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ABSTRACT 1 
 2 
The spatial organization of microbial communities arises from a complex interplay of biotic and 3 
abiotic interactions and is a major determinant of ecosystem functions. We design a microfluidic 4 
platform to investigate how the spatial arrangement of microbes impacts gene expression and 5 
growth. We elucidate key biochemical parameters that dictate the mapping between spatial 6 
positioning and gene expression patterns. We show that distance can establish a low-pass filter 7 
to periodic inputs, and can enhance the fidelity of information processing. Positive and negative 8 
feedback can play disparate roles in the synchronization and robustness of a genetic oscillator 9 
distributed between two strains to spatial separation. Quantification of growth and metabolite 10 
release in an amino-acid auxotroph community demonstrates that the interaction network and 11 
stability of the community are highly sensitive to temporal perturbations and spatial arrangements. 12 
In sum, our microfluidic platform can quantify spatiotemporal parameters influencing diffusion-13 
mediated interactions in microbial consortia. 14 
 15 
 16 
INTRODUCTION 17 
 18 
Spatial organization is a prevalent feature of microbiomes ranging from soil1 to the human 19 
gastrointestinal tract2. This spatial structure is a major driver of microbial community behaviors, 20 
stability, and responses to environmental perturbations3–7. The spatial organization of 21 
microbiomes span multiple scales: variation in environmental (abiotic) parameters dictate 22 
behaviors over longer length scales (centimeter to meter), whereas inter-microbial interactions 23 
impact community behaviors on shorter length scales (tens of microns to centimeters)8,9. It is not 24 
currently understood how a microbiome’s spatial structure impacts community function and 25 
stability. 26 
 The proximity of members within a community is a major determinant of the costs and 27 
benefits of microbial interactions, and shapes how the ecological network evolves over time10,11. 28 
Spatial structure is known to provide ecological benefits, such as promoting population survival 29 
through local public good production12 and enhancing biofilm resilience to environmental 30 
perturbations5,13. Spatial heterogeneity was shown to reduce the propensity for a prisoner’s 31 
dilemma by enabling the stable coexistence of cooperator and cheater populations3. Ecosystem 32 
properties are shaped by the balance between cooperation and competition, which have been 33 
shown to dominate in different spatial regimes14. The degree of mixing of strains impacts the 34 
concentrations of resources and toxins in local microenvironments, which in turn dictates the 35 
outcome of invasion of non-resident organisms into the community15,16.  36 

The majority of microbial interactions are mediated by diffusible compounds including 37 
metabolites, chemical signals, or proteins7. These biomolecular mediators can enhance or inhibit 38 
community member’s growth rates, as well as modify the activities of intracellular signaling or 39 
metabolic networks. In spatially heterogenous environments, such as the human gut2 or plant 40 
rhizosphere17, community-level functions are driven by factors such as physical separation of 41 
bacterial populations, bulk flow of biomolecules, and cell motility. In the absence of convection 42 
and cell motility, amino-acid auxotrophs were shown to interact over tens of microns18, 43 
demonstrating that metabolite secretion impacts groups of cells occupying a small local 44 
neighborhood. However, the spatial interaction range for quorum-sensing mediated bacterial 45 
communication was expanded by amplifying the production of chemical signals via positive 46 
feedback19.  47 
 It is challenging to study and control spatial arrangements of bacterial populations on the 48 
micron scale, a regime where microbial interactions can significantly impact spatial distributions8,9. 49 
Microfabrication of patterned agarose20, hydrogels21, partitioned microfluidics22, nanoporous 50 
membranes14, cellulose nanofibrils23, nanochannels24 and bioprinting25 techniques have been 51 
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used to physically separate bacterial populations to study interactions and chemical signal 52 
communication. A platform that integrates micron-level spatial patterning, temporal control of 53 
environmental stimuli, and single-cell quantification of cell growth and gene expression has not 54 
been fully leveraged to study diffusion-mediated interactions in microbial communities. A detailed 55 
and quantitative understanding of how spatiotemporal parameters impact microbial communities 56 
would provide insights into the functional roles of spatial organization and how spatial structure 57 
could be manipulated for biomedical or biotechnological applications. 58 
 We develop a microfluidic platform, MISTiC (Mapping Interactions across Space and Time 59 
in Communities), to interrogate spatiotemporal parameters in microbial consortia. MISTiC enables 60 
temporal control of environmental inputs, precise spatial positioning of bacterial populations on 61 
the micron-scale, and long-term time-lapse imaging of growth and gene expression in continuous 62 
culture at the single-cell and population levels. We study how spatial separation impacts 63 
unidirectional quorum-sensing communication in a synthetic E. coli sender-receiver consortium. 64 
A dynamic computational model elucidates key biochemical parameters that modulate 65 
information transmission between the sender and receiver across distance. Using this system, 66 
we demonstrate that distance can enhance the fidelity of information transmission in specific input 67 
frequency regimes. To investigate the principles of systems shaped by feedback, we examine the 68 
dynamics of an engineered E. coli consortium that exhibits coupled gene expression oscillations 69 
via inter-strain bidirectional communication and dual-feedback loops. We show that each strain 70 
exhibited substantially different response to changes in the interaction length parameter, 71 
suggesting that positive and negative feedbacks play opposing roles in shaping the robustness 72 
of oscillations to spatial separation.  73 

To explore the effects of distance on metabolic interactions, we study the growth dynamics 74 
and metabolite release of an E. coli amino acid auxotroph community at the single-cell and 75 
population-levels. Our results show an asymmetry in the interaction network, which can be further 76 
enhanced by spatial separation of tens of microns. Metabolite measurements demonstrate that 77 
the strains exhibit disparate amino acid release profiles as a function of growth and amino acid 78 
availability, providing insights into the interaction network and community stability. Together, 79 
these data show that MISTiC can be used to precisely quantify the role of micron-scale spatial 80 
separation and temporal perturbations on microbial interactions, community functions and 81 
stability.  82 
 83 
 84 
RESULTS  85 
 86 
A microfluidic platform to interrogate microbial interactions 87 
Previous studies have demonstrated that pairwise interactions drive the behaviors of complex 88 
multi-member communities26–28. Therefore, we designed MISTiC to probe diffusion-mediated 89 
interactions between pairs of strains by separating bacterial populations into growth chambers 90 
that are connected by interaction channels (Fig. 1a). Our microfluidic design balances the 91 
pressures between interacting growth chambers, and thus prevents convective flow through the 92 
interaction channel29. This allows us to directly study the effect of molecular diffusion between 93 
interacting cell populations. Each 10 x 50 x 1 µm growth chamber contains approximately 150 94 
cells that are restricted to a monolayer for real-time quantification of gene expression and growth. 95 
The interaction channels are less than 0.5 µm tall and structurally supported by 0.5 µm pillars, 96 
which serves as a physical barrier for the cells, while permitting diffusion of biomolecules between 97 
growth chambers. Our MISTiC device contains 25, 50, 100, and 250 µm interaction channels to 98 
study how distance on this scale influences microbial interactions. As the population grows and 99 
divides, excess cells are washed away by continuous media flow, enabling long-term imaging.  100 
   101 
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 102 
Figure 1. Design of a microfluidic platform, MISTiC, to investigate the role of spatiotemporal 103 
parameters on inter-strain communication. (a) Schematic of the microfluidic device. The inlets I11, I12 or 104 
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I21, I22 connect to the outlets O1 or O2, respectively, and allow temporal control of the environmental 105 
conditions for each strain. Cells are initially seeded into growth chambers and grow to reach a maximum 106 
population size of approximately 150 cells. Continuous flow of media through the main channels removes 107 
excess cells. Pairs of growth chambers are separated by a lattice of pillars, defined as the interaction 108 
channel, which allows diffusion of biomolecules and prevents cells from entering the interaction channel. 109 
The device has ten pairs of growth chambers for each separation distance. (b) Top: Schematic of the 110 
genetic circuit in the sender and receiver E. coli strains. In the sender strain, the operon containing the 111 
synthetase LuxI and GFP is induced in response to arabinose. The synthetase LuxI produces the acyl-112 
homoserine lactone (3-oxo-C6-HSL or AHL), which diffuses through the interaction channel into the receiver 113 
strain growth chamber. In the receiver strain, AHL binds to LuxR to form an activated LuxR-AHL complex, 114 
which in turn activates RFP expression. Bottom: Overlaid representative fluorescence and phase contrast 115 
microscope images of the sender and receiver strains in the device for each interaction channel length 116 
(Experiment 1, Table 1). The scale bar represents 25 µm. (c) GFP fluorescence in sender growth chambers 117 
as a function of time. The vertical line indicates the time at which arabinose was introduced. Shaded regions 118 
represent one standard deviation from the mean. The dashed line denotes the model fit. (d) RFP 119 
fluorescence over time in the receiver growth chambers. The vertical line indicates the time at which 120 
arabinose was introduced. Shaded regions represent one standard deviation from the mean. The dashed 121 
line denotes the model fit. Source data are provided as a Source Data file. 122 
 123 
The environmental conditions can be dynamically controlled for each strain in the community 124 
using separate inlets. We characterized the molecular gradients established across interaction 125 
channels using a fluorescent dye (Fig. S1). A fixed concentration of fluorescein was loaded into 126 
the “source” chambers, which diffused across the interaction channel into the “sink” chambers. 127 
The average fluorescein concentrations within sink chambers decreased as a function of spatial 128 
separation between the source and sink chambers. The concentration of fluorescein within the 129 
interaction channels decreased as a function of distance from the source chamber. To capture 130 
diffusion across the interaction channels, we built a computational model that represented 131 
diffusion as a one-dimensional process by discretizing space into one-micron regions (Materials 132 
and Methods, Supplementary Information). A linear degradation rate of fluorescein was 133 
required to recapitulate the steady-state experimental data (Fig. S1).   134 
 135 
Investigating unidirectional bacterial signaling  136 
Microbes communicate via chemical signals to monitor their population size, control gene 137 
expression and allocate resources within multispecies communites30–33. The spatial proximity of 138 
microbial populations is a critical variable shaping bacterial communication by dictating the local 139 
concentrations of quorum sensing molecules. We investigated the impact of spatial separation on 140 
the dynamics of quorum-sensing communication between bacterial populations. We constructed 141 
a synthetic community consisting of an E. coli sender strain that produces a quorum sensing 142 
signal (3-oxo-C6-HSL or AHL) that activates the expression of a fluorescent reporter (RFP) in an 143 
E. coli receiver strain (Fig. 1b). The sender strain harbored an arabinose-inducible AHL 144 
synthetase (LuxI) transcriptionally fused to a GFP fluorescent reporter and the receiver strain 145 
contained an aTc-inducible AHL receptor (LuxR) and a LuxR-regulated RFP fluorescent reporter 146 
(Fig. S2). 147 
 We seeded MISTiC growth chambers with the sender and receiver strains and monitored 148 
their gene expression using time-lapse fluorescence microcopy and an automated image analysis 149 
pipeline (Materials and Methods). After an initial growth phase, arabinose was administered into 150 
the device to induce expression of LuxI and GFP in the sender strain (Experiment 1, Table 1). 151 
The interaction channel length did not significantly alter the response time of bacterial 152 
communication (Fig. S3a). The GFP steady-state did not vary significantly across interaction 153 
channel lengths, demonstrating the uniformity of arabinose concentration across the device (Fig. 154 
1c). By contrast, the receiver’s steady-state RFP expression decreased as a function of distance 155 
from the sender growth chambers (Fig. 1d). Increasing the interaction channel length from 25 µm 156 
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to 250 µm yielded a ~75% decrease in the receiver’s steady-state RFP expression levels. In sum, 157 
these results indicate that the spatial positioning of microbial populations can be encoded in the 158 
pattern of gene expression and MISTiC can be used to analyze the variation in gene expression 159 
across spatial separation.  160 
 161 
A dynamic model for inter-strain communication across distance 162 
Building on our chemical diffusion model (Supplementary Information), we constructed a 163 
computational model of inter-strain bacterial communication across distance to understand the 164 
role of molecular factors on distance-dependent diffusion-mediated interactions in microbial 165 
communities. Mirroring the fluorescent dye model, diffusion across the interaction channels is 166 
represented as a one-dimensional process (Materials and Methods, Supplementary 167 
Information) (Fig. 2a). In the sender strain, the model captures the concentrations of arabinose 168 
(ara), GFP mRNA (GFPm), GFP protein (GFPp), LuxI mRNA (LuxIm), LuxI protein (LuxIp) and AHL 169 
(AHL). The species in the receiver strain include RFP mRNA (RFPm), RFP protein (RFPp), LuxR 170 
protein (LuxRtot) and the activated receptor (LuxRAHL) consisting of a complex of AHL bound to 171 
LuxR. The model includes time delays for arabinose transport and sequential assembly reactions 172 
for the proteins GFPp, LuxIp and RFPp

34. We used a genetic algorithm to estimate the parameters 173 
based on time-series fluorescent reporter measurements (Materials and Methods).  174 

The model parameterized to experimental data is able to accurately recapitulate the 175 
temporal changes in GFP and RFP at different distances (Fig. 1c,d). The model predicts that the 176 
steady-state receiver gene expression is highly sensitive to variation in spatial separation less 177 
than 100 µm (Fig. 2b) and forecasts that 150 bacterial cells can transmit information across 1000 178 
µm based on a minimum threshold in RFPp (defined as 1% of the maximum RFPp expression at 179 
2 µm separation). In the model, increasing the separation distance from 25 µm to 250 µm resulted 180 
in a 2.3 min delay in the RFP response time (Fig. S3b). This was consistent with the absence of 181 
a detectable time delay due to the 7 min experimental measurement time resolution. 182 

The diffusion rate of AHL from the growth chamber into the main channel (D2) and the 183 
degradation rate of AHL (gAHL) influence the AHL concentration gradient established in the 184 
interaction channel. We sought to investigate the effects of these parameters on the distance-185 
dependent gene expression pattern. Setting gAHL and/or D2 to zero significantly altered absolute 186 
RFPp steady-state concentrations and their relative differences across distance, indicating that 187 
the stability of the chemical signal and the physical properties of the environment can dictate the 188 
response of a microbial community to spatial separation (Fig. S4).   189 

The response time of networks regulated by quorum-sensing can be modulated to 190 
optimize resource allocation to changeable environmental conditions35,36. Therefore, we explored 191 
how the RFPp response time depends on two key parameters: the diffusion constant through the 192 
interaction channel, D1, and the binding affinity of LuxRAHL to the RFP promoter, KRFP. The delay 193 
in RFPp increases with decreasing D1 and remains relatively constant as a function of KRFP. At 194 
intermediate values of D1, the delay is inversely related to KRFP (Fig. 2c). The estimated 195 
parameters for the sender-receiver consortium map to a regime that display small time delays, 196 
indicating that a that a large change in D1 is required to yield a measurable time delay across a 197 
ten-fold change in distance.  198 

We hypothesized that the distance sensitivity of information transmission in a microbial 199 
community can be controlled by biochemical parameters in the receiver strain. We analyzed our 200 
model to identify these parameters and found that the binding affinities of LuxR to AHL (KLuxR), 201 
LuxRAHL to the RFP promoter (KRFP), as well as the steepness of the steady-state response to 202 
AHL (nRFP) are critical in determining the steady-state gene expression response of the receiver 203 
to AHL concentration gradients. We mapped these parameters to changes in RFPp steady-states 204 
across different distances from the sender strain. Changing KLuxR and/or KRFP to its target promoter 205 
(Fig. 2d), or nRFP (Fig. 2e) relative to their estimated values shifts the system between the linear 206 
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and saturated regimes of the dose response to AHL. In the linear regime, the RFPp steady-state 207 
exhibits larger fold changes as a function of separation distance (greater distance-dependent 208 
sensitivity) compared to the saturated regimes (lower distance-dependent sensitivity). These 209 
results suggest that circuits could be programmed to realize different spatial patterns by modifying 210 
ultrasensitivity37,38, the affinity of transcription factors to promoters or a chemical inducer39, or the 211 
concentration of molecular factors in the circuit (Fig. 2f). 212 

 213 
 214 

 215 
Figure 2. Computational model of inter-strain communication identifies key parameters influencing 216 
distance-dependent gene expression responses. (a) Model schematic depicting the physical and 217 
biological processes represented by the model equations (Supplementary Information). (b) The model 218 
RFPp steady-states decrease as a function of distance from the sender population. The blue dashed line 219 
represents the maximum RFPp steady-state concentration for a 2 µm interaction channel. The gray dashed 220 
line denotes 1% of the maximum steady-state RFPp concentration. Data points (square) represent 221 
experimental measurements and error bars denote one standard deviation from the mean. (c) Heat map of 222 
the simulated RFPp time delays for diffusible molecules spanning a broad range of diffusion rates (D1) and 223 
binding affinities of LuxRAHL to the RFPp promoter (KRFP). The circle represents the estimated parameters 224 
based on experimental data. (d) RFPp steady-state dose-response as a function of AHL for different KRFP 225 
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values. The dashed curve represents the dose-response of the parameterized model based on the 226 
experimental data. Inset denotes representative RFPp simulations for different interaction channel lengths. 227 
The RFPp steady-states for each interaction channel length (colored marker styles) were computed for 228 
ara=10. (e) Steady-state RFPp dose-response as a function of AHL for two different nRFP values in the 229 
model. The dashed curve represents the dose-response for the parameterized model based on 230 
experimental data. The RFPp steady-states for each interaction channel length (colored marker styles) were 231 
computed for ara=10. Inset: relationship between the separation distance and the steady-state RFPp 232 
concentration for a range of nRFP values. (f) Heat map of distance sensitivity across a broad range of total 233 
LuxR concentrations (LuxRtot) and binding affinities of the activated LuxR complex to the RFPp promoter 234 
(KRFP). Distance sensitivity is defined as the ratio of steady-state RFPp concentration for a 25 µm to 250 µm 235 
interaction channel. Source data are provided as a Source Data file. 236 
 237 
Spatiotemporal parameters impact fidelity of information transmission 238 
Microbes in nature are constantly confronted with temporal variations in environmental stimuli. 239 
The spatial organization of a community can influence its response to these environmental 240 
perturbations40. A common strategy in engineering is using periodic input signals to characterize 241 
the dynamic properties of a system. We therefore applied a periodic input to the sender-receiver 242 
consortium to understand how distance affects information transfer.  243 

To predict the behavior of this system, we simulated square wave oscillations in arabinose 244 
(ara) concentration with a period of two hours in the model (Fig. 3a). Our results show that the 245 
steady-state amplitude and mean RFPp decreases as a function of increasing spatial separation. 246 
To test the model predictions, we performed MISTiC experiments using the sender-receiver 247 
consortium and alternated arabinose between 0% and 0.1% with a period of two hours (Movie 248 
S1) (Experiment 2, Table 1). The periods of GFP and RFP were synchronized with the arabinose 249 
input and therefore did not vary with distance (Fig. S5a). In response to the oscillatory signal, 250 
both GFP and RFP mean intensities increased over time and reached a steady-state oscillatory 251 
phase (Fig. 3b,c). The GFP mean and amplitude did not vary across distance (Fig. 3b, Fig. S5b). 252 
Mirroring the model prediction, the RFP mean, and amplitude decreased as a function of distance 253 
(Fig. 3c, Fig. S5b). At steady-state, the oscillatory activation and decay response times required 254 
were approximately equivalent for both GFP and RFP (30-40 min) (Fig. S5c,d). These response 255 
times are similar to the exponential phase doubling time of E. coli in LB media, suggesting that 256 
cell growth/division dictated the oscillatory timescale.   257 
 We next explored whether information transfer across distance is corrupted by stochastic 258 
processes within the cell in response to a faster periodic input signals41. To investigate the 259 
temporal limitations of bacterial signal communication, we quantified the response of the sender-260 
receiver consortium to a periodic arabinose input with a period of one hour. This period was 261 
predicted to push the limits of information transmission in the community based on the 30-40 min 262 
response time of the system (Fig. S5c,d). Simulations of square wave arabinose oscillations with 263 
a one-hour period yielded distance-dependent steady-state RFPp responses with lower means 264 
and amplitudes compared to an input period of two hours (Fig. 3d). We characterized the 265 
response of the sender-receiver system in MISTiC to arabinose concentrations that alternated 266 
between 0% and 0.1% with a one-hour period (Experiment 3, Table 1). Sender GFP expression 267 
exhibited a steady-state oscillatory response and the GFP mean did not vary across interaction 268 
channel lengths (Fig. 3e). By contrast, RFP displayed temporal variability around the mean at 269 
steady-state as well as a distance-dependent change in the steady-state fluorescence intensity 270 
(Fig. 3f).  271 

Amplitude fold change detection is an important property of sensory systems in diverse 272 
organisms42. A decreasing trend in the amplitude with increasing distance and higher input 273 
frequency was confirmed by simulations of RFPp expression that varied the arabinose period over 274 
a wide range. The experimentally observed trend of decreasing amplitude as a function of input 275 
frequency mirrored the model predictions (Fig. 3g). Together, our results demonstrate that 276 
distance can establish a low-pass filter, where a minimum threshold in the RFPp amplitude at a 277 
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fixed period is detected at 25 µm but not 250 µm. Increasing the ultrasensitivity of RFP 278 
transcription (nRFP) augments the differences in RFP amplitude across increasing distance as a 279 
function of the input period (Fig. S6a), indicating that ultrasensitivity can enhance the switch-like 280 
response of the low-pass filter. In contrast to the two hour forced oscillator, the steady-state RFP 281 
amplitudes in response to a periodic input with a one hour period did not vary across distance 282 
(Fig 3f,g). This result suggests that a one-hour input period is approaching a critical frequency 283 
corresponding to the loss of information transmission in diffusion-mediated communication across 284 
distances of tens of microns43.   285 

 286 

 287 
Figure 3. The frequency of a periodic input determines the effect of distance on information 288 
transmission in the sender-receiver consortium. (a) Model simulations of RFPp expression across 289 
distance in response to a periodic arabinose input with a period of 2 hr. Gray shaded regions denote the 290 
presence of arabinose (Table S3). (b) GFP (sender strain) as a function of time in response to an oscillatory 291 
arabinose input with a period of 2 hr. Gray shaded regions denote the presence of 0.1% arabinose. Shaded 292 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 19, 2020. ; https://doi.org/10.1101/2020.02.17.953240doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.17.953240
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

regions represent one standard deviation from the mean. (c) RFP as a function of time in response in 293 
response to arabinose oscillations with a period of 2 hr. (d) Model simulations of RFPp for different distances 294 
separating sender and receiver in response to square-wave oscillations in arabinose for a period of 1 hr. 295 
(e) GFP over time in response to an oscillatory arabinose input with a period of 1 hr. (f) RFP in response 296 
to an oscillating arabinose input with a period of 1 hr. (g) RFP amplitude as a function of the arabinose input 297 
period for different distances between the sender and receiver in the model (dashed lines). Square, plus, 298 
and circular data points represent the amplitudes in the step-response, 2 hr forced oscillator and 1 hr forced 299 
oscillator experiments, respectively. The gray horizontal line is a representative amplitude threshold (AC). 300 
(h) Top: RFP power spectra for a 2 hr arabinose period (red dashed line) for 395-1536 min. The gray region 301 
denotes a bandwidth of ±10 min around the expected input frequency (signal). Bottom: RFP power 302 
spectrum for a 1 hr arabinose period (blue dashed line) for 500-1249 min. The gray region denotes a 303 
bandwidth of ±10 min around the expected input frequency (signal). (i) Signal-to-noise (SNR) ratios 304 
computed using the power spectra for GFP or RFP at each interaction channel length (Materials and 305 
Methods) for the one-hour forced oscillator experiment. Error bars represent one standard deviation from 306 
the mean. Horizontal lines denote a statistically significant difference (P < 0.05) based on bootstrapped 307 
hypothesis testing. Source data are provided as a Source Data file. 308 
 309 

Communication between physically separated bacterial populations is impacted by 310 
extracellular noise due to diffusion44, as well as noise from intracellular processes such as 311 
transcriptional45 or translational bursting46. Such sources of noise can have a larger impact on 312 
gene expression dynamics in response to environmental fluctuations on faster timescales. We 313 
thus investigated how information in the periodic input signal is encoded in the frequency domains 314 
of the steady-state gene expression. The power spectrum represents how the variance in gene 315 
expression is distributed across frequencies. The power spectra for GFP and RFP displayed 316 
prominent peaks at the frequency of the input signal for both experiments (Fig. 3h, Fig. S6b,c). 317 
The RFP power spectrum peak at the input frequency decreased with distance in the two-hour 318 
forced oscillation experiment (Fig. 3h, top), reflecting the pattern in amplitudes across distance. 319 
In the one-hour oscillator experiment, the RFP power spectrum decreased with interaction 320 
channel length for frequencies larger than the signal bandwidth (Fig. 3h, bottom).  321 

To evaluate the fidelity of information transmission across distance in these experiments, 322 
we defined the signal-to-noise ratio (SNR) as the total power of the input signal bandwidth divided 323 
by the total power across all frequencies greater than the signal bandwidth (Materials and 324 
Methods). The GFP SNR did not vary as a function of distance in either of the forced oscillator 325 
experiments (Fig. 3i, Fig. S6d). In the two-hour forced oscillator experiment, the RFP SNR is 326 
dominated by the power of the input signal and thus the SNR was inversely proportional to 327 
distance (Fig. S6d). Notably, the RFP SNR increased with distance in the one-hour forced 328 
oscillator experiment (Fig. 3i), indicating that the fidelity of information transmission was 329 
enhanced at longer distances.  330 

In the regime of a critical input frequency43, the fidelity of inter-strain communication is 331 
diminished at short distances due to elevated noise whereas diffusible signals have a limited 332 
spatial range over long distances19. Therefore, our data suggests that the reliability of information 333 
transmission in quorum-sensing mediated communication varies non-monotonically with 334 
distance. Together the data shows that distance can function as a low-pass filter to allow cells to 335 
selectively respond to prolonged environmental fluctuations. Above a critical input frequency 336 
where cellular noise dominates, our data suggests that spatial separation can modulate a trade-337 
off between the reliability of information transmission and the output expression level. 338 
 339 
Feedback loops impact oscillatory dynamics in response to spatial perturbations  340 
The intracellular networks mediating microbial interactions can be complex and comprise positive 341 
and negative feedback loops and bidirectional communication. We sought to understand the 342 
effects of spatial separation on the gene expression dynamics in a microbial community wired 343 
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together by bidirectional quorum-sensing communication and positive/negative feedback loops47. 344 
In this system, an E. coli activator strain produces C4-homoserine lactone (C4-HSL), which  345 

 346 
Figure 4. Inter-strain network topology and dual-feedback loops mediated by two orthogonal signals 347 
determine the effects of distance on a distributed oscillator consortium. (a) Network schematic of 348 
activator and repressor strains in the MISTiC device. The activator and repressor exhibit a bidirectional 349 
positive/negative interaction topology wherein the signaling molecules C4-HSL and 3OH-C14-HSL control 350 
circuit activities. The activator and repressor exhibit positive and negative feedback loops, respectively. (b) 351 
Representative normalized CFP and YFP fluorescence intensities as a function of time in the 25 µm (top) 352 
and 250 µm (bottom) distances. Red line indicates the time of induction with 1 mM IPTG. (c) Amplitude of 353 
peaks in the mean-subtracted CFP (top) and YFP (bottom) fluorescence intensities across distances. Error 354 
bars represent one standard deviation from the mean. Horizontal lines with stars denote a statistically 355 
significant difference (P < 0.05) based on an unpaired t-test. (d) The number of peaks as a function of 356 
distance for activator and repressor strains. Horizontal lines denote a statistically significant difference (P 357 
< 0.05) based on an unpaired t-test. (e) Maximum cross-correlation between paired CFP and YFP time-358 
series measurements for each distance. Horizontal lines denote a statistically significant difference (P < 359 
0.05) based on an unpaired t-test. (f) The coefficient of variation of the inter-peak distances (phase drift) as 360 
a function of separation distance for activator and repressor strains. Lines represent linear regression fits 361 
to the data. Source data are provided as a Source Data file. 362 
 363 
induces the enzymatic synthesis of 3-OHC14-HSL in an E. coli repressor strain (positive inter-364 
strain interaction). The activator displays a positive feedback loop by self-regulating the circuit 365 
controlling C4-HSL production (Fig. 4a). The signal 3-OHC14-HSL produced by the repressor 366 
strain induces the expression of a quorum-quenching lactonase aiiA in the activator and repressor 367 
strains, which degrades both signals and thus inhibits circuit activity in the repressor (negative 368 
feedback loop) and activator (negative inter-strain interaction). An identical promoter driving the 369 
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synthetases in the activator and repressor strains was used to drive the expression of CFP and 370 
YFP, respectively, to quantify circuit activity dynamics.   371 
 The reporters CFP and YFP displayed oscillations for an interval of time across the 372 
majority of conditions in the MISTiC device (Fig. 4b, Fig. S7, Movie S2) (Experiment 4, Table 1). 373 
Paired growth chambers exhibited synchronized oscillations whereas unpaired growth chambers 374 
were not synchronized, indicating that diffusion of molecules through the interaction channels 375 
enhanced the coupling between the distributed oscillators. The CFP amplitude increased as a 376 
function of distance whereas the YFP amplitude displayed the reverse trend (Fig. 4c), signifying 377 
a reduced strength of the inter-strain interactions as a function of distance. The number of 378 
activator peaks detected in each growth chamber moderately increased, whereas the number of 379 
repressor peaks substantially decreased with separation distance (Fig. 4d). Therefore, the 380 
stability of oscillations in the repressor was highly sensitive to variations in the interaction range, 381 
whereas the oscillations in the activator displayed robustness to variations in this parameter. In 382 
specific 100 µm and 250 µm conditions, oscillations in the activator were maintained for a period 383 
of time after the repressor had stopped oscillating (Fig. S7c,d). The mean activator expression 384 
increased as a function of time for several replicates in 100 µm and 250 µm conditions, indicating 385 
that the activator would eventually approach a constitutive ON state as distance increased. Thus, 386 
our data suggests that the activator amplitudes vary non-monotonically with distance. The 387 
amplitudes are diminished by enhanced repression at short distances, increased at intermediate 388 
distances (Fig. S7a,b), and vanish at long distances as the activator expression approaches a 389 
constitutive ON state. Conversely, the repressor amplitudes decrease with distance and display 390 
an abrupt loss of oscillatory behavior at a critical distance threshold between 100-250 µm. 391 
 We next investigated the cross-correlation between the fluorescent reporters in the sender 392 
and receiver strain to quantify the effect of distance on the coupling of inter-strain gene expression 393 
dynamics. The maximum cross-correlation and time lag of the maximum cross-correlation 394 
decreased and increased with the length of the interaction channel, respectively (Fig. 4e, Fig. 395 
S8a), showing that distance diminished the coupling between the oscillators. The distribution of 396 
interpeak distances provides information about the variability in the oscillatory response and is an 397 
indicator of phase drift48. The coefficient of variation of the interpeak distance distribution 398 
increased by more than 3-fold for the repressor strain and was less variable across distance in 399 
the activator (Fig. 4f, Fig. S8b,c). In sum, the effects of distance on the oscillatory dynamics of 400 
the activator and repressor strains were notably different, indicating that the system’s feedback 401 
loops could be wired to enhance the robustness of oscillations across a range of distances. 402 
Previous studies have shown that negative enhances system stability, whereas positive feedback 403 
is associated with signal amplification, multi-stability and runaway behavior49–51. By contrast, 404 
positive and negative feedback exhibited the opposing roles for the distributed oscillator 405 
community by enhancing and reducing the temporal robustness and stability of the oscillations to 406 
spatial perturbations, respectively. 407 
 408 
Deciphering the spatial and temporal modes of metabolic interactions 409 
In microbial communities, growth and metabolic activities are driven by metabolite dynamics 410 
including competition over limiting resources, metabolite secretion and cross-feeding5,7,8,26,28.  411 
Indeed, metabolite exchange is a major force shaping microbial communites52. To investigate how 412 
spatial separation influences metabolic interactions in microbial communities, we studied a 413 
synthetic E. coli consortium composed of a phenylalanine (DpheA) and methionine (DmetA) 414 
auxotroph. These auxotrophs were selected because bioinformatics analyses predict that 415 
phenylalanine (F) or methionine (M) auxotrophy are prevalent in microbial communities53. Further, 416 
M and F are two of the most energetically costly amino acids to synthesize in E. coli, potentially 417 
providing a potential selective advantage for cross-feeding in specific environmental contexts53. 418 
To characterize the population dynamics of the community in batch culture and evaluate longer-419 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 19, 2020. ; https://doi.org/10.1101/2020.02.17.953240doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.17.953240
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

term stability, the strains were combined at three initial ratios (50% DmetA, 50% DpheA, 90% 420 
DmetA, 10% DpheA, and the reciprocal), in minimal media lacking M and F and then serially 421 
transferred three times to fresh media over a period of 5.5 days (Materials and Methods). 422 
Irrespective of the initial strain proportion, the co-culture converged to a DpheA dominated steady-423 
state (Fig. S9a). For a sustained 24 hr passaging period, the community exhibited a decreasing 424 
trend in OD600 and eventually collapsed after the third passage (Fig. S9b, top). However, 425 
community growth was rescued by switching the final passage to a 48 hr incubation time, 426 
suggesting that a minimum cell density was required to maintain community growth and stability 427 
(Fig. S9b, bottom). These data show that the frequency of environmental shifts is a major 428 
determinant of community stability in batch culture and both strains can maintain growth and 429 
stable coexistence over multiple passages with DpheA dominating the community.  430 
 We next studied the growth responses of the strains within the spatially and temporally 431 
controlled environment of MISTiC. The population-level growth rate can be inferred by the rate of 432 
dilution of an inducible and highly-expressed stable fluorescent reporter due to cell growth41,54. 433 
We used this method to determine the maximum growth rates of the E. coli auxotroph community 434 
expressing GFP (DmetA) and RFP (DpheA) separated by defined distances in the MISTiC 435 
platform (Fig. 5a) (Materials and Methods). The fold change in the maximum growth rate of each 436 
strain across interaction channel lengths was used to quantify a distance-dependent interaction 437 
strength. In media supplemented with all amino acids, our results showed that DmetA and DpheA 438 
exhibited similar average doubling times of 80 and 86 min (Experiment 5, Table 1), respectively, 439 
across all interaction channel lengths (Fig. 5b,c, S10a,b,c,d), indicating a neutral interaction 440 
network (Fig. 5h). 441 

We sought to determine the interaction network within a spatially separated, continuous 442 
flow environment in the absence of M and F (Experiment 6, Table 1) (Fig. S11a,b). The DmetA 443 
strain exhibited a very slow doubling time (1128 min) that did not vary across distance (Fig. 5b, 444 
Fig. S11a,c). In contrast, the doubling time for DpheA substantially increased with the separation 445 
distance, wherein a ten-fold increase in separation distance increased the strain’s doubling time 446 
by 54% (Fig. 5c, S11b,d). Therefore, the DpheA growth rate was highly sensitive to distance from 447 
the DmetA strain and not the reciprocal, highlighting a substantial difference in the strength of the 448 
interactions (Fig. 5h, center). Our data showed a 43 min time delay in the maximum growth rate 449 
of DpheA from the 25 µm to the 250 µm condition (Fig. 5c, inset), demonstrating that the transition 450 
from lag phase to growth was also distance-dependent.  451 

We next investigated the growth of DpheA and DmetA in mixed conditions for comparison 452 
to the spatially separated context. A mixed culture containing equal proportions of DmetA and 453 
DpheA was introduced into the growth chambers in minimal media lacking M and F (Experiment 454 
7, Table 1). Single-cell segmentation and tracking were performed to distinguish the strains within 455 
mixed communities and quantify the growth rates of single-cells (Materials and Methods) (Fig. 456 
S12a). The length of the interaction channels linking paired chambers did not contribute to the 457 
DmetA and DpheA growth rate variation (Fig. S12b,c). The average DmetA and DpheA growth 458 
rates within a chamber decreased over time but remained non-zero for the majority of the 459 
experiment (Fig. 5d). To evaluate the difference in each strain’s growth rate in the co-culture 460 
compared to monoculture, similar MISTiC experiments and analysis were performed for 461 
monocultures of DmetA (Experiment 8, Table 1) and DpheA (Experiment 9, Table 1) in minimal 462 
media lacking M and F. The co-culture growth rates were significantly higher than their respective 463 
monoculture conditions, demonstrating a mutual growth benefit in MISTiC. In addition, the 464 
percentage of growing cells across all growth chambers in the mixed condition was larger than 465 
40% for both strains for the majority of the experiment (Fig. 5d, inset).  466 

We computed the Spearman correlation between the growth rate of each strain and the 467 
fraction of the growth chamber occupied by the partner strain to quantify how the presence of the 468 
partner strain impacted growth rate (Fig. 5e, inset). Both strains exhibited statistically significant 469 
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and non-zero Spearman correlations for the majority of the experiment, corroborating the 470 
presence of a mutualism. The DpheA strain exhibited a higher maximum Spearman correlation 471 
than the DmetA strain, corroborating a stronger dependence of DpheA on the abundance of 472 
DmetA than the reciprocal. Even though DpheA exhibited a higher growth rate than DmetA, the 473 
average ratio of the two strains reached a stable value (Fig. S12d). Since the percentage of 474 
dividing cells (Fig. S12e) was significantly lower than the percentage of growing cells (Fig. 5d, 475 
inset) for both strains, cell elongation was the dominant mode of growth in these conditions. 476 
Additionally, growth rates did not vary as a function of the position of single cells within the growth 477 
chambers (Fig. S12f). These findings illustrate the ability of MISTiC to resolve sub-population 478 
heterogeneities in growth based on single-cell data.  479 

For the spatially separated community, we next examined whether the interaction network 480 
could be toggled by rescuing DmetA in minimal media supplemented with all amino acids except 481 
F (Experiment 10, Table 1). The doubling time of DmetA was similar to its doubling time in the 482 
+M, +F control experiment (Experiment 5, Table 1) and did not vary across distance (Fig. 5f, 483 
S13a,d). The rate of change of RFP fluorescence was biphasic, indicating that DpheA had two 484 
growth modes in this condition (Materials and Methods, Fig. S12b,c). The DpheA doubling times 485 
in the first growth phase did not change across distance, yielding a neutral interaction (Fig. 5h, 486 
Fig. S13e). The second DpheA growth phase displayed a moderately competitive growth trend 487 
across a ten-fold change in distance (Fig. 5f,h, Fig. S13f). The distance-dependent benefit from 488 
DmetA to DpheA was not detected in the presence of M, suggesting that the positive interaction 489 
is abolished by rapid growth of DmetA.  490 

To probe the inverse relationship between the growth rate of DmetA and the magnitude of 491 
the benefit to DpheA, we measured the M and F concentrations in the producer strain’s 492 
supernatant across different concentrations of the rescuing amino acids (Materials and 493 
Methods). The F concentration in the DmetA supernatant was inversely proportional to the 494 
supplemented M concentration, consistent our MISTiC results showing that the greatest growth 495 
benefit to DpheA occurred when DmetA was slowly growing and metabolically active (Fig. 5g). 496 
Interestingly, the reverse trend was observed for DpheA, wherein M was detected only in the 497 
condition with the highest concentration of supplemented F. In all conditions, DpheA exhibited a 498 
higher growth rate, which could be explained by the high release rate of F by DmetA at low growth 499 
rates.  500 

Our results demonstrated that DmetA and DpheA auxotroph strains have differential and 501 
context-dependent release rates of M and F. To integrate our findings into a quantitative 502 
framework, we developed a dynamic computational model to represent M and F biosynthesis, 503 
uptake, diffusion, and amino acid dependent growth rates of DmetA and DpheA (Supplementary 504 
Information). Mirroring the structure of the quorum-sensing model, M and F diffuse from the 505 
producer strain’s growth chamber across the interaction channel and into the recipient strain’s 506 
growth chamber. Consistent with our data, we assume that (1) growth is limited by the 507 
concentration of the amino acid that the auxotroph is deficient in producing, (2) release of F by 508 
DmetA is inversely proportional to its growth rate, (3) release of M by DpheA is proportional to its 509 
growth rate, and (4) the basal growth rate DpheA is larger than DmetA attributed to differences in 510 
the metabolic consequences of each mutation (Fig. 5d). The model was fit to the population-level 511 
growth rates in the physically separated experiments using a genetic algorithm (Materials and 512 
Methods) and was able to recapitulate the trends across a range of conditions (Fig. 5b,c,f), 513 
demonstrating that the model’s core assumptions were congruous with the data. 514 

Finally, we tested how different concentrations of all amino acids impacted the interaction 515 
strengths within MISTiC (Experiments 11-13, Table 1). The DpheA strain displayed a decreasing 516 
trend in the distance-dependent interaction strength, defined as the ratio of its doubling times in 517 
the 25 µm to 250 µm condition, as a function of amino acid availability (Fig. S14b,d,f,h). An 518 
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interaction strength trend across amino acid concentrations was not evident for DmetA (Fig. 519 
S14,a,c,e,g). Low amino acid concentrations eliminated distance-dependent growth rate  520 
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Figure 5. Spatial and temporal modes of amino acid cross-feeding in a synthetic E. coli consortium. 522 
(a) Schematic of the experimental design to infer the population-level growth rates of amino acid 523 
auxotrophs. The E. coli strains DmetA (IPTG-inducible GFP) and DpheA (IPTG-inducible RFP) are seeded 524 
into growth chambers in media supplemented with all amino acids and IPTG. At a specific time, the media 525 
is switched to remove IPTG and alter the amino acid concentrations. The rate of decay of the fluorescence 526 
intensity as a function of time can be used to infer the maximum growth rate in each growth chamber across 527 
distances. (b) Relationship between distance and the inferred population-level doubling times of DmetA. 528 
The solid and dashed lines represent absence and presence of methionine (M) and phenylalanine (F), 529 
respectively. Error bars represent one standard deviation from mean doubling times. Diamonds represent 530 
the model fit to the experimental data. (c) Relationship between distance and the inferred population-level 531 
doubling times for DpheA. The solid and dashed lines represent absence and presence of M and F, 532 
respectively. The horizontal lines denote a statistically significant difference (P < 0.05) based on an unpaired 533 
t-test. Diamonds represent the model fit to the experimental data. Inset: the time corresponding to maximum 534 
DpheA growth rate in media lacking M and F. (d) Relationship between time and the average growth rates 535 
of ΔmetA and ΔpheA in a mixed community (solid line) or monoculture (dashed line) in media lacking M 536 
and F. Inset: Fraction of cells with non-zero growth rates as a function of time. (e) Spearman correlation 537 
coefficient as a function of time between the fraction of the growth chamber occupied by the partner strain 538 
and the growth rate for individual cells (inset). The X symbol denotes correlations corresponding to P > 539 
0.05. (f) Relationship between the distance and the minimum doubling time in the presence of M and 540 
absence of F. Growth phase 1 (GP1) and 2 (GP2) denote the two DpheA growth phases following the media 541 
switch. Diamonds indicate model fits to the ΔmetA and ΔpheA GP1 doubling times. (g)	Concentration of M 542 
or F normalized by absorbance at 600 nm (OD600) in ΔpheA or ΔmetA filtered conditioned media. Stars 543 
indicate the limit of detection for each measurement. 1X amino acid fraction refers to 0.2 mM M and 0.4 544 
mM F, respectively. (h) Inferred interaction networks based population-level minimum doubling times in 545 
physically separated MISTiC experiments. The size of the node is proportional to the maximum growth rate 546 
of each strain separated from the partner strain by 25 µm. Node diameters are scaled according to 547 
(10*ln(doubling time)-1)2. The edge widths are proportional to the distance-dependent change in growth rate 548 
Dd at 25 µm versus at 250 µm from the partner strain, where Dd = 1 – (D25D250-1). Source data are provided 549 
as a Source Data file. 550 
 551 
response of DpheA, indicating that the growth benefit provided by DmetA was dependent on trace 552 
concentrations of F. In sum, our results suggest that the stability of an amino-acid auxotroph 553 
consortium is shaped by key variables including amino acid availability, population size, spatial 554 
arrangement of populations, temporal frequency of environmental fluctuations and 555 
environmentally regulated amino acid release rates. The change in growth as a function of 556 
interaction channel length indicates whether metabolites mediating microbial interactions are in a 557 
saturated (below a threshold to impact growth or not limiting for growth) or linear regime (limiting 558 
to growth). These insights cannot be obtained in a well-mixed batch culture and the operating 559 
regime of a microbial interaction could impact community stability and functions. In addition, 560 
MISTiC enabled the characterization of the dynamic features of the growth rate responses 561 
including biphasic growth (Fig. S13b,c) and delays in the timing of maximum growth (Fig. 5c, 562 
inset).  563 
 564 
 565 
DISCUSSION  566 
 567 
We developed a microfluidic platform, MISTiC, to interrogate the effects of spatiotemporal 568 
parameters in microbial consortia. In our study, the distance between strains impacts the 569 
concentration of diffusible molecules, which in turn dictates the biological response including 570 
growth rate, metabolic activity or cell state decision-making. Therefore, changing the interaction 571 
channel length enables a quantitative mapping of the dose-response of growth rate or gene 572 
expression to the net environmental impact (produced or utilized diffusible mediators) of a partner 573 
strain. Using MISTiC, we can elucidate if a diffusion-mediated interaction is operating in a linear 574 
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or saturated regime based on the change in growth or gene expression as a function of distance 575 
from the partner strain, which has implications for community stability and functions. Interactions 576 
operating in a saturated regime may promote community stability by enhancing robustness to 577 
environmental perturbations, whereas interactions operating in a linear regime may have the 578 
opposite effect of reducing stability and resilience to environmental shifts.  579 

Key parameters including the binding affinity of transcription factors to their target 580 
promoter or chemical inducer and the ultrasensitivity of a promoter can shift the system between 581 
regimes that are sensitive (linear) or robust (saturated) to spatial variations. These biomolecular 582 
parameters can be tuned to spatially program division of labor (e.g. ecological niches or metabolic 583 
functions) for biotechnological applications. For instance, ultrasensitivity could be modulated to 584 
create defined spatial boundaries between distinct cell states38. In the sender-receiver quorum-585 
sensing system, distance-dependent gene expression levels were produced by the AHL gradients 586 
established within interaction channels. Similarly, morphogen gradients in multicellular organisms 587 
dictate intracellular signaling and cellular differentiation55. Our results show that these chemical 588 
gradients are tunable by the spatial arrangement of populations and could be exploited to program 589 
complex pattern formation using microfabrication techniques and tools from synthetic biology56.  590 

In natural environments, microbial communities are confronted with uncertain and 591 
changeable environmental conditions. We show that distance between community members 592 
establishes a low-pass filter that allows cells to selectively respond to signals that fluctuate on 593 
longer timescales. In addition, our data demonstrates that distance can improve the reliability of 594 
information transmission in response to specific input frequency ranges. Consistent with this 595 
result, theoretical work has shown that spatial averaging by diffusion can improve the precision 596 
of gene expression by reducing noise stemming from transcriptional bursting57. In addition, 597 
stochastic modeling predicts that diffusion of a quorum-sensing chemical signal could reduce 598 
gene expression noise44. Our results suggest that spatial positioning can tune the trade-off 599 
between the fidelity of information transmission and gain of a signal and could be exploited as a 600 
design feature in microbial community engineering. While increasing the expression level of circuit 601 
components can reduce stochastic fluctuations, it can also generate a metabolic burden to the 602 
cell58. In contrast, modulating the distance between populations is an alternative strategy to 603 
enhance the signal-to-noise ratio without incurring additional energetic costs. 604 

Changing the degree of spatial separation between the activator and repressor strains in 605 
the dual-feedback oscillatory consortium yielded different outcomes on the oscillatory behaviors 606 
of each strain. For instance, the stable oscillatory behavior of the repressor was abruptly lost in 607 
the 250 µm condition, whereas oscillatory behavior persisted in the activator strain over a period 608 
of time. The notable difference in the robustness of the circuits to spatial perturbations highlights 609 
the critical role of circuit topology and feedback loops in determining system dynamics in spatially 610 
organized communities. Thus, molecular circuits can be wired together in different ways to amplify 611 
or reduce dynamic signals as a function of distance19. The activator and repressor display self-612 
activation and self-repression, respectively, suggesting that positive feedback enhances the 613 
robustness of information transmission to changes in spatial separation, whereas negative 614 
feedback has the reverse effect of enhancing the fragility of the system. The lag required to 615 
maximize the cross-correlation between the activator and repressor oscillatory responses 616 
increased with interaction channel length (Fig. S8a), whereas the sender-receiver consortium in 617 
response to the step-response of arabinose did not exhibit a time delay across distance (Fig. 618 
S3a). In this case, dual-feedbacks and bidirectionality of the interaction could lead to back-and-619 
forth propagation of quorum-sensing signals, thus augmenting the time-delay between the 620 
oscillations.  621 
 The disparity in DpheA and DmetA growth rates in the absence of F and M could be 622 
explained by their differential amino acid release profiles as a function of the producer strain’s 623 
growth rate (Fig. 5g). In E. coli, F is either used for either protein synthesis or transported between 624 
the periplasm and cytosol59. However, M can be transformed into S-adenosyl-L-methionine, which 625 
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acts as a central hub methyl donor intersecting many pathways59. This suggests that M is a critical 626 
resource for the cell and may be transformed into other molecules at a faster rate than F, resulting 627 
in differential amino acid release profiles. Auxotrophic cross-feeding has been proposed as a 628 
strategy to enhance coexistence and stability among members of a consortium53,60,61. Our results 629 
suggest that strain co-existence and community stability are highly dependent on a critical 630 
population size, amino acid availability, temporal perturbations and spatial context1,2,5. Therefore, 631 
stable coexistence may be difficult to achieve in real-world environments which are spatially 632 
heterogenous and temporally changeable.  633 

MISTiC enables quantification of the effect of micron-level spatial separation on diffusion-634 
mediated microbial interactions, in the absence of convection, transport or cell-to-cell physical 635 
contact, by monitoring growth, gene expression, cell size, morphology or emergence of cellular 636 
states as readouts. Coexistence of members of a microbial community can be difficult to achieve 637 
in batch or continuous culture due to variation in growth rates and competition for limited nutrients. 638 
The physically separated and connected growth chambers in MISTiC can maintain strain 639 
coexistence over long periods of time to study microbial interactions. Whereas metabolite 640 
exchange between populations cannot be easily observed within MISTiC, biosensors for specific 641 
diffusible compounds could be used as real-time indicators of microenvironments62. The media 642 
flow rate is a key parameter that can be manipulated to study how temporal fluctuations shape 643 
microbial interactions or recapitulate the flow rates of natural environments. To determine if 644 
interactions stem from physical contact or diffusible compounds, a mixed chamber could be added 645 
to the device for comparison to spatially separated arrangements.  646 

There are limited techniques to investigate small bacterial populations (~102 cells), which 647 
exist in natural environments and can play important roles in human disease63. However, the size 648 
of the MISTiC growth chamber limits each strain’s impact on its environment, and thus the 649 
strength of interactions. To interrogate the contribution of population size to microbial interactions 650 
and community stability, future device designs will include growth chambers that vary in size. To 651 
investigate more complex communities and higher-order interactions, modified versions could be 652 
constructed to study three or more interacting populations. In sum, this experimental platform 653 
could be adapted to study a diverse repertoire of organisms and mechanisms of diffusion-654 
mediated interactions over multiple length-scales and increasingly complex spatial landscapes. A 655 
detailed understanding of how defined spatial arrangements influence community functions and 656 
interaction networks will advance our understanding of the spatial organization of microbiomes 657 
inhabiting diverse natural environments.  658 

 659 
 660 
MATERIALS AND METHODS 661 
 662 
Microfluidic device fabrication 663 
A three-layer device was designed in AutoCad that consisted of interaction channels, growth 664 
chambers, and main channels. The microfluidic master was pattered in three stages of 665 
photolithography using a micropattern generator (Heidelberg Instruments μPG 101). For the first 666 
layer, the silicon wafer was baked for 10 min at 200°C and spin coated at 4000 rpm using SU-8 667 
2000.5 (MicroChem) to generate 0.5 µm height. This layer was exposed to the interaction 668 
channels at 58 mW with a 47% dwell time using a 4 mm writehead, followed by a post-exposure 669 
bake for 30 min at 95 °C. The second layer was spin coated at 3000 rpm using 26:1 mixture of 670 
SU-8 2000.5 to SU-8 3005 to produce 1.5 µm height. After aligning to the first layer, the wafer 671 
was exposed to the second patterning layer (growth chambers). Following an additional post-672 
exposure bake, a third layer of SU-8 3025 photoresist was spin coated at 3000 rpm to generate 673 
25 µm height. The wafer was exposed to the final layer consisting of the main channels, resistors, 674 
and inlets. Following a final post-exposure bake, the features were developed using SU-8 675 
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developer (MicroChem). The master was treated overnight with vapor phase (tridecafluoro-676 
1,1,2,2-tetrahydrooctyl) trichlorosilane (Gelest) at room temperature. To fabricate each device, 677 
7:1 mixture of polydimethylsiloxane (PDMS, Sylgard 184) to curing agent (Sylgard 184) was used 678 
to coat the master. After curing overnight at 100°C, the inlet and outlet holes were punched using 679 
a biopsy corer (WellTech). The surfaces were exposed to air plasma (Harrick Plasma PCD-32G) 680 
for 23 sec to ionize the surface of the device to bond to the glass coverslips (ThermoFisher). 681 
Finally, the surfaces were bonded and baked for 1 hr at 100 °C to seal the device channels. For 682 
each experiment, the microfluidic device was flushed with 0.5% Tween 20 (Sigma-Aldrich) to 683 
prevent cells from adhering to the device. To load the cells into the device, a vacuum pressure of 684 
330 mmHg was applied load cells into the growth chambers. 685 
 686 
Dye gradient experiment 687 
The chemical gradients in the interaction channels were analyzed by administering 10 µM 688 
fluorescein (Sigma-Aldrich) and water at a flow rate of 200 µL hr-1 into individual main channels. 689 
Paired growth chambers (n = 3) connected by each interaction channel length were continuously 690 
imaged using a 600 msec exposure time. Fluorescence and phase contrast Images were 691 
collected using a Ti-E Eclipse inverted microscope (Nikon) using the GFP filter (Chroma) 692 
470nm/40nm (ex), 525/50nm (em). To analyze the images, the fluorescence in each growth 693 
chamber as well as 1 µm increments along the length of each interaction channel at steady-state 694 
were determined.  695 
 696 
Sender-receiver quorum-sensing experiments 697 
Sender and receiver plasmids (Fig. S2) were constructed using standard Gibson assembly 698 
protocols using primers synthesized by Integrated DNA Technologies and verified by Sanger 699 
Sequencing (Functional Biosciences). The sender (A6c_LuxI_GFP64) and receiver 700 
(E2c_LuxR_RFP or pJH9-35) plasmids65 were transformed into E. coli strains BW2778366 and 701 
MG1655Z167 (Table 2), respectively. An initial set of cultures were inoculated into LB media 702 
(Lennox, Sigma-Aldrich) containing 25 µg/mL chloramphenicol (Sigma-Aldrich) and cultured 703 
overnight at 37°C with shaking. After approximately 16 hr, 1 µL of the cultures were diluted into 3 704 
mL LB media containing 25 µg/mL chloramphenicol and incubated at 37°C with shaking to early 705 
stationary phase (OD600 0.7-1.1). Next, we measured the OD600 of these cultures and 706 
centrifuged 1 mL at 3500 x g. The supernatant was removed, and the pellet was resuspended to 707 
a final OD600 of approximately 20. Cells were loaded into the device such that each growth 708 
chamber had 2-3 cells at the beginning of the experiment. In each experiment, the device was 709 
connected to three syringes (5 mL) containing LB media supplemented with 25 µg/mL 710 
chloramphenicol, 0.1% Tween 20 (Sigma-Aldrich) and 62.5 ng/mL anhydrotetracycline 711 
hydrochloride (Cayman Chemicals) as well as a fourth syringe (5 mL) containing the same media 712 
supplemented with 0.1% arabinose (Sigma-Aldrich). During the microscopy experiment, the 713 
microfluidic device was incubated at 37°C in a custom designed temperature incubation chamber. 714 
The main channels were flushed at a rate of 300 µL hr-1 to wash away excess cells from the 715 
growth chamber. The flow rate of the inlet containing arabinose (I22, Fig. 1) and the corresponding 716 
inlet on the opposite side (I11) were set to 10 µL hr-1 to prevent cell growth and clogging within the 717 
inlet and resistor and reduce pressure differences across the device. Fluorescence and phase 718 
contrast images were collected using a Ti-E Eclipse inverted microscope (Nikon) every 7 min at 719 
21 different positions. Fluorescence was imaged using the following filters (Chroma): GFP: 720 
470nm/40nm (ex), 525/50nm (em) or RFP: 560nm/40nm (ex), 630/70nm (em). The device was 721 
incubated for a period of time to allow cells to grow and divide. After the growth chambers had 722 
filled with cells, the media was switched to test conditions described in Table 1. For Experiment 723 
1 (Table 1), the arabinose inlet (I22, Fig. 1) and the corresponding inlet on the opposite side (I11, 724 
Fig. 1) were switched to 200 µL hr-1 and the flow rate through the remaining inlets (I12, I21) were 725 
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set to 0 µL hr-1. The forced oscillation experiments (Experiment 2-3, Table 1) used 10 mL syringes 726 
to extend the length of the experiment. Flow rates of the 0.1% arabinose (inlet I22) and 0% 727 
arabinose (inlet I21) were alternated out of phase between 200 µL hr-1 and 0 µL hr-1 for a period of 728 
time. One of the receiver inlets (I11) flowed continuously at a rate of 200 µL hr-1 and the other inlet 729 
(I12) was set to 0 µL hr-1 for the duration of the experiment.  730 
 731 
Dual-feedback oscillator experiments 732 
The E. coli strain CY027 was transformed separately with plasmids pC220 and pC239 or pC236 733 
and pC239 to construct the activator and repressor47, respectively using a standard chemical 734 
transformation protocol (Table 2). Overnight cultures were inoculated into LB media (Lennox) 735 
containing 50 µg/mL kanamycin and 100 µg/mL spectinomycin and incubated overnight at 37°C 736 
with shaking. After approximately 16 hr, 1 µL of the overnight cultures were diluted into 3 mL LB 737 
media and incubated at 37°C with shaking to early stationary phase (OD600 0.7-1.1). 738 
 Cells were loaded into the device following the procedure specified above. Following cell 739 
loading, the microfluidic chip was placed in the custom designed temperature incubation chamber 740 
at 37°C. All four inlets were connected to syringes (10 mL) containing LB media with kanamycin 741 
(50 µg/mL), spectinomycin (100 µg/mL) and 0.1% Tween 20. Syringes connected to inlets I22 and 742 
I11 also contained 1 mM isopropyl ß-D-1-thiogalactopyranoside (IPTG) (Sigma).  743 
 The cells were initially grown in the device at 37°C with inlets I12 and I21 flowing at 200 µL 744 
hr-1, and inlets I22 and I11 flowing at 10 µL hr-1 to prevent cell growth and clogging. Phase contrast 745 
and fluorescence images were collected every 7 minutes at 21 different positions. Once the 746 
growth chambers were filled with cells (Table 1), the inlets (I12 and I21) containing the pre-culture 747 
media were set to 0 µL hr-1 the inlets (I11 and I22) containing the test media were set to 200 µL hr-748 
1. 749 
 750 
Amino acid auxotroph experiments 751 
E. coli strains DmetA68 and DpheA68 (Table 2) were transformed with plasmids A6c_GFP69 and 752 
A6c_RFP69, respectively using a standard chemical transformation protocol. The plasmids 753 
harbored an IPTG inducible fluorescent reporter. An initial set of cultures were inoculated into LB 754 
media (Lennox) containing chloramphenicol (25 µg/mL) and incubated overnight at 37°C with 755 
shaking. After approximately 16 hr, 1 µL of the overnight cultures were diluted into 3 mL of LB 756 
containing 25 µg/mL chloramphenicol and 1 mM IPTG (Sigma-Aldrich) and incubated at 37°C 757 
with shaking until early stationary phase (OD600 0.7-1.1).  758 
 The cells were loaded into the device following the procedure outlined above. Following 759 
cell loading, the microfluidic chip was placed in the custom designed temperature incubation 760 
chamber at 37°C. The media always contained 1X MOPS Buffer (Teknova), 1X ACGU mix 761 
(Teknova), chloramphenicol, 0.1% Tween 20, 1.32 mM potassium phosphate dibasic (Teknova), 762 
and 0.2% glucose (Teknova), whereas the amino acid composition varied across experiments 763 
(Table 1). The amino acid solutions consisted of either EZ Amino Acids (AA, Teknova) or a 764 
modified amino acid solution (AA*) (Table 1). The AA* solution consisted of 0.4 mM L-asparagine 765 
(VWR), 0.01 mM calcium pantothenate (VWR), 0.2 mM L-histidine (VWR), 10 mM L-serine 766 
(VWR), 0.8 mM L-alanine (Fisher Scientific), 0.4 mM L-lysine (Fisher Scientific), 0.1 mM L-767 
tryptophan (Fisher Scientific), 0.4 mM L-aspartic acid (Dot Scientific), 0.1 mM L-cysteine (Dot 768 
Scientific), 0.8 mM L-glycine (Dot Scientific), 0.4 mM L-isoleucine (Dot Scientific), 0.8 mM L-769 
leucine (Dot Scientific), 0.01 mM para-amino benzoic acid (Dot Scientific), 0.4 mM L-proline (Dot 770 
Scientific), 0.4 mM L-threonine (Dot Scientific), 0.6 mM L-valine (Dot Scientific), 5.2 mM L-arginine 771 
(Sigma), 0.01 mM di-hydroxy benzoic acid (Sigma), 0.6 mM L-glutamic acid (Sigma), 0.01 .mM 772 
para-hydroxy benzoic acid (Sigma), 0.01 mM thiamine (Sigma), 0.2 mM L-tyrosine (Sigma) and 773 
0.6 mM L-glutamine (Acros Organics). In minimal media supplemented with AA*, varying 774 
concentrations of methionine (Dot Scientific) and/or phenylalanine (Dot Scientific) were added. 775 
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The AA amino acid solution consisted of all components in AA* plus 0.2 mM methionine and 0.4 776 
mM phenylalanine.  777 

The cells were grown for a period of time at 37°C with 1 mM IPTG prior to the media switch 778 
as described in Table 1 to fill the growth chambers. Phase contrast and fluorescence images 779 
were collected every 10 minutes at 21 different positions. After the growth chambers were filled 780 
with cells, the inlets (I12 and I21) containing the pre-culture media were set to 0 µL hr-1 and the 781 
inlets (I11 and I22) containing the test media were set to 200 µL hr-1.  782 
 783 
Amino-acid measurements  784 
The ΔmetA and ΔpheA strains were inoculated into LB (Lennox) containing chloramphenicol (25 785 
μg/mL) and grown overnight at 37°C with shaking. After 16 hours, 10 μL of the cultures were 786 
transferred into 3 mL of fresh LB containing chloramphenicol (25 μg/mL) and incubated at 37°C 787 
with shaking until early stationary phase (OD600 0.7-1.1). Immediately following, the cultures 788 
were centrifuged at 3500 x g for 5 min, supernatant was removed and the cells were inoculated 789 
into MOPS EZ Rich Defined Medium lacking M and F at an initial OD600 of 0.05. For the ΔmetA 790 
strain, 0, 2, 5, 10 or 200 μM M was added to the media. For ΔpheA strain, 0, 4, 10, 20 or 400 μM 791 
F was added to the media. The cultures were incubated at 37°C with shaking for 3 hr. After 792 
recording the OD600 of each culture, the cells were centrifuged at 3500 x g for 10 minutes, the 793 
supernatant was filtered by a 0.2 μm filter (GE Healthcare) and the concentrations of M or F were 794 
measured with a fluorometric assay kit (BioVision) or by liquid chromatography-mass 795 
spectrometry (LC-MS) respectively. Concentrations of M in the filtered conditioned media of 796 
ΔpheA cultures were measured with a fluorometric methionine assay kit (BioVision) with a 0.5 μM 797 
limit of detection. Raw fluorescence measurements were converted to methionine concentrations 798 
using a standard curve. 799 
 The analysis of F concentrations in the filtered conditioned media of ΔmetA was performed 800 
on a Shimadzu LC-MS2020. All solvents and reagents used the analysis were HPLC grade or 801 
higher quality. Methanol and formic acid used for the measurements was sourced from Fisher 802 
Scientific and Acros Organics, respectively. Water was prepared in house with a Millipore Milli-Q 803 
water purification system. Separations were performed at 40°C on a Discovery BIO wide pore C5-804 
5 column (15 cm x 2.1 mm x 5 µm) from Millipore-Sigma with a paired Supelguard (2 cm x 4 mm 805 
x 5 µm) guard column. The running buffer was a binary gradient of water with 0.1% v/v formic 806 
acid (Buffer A) and methanol (Buffer B) according to the following protocol: 4 minutes at 5% B, a 807 
linear gradient from 5% to 20% for 4 minutes, a linear gradient from 20% B to 95% B for 2 minutes, 808 
2 minutes at 95% percent B, a linear gradient from 95% B to 5 % B for 2 minutes, equilibrating 809 
the at 5% B for 6 minutes. The total flow rate was 0.2 ml min-1. Under these conditions, methionine 810 
and phenylalanine eluted at 3.8 minutes and 5.8 minutes, respectively. The ion source was 811 
operated in ESI mode with a cone voltage of 4.5 kV, the interface was held at 400°C and the 812 
desolvation line at 250°C. The dry nitrogen was supplied to the nebulizer at 1.5 L min-1 and drying 813 
gas at 15 L min-1. The mass spectrometer was run in selective ion monitoring (SIM) for monitoring 814 
m/z 150 for methionine and m/z 166 for phenylalanine with a scan time of 1 second.  Standards 815 
were prepared for each run by adding known concentrations of methionine and phenylalanine to 816 
fresh media. The standard curve was run before and after the sample batch and each sample 817 
was run twice for technical replicates. 818 
 819 
Auxotroph community batch culture experiment 820 
Separate culture tubes containing LB with chloramphenicol (25 µg/mL) were inoculated with 821 
ΔmetA or ΔpheA and incubated overnight at 37°C with shaking. After 16 hours, the cultures were 822 
diluted into 5 mL of EZ Rich Medium (Teknova) containing chloramphenicol (25 µg/mL) and 1 mM 823 
IPTG and lacking M and F at a final OD600 of 0.05. The ratio of ΔmetA to ΔpheA was 10:1, 1:1, 824 
or 1:10 (n = 3, for each starting ratio). The cultures were incubated at 37°C with shaking for at 825 
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least 24 hours before transferring the community to fresh media using a 1:100 dilution. At this 826 
transfer time, the OD600 of each culture was measured and a 2 µL sample was spotted onto a 827 
glass slide for cell counting with microscopy (20X magnification) on a Nikon Eclipse Ti. Four 828 
images comprising four distinct fields of view were taken of each sample and each image was a 829 
composition of phase contrast, GFP and RFP channels. Subsequently, ImageJ was used to 830 
extract the number of ΔmetA cells from the GFP channel and ΔpheA cells from the RFP channel 831 
for each image. 832 
  833 
Population-level image analysis 834 
For Experiments 1,2,5,6,10-13 (Table 1), individual growth chambers were segmented in 835 
DeepCell70. Five neural networks were trained on 21 randomly selected images as well as binary 836 
masks (made using FIJI image analysis software71) that specified the growth chamber positions. 837 
The trained model was used to analyze the remaining microscopy images. The results of the 838 
trained networks (2-5 depending on segmentation accuracy) were averaged to improve 839 
segmentation accuracy.  840 

For Experiments 3 and 4 (Table 1), growth chambers were segmented using custom code 841 
in Python that aligned each growth chamber across all time points. A binary mask denoting the 842 
growth chambers was applied to all time points. There was a negligible difference in the 843 
fluorescence time-series for the DeepCell and alignment methods.  844 

In each analyzed image, custom code (Python) was used to label the binary mask with 845 
the growth chamber positions and total areas and compute the average fluorescence intensity of 846 
each growth chamber. Segmented regions less than or greater than 1000 and 3500 pixel area 847 
were eliminated from the data set. Specific criteria were used to eliminate outliers from the data 848 
sets including (1) infrequent pressure fluctuations leading to loss of cells from the growth 849 
chambers, (2) device bonding issues leading to collapsed interaction channels or cells that enter 850 
the interaction channels, (3) growth chambers with unoccupied regions, (4) abnormal cell growth 851 
that significantly alters the total number of cells in the growth chamber, or (5) cell growth near 852 
growth chambers may generate different diffusion rates. In all physically separated experiments 853 
(Experiments 1-6,10-13, Table 1), the connected chamber was excluded from the data set if a 854 
growth chamber was identified as an outlier based on these criteria (Table 1).  855 
 856 
Population-level fluorescence time-series analysis  857 
Fluorescent time series measurements for each growth chamber in Experiments 5-6,10-13 (Table 858 
1) were analyzed by bootstrapping, with p-values computed using bootstrap hypothesis testing. 859 
Using this method, the biological replicate curves for a given interaction channel length were 860 
randomly sampled 1000 times with replacement. In Experiment 1 (Table 1), background 861 
fluorescence was subtracted from the data by subtracting the minimum RFP fluorescence 862 
intensity across all growth chambers for model fitting (Fig. 1c,d).  863 

In the forced oscillation experiments (Experiments 2-3, Table 1), a peak finding algorithm 864 
(Python) was applied to the time-series gene expression data at steady state with minimum inter-865 
peak threshold of 21 min. The amplitude was computed by subtracting the minimum and 866 
maximum of each oscillation and dividing this value by two. To calculate the signal-to-noise ratio 867 
(SNR), a moving mean computed over 20 time points was subtracted from the data. The power 868 
spectra for each replicate was calculated using Welch’s method (Python) with a Hamming window 869 
applied across the length of the time-series. The power spectra were filtered to exclude 870 
frequencies lower than the signal bandwidth. The signal was defined as the total power of the 871 
signal bandwidth. The noise was computed as the total power of frequencies larger than the signal 872 
bandwidth. The power spectra for all the replicates for a given interaction channel length were 873 
randomly sampled with replacement 10,000 times. At each iteration, the signal-to-noise ratio was 874 
computed by dividing the signal by the noise. Bootstrap hypothesis testing was used to compute 875 
p-values. 876 
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For the dual-feedback oscillation experiment (Experiment 4, Table 1), the fluorescence 877 
intensity of each fluorescent reporter was normalized by subtracting the global minimum of the 878 
reporter across all replicates and dividing by the global maximum of fluorescence across all 879 
replicates. The mean-subtracted data was computed using a moving mean of 20 time points. A 880 
peak finding algorithm (Python) was applied to detect peaks with a minimum inter-peak distance 881 
of 70 min and a minimum peak height of 0.015 by analyzing the data after the media switch. The 882 
number of peaks detected, the amplitude of expression at each peak, and the distance between 883 
subsequent peaks were all computed for each replicate. 884 

In the auxotroph experiments (Experiments 5, 6, 10-13, Table 1), the fluorescence 885 
background for each reporter was subtracted from the data and then the time-series was 886 
normalized by dividing by the maximum value. The change in fluorescence per unit time (DF Dt-1) 887 
was computed by determining the slope of a line fit to a 10 time point moving window and then 888 
multiplying by negative one. The global maximum of DF Dt-1 corresponded to the maximum growth 889 
rate.  The doubling time was calculated using times the following equation: 890 
 891 

𝐷𝑜𝑢𝑏𝑙𝑖𝑛𝑔	𝑡𝑖𝑚𝑒 = ./	(1)
345(D6	D789)

. 892 
  893 

In Experiment 10 (Table 1), the DF Dt-1 curves displayed a biphasic trend characterized by 894 
a global and local maximum. To characterize the growth rate at each peak, the DF Dt-1 time-series 895 
was analyzed between the time point of the media switch and the time point corresponding to 896 
25% of the maximum fluorescence. The local maxima within this time window were identified 897 
using the findpeaks algorithm (Python). The bootstrapped DF Dt-1 time-series were aligned by the 898 
first peak and the doubling times at the global maximum were calculated as described above. For 899 
the second growth phase, the doubling time was calculated at the maximum DF Dt-1 for the period 900 
of time between the global maximum and the time point corresponding to 25% of the maximum 901 
fluorescence.  902 
 903 
Single-cell image analysis  904 
Single cell metrics were obtained with a custom machine learning approach implemented in 905 
Python with the Keras API running on top of TensorFlow72. We used two convolutional neural 906 
networks with U-Net architecture. First, we performed segmentation of individual cells in each 907 
image and then tracked each of the segmented cell instances over time. The segmentation 908 
network takes as an input the phase contrast images of cells grown in MISTiC and for each image 909 
and yields a binary mask segmenting the cells from the background. Training data was obtained 910 
from a separate experiment imaging fluorescently labeled E. coli at 60X magnification with phase 911 
contrast and fluorescence images collected every 10 minutes. We used the fluorescence images 912 
to generate binary segmentation masks of the cells, which then served as the ground truth for the 913 
phase contrast images used for network training. A total of 1066 images were curated this way. 914 
The network was trained for 100 epochs using a stochastic gradient descent (SGD) optimizer and 915 
a pixelwise weighted loss function to enforce the learning of narrow borders between adjacent 916 
cells. To minimize overfitting of the network to the training data, random affine transformations 917 
and elastic deformations were applied in real-time during the training process. 918 

Cell tracking was performed with a separate U-Net similar to a method reported 919 
previously73. The input for this network is a set of consecutive binary segmentation masks. For 920 
each cell in the current segmentation, the network predicts the cell in the previous segmentation 921 
image from which the current cell was derived. This backwards tracking approach eliminates the 922 
need for the network to learn occurrences of cells leaving the chamber and reduces the number 923 
of classes to two (the tracked cell and the background). Using segmentations from the mixed 924 
auxotroph experiment, we curated 2656 sets of training images with a custom script in MATLAB. 925 
Training occurred for 200 epochs using an Adam optimizer and a class-weighted categorical 926 
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cross-entropy loss function. Similarly, data augmentation was performed to reduce overfitting of 927 
the data. 928 
 Following segmentation and tracking, the raw output was processed with custom code in 929 
Python to reconstruct cell lineage and obtain single cell metrics. The instantaneous growth rate 930 
of each cell was computed from the cross-sectional area recorded during the 100-minute window 931 
(10 data points) immediately following that instant. Growth rate was computed by fitting a line to 932 
each 100 min window and then dividing the slope of the line by the average cell area during that 933 
time interval. For all analyses, a minimum tracking duration of 100 minutes was imposed to 934 
enforce consistent computation of growth rate. For all analyses involving growth rate, statistical 935 
outliers were identified using a modified z-score computed on the chamber averaged growth rates 936 
at each time point  937 

𝑀; = 	
<.>?@A(BCDBE)

FG
, 938 

 939 
where 𝑥E represents the median growth rate and 𝑀I	denotes the median absolute deviation74. 940 
Statistical outliers were detected using a threshold of 𝑀; > 3.5. Growth chambers with more than 941 
one time point registering as an outlier were excluded from the analysis (Table 1). Experimental 942 
outliers occurred primarily due to segmentation and tracking errors caused by loss of focus or 943 
empty chambers at specific positions. Outliers were considered separately for each strain. 944 
 945 
Model fitting 946 
Custom code (MATLAB) was used for computational modeling. An ordinary differential equation 947 
model was developed to study inter-strain communication via chemical signal diffusion (quorum-948 
sensing). Detailed descriptions of the diffusion and gene expression models are in the 949 
Supplementary Information. The general mathematical form of the equations describing the 950 
concentration of AHL or fluorescein in each discretized spatial region is 951 
 952 

𝑥Ṁ = 𝐷(𝑥;DO + 𝑥;QO − 2𝑥;) − 	𝛾𝑥;, 953 
 954 
where xi and xi+1 represent concentrations in adjacent regions of the device. The parameters D 955 
and 𝛾 denote the diffusion rate and degradation rate of the diffusible molecule, respectively. For 956 
the gene expression model, the general mathematical form for modeling transcription is 957 
 958 

𝐵V̇ =	∝X
YZ

[ZQYZ
− 	𝛾𝐵V, 959 

 960 
where A and Bm represent a transcription factor and its regulated transcript, respectively. The 961 
parameters ∝X, 𝑛, 𝐾, and 𝛾 denote the maximum transcription rate, Hill coefficient, half-maximum 962 
concentration or binding affinity and mRNA degradation rate, respectively. The general 963 
mathematical form for representing time delays due to sequential protein assembly, fluorescent 964 
protein maturation or media switching is 965 

 966 
𝑦_ = 𝑎a𝑦_DO − 𝑦_b	𝑓𝑜𝑟	𝑗 = 1 ∶ 𝑁. 967 

 968 
The species yN represents the time-delayed species y1 and the delay time is computed by 𝑁 ∙ 𝑎DO.  969 

The model was simulated using ode23s (MATLAB). A model with a variable number of 970 
delay equations was fit to the data using a genetic algorithm. The algorithm identified a best 971 
estimate for the parameter values and an optimal model structure by adjusting the number of 972 
delay equations to minimize the L2-norm between the model and the data. First, 100 parameter 973 
sets were randomly sampled using an upper and lower bound for each parameter. For each 974 
parameter set, the model was simulated and the L2-norm between the model and the data was 975 
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computed. The parameters were ranked from lowest to highest L2-norm. The first parameter set 976 
(lowest L2-norm) was averaged with parameter sets 2-10, generating 9 new parameter sets. 977 
These parameter sets were combined with 81 randomly sampled parameter sets using an upper 978 
and lower bound for each parameter. This procedure was repeated until the L2-norm did not 979 
change significantly with additional iterations. The best estimates for the parameters are listed in 980 
Table S3. 981 

The parameters of the amino-acid cross-feeding model were fit using a genetic algorithm. 982 
The genetic algorithm can be most efficient with high-order systems and many unknowns. One of 983 
the challenges with the genetic algorithm is there is no proof of convergence and the rate of 984 
convergence can be slow if the initial guesses on the parameters are far from the minimizing set 985 
and the bounds on the parameters are too broad. In order to overcome these challenges, careful 986 
consideration was taken into determining the lower and upper bounds on the parameters. Initially, 987 
bounds were determined based on biologically relevant and feasible values. Additionally, 988 
experimental observations where used to infer necessary relationships between parameters. The 989 
bounds on the parameters were adjusted accordingly. After this, the genetic algorithm was 990 
executed until the error became invariant for a sequence of 10 generations. Since the genetic 991 
algorithm is not optimal, it is possible to arrive at slightly different values if we were to run the 992 
genetic algorithm longer or reinitiate at new random initial conditions. However, the qualitative fits 993 
remain fairly close, as do the parameter values. Nevertheless, given experimental error, it is not 994 
in our benefit to achieve an optimal fit, since such a fit does not imply better prediction of 995 
quantitative values of parameters.  996 
 

Experiment Descriptor 
Media 
switch 
(min) 

Pre-
culture 

condition  
Test 

condition Outliers 

1 Q.S.  
(step response) 105 aTc aTc + ara 1;1;0;0 

2 Q.S. (forced 
oscillator, 2 hr) 140 aTc aTc ± ara 1;1;1;5 

3 Q.S. (forced 
oscillator, 1 hr) 184 aTc aTc ± ara 0;0;1;3 

4 Dual-feedback 
oscillators 217 NA IPTG 0;0;3;1 

5 Auxotroph (control) 218 0.25X AA 
+ IPTG 0.25X AA 0;0;1;2 

6 Auxotroph 
(coupled) 420 

1X AA* + 
0.1X F/M 
+ IPTG 

1X AA* 3;2;0;1 

7 Auxotroph 
(mixed) 60 

1X AA* + 
0.1X F/M 
+ IPTG 

1X AA* + 
IPTG 5;2;2;1✚ 

8 Auxotroph 
(ΔmetA control) 110 

1X AA* + 
0.1X F/M 
+ IPTG 

1X AA* + 
IPTG 1;2;3;8✚ 

9 Auxotroph 
(ΔpheA control) 90 

1X AA* + 
0.1X F/M 
+ IPTG 

1X AA* + 
IPTG 3;2;2;7✚ 

10 Auxotroph  
(rescue - Dmet) 24 0.5X AA* 

+ 1X M + 
0.5X AA* + 

1X M 0;0;0;1 
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0.05 X F 
+ IPTG 

11 Auxotroph 
(coupled) 710 0.1X AA 

+ IPTG 0.003X AA 1;0;0;0 

12 Auxotroph 
(coupled) 148 0.1X AA 

+ IPTG 0.005X AA 1;0;0;3 

13 Auxotroph 
(coupled) 285 0.2X AA 

+ IPTG 0.02X AA 1;2;0;0 
Table 1. MISTiC experimental conditions. Pre-culture conditions refer to the environment within the 997 
microfluidic device from the beginning of the experiment to the time of the first media switch. Test culture 998 
conditions refer to the media conditions following the first media switch. Quorum sensing experiments were 999 
performed in Luria Broth (LB) whereas remaining experiments used MOPS EZ Rich Defined Medium, with 1000 
the modifications specified above. AA refers to EZ amino acid solutions containing all amino acids and AA* 1001 
refers to an amino acid solution lacking methionine (M) or phenylalanine (F). In experiments where F and 1002 
M were added separately, 1X F and M refers to 0.4 mM and 0.2 mM, respectively. The pre-culture amino 1003 
acid fraction was varied to control cell growth for allowing sufficient fluorescent reporter expression. Outliers 1004 
refer to the number of paired growth chambers excluded for each distance (25 µm;50 µm;100 µm;250 µm) 1005 
based on a set of specific criteria (Materials and Methods). ✚For these experiments, the numbers 1006 
represent single outlier growth chambers (20 total for each distance, 25 µm;50 µm;100 µm;250 µm) that 1007 
were excluded from the analysis (Materials and Methods).  1008 
 1009 

Strain identifier Strain background Plasmid(s) Reference 
Sender BW27783 A6c_LuxI_GFP* 66 

Receiver MG1655z1 E2c_LuxR_RFP* 67 
Activator CY027 (E. coli ΔlacI 

ΔaraC ΔsdiA Ptrc*-
cinR Ptrc*-rhlR) 
Addgene #72402 

 pC220 (Addgene 
#65877) and pC239 
(Addgene #65953) 

47 

Repressor CY027 (E. coli ΔlacI 
ΔaraC ΔsdiA Ptrc*-

cinR Ptrc*-rhlR) 
Addgene #72402 

pC236 (Addgene 
#65951) and pC239 
(Addgene #65953) 

47 

DmetA BW25113 A6c_GFP* 68 
DpheA BW25113 A6c_RFP* 68 

Table 2. Strains used in study. The * symbol indicates plasmids that were constructed for this study. All 1010 
other constructs were derived from the indicated references.  1011 
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