which states that self-administered drugs should have positive 
(euphoric) and negative (dysphoric) properties that can lead to 
classic “approach-avoidance” conflict [13, 18]. We speculate that 
similar conflict is represented in Drosophila by increased latency 
and decreased velocity corresponding with a more goal-directed 
path to the end chamber in our data. The BEER Run provides an 
ideal platform to test how the aversive consequences of drugs of 
abuse contribute to the drug seeking through reinforcement, thus 
contributing to a mechanistic understanding of the Opponent-
Process Theory.  
In Drosophila learned responses to aversive and appetitive stimuli 
are inextricably linked through valence modules in the mushroom 
body [19-21]. Moreover, aversive experiences can influence 
perception of rewarding stimuli in Drosophila. This can happen 
whether different aversive and appetitive stimuli are presented 
simultaneously [22], whether a single stimulus has both aversive 
and appetitive properties [14, 15], or whether a previous aversive 
experience alters internal state in the brain, thus affecting future 
appetitive experiences [23]. The BEER run provides an 
opportunity to investigate how these valences are integrated and 
reflect the appropriate output response.   
Our data also suggest that Drosophila may be an appropriate 
model to investigate the mechanisms underlying incentive 
salience. A prominent theory in the field of addiction research is 
that cues that are associated with drugs can acquire features that 
mimic those produced by the drugs themselves and thereby serve 
to increase the effectiveness to trigger drug seeking [24, 25]. The 
cues thus gain incentive salience, which confers a desire or ‘want’ 
attribute. Alcohol-predictive cues can accrue incentive salience in 
rodent models [25].  Drosophila initiate seeking when exposed to 
a cue previously associated with alcohol and will also walk over a 
120V electric grid to attain that cue [14]. We suggest the runway 
environment accrues incentive salience with consecutive trials 
since the flies express more goal-directed behavior despite 
demonstrating initial aversion to the volatilized ethanol. Whether 
flies increase responsivity to a discrete, localizable conditioned 
stimulus that initiates seeking can now be tested with this 
apparatus.  
 
In summary, the BEER Run apparatus combined with live and 
offline tracking effectively provide a set of behavioral features 
associated with motivated response in Drosophila. Our high 
content behavior analysis demonstrates subtle behavioral 
changes associated with a shift in valence for ethanol from  
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Figure 4. Motivation defined by a subset of behaviors highlights the switch from development to reinforcement learning on day two.  
(A) Behavior correlation matrices display the significance level between average z-scored behaviors collected across six trials for 24 flies (50% ethanol, 
n =12; air, n = 12). (ii) 50% ethanol correlation matrix was arranged using hierarchical clustering with linkage criterion = Ward’s, and the (i) air correlation 
matrix was arranged to compliment. (B-G) PCA plots were constructed for six-trials, where each fly was plotted as a function of 9 behaviors (pausing, 
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aversive to appetitive. Moreover, this apparatus can easily be 
adjusted for delivery of other substances, whether they be 
intoxicating drugs or natural appetitive and aversive substances. 
Understanding the combination of subtle behavioral features 
associated with operant memory in individual animals is a critical 
step forward for understanding the neural mechanisms underlying 
acquisition, consolidation and expression of these memories. 
 
 
Materials and Methods 

Experimental Model and Subject Details 
Canton-S (CS) wild-type flies were reared at 25°C in humidity-controlled 
incubators under 14:10 Light:Dark (L:D) cycles. Flies were raised in 9.5cm 
(height) x 2.5 cm (diameter) polypropylene vials on standard cornmeal agar 
food media with anti-fungal agent. Male flies were collected 1-2 days post 
eclosion under light, humidified CO2 anesthesia and experiments initiated 
when flies were 3-5 days old. Flies were transferred via mouth-pipette prior 
to behavior experiments and sacrificed following each experiment. 

Method Details 
BEER Run Hardware 
The BEER Run apparatus is a custom-built six individual lane behavioral 
chamber. Each lane is divided in three sub-compartments referred to as 
the start chamber (13mm x 6mm), runway (10cm x 6mm) and end chamber 
(18mm x 6mm), which can be conditionally and temporally segregated by 
a gating system mechanically controlled by a metal gear servo 
(HS_5056MG, Hitec, Hazard Way Suite D, Sand Diego, CA, USA) (Figure 
1A and Additional Supplementary Item 1). All mechanical gating systems 
were connected to the BEER run assay operating system (developed using 
ROS by Peter Polidoro, Senior Engineer, Janelia Research Campus). 
Assembled lanes had approximately 3 mm of headspace to prevent flight 
and promote free walking.   
 
Each lane is made of virgin PTFE material (machined by Whiteglove Inc.) 
with a transparent top made of clear acrylic sheet laser cut to size. The 
odors, air and/or ethanol were introduced to each runway via small 
openings in the runway and were controlled by the three separate odor 
delivery system called olfactometers.  Each olfactometer consist of one 
control panel that controlled two IQ+Flow digital mass flow meters (IQF-
200C-AAS-00-V-S, 10psi(g)/0psi(g), Bronkhorst, Ruurlo, Netherlands), 
and two solenoid pinch valve assembly (InLine 5x2-way Normally close, 
NResearch Inc, West Cadwell, NJ) connected to five 40ml glass sample 
vials (27184, Millipore Sigma, Darmstadt, Germany).  The complete three 
olfactometer assemblies were connected to the BEER run assay operating 
system [26]. Vapor flow was directed from vials through apparatus end 
chamber ports with 1/8” diameter PTFE tubing (PTFE Masterflex Tubing, 
1/8” OD, Coleparmert, IL, USA). All lanes were individually connected to 
an olfactometer for air and volatized ethanol delivery; and an active 
vacuum with equal flow rate as the input flow to facilitate flow within the 
end chamber. An additional flowmeter was added at the entry point to the 

runway to monitor the input flow in order to regulate the 2nd flowmeter that 
was connected to the vacuum lines (AALBORG, Orangeburg, NY, USA) 
 
The fully assembled BEER Run apparatus consists of six custom built 
lanes, placed in an aluminum housing with clear acrylic sheet covering 
each lane. An additional narrow clear acrylic sheet provides a port to 
introduce flies into the runway.  The aluminum arena holder (Custom made 
aluminum frame, JRC, Ashburn, VA, USA) is held by four posts providing 
stability and space for IR back light to illuminate the runway without any 
obstruction.  A Basler Firewire Mono camera equipped with 25MM lens 
with IR filter (Edmund Optics Inc. East Bloucenter Pike, Barrington, NJ, 
USA) provides a clear and complete view of the arena. Each lane is 
equipped with two metal gear micro servos to be activated and trap the 
flies depending on the position of fly. 
Odor ports in the runway near the start and end chamber gates are 
engineered to deliver humidified air to ensure the fly does not become 
dehydrated during extended protocols. Alternatively, they can be used to 
deliver an odor cue that becomes associated with the runway (Figures 1A 
and 1B). This allows simultaneous measurement of associative and 
operant memory or may be used to measure extinction or reinstatement to 
a reward-associated cue. Hardware is described in detail in Additional 
Supplemental Item 1. 

BEER Run Behavioral Experiments 
Operant Ethanol Administration Assay: For behavior experiments, flies 
were individually exposed to six operant administration trials over two days 
(Figure 1C). The assay was performed with lights on and temperature and 
humidity controlled at 25°C and 55% respectively. To start the assay one 
fly is placed in each start chamber, mechanically gated and segregated 
from the rest of the lane, for a 5 min acclimation period. Post acclimation, 
the training trial was initiated by start chamber and end chamber gates 
opening allowing full access to the lane. The fly then had a maximum of 5 
min to traverse the runway and enter the end chamber, which triggered 
mechanical gate closure. This initiated 10 min of vaporized ethanol 
administration within the end chamber. Following administration, start 
chamber and end chamber gates open and a flashing blue LED (1 
flash/sec for 10 sec at 20% capacity) along the rear wall of the start 
chamber encouraged the intoxicated fly to re-enter the start chamber, with 
a 5 min time cap. Entry into the start chamber triggered mechanical gate 
closure, initiating a 50 min inter-trial interval wait period. Each fly is 
exposed to this paradigm two more times on day one, individually housed 
overnight in food vials at 25°C in humidity-controlled incubators under 
14:10 Light: Dark (L:D) cycles, and then exposed to three more trials on 
day two. Ports located in the start chamber and end chamber delivered 
humidified air when vaporized ethanol was not being administered in the 
end chamber to ensure that flies did not dehydrate during experiments. 
 
We developed an easy-to-use GUI to adjust experimental settings 
(Additional Supplementary Item 1). While the experimental settings are 
flexible and can accommodate many different behavioral protocols the 
optimized protocol for this operant assay includes 6 trials over 2 days, a 
5min time cap to traverse the runway and enter the end chamber 
associated with ethanol, a 10min vaporized ethanol exposure duration, and 
a 50min inner-trial interval (Figures 1A-C). Ethanol solutions were prepared 
fresh for each two-day experiment. For example, a 50% ethanol solution: 

Figure 4 continued… latency, advancing, theta, absdtheta, angle2wall, absyaw, velocity and angular velocity). Behavior matrices for PCA plots were 
constructed from scaled and centered (mean = 0, sd = 1) behavioral data for each fly and each trial. From these data, euclidean distance matrices were 
constructed for each of the 6 trials, where observations = 24 flies, and features = 9 behaviors. Each trial’s distance matrix was projected onto its first 2 
principal components. Color indicates ethanol receiving (red) and air receiving (blue) flies. (B-E) PCA plots for trials 1-4 do not suggest significant 
differences between ethanol fly behavior and air fly behavior. (F,G) Agglomerative hierarchical clustering was performed on trial 5 (F) and trial 6 (G) with 
linkage criterion = Ward’s. The sum of the within-cluster inertia was calculated for each partition. Clusters were defined from the partition with the higher 
relative loss of inertia (i(clusters n+1)/i(cluster n)). (F) trial 5 clustering indicates 50% of ethanol flies (6 of 12) cluster together driven primarily by 
behavioral contributions such as velocity and advancing. (G) trial 6 clustering indicates 75% of ethanol flies (9 of 12) cluster together in an upper quadrant 
cluster driven by behavioral contributions such as advancing and theta [see S4]. The same 24 flies (50% ethanol, n =12; air, n = 12) were used to plot 
(H) behaviors that increase with training and (I) behaviors that decrease with training. Each point reflects a behavior index that was calculated by first 
obtaining z-score (mean = 0, sd = 1) behavior data for each fly within the ethanol and air receiving groups, and then standardizing ethanol z-scores to 
the average of air controls for each behavior. Positive slope indicates that the behavior increased in the experimental group that day, while negative 
slope indicated that the behavior decreased in the experimental group that day. Paired T-Tests were performed on every behavior comparing the last 
two trials of day one (T2-T3) and the last two trials of day two (T5-T6). Tests reveal significant differences in (Hi) theta (T2,T3 t(11) = 3.13, p = 0.01), (Ii) 
angle2wall (T2,T3 t(11) = -4.12, p = 0.00), (Iii) angle2wall (T5,T6 t(11) = 3.46, p = 0.01). For per-frame feature descriptions see Additional Supplement 
Table S3. For more information on PCA see Additional Supplement Item 4.  
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50mL Ethyl Alcohol 200 proof (Pharmaco by Greenfield Globe, Brookfield, 
Connecticut, USA) + 50mL ddH2O.  
 
Ethanol Absorption and Metabolism 
Flies were frozen in liquid nitrogen immediately following 10min of 50% 
ethanol exposure for absorption studies and 50min post-exposure for 
metabolism studies. Flies were homogenized in 0.5M glycine (pH 9, 200µl 
for 6 flies). 2-fold dilution was performed on 100µl of supernatant following 
centrifugation at 12,000rpm for 5min. Following a second round of 
centrifugation (12,000rpm for 5min) ethanol concentrations were 
measured in fly homogenate supernatant using NAD-ADH Reagent 
(N7160, Sigma-Aldrich, St. Louis, MO, USA). The reaction was placed in a 
Synergy HTX plate reader (BioTek, Winooski, VT,USA) and measured 
every 5 minutes for 30minutes at 340nm. To calculate the ethanol 
concentration in flies one male fly was estimated to be 0.75mg based on 
average mass recorded during experiments. Calculations involved 
extrapolating XmM ethanol content at 15min and a final calculation of 
(XmM EtOH)(DF1+Z)(DF2)

(Zmg)( 1 fly 
0.75mg)

=mM/fly , where DF is dilution factor and Z is total mass 

of flies within each sample. 
 
Analysis of Drosophila Behavior  
During experiments the Basler Firewire camera integrated with the BEER 
run assay operating system live-tracked fly position during pre-exposure 
time out in runway and ethanol administration in end chamber as (x, y) 
coordinates at 15 fps for all 6 lanes (Fig. 1c). Output files included a “.bag” 
video file and “tracking.txt” file for each trial. All coordinate position tracking 
data was processed in R studio using dplyr and reshape2 packages to 
determine latency to leave the start chamber (s) and pursue ethanol, time 
(s) taken to traverse the runway and enter the end chamber, as well as 
distance traveled (mm), velocity (mm/s), and angular velocity (deg/s) 
during both the runway task and ethanol administration.  
 
Characterization of Detailed Trajectory Information 
Trajectories of twenty-four flies (50% ethanol, n = 12; air, n = 12) were 
tracked using Ctrax version 0.3.1 computer vision software paired with 
“fixerrors-0.2.23” protocol extension to obtain more detailed trajectory 
information during the runway task and ethanol administration [10]. All 
BEER run “.bag” video files were converted to “.avi” files to maximize 
compatibility with Ctrax. In this method, an ellipse is fit to the body of each 
fly frame-by-frame through the use of background subtraction to classify 
pixels as a fly body or background. The Gaussian distribution determined 
through Expectation-Maximization for Gaussian mixture models is used to 
estimate an ellipse for the body of each fly, and orientation is estimated 
through a dynamic programming algorithm. Supervised tracking was used 
to correct ambiguous trajectory sequences. This pipeline was carried out 
in a blinded fashion, and behavioral features that measured individual fly 
behavior were selected for analysis: absdv_cor, absdtheta, 
angle2corner_rect, angle2wall_rect, absyaw, ddist2wall_rect, 
dist2wall_rect, dphi, flipdv_cor, phi, phisideways, signdtheta, theta, 
velmag_ctr, yaw (Additional Supplementary Item 3). 
 
Characterization of Classified Behaviors 
The interactive Janelia Automatic Animal Behavior Annotator (JAABA) 
machine learning tool [11] was used in order to obtain data on more 
complex behaviors: advancing, retreating, pausing, pacing and thrashing. 
To generate classifiers for each of these behaviors, a subset of videos 
(from air and ethanol receiving flies) was manually annotated with positive 
examples of frame-sequences in which a fly was performing the behavior 
of interest and negative examples of when a fly was not performing the 
behavior. A brief description of each behavior classified is listed below. 
Supervised behavioral annotations were processed by the JAABA 
machine learning algorithm’s interaction with trajectory data from Ctrax to 
produce behavioral classifiers for automatic annotation.  

Advancing – the fly, oriented toward the End Chamber, moves 
toward the End Chamber. 
Retreating – the fly, oriented toward the Start Chamber, moves 
toward the Start Chamber. 

Pausing –  the fly has almost no translation or rotational body 
movement.  
Pacing – the fly has repetitive translational and rotational body 
movement while oriented toward an arena wall or arena gate. 
Thrashing – the fly performs large and rapid changes in rotation 
and/or translation for >1 second. 

To quantitatively determine the generalization error of classifiers across 
the dataset, we used JAABA software’s “groundtruthing mode” to compare 
automatic behavioral classifiers to manually labeled data. If needed 
classifiers were rebuilt with additional supervised annotations until they 
performed with 100% accuracy during “groundtruthing mode”. 
 
Analysis and Characterization of Drosophila Activity 
All data from BEER run base tracking, Ctrax computer vision, and JAABA 
machine learning was processed in R studio using dplyr and reshape2 
packages. Average behavior within each trial was calculated for each 
group and plotted with standard error. Most graphs include visual 
representation of individual fly data within groups.  
 
Behavioral dynamics across trials was assessed using heatmap color 
gradient representations of behavioral differences in ethanol group v. air 
control group. Behavior differences were calculated by first scaling and 
centering (mean = 0, sd = 1) behavior data for each fly within the ethanol 
and air receiving groups, and then calculating a behavior index for each 
behavior across trials: 
behavior index= [ 1

n
∑ (behaviorexp(trial y))i

n
i=1 ]- [ 1

n
∑ (behaviorcon(trial y))i

n
i=1 ] 

 
Principal component analysis and cluster analyses were conducted to 
visualize how fly behavior changed across trials, and to determine which 
behaviors were required for reinforcement learning and motivation for 
ethanol. The subset of 9 behaviors required for visualization of learning 
included pausing, latency, advancing, theta, absdtheta, angle2wall, 
absyaw, velocity and angular velocity. These behaviors were summarized 
by the average occurrence or summation of occurrences for each trial (fly 
identity is maintained). Behavior matrices were constructed to visualize 
each behavior across all 6 trials (fly identity is maintained). Each behavior 
matrix was scaled and centered (mean = 0, sd = 1). From these data, 
Euclidean distance matrices were constructed for each of the six trials, 
where observations = 24 flies and features = 9 behaviors. Each trial’s 
distance matrix was projected onto its first two principal components, 
where each fly was plotted based on the 9 behaviors it exhibited. 
Agglomerative hierarchical clustering was performed on trial 5 and trial 6 
with linkage criterion = Ward’s. The sum of the within-cluster inertia was 
calculated for each partition. Clusters were defined from the partition with 
the higher relative loss of inertia (i(clusters n+1)/i(cluster n)). 
 
Statistics and Data Visualization 
Repeated Measures ANOVAs with planned contrasts were performed on 
all data to interpret significance between groups and across trials (Table 
S2). Mauchly’s test of sphericity was used to test if assumption of sphericity 
had been violated across trials. If Mauchly’s sphericity assumption was 
violated, then multivariate tests were reported and Greenhouse-Geisser (ϵ) 
estimates of sphericity were used to correct degrees of freedom. Posthoc 
tests with Bonferroni corrections and Pairwise comparisons were applied 
to significant data. Statistical analysis was performed using IBM SPSS 
Statistics 25 software licensed to Brown University and graphs were 
generated with R Studio [27] using ggplot2 [28], FactoMineR [29], and 
ggcorrplot. For a detailed table of statistic performed in all experiments, 
please refer to Additional Supplement Item 2. 

Data and Code Availability 
All raw and analyzed data supporting the current study is deposited in the 
Brown University Digital Repository and is freely available online 
(https://repository.library.brown.edu/studio/). Code for running BEER Run 
and Data Analysis is freely available via the Kaun Lab github 
(https://github.com/kaunlab).  
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Supplemental Information 
Five supplemental figures and four additional supplemental items are 
included with this manuscript. 
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